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ABSTRACT

A CONSTRUCTIBLE HIGHER RIEMANN HILBERT CORRESPONDENCE

Aditya Surapaneni

Jonathan Block

We introduce a notion of a constructible vector bundle with connection and es-

tablish a constructible version of the Higher Riemann-Hilbert correspondence stud-

ied by Block and Smith. We also give a construction for a super connection of a

graded vector bundle, starting from a higher parallel transport and give a different

proof of their result.
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Chapter 1

Introduction

The Riemann-Hilbert correspondence is a classical result in topology that relates

vector bundles over a space M with a flat connection and representations of the fun-

damental group, π1(M). The correspondence is executed by the familiar notion of

parallel transport. Parallel sections of a flat vector bundle define a locally constant

sheaf. We are concerned with some generalisations of these notions.

In one direction, we may replace locally constant sheaves with sheaves con-

structible on the spaceM with a fixed stratification. The corresponding replacement

for the fundamental group will be a category of exit paths inspired by unpublished

work of MacPherson. These are paths that have an ‘exit property’. i.e. that they

may not re-enter a lower stratum. We introduce a notion of a constructible vector

bundle with connection to take the place of ordinary vector bundles.

The parallel transport that arises from a flat connection is homotopy invariant.
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That is, two homotopic paths joining a pair of points induce the same map on the

fibers at the endpoints. We could ask instead, that homotopic paths give rise to

homotopic transports and higher homotopies give higher homotopies and so on.

This is the second direction of the generalisation. We give a construction for a

vector bundle with a flat super connection starting with such a coherent transport

functor.

We will make use of previous work by Block, Smith and Igusa which in turn was

inspired by works of Chen on iterated integrals in the 70’s, for a notion of a derived

parallel transport construction.

In the second chapter we will review the classical theory and give a notion of a

flat constructible vector bundle that would correspond to parallel transport for exit

paths. In chapter 3 we start by recalling work of Igusa [Ig09], Block-Smith [BS09].

We then construct a graded vector bundle with a flat super connection starting

with a higher transport (or ∞-local system) and show that this is inverse to the

constructions of Igusa and Block Smith. In chapter 4 we’ll extend the results to the

constructible case, combining ideas from the previous two chapters. We end with a

few comments on how this relates to equivalence with sheaves.
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Chapter 2

Classical Theory

Here we will describe the 1-categorical Riemann Hilbert correspondence in a way

that generalises to the ∞ case. Given a vector bundle p : V → M with a flat

connection ∇ we have a notion of a parallel transport functor. This is a rule

Fγ(t, s) that gives for each path γ in M , a map Vγ(s) → Vγ(t). This can be thought

of as functor π≤1(M) → V ect the category of vector spaces. This is standard. We

will describe below a way back, i.e. we’ll construct a bundle and a connection given

the data of the transport functor. We will associate a locally constant sheaf with

this data. This sheaf will have as sections over an open set U the sections of the

vector bundle that are parallel with respect to the connection.

In section 2 we will try to generalise all of this to the constructible case. After

introducing our notion of a stratified space, we will build ‘constructible vector bun-

dles’ as analogues of constructible sheaves to replace vector bundles, and we will
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see how to extend the above constructions.

2.1 Parallel transport

Let p : V →M be a smooth vector bundle. A connection on this bundle is a section

∇ ∈ Γ(T ∗M ⊗ End(V ) which satisfies the Liebnitz rule, [∇, f ] = df . Locally we

can write ∇ = d− A, where A ∈ Ω1(M,End(V ) is a matrix of 1-forms.

A section s of the bundle is called parallel with respect to the connection if it

satisfies the equation ∇s(x) = 0. In local co-ordinates, this is ds(x) = As(x). This

defines an ODE which we know have solutions.

For a path γ, we say F (t, s) : V (s) → V (t) defines a parallel transport along γ

if for any vs ∈ V (s), F (t, s)vs ∈ V (t) (as t varies) defines a parallel section over γ.

Then F (t, s) satisfies

∂F (t, s)

∂t
= A(γ′(t))F (t, s)

There is a way of computing explicitly the parallel transport. It is given as an

iterated integral
∞∑
k=0

∫ ∫
t<t1<t2...<s

A(t1)A(t2)..A(tk)

where A(ti) = Ati(γ
′(ti).

It can be checked that this satisfies F (t, x)F (x, s) = F (t, s). The connection is

called flat if (d−A)2 = 0. If a connection is flat, the parallel transport it gives rise

to is equal on homotopic paths.
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Let π≤1(M) denote the category whose objects are points of M , and whose

morphisms are homotopy classes of paths. Then we may think of the parallel

transport (of a flat connection) as a functor π≤1(M) → V ect, which takes a point

x → Vx and a path x → y to the transport map. If the connection is flat, this

depends only on homotopy class and the equation F (t, x)F (x, s) = F (t, s) gives

composition.

Given the information of a functor F : π≤1(M) → V ect, we may recover the

vector bundle and a connection on it as follows. Let {V = vx}vx∈F (x),x∈M as a set.

There is a natural projection map p : vx → x. If (U, x0) is a contractible open ball

containing x0, we can write

p−1(U) ' Fx0 × U

vx → (F γ(x, x0)vx0 , x)

We use this to topologise the bundle and give it a smooth structure. Transition

functions are given by the choice of path x0 → x1. Now we can define a connection

on this bundle as

A(t) =
∂F

∂t
|t=0

Given a flat vector bundle V |M or a transport functor F , we may define a sheaf

(denoted F) by

F(U) = {s : U → V |∇s = 0}

F(U) = {s : U → V |s(x) = F (x, y)s(y)}
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It can be checked that this defines a sheaf (because we can patch together solutions

of ODEs) that is locally constant (F(U, x0) ' Fx0).

2.2 Constructible constructions

A stratified space is a space built from manifolds with some measure of control over

how they fit together. Standard examples are manifolds with corners filtered by

dimension. A constructible sheaf is a sheaf that is locally constant when restricted

to each stratum. Given a locally constant sheaf F we get a notion of parallel

transport given by taking the stalk Fx over each point x and a map Fx → Fy for

each path x→ y using the local triviality. When F is constructible this is no longer

possible as we no longer have the same notion of local triviality where two strata

meet. Where two strata meet, the stalks at different nearby points x ∈ S0, y ∈ S1

are different (non isomorphic) vector spaces. However, we may salvage a notion of

transport of we restrict ourselves to what are called ’exit paths’. Suppose a path γ

is such that x = γ(0) lies in a lower stratum and γ(0, 1] is in a higher stratum. An

element in the stalk Fx still comes from the restriction of a section that is defined

in a neighbourhood of that point. We can use this fact to get a lift of our path for

a small part of the path at x, and get a map Fx → Fy as before once we’ve entered

the higher stratum. It is a fol theorem (by MacPherson) that there’s an equivalence

between constructible sheaves and representations of exit paths. We take inspiration

from this and imagine vector bundles which do not have local triviality where strata
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meet, but have a notion of a parallel transport for exit paths. We can then construct

a connection on such a ‘vector bundle’ as we would a connection for an ordinary

vector bundle with transport.

2.2.1 Stratified spaces

A stratified space M is a filtered space M0 ⊂ M1 ⊂ M2.... ⊂ Mn = M satisfying

some conditions. In our case we may think of ‘stratified manifolds’ as being built

out of smooth manifolds as follows:

Let M0 = S0 the 0th-stratum be a closed manifold. Let (S̄1, ∂S1) be a closed

manifold with boundary. (S1 = S̄1 − ∂S1 will be a manifold that represents the

1-stratum). We will obtain the stratified space M1 by gluing M0 and the S1 by a

given attaching map f1 : ∂S1 → M0. i.e. M1 = M0 ∪f1 S1. We have M1 −M0 =

S̄1 − ∂S1 = S1.

To get Mi we need a manifold with boundary (S̄i+1, ∂Si+1) and an attaching

map fi+1 : ∂Si+1 → Mi. Remember Mi is not a manifold for i ≥ 1. Then let

Mi+1 = Mi ∪fi+1
Si+1. Again we have Mi+1 −Mi = S̄i+1 − ∂Si+1 = Si+1.

We would like the maps fi be submersions. This doesn’t quite make sense

because Mi is singular. So instead we ask that fi be a submersion over each stratum

in Mi. i.e. fi+1 : f−1
i+1(Mj −Mj−1)→Mj −Mj−1 is a submersion for j < i

Definition 2.2.1. We define a stratified space to be the all the data specified above.

i.e. {Mi, Si, fi} where fi are submersions in the above sense. We call the spaces
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Si = Mi −Mi−1 the pure strata and S̄i the closed pure strata.

