MATH 502: HOMEWORK \#1

DUE IN LECTURE THURSDAY, SEPT. 12, 2019.

I. Equivalence relations and the Euclidean algorithm.

1. Let $f: A \rightarrow B$ be a surjective map of sets. Prove that the relation \dagger on the elements of A defined by $a \dagger b$ if and only if $f(a)=f(b)$ is an equivalence relation. Show that the equivalence classes of \dagger are the fibers of f.
2. Use the Euclidean algorithm to show that if $a=69$ and $n=89$ then the residue class $[a]$ of $a \bmod n$ defines an element in the group $(\mathbf{Z} / n)^{*}$ of invertible residue classes $\bmod n$. Find an integer b such that $[b]$ is the inverse of $[a]$ in $(\mathbf{Z} / n)^{*}$.

II. Group actions and some examples of groups.

3. Determine which of the following binary operation are (a) associative, (b) commutative.
i. the operation $*$ on \mathbf{Z} defined by $a * b=a-b$.
ii. the operation $*$ on \mathbf{R} defined by $a * b=a+b+a b$.
iii. The operation $*$ on \mathbf{Q} defined by $a * b=\frac{a+b}{5}$.
iv. The operation $*$ on $\mathbf{Z} \times \mathbf{Z}$ defined by $(a, b) *(c, d)=(a d+b c, b d)$.
v. the operation $*$ on $\mathbf{Q}-\{0\}$ defined by $a * b=\frac{a}{b}$.
4. Which of the following sets are groups under addition?
i. the set of rational numbers (including $\frac{0}{1}$) in lowest terms whose denominators are odd.
ii. the set of rational numbers (including $\frac{0}{1}$) in lowest terms whose denominators are even.
iii. the set of rational numbers of absolute value ≤ 1.
iv. the set of rational numbers of absolute value ≥ 1 together with 0 .
v. the set of rational numbers with denominators equal to 1 or 2 .
vi. the set of rational numbers with denominators equal to 1,2 or 3 .
5. Let $G=\{a+b \sqrt{2} \in \mathbf{R}: a, b \in \mathbf{Q}\}$.
i. Show that G is an abelian group under addition.
ii. Show that the set $G-\{0\}$ of non-zero elements of G is a group under multiplication. (Hint: Rationalize denominators.)
6. Show that if G is a group such that $x^{2}=1$ for all $x \in G$ then G is abelian.

III. Galois groups.

7. Let S_{n} be the symmetric group on $n \geq 1$ letters. Define $\mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$ to be the set of polynomials $F=F\left(X_{1}, \ldots, X_{n}\right)$ with integer coefficients in the commuting indeterminates X_{1}, \ldots, X_{n}. For $s \in S_{n}$, define $(s F)=(s F)\left(X_{1}, \ldots, X_{n}\right)$ to be the polynomial $F\left(X_{s(1)}, \ldots, X_{s(n)}\right)$. So, for example, if $F\left(X_{1}, \ldots, X_{n}\right)=X_{i}$, then $(s F)\left(X_{1}, \ldots, X_{n}\right)=$ $X_{s(i)}$.
i. Show that $s(F+G)=s F+s G$ and $s(F \cdot G)=(s F) \cdot(s G)$ if $F, G \in \mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$, where $F+G$ and $F \cdot G$ are the usual sum and product of polynomials.
ii. Show that the map $S_{n} \times \mathbf{Z}\left[X_{1}, \ldots, X_{n}\right] \rightarrow \mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$ defined by $(s, F) \rightarrow s F$ defines an action of S_{n} on $\mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$, in the sense that $e F=F$ when e is the identity permutation, and $(s t)(F)=s(t F)$ for all $s, t \in S_{n}$ and $F \in \mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$. (Hint: You could use part (i) to reduce to the case in which $F=X_{i}$ for some i.)
8. Suppose $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$ is a monic polynomial with integer coefficients a_{i}. Write $f(x)=\left(x-b_{1}\right) \cdots\left(x-b_{n}\right)$, where the b_{i} are complex numbers, and assume the b_{i} are distinct. Let T be the set of all complex numbers of the form $F\left(b_{1}, \ldots, b_{n}\right)$ in which $F=F\left(X_{1}, \ldots, X_{n}\right)$ is an element of $\mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$. Note that T contains the set of all integers \mathbf{Z}, since $F\left(X_{1}, \ldots, X_{n}\right)$ can be a constant polynomial. One can define the Galois group $G(f)$ of $f=f(x)$ to be the set of all permutations s of $\{1, \ldots, n\}$ such that there is a permutation t_{s} of T such that

$$
t_{s}\left(F\left(b_{1}, \ldots, b_{n}\right)\right)=F\left(b_{s(1)}, \ldots, b_{s(n)}\right)
$$

for all $F\left(X_{1}, \ldots, X_{n}\right)$ as above. Note that with the action of S_{n} on $\mathbf{Z}\left[X_{1}, \ldots, X_{n}\right]$ defined in problem \# 6, we have

$$
F\left(b_{s(1)}, \ldots, b_{s(n)}\right)=(s F)\left(b_{1}, \ldots, b_{n}\right)
$$

i. Show that the equality $t_{s}\left(F\left(b_{1}, \ldots, b_{n}\right)\right)=F\left(b_{s(1)}, \ldots, b_{s(n)}\right)$ for all $F\left(X_{1}, \ldots, X_{n}\right)$ as above implies t_{s} fixes each integer, i.e. $t_{s}(m)=m$ for $m \in \mathbf{Z}$.
ii. Prove that the identity permutation, which fixes each element of $\{1, \ldots, n\}$, lies in $G(f)$.
iii. Suppose that $s \in G(f)$, so that a t_{s} as above exists. Show s^{-1} lies in $G(f)$. (Hint: You want to show that there is a bijection $t^{\prime}: T \rightarrow T$ such that for each polynomial $H\left(X_{1}, \ldots, X_{n}\right)$, one has $t^{\prime}\left(H\left(b_{1}, \ldots, b_{n}\right)\right)=H\left(b_{s^{-1}(1)}, \ldots, b_{s^{-1}(n)}\right)$. Try setting t^{\prime} equal to the inverse of t_{s}, and applying (1) to the polynomial $F=s^{-1} H$ in the sense of problem \# 7.)
iv. Show that $G(f)$ is a subgroup of the symmetric group S_{n} of all permuations of $\{1, \ldots, n\}$.
9. Show that the Galois group of $f(x)=x^{2}-2$ is of order 2 .

IV. IsOmetry groups.

10. Show that an isometry $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ which preserves the origin must be linear, i.e. must be represented by multiplication by some matrix. Deduce that $\operatorname{Isom}\left(\mathbf{R}^{n}\right)$ is generated by the group T_{n} of translations and the orthogonal group $O(n, \mathbf{R})$.
11. Let M be a finite non-empty subset of the Euclidean plane \mathbf{R}^{2}. Give M the Euclidean metric d_{M}. Show that an element f of $\operatorname{Isom}\left(M, d_{M}\right)$ of order greater than 2 must be the restriction of a rotation about some point of \mathbf{R}^{2}. (Hint: Show there is an $m \in M$ so m, $f(m)$ and $f^{2}(m)$ are distinct. Consider the possibilities for $f^{3}(m)$. To what extent is f determined by its action on $m, f(m)$ and $f^{2}(m)$?)
12. Bonus Problem (optional): With the notations of problem \#11, describe the isomorphism classes of groups which can arise as $\operatorname{Isom}\left(M, d_{M}\right)$ for some finite non-empty set of points M in \mathbf{R}^{2}.
