Towards A Global Mirror Symmetry

Yongbin Ruan
University of Michigan

Plan of talk:

(I) What is "global"?

(II) A conjectural physical package BCOV

(III) An approach to hypersurface LG-model

(IV) Unexpected bonus! \uparrow orbifold GW-Theory
(1) WHAT IS "GLOBAL"?

"Local" Mirror symmetry

Mirror symmetry of local Calabi-Yau

$X - CY 3$-fold $\leftrightarrow X' - another CY 3$-fold

A-model

U

kahler str

GW- Theory $(g=0)$

B-model

U

complex str

periods

Famous example:

$X = \{ \sum_{i=1}^{5} x_i^5 = 0 \} \leftrightarrow X' = \{ \sum_{i=1}^{5} x_i^5 - s y^{\frac{1}{5}} \sum_{i=1}^{5} x_i = 0 \}$

kahler str

t \in kahler cone

NO complex str-

match $\gamma \in$

$\Pi_1 = 1$
A temporary solution at the time (20 years ago) ↓

"local mirror ↔ symmetry

\[t \leftarrow \gamma \in \text{a neigh of } \gamma = \infty \uparrow \text{large complex str limit} \]

Now: Restore "Global" structure of Mirror symmetry

Benefit:
1. Compute higher genus Gromov-Witten Theory
2. Study modularity of " \(\cdot \)"
3. Prove Landau-Ginzburg/Calabi-Yau correspondence
4. More, ...

"GLOBAL" = allow \(\gamma \) to move around in the entire moduli space of complex str
(II) A conjectural physical package

Background: B-model \((g=0)\)
 \[5 \text{ periods} \]

A toy model

\[E(\xi) = \left\{ \sum_{i=1}^{3} x_i^3 - 3 \xi^{\frac{1}{3}} \sum_{i=1}^{3} x_i = 0 \right\} / \mathbb{Z}_3 \]

\[\forall \xi \in \{ 0, 1, \infty \} \]

CY-form:

\[H^{1,0}(E(\xi)) = \mathbb{C} \]

\[\omega_\xi \to \text{holomorphic} (1,0) \text{ form} \]

\[\text{vary holomorphically as we vary } \xi \]

Another choice:

\[\omega(\xi) \rightarrow f(\xi) \omega(\xi) \]

\[\text{holomorphic funct} \]
\(H_1(\mathbb{E}(\mathcal{V}), \mathbb{Z}) \) has a symplectic basis

\[
A, B \text{ with } A^2 = B^2 = 0 \quad A \cdot B = 1 \quad B \cdot A = -1
\]

change basis

\[
\begin{pmatrix} A \\ B \end{pmatrix} \rightarrow \begin{pmatrix} A' \\ B' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}
\]

\(\quad \text{SL}_2 \mathbb{Z} \)

\[\text{PERIOD}: \quad q = \sum_A \omega(\nu) \quad p = \sum_B \omega(\nu) \]

vary \(\nu \) \(\rightarrow \) \(q(\nu), p(\nu) \) = multi-valued

\(\text{funct of } \mathbb{P}^1 \{0, 1, \infty\} \)

\[\tau = \frac{p(\nu)}{q(\nu)} \in \mathbb{H}_+ \quad \text{upper half-plane} \]

\(\nu \)

\(\downarrow \quad \text{universal cover} \quad \mathbb{P}^1 \{0, 1, \infty\} \)

\(\tau^{\prime} \quad \text{monodromy} \rightarrow T(3) \text{SL}_2 \mathbb{Z} \)

\text{GW-theory} \iff \text{periods of }

\text{parameter } t

\text{near } \{ \infty \} \text{ of basis } A, B

\(\tau = i \infty \quad \text{"large complex str" limit} \)
Going Back to quintic 3-fold (B-model)

\[\mathbb{P} \left(30, 1, 00 \right) \]

\[\mathbb{H}_4 \cong \mathbb{C} \text{- modular coord} \]

\[\mathbb{H}_3 (X, z) = 4 \]

GW-theory of quintic

"local" periods near \(\tau = i \infty \)

Mirror

Remark:

1. Above "local" mirror symmetry for \(g=0 \) has been verified by Givental, Liu-Liang-Yau in the middle of 90's.

Our interest:

2. Higher genus \((g>0) \) GW-theory

(1) **GLOBAL PROPERTY:**

1. exist a global \(F_g^B(z, \bar{z}) \) - genus \(g \) generating function of \(B \)-model GW Theory

 (i) defined for all \(z \)

 (ii) non- holomorphic

(2) **Modular Invariance**

\[
F_g^B(hz, h\bar{z}) = F_g^B(z, \bar{z}) \cdot j(h, z)^k
\]

\(h \in P \)- monodromy group

(3) \(\partial \bar{z} F_g^B = \not= 0 \) - holomorphic anomaly equation

\(\uparrow \) BCOV, Klemm,

\[
F_g^B(z, \bar{z}) = \sum_{j} F_{g, j}(z) (i\text{m}\bar{z})^{-j}
\]