It is now easy to see for example, that simpicial complexes, manifolds with edges

are examples of our stratified spaces. Most stratified spaces ’in nature’ arise this

way, though these do not consist of all (Whitney/Thom-Mather) stratified spaces.

Spaces like these are considered in [BF02] and [Kr10].

Remark 2.2.2. The map fn+1 : ∂Sn+1 →Mn is a submersion on strata by definition.

It is also proper since ∂Sn+1 is compact. By Ehreshmann’s theorem, this means

that the map is a fiber bundle over each stratum in Mn. A collar neighbourhood

of ∂Sn+1 ⊆ Sn+1 in the glued space, takes the place of tubular neighbourhoods in

Thom-Mather stratified spaces.

2.2.2 Exit paths

Given a stratified space M , the category of exit paths has as objects points of space

M and as morphisms paths with the exit property. i.e a path γ : [0, 1] → M with

the property that if t1 ≤ t2 then rk(γ(t1)) ≤ rk(γ(t2)) where rk(x) is the dimension

of the stratum in which x lives. In words, these are paths that only go up strata, and

cannot return to a lower stratum they’ve exited. We denote this category πexit≤1 (M)

and π≤1M −Rep denotes the functors from this category to V ect.

When M is a smooth stratified space, exit paths will be continuous paths that

are smooth when restricted to each stratum.
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2.2.3 Vector bundles

We want to define a notion of a smooth vector bundle over a stratified space defined

above. Given the data {Si,Mi, fi} of a stratified space, we’ll define a constructible

vector bundle as follows:

We start with an ordinary smooth vector bundle p0 : V0 → M0 over the 0

stratum M0. Let S1 → S1 be a smooth vector bundle. Let f̃1 : S1|∂S1 → V0|M0 be

a bundle map covering the attaching map f1 : ∂S1 →M0. Define the constructible

bundle V1 to be S1 ∪f̃1 V0. This V1 is naturally equipped with a projection map p1

to M1 which we can think of as the 0-section in it. We have that V1 restricted to

each open stratum is an ordinary smooth vector bundle.

Next, look at a vector bundle S2 → S2 and a map f̃2 : S2|∂S2 → V1|M1 , such that

the map restricted to M0 and M1 −M0 = S1 is a map of ordinary vector bundles.

Then define the constructible bundle V2 to be S2 ∪f̃2 V1. Again we see that this

“bundle” restricted to the open strata gives an ordinary vector bundle.

Continuing in this way, we can define a constructible vector bundle on all of M

inductively.

Definition 2.2.3. Given a stratified space {Si,Mi, fi}, a constructible vector bun-

dle consists of the data {Si, Vi, f̃i}, where Si → Si is an ordinary vector bundle,

f̃i covering fi is a vector bundle map when restricted to each stratum and Vi is

inductively defined to be Si ∪f̃i Vi−1.

In the sequel, we will take the maps f̃i attaching the vector bundles to be 0.
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Baues-Ferrario [BF02] study vector bundles of this form and prove a classifying

theorem etc. though they do not have a notion of a connection.

We wish to endow such a vector bundle with a (flat) connection that would

give rise to the parallel transport for exit paths, similar to the case of constructible

sheaves we described in the introduction.

Let us begin with the 0-stratum again. Parallel transport here is the ordinary

one and so, a connection on V0 →M0 should be an ordinary connection, i.e a section

in Γ(End(V0)⊗ T ∗M0).

Let γ : [0, 1]→M1 be an exit path such that γ(0) ∈M0 and γ((0, 1]) ⊆M1−M0.

Let F (t, s) : V1(γ(s)) → V1(γ(t)) be the transport. We then have F (t, s)F (s, 0) =

F (t, 0) : V1(γ(0)) → V1(γ(t)). Here F (t, s) is happening in the open 1-stratum for

s > 0 and there is again, an ordinary connection in the open 1-stratum that gives

rise to it.

The remaining information is F (t, 0) as t→ 0. F (0, 0) as such is not defined, so

instead we look at

V0

��

f ∗1 (V0) α1
//oo

��

S1

��
M0 ∂S1

//f1oo ∂S1

and let α1 take the place of the map F (0, 0). We call α1 an exit map.

Here we assume S1|∂S1 is the extension of the bundle S1. It might not always be

possible to extend a given vector bundle and a transport to the boundary, but we

can find a bundle isomorphic to the one we have that does extend. We’ll return to
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this in a moment.

Denote by {F 0, F 1} the ordinary parallel transport in the 0 and 1 strata. Now

given a vector v0 ∈ V0 over γ(0) ∈M0, we can write F exit(0, 0)v0 = F 0(0, 0)v0 = v0

and F exit(t, 0)v0 = F 1(t, 0)(α1v0). and we had F exit(t, s)vs = F 1(t, s)vs. i.e. we

have written the exit transport in terms of the ordinary transports on the strata

and the exit connection map α.

This is the object of this section. Given a notion of a parallel transport for exit

paths we will try and break it down into ordinary transport on the strata and maps

α at the ‘exit’. A connection on a constructible bundle then will be the connections

that give rise to the ordinary transports and the exit maps.

Now say γ is a more typical exit path with γ([0, 1/2]) ⊆ M0 and γ((1/2, 1]) ⊆

M1. We could calculate the transport along γ by making an exit as it were at γ(0)

and transporting in M1 −M0 or we could make the exit at γ(1/2) and travel the

rest of the path over M1. These two routes have to take us to the same destination,

because the paths are (trivially) homotopic. Another way of saying this is that the

parallel transport in M0 and M1 agrees along the tangent directions common to

both M0 and M1. This is expressed by the equation

F 1(1, 1/2)F 1(1/2, 0)α1v0 = F 1(1, 1/2)α1F 0
0 (1/2, 0)v0

where F i is the transport in the i− th stratum.

In general, a homotopy of exit paths can be broken down into a homotopy in each

strata and a thin homotopy of the above form where paths straddling strata. So
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having this condition assures any two exit paths that are homotopic have the same

transport. (Assuming the transports are homotopy invariant inside each stratum).

The equation for a general t and x looks like

F 1(t, x)α1(γ(x)) = α1(γ(t)F 0(t, x)

for a curve γ. Multiplying by the invertible F 0(x, s), this equation is equivalent to

F 1(t, x)α(γ(x)F 0(x, s) = α(γ(t)F 0(t, x)F 0(x, s) = α(γ(t)F 0(t, s)

Now the LHS is independent of x. So we have

∂

∂x
F 1(t, x)α(γ(x)F 0(x, s) = F 1(t, x)[A1(

∂

∂x
)α +

∂

∂x
α + αA0(

∂

∂x
)]F 0(x, s) = 0

Here A( ∂
∂x

) is the connection acting on the vector γ′(x). So the condition is equiv-

alent (since we can reverse the calculation) to

A1α + dα + αA0

Remembering that dα = d ◦α+α ◦ d by the product rule and ∇1 = d−A1 etc., we

get that the condition is equal to

∇1α = α∇0

So far we have that a connection on a bundle with two strata consists of a

connection over each stratum and an exit map that satisfies a differential equation

involving the connection. Let’s now go one more stratum up. As before we can argue

that the information of parallel transport for the exit paths is given by {F 0, F 1, α1}

on M1, a transport F 2 on S2|S2 and an exit map α2 given as

12



V1

��

f ∗2 (V1) α2
//oo

��

S2

��
M1 ∂S2

//f2oo ∂S2

Then the lift of an exit path starting in M1 at 0 can again be given as F exit(0, 0)v1

= F 1(0, 0)v1 = v1 and F exit(t, 0)v1 = F 2(t, 0)(α2v1). and so on.

We now have to address the issue of compatibility of the αs. So let’s say we have

a small (contractible to a point in M2) triangle in M2 given as {(x0, x1, x2)|xi ∈Mi}.

So the path x0 → x1 is in M1 etc. Since the triangle is contractible, we’d have that

the transports along the paths x0 → x1 → x2 and x0 → x2 are the same. i.e. if

v0 is a vector over x0, we have F (x2, x1)F (x1, x0)v0 = F (x2, x0)v0. Writing this in

terms of the exit maps and the transports on each stratum, we get

F 2(x2, x1)α2F 1(x1, x0)α1v0 = F 2(x2, x0)α2v0

Loosely speaking, we again have the condition α2F 1 = F 2α1 which as before

captures the idea that the transport along the directions common to both the strata

is the same. Say we also have a compatibility condition for the exit maps of the

sort α2α1 = α2.Then we have

F 2(x2, x1)α2F 1(x1, x0)α1v0 = F 2(x2, x1)F 2(x1, x0)α2α1v0 = F 2(x2, x1)F 2(x1, x0)α2v0

= F 2(x2, x0)α2v0

where the last equation holds because F 2 is an ordinary transport. In words, if

we have a triangle {(x0, x1, x2)|xi ∈ Mi}, we can pull back everything in M0 and
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M1 to the 2-stratum using the attaching maps and calculate the ordinary parallel

transport there.

