MATH 502: HOMEWORK #1

DUE IN LECTURE THURSDAY, SEPT. 12, 2019.

I. EQUIVALENCE RELATIONS AND THE EUCLIDEAN ALGORITHM.

- 1. Let $f : A \to B$ be a surjective map of sets. Prove that the relation \dagger on the elements of A defined by $a \dagger b$ if and only if f(a) = f(b) is an equivalence relation. Show that the equivalence classes of \dagger are the fibers of f.
- 2. Use the Euclidean algorithm to show that if a = 69 and n = 89 then the residue class [a] of $a \mod n$ defines an element in the group $(\mathbf{Z}/n)^*$ of invertible residue classes mod n. Find an integer b such that [b] is the inverse of [a] in $(\mathbf{Z}/n)^*$.

II. GROUP ACTIONS AND SOME EXAMPLES OF GROUPS.

- 3. Determine which of the following binary operation are (a) associative, (b) commutative.
 - i. the operation * on **Z** defined by a * b = a b.
 - ii. the operation * on **R** defined by a * b = a + b + ab.
 - iii. The operation * on **Q** defined by $a * b = \frac{a+b}{5}$.
 - iv. The operation * on $\mathbf{Z} \times \mathbf{Z}$ defined by (a, b) * (c, d) = (ad + bc, bd).
 - v. the operation * on $\mathbf{Q} \{0\}$ defined by $a * b = \frac{a}{b}$.
- 4. Which of the following sets are groups under addition?
 - i. the set of rational numbers (including $\frac{0}{1}$) in lowest terms whose denominators are odd.
 - ii. the set of rational numbers (including $\frac{0}{1}$) in lowest terms whose denominators are even. iii. the set of rational numbers of absolute value ≤ 1 .
 - iv. the set of rational numbers of absolute value ≥ 1 together with 0.
 - v. the set of rational numbers with denominators equal to 1 or 2.
 - vi. the set of rational numbers with denominators equal to 1 of 2. vi. the set of rational numbers with denominators equal to 1, 2 or 3.
 - vi. the set of fational numbers with denominators equal to 1, 2 of
- 5. Let $G = \{a + b\sqrt{2} \in \mathbf{R} : a, b \in \mathbf{Q}\}.$
 - i. Show that G is an abelian group under addition.
 - ii. Show that the set $G \{0\}$ of non-zero elements of G is a group under multiplication. (Hint: Rationalize denominators.)
- 6. Show that if G is a group such that $x^2 = 1$ for all $x \in G$ then G is abelian.

III. GALOIS GROUPS.

- 7. Let S_n be the symmetric group on $n \ge 1$ letters. Define $\mathbb{Z}[X_1, \ldots, X_n]$ to be the set of polynomials $F = F(X_1, \ldots, X_n)$ with integer coefficients in the commuting indeterminates X_1, \ldots, X_n . For $s \in S_n$, define $(sF) = (sF)(X_1, \ldots, X_n)$ to be the polynomial $F(X_{s(1)}, \ldots, X_{s(n)})$. So, for example, if $F(X_1, \ldots, X_n) = X_i$, then $(sF)(X_1, \ldots, X_n) = X_{s(i)}$.
 - i. Show that s(F + G) = sF + sG and $s(F \cdot G) = (sF) \cdot (sG)$ if $F, G \in \mathbb{Z}[X_1, \ldots, X_n]$, where F + G and $F \cdot G$ are the usual sum and product of polynomials.

- ii. Show that the map $S_n \times \mathbb{Z}[X_1, \ldots, X_n] \to \mathbb{Z}[X_1, \ldots, X_n]$ defined by $(s, F) \to sF$ defines an action of S_n on $\mathbb{Z}[X_1, \ldots, X_n]$, in the sense that eF = F when e is the identity permutation, and (st)(F) = s(tF) for all $s, t \in S_n$ and $F \in \mathbb{Z}[X_1, \ldots, X_n]$. (Hint: You could use part (i) to reduce to the case in which $F = X_i$ for some i.)
- 8. Suppose $f(x) = x^n + a_{n-1}x^{n-1} + ... + a_0$ is a monic polynomial with integer coefficients a_i . Write $f(x) = (x b_1) \cdots (x b_n)$, where the b_i are complex numbers, and assume the b_i are distinct. Let T be the set of all complex numbers of the form $F(b_1, ..., b_n)$ in which $F = F(X_1, ..., X_n)$ is an element of $\mathbf{Z}[X_1, ..., X_n]$. Note that T contains the set of all integers \mathbf{Z} , since $F(X_1, ..., X_n)$ can be a constant polynomial. One can define the Galois group G(f) of f = f(x) to be the set of all permutations s of $\{1, ..., n\}$ such that there is a permutation t_s of T such that

$$t_s(F(b_1,\ldots,b_n)) = F(b_{s(1)},\ldots,b_{s(n)})$$

for all $F(X_1, ..., X_n)$ as above. Note that with the action of S_n on $\mathbf{Z}[X_1, ..., X_n]$ defined in problem # 6, we have

$$F(b_{s(1)}, \dots, b_{s(n)}) = (sF)(b_1, \dots, b_n)$$

- i. Show that the equality $t_s(F(b_1,...,b_n)) = F(b_{s(1)},...,b_{s(n)})$ for all $F(X_1,...,X_n)$ as above implies t_s fixes each integer, i.e. $t_s(m) = m$ for $m \in \mathbb{Z}$.
- ii. Prove that the identity permutation, which fixes each element of $\{1, \ldots, n\}$, lies in G(f).
- iii. Suppose that $s \in G(f)$, so that a t_s as above exists. Show s^{-1} lies in G(f). (Hint: You want to show that there is a bijection $t': T \to T$ such that for each polynomial $H(X_1, \ldots, X_n)$, one has $t'(H(b_1, \ldots, b_n)) = H(b_{s^{-1}(1)}, \ldots, b_{s^{-1}(n)})$. Try setting t' equal to the inverse of t_s , and applying (1) to the polynomial $F = s^{-1}H$ in the sense of problem # 7.)
- iv. Show that G(f) is a subgroup of the symmetric group S_n of all permutaions of $\{1, \ldots, n\}$.
- 9. Show that the Galois group of $f(x) = x^2 2$ is of order 2.

IV. ISOMETRY GROUPS.

- 10. Show that an isometry $f : \mathbf{R}^n \to \mathbf{R}^n$ which preserves the origin must be linear, i.e. must be represented by multiplication by some matrix. Deduce that $\text{Isom}(\mathbf{R}^n)$ is generated by the group T_n of translations and the orthogonal group $O(n, \mathbf{R})$.
- 11. Let M be a finite non-empty subset of the Euclidean plane \mathbb{R}^2 . Give M the Euclidean metric d_M . Show that an element f of $\operatorname{Isom}(M, d_M)$ of order greater than 2 must be the restriction of a rotation about some point of \mathbb{R}^2 . (Hint: Show there is an $m \in M$ so m, f(m) and $f^2(m)$ are distinct. Consider the possibilities for $f^3(m)$. To what extent is f determined by its action on m, f(m) and $f^2(m)$?)
- 12. Bonus Problem (optional): With the notations of problem #11, describe the isomorphism classes of groups which can arise as $Isom(M, d_M)$ for some finite non-empty set of points M in \mathbb{R}^2 .