(2) + (3) \(\Rightarrow F_g^B(z) \) - quasi-modular form
(1) **SPECIAL LIMIT (Mirror Conjectures)**

- **B-model** \[\text{CY-to-CY}\] \[\text{A-model}\]
- (1) near \(\tau = i\infty\) \[\longleftarrow\]\ Gromov-Witten Theory of \(X\)

 - Original "local" mirror symmetry
 - Small/Large duality

 \(\text{landau-Ginzburg/CY correspondence}\)

- (2) near \(\tau = 0\) \[\longleftarrow\] "conjectural" Landau-Ginzburg model

- (3) near \(\tau = 1\) \[\longleftarrow\] "conjectural" matrix model

(4) Beyond quintic, other limits.

Klemm's group

Assume the existence of above package + general properties of known for mathematician special limits only for \(g = 0, 1\).

A STRIKING computation of GW-theory of \(g \leq 51\).
Goal of Remaining talk

- Describe an approach for a mathematical construction of above package for hypersurface. Most of steps are conjectural at this moment.
- Present some theorems in dimension one.
First advance: Gepner limit
Conjectural LG-model = Theory of Fan-Jarvis-Ruan-Witten (2007)

LG-model:

(i) \(W: \mathbb{C}^n \to \mathbb{C} \) "non-degenerate" quasi-homogeneous poly
(ii) \(G \subset \text{Aut}(W) \) - finite abelian symmetry

Theory of Fan-Jarvis-Ruan-Witten:

- A complete A-model theory of LG-model based on solving Witten equations:
 \[\overline{\partial} \Omega_i + \overline{\partial} \Omega^j W = 0 \]

- A GW-type curve counting theory
 - based on \(\overline{\mathcal{M}}_{g,n} \)
 - 2D TFT
 - satisfies axioms of GW-theory

- Much easier to calculate (ADE, elliptic singularity, \(g=0 \) quintic, expanding rapidly)
What happens for (1): build a rigorous theory of $F_B^g(z, \bar{z})$ with expected properties

- A hard problem
- Progress on $X = T^{2m}$ (Costello - Li)
- Our approach for hypersurfaces such as quintic 3-fold (Milanov - Krausze Shen)

Key Observation

CY-deformation: $x_1^3 + x_2^3 + x_3^3 - 3y^{\frac{1}{3}}x_1x_2x_3$

\[\nabla \text{subset} \]

$\sum_{i=1}^{3} x_i^3 + x_2^3 + x_3^3 - 3y^{\frac{1}{3}}x_1x_2x_3 + t_0 + t_1x_1$

$+ t_2x_2 + t_3x_3 + t_4x_1x_2 + t_5x_1x_3 + t_6x_2x_3$

minimal deformation of singularity $W = x_1^3 + x_2^3 + x_3^3$
A "baby" B-model of singularity/\text{LG-model}

\[W = x_1^3 + x_2^3 + x_3^3 \]

Milnor ring \[Q_W = \frac{\mathbb{C}[x_1, x_2, x_3]}{\partial_{x_1} W, \partial_{x_2} W, \partial_{x_3} W} \] 8-dim

\[= \{ 1, x_1, x_2, x_3, x_1 x_2, x_1 x_3, x_2 x_3, x_1 x_2 x_3 \} \]

Universal deformation \[W(t; \sigma) = x_1^3 + x_2^3 + x_3^3 + \sigma x_1 x_2 x_3 + t_0 + t_1 x_1 + t_2 x_2 + t_3 x_3 + t_4 x_1 x_2 + t_5 x_1 x_3 + t_6 x_2 x_3 \]

B-model parameter space \[= \{ (t; \sigma), \ |t| < 3, \ |\sigma|^3 < 27 \} \]

For each \((t; \sigma)\),

\[Q_{W(t; \sigma)} = \frac{\mathbb{C}[x_1, x_2, x_3]}{\partial_{x_3} W(t; \sigma)} \]

a family of Frobenius algebras

Pairing: \(\langle \phi_1, \phi_2 \rangle = \text{Res} \frac{\phi_1 \phi_2 dx_1 dx_2 dx_3}{dW(t; \sigma)} \)
Main properties

1. For generic $\tau \neq 0$, $W(t, \tau)$ is holomorphic Morse function.
 Frobenius algebra of such (t, τ) is Semi-Simple.

2. Pairing is NOT flat.

Saito - Givental Theory:

1. Saito - Theory:
 - Primitive form
 - Replace $dx_1 dx_2 dx_3 \rightarrow \frac{1}{\rho(\sigma)} \cdot dx_1 dx_2 dx_3$
 - Flat pairing \Rightarrow Frobenius manifold structure $\mathcal{F}_0^{B}(t, \sigma, \rho)$

2. Givental Theory:
 - On semi-simple Frobenius model, exist $\mathcal{F}_g^{B}(t, \sigma, \rho)$
what we know about primitive form \(\frac{1}{p} \) ?