We need to make sense of the equation α2α1 = α2. Now αi is a bundle map over

∂Si, so the composition α2α1 is not as such defined.

To fix this we will pull back the bundles to a space where we can compose the

maps. Define S12 as the pullback

S12

��

// ∂S2

f2
��

S1
f1 //M1

Here f1 : S1 → M1 is the extension of the attaching map f1 : ∂S1 → M0 by

taking it to be the identity on S1 − ∂S1 → M1 −M0. We can now pull back the

bundles V1|M1 ,S1|S1 ,S2|∂S2 to the space S12. We continue to call them by the same

names. If we have a map α12 that extends α2, and the following diagram commutes,

as bundles over S12

V1

α2   @
@@

@@
@@
α1
// S1

α12

��
S2

Now, α12α1 = α2 gives

F 2(x1, x0)α12α1v0 = F 2(x1, x0)α2v0

α12F 1(x1, x0)α1v0 = F 2(x1, x0)α2v0

14



The image of this last equation over ∂S2, remembering that off M0, we have

α12 = α2 is

α2F 1(x1, x0)α1v0 = F 2(x1, x0)α2v0

which is the compatibility condition that we wanted.

We can (and should) do this for all pairs of strata, if i ≥ j we ask to have the

diagram

Vj

αi
��?

??
??

??
αj
// Sj

αij

��
Si

commute where the bundles are the pullbacks to the space Sij defined as

Sij

��

// ∂Si

fi
��

Sj
fj //Mi−1

We will abbreviate this discussion by saying that the αi satisfy the condition

αiαj = αi, when i > j. This condition gives equations of the form

αiF jαj = F iαi

for all i > j, we then get

αiF jαjF kαk = αiF jF jαj = αiF jαj = F iαi

where the first equality is given by the pair j, k and the last by the pair i, j. Then

a simple inductive argument gives

F inαin ...F i1αi1 = F inαin

15



i.e. we can compute the transport of a general exit path by lifting the path to the

top stratum and compute the pure transport there.

We wish to say any parallel transport can be broken down like this. To do

this we saw, we need to be able to extend the transport on the pure strata Si to

the boundary. This is not always true. So we modify a given F on Si on a collar

neighbourhood of the boundary to a new transport F̄ by taking it to be the identity

in the collar direction. We have

Lemma 2.2.4. F̄ |(0,ε]×∂S ' F |(0,ε]×∂S

Proof. Choose coordinates (y, s) ∈ (0, ε]×∂S. (This notation conflicts slightly with

our notation in the rest of this paper.)

s1ε s2ε

s1y1

s2y2

∂S

We have

F (s2y2, s1y1) = F (s2y2, s2ε)F (s2ε, s1ε)F (s1ε, s1y1)

and

F̄ (s2t2, s1y1) = F̄ (s2y2, s2ε)F̄ (s2ε, s1ε)F̄ (s1ε, s1y1)
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But from the way we defined F̄ , we know this is

F̄ (s2y2, s1y1) = Id.F̄ (s2ε, s1ε).Id

So we may write

F (s2y2, s1y1) = F (s2y2, s2ε)F̄ (s2y2, s1y1)F (s1ε, s1y1)

And this last equation gives the isomorphism F̄ ' F .

Now, we’ll give an inductive definition for a transport built out of ordinary

transports on the closed pure strata S̄i and exit maps. Given an ordinary transport

Fi on Si, an exit transport F i−1 on Mi−1 and a map (natural transformation)

(αi : f ∗i F
i−1 → Fi)|∂Si

, we can construct a transport on Mi as Fi = FiαiF i−1,

i.e. Given a path γ, such that γ[0, s] ⊆ Mi−1 andγ(s, 1] ⊆ Mi −Mi−1, we define

F i(t, 0) = Fi(t, s)αi(s)F (s, 0). In general, we may define F i = Fiαi..Fi1αi1 ....

Definition 2.2.5. Denote by πbroken≤1 (M)−Rep the category of the transports that

arise this way. i.e. The objects of the category are given by

1. An ordinary parallel transport Fi ∈ π≤1(S̄i)−Rep

2. Exit maps (αi : f ∗i F
i−1 → Fi)|∂Si

3. Maps αij of transports over Sij

F i

αi   A
AA

AA
AA

A
αj
// Fi

αij

��
Fj
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4. Such that the αi are compatible with the transports , αiF i = Fi+1αi

5. And the αi are compatible with each other ‘αiαj = αi’

Maps between transports are defined as natural transformations Φi between Fi

and Gi on the closed pure strata that commute with the exit maps.

Definition 2.2.6. Denote by πexit≤1 (M) − Rep the category of transports of exit

paths. i.e. we view the πexit≤1 (M) as a subcategory of the path groupoid of M that

consists of exit paths.

Theorem 2.2.7. There is an equivalence of categories Θ : πbroken≤1 (M) − Rep →

πexit≤1 (M)−Rep

Proof. The functor Θ is defined on objects as

Θ({Fi, αi}) = F exit = Finαin ..Fi1αi1 ...

Lemma 2.2.3 says that this functor is essentially surjective. To see that this is

fully faithful, we need to say that if F,G are in the image of the functor Θ, i.e. they

are made from functors on the pure strata and exit maps, then any map between

them is given by a natural transformation that also can be broken down. Now since

a map Φ in πexit≤1 (M) − Rep is a natural transformation it satisfies ΦyF (x → y) =

G(x → y)Φx. If x is in ∂S, we can simply define G(x → y)(−1)ΦyF (x → y) = Φx

and this gives a broken down Φ.

We now return to vector bundles and define a connection on a constructible

vector bundle as follows:
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Definition 2.2.8. A flat connection on a constructible vector bundle {Si, Vi, f̃i} on

a stratified space {Si,Mi, fi} is given by

1. An ordinary flat connection ∇i = d− Ai on the bundle Si|Si
.

2. Exit maps αi:

Vi−1

��

f ∗i (Vi−1)
αi //oo

��

Si

��
Mi−1 ∂Si //fioo ∂Si

3. Maps αij of bundles over Sij

Vi

αi ��?
??

??
??
αj
// Si
αij

��
Sj

4. Such that the αi are compatible with the connection, αi∇i = ∇i+1αi

5. And the αi are compatible with each other ‘αiαj = αi’

We can define a category of constructible vector bundles with connection, by

defining maps between bundles to be maps of ordinary vector bundles over each

stratum, that commute with the connection and the exit maps. Call this category

Flatconst(M).

Theorem 2.2.9. There is an equivalence of categories

Σ : πbroken≤1 (M)−Rep→ Flatconst(M)
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Proof. Given a transport Fi on each closed pure stratum S̄i, we can build a vector

bundle Si as in the ordinary case in the last section. We take the attaching maps f̃i

to be zero. The maps αi of transports give bundle maps by the way we topologise

the bundles. And the conditions on the transports translate to the conditions on

the vector bundles.

We define the connection on the pure strata by differentiating the transport as

before. We saw that the compatibility of the αs with the transport is equivalent to

the compatibility of the corresponding connection. This gives an equivalence at the

level of objects.

The correspondence of morphisms is entirely similar to that of the exit maps. A

natural transformation of transports gives a map of vector bundles that commutes

with the connection.etc.

Remark 2.2.10. We saw that the map fn+1 : ∂Sn+1 → Mn is a fiber bundle over

each stratum in Mn. So given a path γ in Mn, we may lift it to a path γ̃ in

S̄n+1. Exit paths, we may lift uniquely. The equation F 1α1v0 = α1F 0v0 that

expresses compatibility between the transports in the 0 and 1 strata, should be

read as F 1
γ̃α

1v0 = α1F 0
γ v0.

Remark 2.2.11. A constructible vector bundle with connection has attaching maps

f̃i which have to do with the topology of the bundle, and connection maps αi

which have to do with the parallel transport. A representation of exit paths, or
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a constructible sheaf determines and is determined by the vector bundles on the

strata and the exit connection maps αi. The attaching maps are a choice for the

vector bundle that is extraneous data. We generally take the f̃i to be 0.

Remark 2.2.12. All of this has a strict analogue in sheaf theory. Let ji : Mi−Mi−1 =

Si → Mi be the inclusion of the open i-stratum into the i-th filtered part of the

space. If F is a sheaf on Mi, the unit of the adjunction F → j∗j∗F contains the

information of the exit connection. We may restrict to Mi−1 by the inclusion and

continue down to M0 inductively.

