Penn Arts & Sciences Logo

Probability and Combinatorics

Tuesday, September 12, 2017 - 3:00pm

Nicholas Crawford



Temple University

Wachman Hall, 617

Note the location change

In this talk, I will discuss recent work with W. de Roeck on the following natural question: Given an interacting particle system are the stationary measures of the dynamics stable to small (extensive) perturbations? In general, there is no reason to believe this is so and one must restrict the class of models under consideration in one way or another. As such, I will focus in this talk on the simplest setting for which one might hope to have a rigorous result: attractive Markov dynamics (without conservation laws) relaxing at an exponential rate to its unique stationary measure in infinite volume. In this case we answer the question affirmatively. As a consequence we show that ferromagnetic Ising Glauber dynamics is stable to small, non-equilibrium perturbations in the entire uniqueness phase of the inverse temperature/external field plane. It is worth highlighting that this application requires new results on the (exponential) rate of relaxation for Glauber dynamics defined with non-zero external field.