- \(P \) always exist locally \(\implies \) Saito-Givental Theory
- explicit formula for ADE, elliptic singularities
- difficult to get explicit formula in general
- along CY-direction (marginal deformation), related to periods
 \(\Downarrow \) leads to
 Global Saito-Givental Theory
 (under developed by Milanov, ...)
Global Saito-Givental Theory in dim = 1
(Milanov,

Starting point: \(P(\sigma) \) - period, i.e. \(P(\sigma) = \sum_{A} \omega(\sigma) \)

Recall \(\tau = \frac{\sum_{B} \omega(\sigma)}{\sum_{A} \omega(\sigma)} \in H^+ \)

\(A, B \) - symplectic basis

flat coord along \(\sigma \)-direction

\(\mathcal{B} \) - model

Parameter space = \(\{ (t_i, \tau), \; |t_i| \leq \epsilon, \; \tau \in H^+ \} \)

\[\downarrow \text{monodromy group} \]
\[\{ (t_i, \sigma), \; |t_i| \leq \epsilon, \; \sigma^{\pm 27} \} \]

\(t_i \rightarrow \) CY - deformation

\((t_i, \tau) \rightarrow \) Frobenius mod str \(\rightarrow \mathcal{F}_B^\sigma(t_i, \tau) \)

\((t_i \neq 0, \tau) \rightarrow \mathcal{F}_B^\sigma(t_i, \tau) \rightarrow \) semi-simple

holomorphic

with respect to \(t_i, \tau \)
Let
\[D^B_{sg}(t_i, \tau) = \exp \left(\sum_{h \in H} \tau^{2g-2} \hat{X}_h D_{sg}^B \right) \]
where \(\hat{X}_h \) - differential operator defined out of \(h \in H(\mathbb{Z}) \).

Corollary: \(\hat{F}_g^B(t_i, \tau) \) is not modular.

A magic trick: Anti-holomorphic completion

We found an explicit way to complete
\[\hat{F}_g^B(t_i, \tau) \rightarrow \hat{F}_g^B(t_i, \tau, \overline{\tau}) \]

\[\hat{F}_g^B(t_i, \tau, \overline{\tau}) = \sum_{j=1}^{K} \hat{F}_g^B(t_i, \tau, \overline{\tau}) \left((\text{in } \tau) \right)^{-j} \]
defined via Feynmann diagram expansion

Quasi-modular form

Easy Fact: \(\hat{F}_g^B(t_i, \tau, \overline{\tau}) \) satisfies holomorphic anomaly equation.
Modular Invariance: $F^B_g(t, \tau, \bar{\tau})$ is modular invariant

Assume: $F^B_g(t_i=0, \tau, \bar{\tau})$ extends to $t_i=0$

$somehow\ a\ difficult\ problem!$

Corollary (a):

$F^B_g(t_i, \tau, \bar{\tau}) = \sum a_1(\tau, \bar{\tau}) t_i$

then $a_1(\tau, \bar{\tau})$ are classical modular form

Corollary (b):

$F^B_g(\tau, \bar{\tau})$ satisfies holomorphic anomaly eqn
desired B-model theory
(IV) An unexpected bonus!

\[\mathcal{F}_g^\mathcal{B}(t_i, \tau) \text{ has a mirror of its own.} \]

A-model

Mirror:

\[\xi x_1^3 + x_2^3 + x_3^3 = 0 \]

\[\mathbb{P}^1 \]

orbifold \(\mathbb{P}^1 \)

\[\mathbb{P}^1_{x_0, x_1, x_2, x_3} \]

LG-dual: \((W = x_1^3 + x_2^3 + x_3^3, z_3^3) \)

Theorem: (Krawitz-Shen)

1. Near \(\tau = 0 \), \(\mathcal{F}_g^\mathcal{B}(t_i, \tau) = \mathcal{F}_g^{\mathcal{F}_3\mathcal{R}W}(t'_i, \tau') \) extends to \(t_i = 0 \)

2. Near \(\tau = i\pi \), \(\mathcal{F}_g^\mathcal{B}(t_i, \tau) = \mathcal{F}_g^{6W}(t'_i, \theta = \frac{2\pi i}{3}) \)

3. Same holds for \(x_9 = x_1^2 + x_2^4 + x_3^4 \rightarrow \mathbb{P}^1_{\mathcal{R}^1}, 4, 4 \)
 \(J_6 = x_1^2 + x_2^3 + x_3^6 \rightarrow \mathbb{P}^1_{2, 3, 6} \)
Two Bonuses:

(I) GW-theories of $\mathbb{P}^1_{3,3,3}$, $\mathbb{P}^1_{2,4,4}$, $\mathbb{P}^1_{2,3,6}$ are quasi-modular

\[\uparrow \]

wanted very much by mathematician

(II) LG/CY - correspondence holds for all genera for these examples.

\[\uparrow \]

First example of all genera

A less important Result:

Restrict to $t_i = 0$ \[\Rightarrow \] recover elliptic curve

\[\uparrow \]

Known already by Okounkov Pandharipande