2.2.4 Sheaves

Given the data of a constructible bundle and parallel transport F , we can define

a constructible sheaf as before: For U , an open set in M , define a sheaf F as

F(U) = {s ∈ Maps(U, V )|s(y) = F (f)(s(x))} where f is any exit path in U .

Again, this is well defined, because of homotopy invariance.

This pre-sheaf is again a sheaf because we can patch parallel sections uniquely.

If two sections agree on an open set, they agree when restricted to each stratum

and so patch together because of the locally constant case. So we have patching.

This sheaf is constructible because it is locally constant when restricted to each

stratum, by construction.

Example 2.2.13. Look at an annulus M closed on the inside with the stratification

given by S1 is the inner circle. And S2 is the open annulus.
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π≤1(M) is equivalent to a category with two objects, given by choosing a point

on each stratum. and maps {x0
α→ x0

β→ x1
γ→ x1}. Here α, γ represent the loops

based in x0 ∈ S0 etc. and the map β is an exit path joining x0, x1. We have that α

and γ generate Z and they satisfy the relation αβ = βγ.

A representation then of πexit1 (M) is given by a vector space V , W for the circle

and the open annulus. Maps V → V , W → W which give representations of Z,

and a map V → W which intertwines them.

The constructible sheaf corresponding to a particular representation is a locally

constant sheaf on the inner circle given by V, α and on the open annulus given by

W, γ. If the map β is 0, we can think of this constructible sheaf as a different local

system on each stratum. If the map is the identity, the we should think of this

constructible sheaf as a locally constant sheaf on the whole space which restricts to

a locally constant sheaf on each stratum.

2.2.5 Constructible Sheaves on a Simplicial Complex

Let M = (S,Σ) be a simplicial complex. i.e. S is a finite set, and Σ is a collection

of subsets of S. We may think of this as a stratified space in our sense, where the

strata are given by the simplices σ ∈ Σ.

A flat vector bundle on a contractible space is isomorphic to a product bundle

with a trivial connection. So a constructible vector bundle is determined by spec-

ifying a vector space Vσ for each simplex σ and maps αi : Vσk → Vσi for each pair
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σk ⊆ σi (i.e. i > k) such that αi = αiαj for i > j as before.

A constructible sheaf restricts to a locally constant sheaf on each stratum which

in our case is a simplex. Since a simplex is contractible this is just a constant sheaf,

i.e. a vector space. It is perhaps not hard to believe that the remaining information

is given by maps of vector bundles where a simplex lies in another. Our equivalence

then reduces to a folk theorem (probably) due to MacPherson.

We define the star of a simplex σ as Star(σ) = {∪σ⊆ττ − ∪σ*ττ}.

To a sheaf F we can associate a constructible vector bundle as V (σ) = F(star(σ)).

It is not too hard to see that this extends to an equivalence of categories. The in-

teresting point here is that the exit maps for vector bundles correspond to the

restriction maps for the sheaves.

Finally, an exit path restricted to each simplex is contractible, so the homotopy

class of an exit path is completely determined by the sequence of simplicies it visits.

And so a representation of exit paths is given again by the choice of a vector space

for each simplex and a map of vector spaces given by incidence of simpices.
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Chapter 3

The derived case

In this chapter we will attempt to generalise the results of the previous section.

Remember we had that a flat connection gave rise to a parallel transport functor

that was homotopy invariant. If x⇒ y were two homotopic paths, we had Vx → Vy

was the same map. Now instead we may ask that the transport be homotopy

coherent, that is that the maps Vx ⇒ Vy be homotopic and that higher homotopies

of maps x⇒ y give higher homotopies Vx ⇒ Vy and so on. All of this can be neatly

captured in the form of an ∞ functor π∞(M)→ C(k). where π∞(M) = Sing•(M)

the singular complex replaces the category π≤1(M). Correspondingly we look at

graded vector bundles with a connection with higher components, and a higher

‘flatness’.

We will begin in section 1 by recalling work by Block-Smith-Igusa on higher

parallel transport. This construction uses the tool of iterated integrals introduced
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by Chen. In section 2 we will give a describe a way to recover a flat connection

from a given transport functor.

3.1 Higher Parallel Transport -Iterated Integrals

In this section we recall the notions of a (flat) graded super connection and the

parallel transport differential forms. Almost all of this section is lifted verbatim

from Igusa [Ig09].

Let V be a Z-graded vector bundle over M . Then, a graded connection on V is

a sequence of operators ∇k, such that (−1)k∇k is an ordinary connection on V k.

Definition 3.1.1. A superconnection on E is a linear map D : ΓV →
⊕

Ωp(M,V )

of total degree 1 which satisfies the graded Leibnitz rule. [D, f ] = df for f ∈ Ω0(M).

i.e. D(ΓV k) ⊆
⊕

Ωp(M,V k+1−p).

Superconnections are locally given as D = d− A0 − A1...., where Ap ∈

Ωp(M,End1−p(E)).

The Path Space: Let PM denote the space of paths γ : [0, 1]→M given a smooth

structure by saying φ : U → PM is a plot if the adjoint map (̃φ) : U × I →M is a

plot of M . We may then talk of smooth vector bundles and the tangent bundle of

PM .

For every t ∈ I we have the evaluation map evt : PM → M that sends γ to

γ(t).
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Let Wt be the pull back of E to PM along evt. i.e. (Wt)γ = Eγ(t). In this

notation we can see that the ordinary parallel transport φts can be thought of as

an element in Ω0(PM,Hom0(Wt,Ws). i.e it is a choice, for each γ an element in

Hom0(Wt,Ws) = Hom0(Eγ(t), Eγ(s)).

The higher parallel transports are given as a sequence of forms on PM which

integrate over families of paths.

Definition 3.1.2. The contraction /t : Ωp+1(M,Endq(V )) → Ωp(PM,Endq(Wt))

is the linear mapping which sends a p+1-form α on M with coefficients in Endq(V )

to the smooth p-form on PM whose value at γ is the alternating map (α/t)γ :

(TγPM)p → Endq(Wt)γ = Endq(Vγ(t)) given by

(α/t)γ(η1, η2, · · · , ηp) = α(η1(t), · · · , ηp(t), γ′(t)).

Definition 3.1.3. The parallel transport of the superconnection D is defined to be

the unique family of forms Ψp(t, s) for all 1 ≥ t ≥ s ≥ 0 and p ≥ 0

Ψp(t, s) ∈ Ωp(PM,Hom−p(Ws,Wt))

satisfying the following at each γ ∈ PM .

1. Ψ0(s, s)γ is the identity map in

Ω0
γ(PM,Hom0(Ws,Ws)) = Hom0(Vγ(s), Vγ(s))

and Ψp(s, s) = 0 for p > 0.
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2. For all p ≥ 0 we have

∂

∂t
Ψp(t, s)γ =

p∑
i=0

(Ai+1/t)γΨp−i(t, s)γ

where D = d−A0−A1− · · · −Am is the decomposition of D in a coordinate

chart U for M in a neighborhood of γ(t) and differentiation with respect to t

is given by the chosen product structure on V |U .

Given the Ap, we can solve for the Ψ by induction on p using integrating factors.

To do this, first note that the differential equation above has the form

∂

∂t
Ψp(t, s) = (A1(t))Ψp(t, s) + f(t, s)

where f(t, s) is given in terms of Ψq(t, s) for q < p:

f(t, s) =

p−1∑
q=0

(Ap−q+1/t)Ψq(t, s).

We multiply by the integrating factor Φ(s, t) = Φ(t, s)−1 to get

∂

∂t
(Φ(s, t)Ψp(t, s)) = Φ(s, t)

∂

∂t
Ψp(t, s)− Φ(s, t)(A1(t))Ψp(t, s) = Φ(s, t)f(t, s).

So,

Φ(s, t)Ψp(t, s) =

∫ t

s

duΦ(s, u)f(u, s).

We may then use the iterated integrals to write, for p ≥ 0, Ψp(t, s) is equal to the

sum over all n ≥ 0 and all sequences of integers k1, · · · , kn ≥ 1 so that
∑
ki = p+n

of the following iterated integral.

∫∫
t≥u1≥···≥un≥s

du1 · · · dun (Ak1/u1)(Ak2/u2) · · · (Akn/un)
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Given a simplex σ : ∆n → M , we can think of it as an n− 1 family of paths

In−1 → PM . We can then integrate the forms Ψn−1 over the family to get
∫

∆
Ψn−1 ∈

Hom(Vt, Vs[n − 1]). Block-Smith in [BS09] prove that this construction gives an

equivalence of dg-categories of graded vector bundles with flat super connections

and parallel transport functors. We will recall their definitions in the next section

and provide an inverse construction.

3.2 Higher Parallel Transport - Recovering a Su-

per connection

Here we describe a way to get back a superconnection from the information of a

parallel transport functor. First we make precise our notion of a higher parallel

transport and describe it as a higher functor. We’ll then show that we can recover

a bundle with a flat super connection on it.

3.2.1 Parallel Transport Functor

The ordinary parallel transport along a curve γ is a linear map F (t, s) : V (s)→ V (t)

where V (t) is the fiber of the bundle V over the point γ(t). We ask that this map

satisfy F (r, t)F (t, s) = F (r, s). This is the information of a functor F : π<1(M)→

V ect, where F (γ(t)) = V (t), and the condition F (r, t)F (t, s) = F (r, s) is read as

the functor respecting composition of maps.
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If an ordinary flat connection gives rise to the transport, homotopic paths be-

tween two points give the same transport map, in the derived case we’d want that

if we have a homotopy of paths tu ⇒ su, that there be a map between the trans-

port of a vector along the two paths depending on the homotopy. This map is

represented by an edge in V (tu) which is an element in V (tu)[1]. i.e we’d want

F1(tu, su) : V (su)→ V (tu)[1]. We’d want a homotopy of homotopies to give a map

of degree 2 and so on.

All of this can be captured neatly in a functor F : π∞(M) → C(k), where

π∞(M) is the simplicial set Sing•(M). This is described precisely in [Block-Smith].

We borrow their notion:

Let π∞(M) = Sing•(M) be the singular complex of M . (Denote by πn(M) =

{σn : ∆n →M})

Definition 3.2.1. Let F : π0(M) → C(k) be a choice of a complex Fx for each

point x ∈M . Let

{Fn : πn(M)→ C(k)n−1|Fn(σn) ∈ Homn−1(Fσ(n), Fσ(0))}

Define operations on these maps

(dFn)(σn) = d.Fn(σn) = dFσ(0)Fn(σn)− Fn(σn)dFσ(n)

δ̂Fnσn+1 =
n−1∑
l=1

(−1)lFn(∂lσ)

and for Fm ∈ {πm(M)→ C(k)m−1},

F ∪ F (σk) :=
∑

m+n=k

Fm(σ012..m)Fn(σmm+1m+2..k)
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A higher parallel transport (or local system) is given by the choice F ′ and a collection

Fi, such that F = F0 + F1 + F2... that satisfies F ∪ F + δ̂F + d.F = 0

For n = 2, 3, this is

dF1(σ012) = F0(σ01)F0(σ12)− F0(σ02)

dF2(σ0123) = F0(σ01)F1(σ123)− F1(σ012)F0(σ23)− F1(σ023 + F1(σ013)

These equations express the idea that the higher Fi(σi) are a homotopy between

the faces of the simplex σi. If the higher Fi are 0, for i ≥ 1, we see the equation for

n = 1 says that F0 is an ordinary local system, i.e equal on homotopic paths 01-12

and 02.

We also need the functor to respect composition of the higher dimensional sim-

plices. i.e. we want analogues of the rule F (r, t)F (t, s) = F (r, s) for simplicies of

dimension ≥ 1. These are given by the so called pasting diagrams. These follow as

a consequence of the coherence of F .

For instance, if (012) are on a line, the rule the homotopy between 01.12 and

02 is a singular (rank ≤ 1) 2-simplex and we ask that F1(012) is 0. Then we

get F0(σ01)F0(σ12) = F0(σ02). In dimension 2, a singular 3-simplex 0123 gives

F1(σ013) = F0(σ01)F1(σ123)+F1(σ012)F0(σ23). In n dimensions the rule is Fn(σ01.n) =

F0(σ01)Fn−1(σ12..n)+F1(σ012)Fn−2(σ23..n)....+Fn−1(σ2..n−1)F0(σn−1n). These will be

important to us in the next section. We can think of equation in dimension 2 as

giving a “vertical” composition
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2

1 30

thought of as a homotopy between 02.23 and 01.13

2

1 30

thought of as a homotopy between 02.23 and 01.12.23

2

1 30

thought of as a homotopy between 01.12.23 and 01.13. The pictures in the

higher dimensions are harder to draw, but perhaps not too hard to imagine.

Continuity and smoothness: The functor {Fn} defined algbraically has no im-

mideate notion of continuity or smoothness. We can understand the pasting equa-

tions as expressing a notion of continuity.

For instance, the equation F0(t+ dt, s) = F0(t+ dt, t)F0(t, s) along with F0(t+

dt, t)→ Id as dt→ 0 expresses the idea that F0(t+dt, s) is ‘close’ to F0(t, s). We see

the higher dimensional versions below. We ask that {Fn} are smooth functions of

the co-ordinates on a smooth simplex, so that we may differentiate them as below.

The pasting laws follow as a consequence of the coherence laws and are weaker

than them. The coherence laws express some thing Stokes theoremy. The pasting
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diagrams only represent continuity and smoothness.

They also allow us to define the Fi for piecewise smooth simplices. A peicewise

smooth simplex is one that has a traingulation such that each subsimplex (of any

dimension) is smooth.

3.2.2 Recovering the connection

Given a functor (or an ∞-local system F : π∞(M) → C(k). look at the set

V = {fx}fx∈Fx,x∈M . This will make the total space of a bundle, with the natural

projection map p.

Let U, x0 be an open ball in M . For each point x ∈ U , let γx be the line segment

(shortest path, for a choice of Riemannian metric) joining x to x0. Then we can

define a map p−1(U)→ U×F0(x0) as fx → (x, F γ
0 (x, x0)(fx0). This gives a bijection

since F0 is invertible.

We may use this bijection to topologise the bundle V , and give it a smooth

structure. And we can think of F as a parallel transport functor on it. i.e. for each

point x a complex of vector spaces Vx, for each path x→ y, a chain map Fx → Fy.

for each homotopy of paths, a homotopy of chain maps and so on.

The p-th component of a super connection takes as input p tangent vectors at

a point x and gives a map Endp−1(Vx) whereas parallel transport takes a p simplex

and returns a degree p − 1 map in Homp−1(Vxp , Vx0), the first and last vertices of

the simplex. We will define the connection in each dimension as the infinitesimal
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increment by parallel transport.

We may think of the higher transports as acting on families of paths and, we’ll

define transport forms in the sense of the previous section as variations of F . These

satisfy the differential equations with respect to the components Ai of the connec-

tion as we defined. The homotopy coherence of F will impose conditions on the

connection, which will say that the connection is flat.

n = −1

The differential of Vx at each point will make the -1 component of the connection.

This makes a continuous section of End−1(V ) because of the way we topologised

the bundle. In local coordinates, we denote this A0(t).

n = 0

Let F0(t, s) : V (s) → V (t) be the degree 0 component of the transport. Then,

define

A1(t) =
F0(t+ dt, t)− I

dt

We have a differential equation for A1:

∂

∂t
F0(t, s) =

F0(t+ dt, t)F0(t, s)− F0(t, s)

dt
=

(F0(t+ dt, t)− I)F0(t, s)

dt
=

A1(t)F0(t, s)

in the limit.
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This is the differential equation that defined parallel transport in terms of A1 in

the previous section.

n = 1

Choose local coordinates t, u and let (tu, su, tu0) represent a 2-simplex.

Let F1(tu, su) : V (su) → V (tu)[1] be the degree 1 component of the transport

functor acted on the 2 simplex. Here we can think of u as a parameter for the

family of paths with running variable t.

Again, we define

A2(t) =
F1(t+ dtu+ du, tu)

dtdu

as the infinitesimal increment by F1.

tu su
t+ dtu

tu0

t+ dtu+ du

We have a differential equation similar to the n=0 case:

∂

∂t
F1(tu, su) =

F1(t+ dtu, su)− F1(tu, su)

dt

=
F0(t+ dtu, tu)F1(tu, su) + F1(t+ dtu, tu0)F0(tu0, su)− F1(tu, su)

dt
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=
(F0(t+ dtu, tu)− I)F1(tu, su) + F1(t+ dtu, tu0)F0(tu0, su)

dt

= At1(tu)F1(tu, su) +
F1(t+ dtu, tu0)

dt
F0(tu0, su)

where in the first step we used the pasting law for F1. Differentiating with

respect to u now gives:

∂

∂u

∂

∂t
F1(tu, su) =

∂

∂u
At1(tu).F1(tu, su) + At1(tu).

∂

∂u
F1(tu, su)

+
F1(t+ dtu+ du, tu)

dtdu
F0(tu, tu0)F0(tu0, su)

As u0 → u, F1(tu, su) represents the trivial homotopy between tu and su, and

so is 0. F0(tu, tu0)→ I and F0(tu0, su)→ F0(tu, su).

∂

∂t

∂

∂u
F1 = At1(tu).

∂

∂u
F1(tu, su) + A2(tu)F0(tu, su)

Setting F0 = ψ0 and ∂
∂u
F1 = ψ1 we get

∂

∂t
ψ1 = A1(

∂

∂t
)ψ1 + A2(

∂

∂t
,
∂

∂u
)ψ0

n = 2

Define

A3(t) =
F2(t+ dtu1 + du1u2 + du2, tu1u2)

dtdu1du2
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In the local coordinates let (tu1u2, su1u2) represent a 3-simplex and let

(F2(tu1u2, su1u2) : V (su1u2) → V (tu1u2)[2] be the degree 2 component of the

parallel transport map.

Differentiating with respect to t, we get:

∂

∂t
F2(tu1u2, su1u2) =

F2(t+ dtu1u2, su1u2)− F2(tu1u2, su1u2)

dt

By the pasting law for F2 we get,

= F2(t+ dtu1u2, tu
0
1, u2)F0(tu0

1u2, su1u2) + F1(t+ dtu1u2, tu1u
0
2)F1(tu1u

0
2, su1, u2)

+F0(t+ dtu1u2, tu1, u2)F2(tu1u2, su1, u2)− F2(tu1u2, su1u2)

We drop some cumbersome notation when it is perhaps clear

= At1(tu1u2)F2(tu1u2, su1, u2) +
F1(t+ dtu1u2,−)

dt
F1(tu1u

0
2,−)+

F2(t+ dt−,−)

dt
F0(tu0

1u2,−)

Differentiating with respect to u1 now and letting u0
1 → u1 we get:

= At1(tu1u2)
∂

∂u1

F2(tu1u2, su1, u2) +
F1(t+ dtu1 + du1u2,−)

dtdu1

F1(tu1u
0
2,−)

+
F2(t+ dtu1 + du1−,−)

dtdu1

F0(tu1u2, su1u2)
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Differentiating with respect to u2 now and letting u0
2 → u2 we get:

= At1(tu1u2)
∂

∂u1

∂

∂u2

F2(tu1u2, su1, u2) +
F1(t+ dtu1 + du1u2,−)

dtdu1

∂

∂u2

F1(tu1u
0
2,−)

+
F2(t+ dtu1 + du1u2 + du2, tu1u2)

dtdu1du2

F0(tu1u2, su1u2)

Set

ψ2 :=
∂

∂u1

∂

∂u2

F2(tu1u2, su1, u2)

and remember we have

A3(t) =
F2(t+ dtu1 + du1u2 + du2, tu1u2)

dtdu1du2

.

Then the differential equation becomes:

∂

∂t
ψ2 = A1(

∂

∂t
)ψ2 + A2(

∂

∂t
,
∂

∂u1

)ψ1 + A3(
∂

∂t
,
∂

∂u1

,
∂

∂u2

)ψ0

n ≥ 2

The case for higher n is completely analogous, though harder to write down. As

before we define:

An(t) =
Fn(t+ dtu• + du•, tu•)

dtdu•

where du• = du1du2..dun−1. We also set

ψn :=
∂n

∂u1u2..un
Fn(tu•, su•)
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Differentiating w.r.t. t:

∂

∂t
Fn(tu1..n, su1...n) =

Fn(t+ dtu1..n, su1..n)− F2(tu1..n, su1..n)

dt

By the pasting law for Fn we get,

= Σi+j=nFi(t+ dtu1..n, tu1..iu
0ui+1..n)Fj(tu1..iu

0ui+1..n, su1..n)− Fn(tu1..n, su1..n)

Differentiating this k times, we get

Σi+j=n,k<i
Fi(t+ dtu1 + du1..uk + dukuk+1..n, tu1..iu

0ui+1..n)Fj(tu1..i−1u
0
iui+1..n, su1..n)

dtdu1..k

+Σi+j=n,k≥iFi(t+ dtu1 + du1..ui + dui, tu1..i−1u
0
iui+1..n)

∂

∂ui..k
Fj(tu1..iu

0ui+1..n, su1..n)

In the end we get, (writing ψp := ∂p

∂u1u2..up
Fp(tu•, su•))

∂

∂t
ψn = A1(

∂

∂t
)ψn + A2(

∂

∂t
,
∂

∂u1

)ψn−1 + ...An(
∂

∂t
,
∂

∂u1

, ...
∂

∂un
)ψ0

Flatness

Homotopy coherence of the higher transport functors gives conditions on the Ans

just as homotopy invariance in the ordinary case gave flatness of the ordinary con-

nection. This is worked out in detail in [Ig09], so we will be very brief.

n = 0 : The fact that F0 is a chain map gives A0(t)F0(t, s) = F0(t, s)A0(s).

Differentiating this with respect to t gives A′0 = A0A1 + A1A0.

n = 1 : Let (tu, tu0, su) be a 2-simplex as before. The coherence condition for

F0, F1 gives A0(tu)F1(tu, su)−F1(tu, su)A0(su) = F0(tu, su)+F0(tu, tu0)F0(tu0, su)

Here d.(F1(tu, su) = A0(tu)F1(tu, su)− F1(tu, su)A0(su) in Hom(V (tu), V (su))[1].
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Differentiating this gives the relation A0A2 + A2A0 = A′1 − A1A1.

n ≥ 2 : The higher case is similar. We have d(Fn(tu•, su•)) = A0(tu•)F1(tu•, su•)−

Fn(tu•, su•)A0(su•) in Hom(V (tu•), V (su•)[n]. The right hand side of the equation

is gotten from the definition of the local system F ∪ F + δ̂F . Differentiating this

gives A0An + AnA0 = A′n−1 − A1An−1 − A2An−2 − ...An−1A1. These equations for

each n can be combined into one single equation (d−A0 −A1 −A2....)
2 = 0 which

we call flatness for the super connection.

3.3 An equivalence of categories

In section 3.1 we saw, given a flat super connection on a graded vector bundle, how

to construct a parallel transport functor. We just described a notion of constructing

a vector bundle and a connection on it starting with a parallel transport.

These constructions are inverse to each other.

On the one hand, starting with the transport {Fn}, we defined the connection

to be An = F (t+dtu•+du•,tu•)
dtdu•

. The transport forms are defined as the unique forms

that satisfy the differential equations wrt. the Ans. We saw that ∂Fn

∂u•
satisfy the

equations, which gives us the inverse in one direction.

On the other hand, from [Ig09], Corollary 2.12, we have the estimate ψn(t, s) =

(An+1/x)(t− s) + o(t− s), where x ∈ (t, s). This gives

[

∫ u1+du1,...un+dun

u1u2..

ψn(t+ dt, t)− An+1(tu1u2..)]/dtdu1...dun → 0
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So starting with a connection An we can construct the parallel transport
∫
ψ and

recover the connection as the infinitesimal version of the transport.

This extends to an equivalence of categories, first we recall the definitions. Block-

Smith [BS09] define a category of higher parallel transport functors,∞-local systems

as follows:

Definition 3.3.1. Denote by (π∞(M), C(k)) or π∞(M) − Rep, the category of

higher transport fuctors or∞-local systems. The objects are the transport functors

we defined before. Hom(F,G) between two transports F,G is a complex whose

degree k maps are given as

∑
i+j=k

{Φ : πi(M)→ Cj|Φ(σ) ∈ Cj(F (σ(i)), G(σ(0)))}

The differential is given as

D := δΦ + dΦ +G ∪ Φ + (−1)ΦΦ ∪ F

where as before

dΦn(σn) = dFσ(0)Φn(σn)− Φn(σn)dGσ(n)

δ̂φn(σn+1) =
n−1∑
l=1

(−1)lφn(∂lσ)

Φ ∪ F (σk) := Σm+n=kΦm(σ012..m)Fn(σmm+1m+2..k)

G ∪ Φ(σk) := Σm+n=kGm(σ012..m)Φn(σmm+1m+2..k)

We have that D2 = 0, so that π∞(M)−Rep is a dg-category.
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A little unpacking: A degree 0 morphism between F and G is like a natural

transformation of functors. For a point x, it gives a degree 0 map Fx → Gx. For

a 1-simplex σ joining x and y, an ‘ordinary’ natural transformation would give a

commuting square

Fx
F (σ) //

Φx

��

Fy

Φy

��
Gx

G(σ) // Gy

We instead ask that the two compositions be homotopic (not equal), and ask that

Φ specify this homotopy, i.e. Φ(σ) : Fx → Gy[1]. For a 2-simplex σ(xyz) we would

get Φ(σ) : Fx → Gz[2] etc. We may think of a degree k morphism as a ‘natural

transformation’ of this kind between F and G shifted by k.

The cone: Given a closed morphism Φ of degree k, we may construct a new ∞-

local system as

F 0

Φ G[k]

. That is, a point x is taken to Fx ⊕Gx[k], a 1-simplex

σ(xy) to the linear map

F (σ) 0

Φ(σ) G[k](σ)

 etc. The fact that Φ is closed implies

that this is in fact an ∞-local system. This allows us to confuse closed morphisms

and objects. This will be useful later.

We ask that the morphisms obey pasting laws just as the objects do. For instance

the diagram

Fx
F (σ1) //

Φx

��

Fy

Φy

��

F (σ2) // Fz

Φz

��
Gx

G(σ1) // Gy
G(σ2) // Gz
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leads to the pasting law

Φ1(z, x) = Φ1(z, y)F0(y, x) +G0(z, y)Φ1(y, x)

etc. Now these again express a notion of continuity and smoothness for the mor-

phisms. These laws can be expressed by simply saying that the cone objectF (σ) 0

Φ(σ) G[k](σ)

 obeys the pasting laws. Remember that the pasting laws are

weaker than the coherence laws. When the cone object obeys the coherence laws

as well, we have that the morphism is closed.

Definition 3.3.2. Denote by Flat∞(M) the dg category of vector bundles. The

objects as we defined before are pairs (V,∇), where V is a graded vector bundle

over M and ∇ is a linear map ΓV →
∏

p Ωp(M,V ) of total degree 1 (so, ∇(ΓV •) ⊆

Ωj(M,V •+j−1)) that satisfies the graded Liebnitz rule.

Hom((V,∇V ), (W,∇W )) between two bundles V,W is a complex whose degree

k elements are given by maps φ : ΓV →
∏

p Ωp(M,V ) of degree k. i.e.

φ(ΓV •) ⊆ Ωj(M,V •+j+k−1)

The differential is given as

dφ = φ∇W −∇V φ

This is almost exactly as in [Bl05]

We again have a cone object associated to a (closed) morphism φ of degree k.

We look at the bundle V ⊕W [k] and a connection given as

∇V 0

φ ∇W [k]

 .The

42



morphism φ being closed gives us that this is a flat connection.

We may now define the functor Σ : π∞(M)−Rep→ Flat∞(M) on the mapping

spaces as an infinitesimal increment. Given a map Φ of degree k in π∞(M)−Rep,

the n+ 1st component of the degree k morphism in Flat∞(M) as

Σ : Φ→ Φ(t+ dtu1 + du1..un + dun, tu1u2..)/dtdu1..dun

We can also describe this map as the 21 component of the image of the cone objectF (σ) 0

Φ(σ) G[k](σ)

. In the notation for objects, this would be Φ→ AΦ
n

Theorem 3.3.3. The functor Σ is a dg equivalence of categories.

Proof. It follows from [BS09] theorem 4.2, that the functor induces a chain map on

morphisms. The composition of two degree 0 maps Φ,Ψ is defined as Φ ◦Ψ(σn) =

Φ0(σn(0))Ψn(σn) + Φ1(σn(01))Ψn−1(σn(12..n)) + ..Φn(σn(012..n)Ψ0(σn(n)). This is

mapped by Σ to its infinitesimal version Σ(Φ ◦ Ψ)n = AΦ
0A

Ψ
n + AΦ

1A
Ψ
n−1 + ..AΦ

nA
Ψ
0

which gives that this is a dg-functor.

The functor is essentially surjective because we saw that it is inverse to the con-

struction of Igusa etal. for objects. To say that the functor is fully faithful, we need

to say that it induces a quasi isomorphism on hom-spaces.i.e. an isomorphism on

homology groups. Given a represenative of a homology class, i.e. a closed morphism

Φ in π∞(M)−Rep(F,G) we saw that we may construct a cone object

F 0

Φ G[k]

.
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The image of this cone object is a cone

Σ(F ) 0

Σ(Φ) Σ(G[k])

. Since we know that

there is a correspondence of objects, we get a correspondence of closed morphisms

as well.
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Chapter 4

The Constructible case

Here we want to combine the results of the previous two chapters. i.e. Given a

notion of a stratified space, we wish to look at graded constructible vector bundles

and a higher parallel transport for exit paths. We begin by defining a higher di-

mensional analogue of exit paths. We will then follow the formula in chapter 2.

We will look at an exit transport that is built out of pure transports on individual

strata and we will work out the conditions the pure (higher) transports need to

satisfy with respect to the exit maps to give a coherent exit transport. We will then

understand these as another set of conditions on the super connections that give

rise to them. We will also establish that every higher exit transport is isomorphic

to one of our broken transports.
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4.1 Differentiating a parallel transport

Definition 4.1.1. Given a stratified space {Mi, Si, fi} a simplex σn is said to have

the exit property if we have that rk(σ0) ≤ rk(σ01) ≤ rk(σ012)... ≤ rk(σ01...n) where

rk is the rank or dimension of the stratum

The inequalities here are not strict, in fact an exit simplex can lie entirely in

one stratum (i.e. we have all equalities).

We can now think of the category of exit simplicies as a subcategory of the cate-

gory of all simpliies. Call this category πexit∞ (M). A higher parallel transport functor

now is a collection F exit
n : πexit∞ (M) → C(k) where F exit

n : V (su0
•) → V (tu•)[n] is a

degree n chain map between two possibly non-isomorphic chain complexes. This

satisfies a coherence relation that is inherited from π∞(M)−Rep.

Remark 4.1.2. Notation: Here we are dealing with transports of different degrees

on a stratified space. Subscripts will generally refer to the degree of the transport

and superscripts will index the strata.

Let’s say we have a 2-simplex in M2 given as {(x0, x1, x2)|xi ∈Mi}. So the path

x0 → x1 is in M1 etc. If v0 is a vector over x0, we have the coherence relation

F (x2, x1)F (x1, x0)v0 − F (x2, x0)v0 = d.F1(x2, x0). Writing this in terms of the exit

maps and the transports on each stratum, we get

A0(x2)F1(x2, x0)α2v0 − F1(x2, x0)α2A0(x0)v0 = F 2(x2, x1)α2F 1(x1, x0)α1v0−

F 2(x2, x0)α2v0
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If we ask that the ‘α’s are chain maps, so that we may write for instance,

α2A0 = A0α
2 and also for the condition α2F 1(x1, x0)α1v0 = F 2(x1, x0)α2v0 as in

the one categorical case in chapter 2. Then the equation reduces to

(A2
0(x2)F 2

1 (x2, x0)−F 2
1 (x2, x0)A2

0(x0))α2v0 = (F 2(x2, x1)F 2(x1, x0)−F 2(x2, x0))α2v0

which holds because F 2 is an ordinary transport on S2.

A general coherence relation looks like Σp+q=nFpFq. In terms of the pure trans-

ports this would be Σp+q=nF
i
pα

iF j
qα

j. So if we impose conditions of the form

αiF j
qα

j = F i
qα

i, for every p, q, j < i, the coherence relation reduces to Σp+q=nF
i
pF

i
qα

i,

i.e. the coherence condition in the top stratum.

Just as in the 1-categorical case we may write the condition αiF j
qα

j = F i
qα

i as

the two conditions αiF j
q = F i

qα
i and the condition ‘αiαj = αi

′
.

These give corresponding conditions on the super connections as follows:

Lemma 4.1.3. If ∇0 = d − ΣnA
0
n,∇1 = d − ΣnA

1
n are flat super connections on

M0 and S1 that give rise to the parallel transports F 0
n , F

1
n and α1 is an exit map.

Then the condition α1F 0
n(tu•, su•) = F 1

n(tu•, su•)α
1 for all n is equivalent to the

condition α1A0
n = A1

nα
1 for n = 0, 2, 3.... and dα1 = A1

nα
1 − α1A0

n for n = 1.

Proof. We can differentiate the condition α1(tu•)F
0
n(tu•, su•) = F 1

n(tu•, su•)α
1(su•)

with respect to u1, u2, .. etc and take the limit u0 → u to get the condition

α(t)ψ0
n(t, s) = ψ1

n(t, s)α(s)
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for each n. We can recover the condition on the F s by integrating with respect to

the variables u1, u2.. with fixed s and t.

Now remember that we have the following facts :

1.

∂

∂x
ψ0
n(x, s) = A0

1ψ
0
n + A0

2ψ
0
n−1 + ...A0

nψ
0
0

2. There’s a similar equation for ψ0
n(t, x):

∂

∂x
ψ0
n(t, x) = ψ0

nA
0
1 + ψ0

n−1A
0
2 + ...ψ0

0A
0
n

3.

ψ0
n(t, s) = ψ0

0(t, x)ψ0
n(x, s) + ψ0

1(t, x)ψ0
n−1(x, s)...+ ψ0

n(t, x)ψ0
0(x, s)

The case n = 0 follows from the fact that α1 is a chain map. The case n = 1

follows from the case of the ordinary parallel transport.

If we have the conditions n = 0, 1, for n = 2, write:

α(t)ψ0
1(t, x) = ψ1

1(t, x)α(x)

Multiplying by ψ0
0(x, s) gives

α(t)ψ0
1(t, x)ψ0

0(x, s) = ψ1
1(t, x)α(x)ψ0

0(x, s)

Similarly we get

α(t)ψ0
0(t, x)ψ0

1(x, s) = ψ1
0(t, x)α(x)ψ0

1(x, s)
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Adding these and using equation 3 above gives:

α(t)ψ0
1(t, s) = ψ1

1(t, x)α(x)ψ0
0(x, s) + ψ1

0(t, x)α(x)ψ0
1(x, s)

In other words, the RHS of the above equation doesn’t depend on x. So we may

differentiate with respect to x to get

ψ0(α′ − A1
1α + αA0

1)ψ1 + ψ0(α′ − A1
1α + αA0

1)ψ1 + ψ0(−A1
2α + αA0

2)ψ0 = 0

The case n = 1 gives that the first two terms here are 0. So we get

(A1
2α− αA0

2) = 0

since the ψ0 are invertible.

Notice that this is reversible, given the conditions for n = 0, 1, 2.., we can say

that

ψ1
1(t, x)α(x)ψ0

0(x, s) + ψ1
0(t, x)α(x)ψ0

1(x, s)

is independent of x and setting x = t, s gives

α(t)ψ0
1(t, s) = ψ1

1(t, s)α(s)

The general case is similar: Given the conditions for n = 0, 1, 2...n, we can write

α(t)ψ0
k(t, x) = ψ1

k(t, x)α(x)

Multiplying by ψ0
n−k(x, s) and adding over k, gives

α(t)ψ0
n(t, s) =

∑
0≤k≤n

ψ1
k(t, x)α(x)ψ0

n−k(x, s)
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Once again we see that the RHS is independent of x and we can differentiate w.r.t.

x to get ∑
i+j+k=n

ψ1
i (t, x)(δj1α

′ − Ajα + wαAj)ψ
0
k(x, s) = 0

where δ1j is the dirac delta. The α′ term appears only with the A1s.

Using the induction hypothesis for the case n = 0, 1..n − 1, this reduces to the

condition

A1
nα = αA0

n

We can again use the conditions on the Ans to recover the conditions on the ψn

and so the conditions on Fn. So we have concluded that the coherence conditions

for F reduce to the compatibility conditions for the different Ai.

Remembering that ∇ = d−A0−A1−A2... and dα = d◦α+α◦d, the condition

can be written as α1∇0 = ∇1α1. In general the condition would be αi∇j = ∇iαi,

for i > j.

We also need an analogue of lemma 2.2.3 that allows us to say that any parallel

transport arises this way. The setup is the same. We wish to modify a given {Fn}

to {F̄n}. We take F̄0 to be the identity in the collar direction. For n > 0 we let F̄n

be equal to 0 if it has a vertical direction (0, ε) and Fn otherwise.

Lemma 4.1.4. F̄n|(0,ε]×∂S ' Fn|(0,ε]×∂S

Proof. Choose coordinates (s, y) ∈ ∂S × (0, ε]. (This conflicts slightly with our

notation in the rest of this paper.)
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s1ε s2ε

s1y1

s2y2

∂S

We’ll define a degree 0 morphism Φ from F to barF and show that it’s a homotopy

equivalence. First, we define Φ0 : Fst → F̄sy = Fsε to be F0(sε, sy).

For n > 0, we look at the solid formed by the projection of a simplex σ onto

S×{ε}. Define Φn : Fσ(0) → F̄σ(n)[n] to be Fn(Cyl(σn)) where by Cyl(σn) we mean

the solid.

So for n = 1, this gives (as seen above) Φ1 : Fs1y1 → F̄s2ε[1] is F1(Cyl(s1y1, s2y2)),

This we know can be written by the pasting diagram pictured as F1(s2ε, s1ε, s1y1)+

F1(s2ε, s2y2, s1y1).

The map is easily seen to be a homotopy equivalence. By Prop.2.13 in [BS09],

we only need to check that the map Φ0 : Fsy → F̄sy = Fsε is a quasi isomorphism.

And this is true because we’ve defined it to be F0(sε, sy) which is an isomorphism.

It remains to be said that the map Φ is a closed morphism. This is perhaps

not too hard to believe. For n = 1, we can triangulate the cylinder as pictured

and the see that the relation dΦ + δ̂Φ + Φ ∪ F + (−1)ΦF̄ ∪ Φ is just the sum of

the coherence relations for the two triangles, remembering that Φ1(s2y2, s1y1) =
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F1(s2ε, s1ε, s1y1)− F1(s2ε, s2y2, s1y1). For n = 0, 1,

(δ̂Φ + Φ ∪ F + F̄ ∪ Φ)(s2y2, s1y1) = Φ0(s2y2)F0(s2y2, s1y1)− F̄0(s2y2, s1y1)Φ0(s1y1)

= F0(s2ε, s2y2)F0(s2t2, s1y1)− F0(s2ε, s1ε)F0(s1ε, s1y1)

= (F0(s2ε, s2y2)F0(s2y2, s1y1)− F0(s2ε, s1y1)) + (F0(s2ε, s1y1)−

F0(s2ε, s1ε)F0(s1ε, s1y1))

= d.F1(s2ε, s1ε, s1y1)− d.F1(s2ε, s2y2, s1y1)

= d.Φ(s2y2, s1y1)

In the case n ≥ 2, we can write triangulate the cylinder formed by the projec-

tion of an n -simplex into n + 1 n + 1-simplices and write Φn(snyn, s1y1) as the

sum Σi(−1)iFn+1(s1ε, s2ε...siε, siyisi+1yi+1...snyn). Then the sum of the coherence

relations for these n+ 1 simplicies gives the condition that Φn is closed.

The higher analogues of the theorems in chapter 2 now follow straightforwardly.

First, we’ll give an inductive definition for a transport built out of ordinary

transports on the closed pure strata S̄i and exit maps. Given an ordinary transport

Fin on Si, a transport F i−1
n on Mi−1 and a map (degree 0 natural transformation)

(αi : f ∗i F
i−1 → Fi)|∂Si

, we can construct a transport on Mi as F i = FiαiF i−1, i.e.

Given an exit n-simplex σn whose last vertex lies in the i-th stratum, we can define

F i
n(σn) = Fi(σn)αi(σn(0)), we saw that this defines a higher exit transport if the α

satisfy the right conditions.
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Remark 4.1.5. Note that αi is not a degree 0 morphism in (π∞(∂Si) − Rep) as

defined in the previous section. We ask that there is a strict relation αiF
i = Fi+1αi

for the αi, whereas a degree 0 morphism for the category (π∞(∂Si) − Rep would

only give us this relation upto homotopy. Generally speaking, we weaken conditions

that were upto homotopy in the pure strata, but we do not weaken the constructible

conditions.

Definition 4.1.6. Denote by πbroken≤∞ (M)−Rep the category of the transports that

arise this way. i.e. The objects of the category are given by

1. An ordinary parallel transport Fi ∈ π≤∞(S̄i)−Rep

2. Exit maps (αi : f ∗i F
i−1 → Fi)|∂Si

3. Maps αij of transports over Sij

F i

αi   A
AA

AA
AA

A
αj
// Fi

αij

��
Fj

4. Such that the αi are compatible with the transports , αiF
i = Fi+1αi

5. And the αi are compatible with each other ‘αiαj = αi’

Maps between transports are defined as morphisms Φi
n between Fi and Gi on

the closed pure strata that commute (strictly) with the exit maps. The differential

of each pure transport given as

D := δΦ + dΦ +G ∪ Φ + (−1)ΦΦ ∪ F
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commutes with the ‘α’s because each of the maps in the RHS of the expression

does.

Theorem 4.1.7. There is an equivalence of categories Θ : πbroken≤∞ (M) − Rep →

πexit≤∞(M)−Rep

Proof. The functor Θ is defined on objects as

Θ({Fi, αi})(σn)v(σn(0)) = F exit(σn)v(σn(0)) = Fin(σn)αinv(σn(0))

where in is the stratum σn(n) belongs to.

This functor is essentially surjective. Given an exit transport F , it restricts to

a transport on the pure strata. Call these restrictions Fi, these can be modified by

Lemma 4.1.4 so that they extend to the boundary of the pure strata F̄i. We can

define maps αi = F̄i(0, ε)F exit(ε, 0) and αij = F̄i(0, ε)F̄j(ε, 0). Then, Θ({F̄i, αi}) '

F exit, where the ε is as in Lemma 4.1.4 specifies the collar neighbourhood of the

boundary Si

To see that this is fully faithful, we need to say Homπbroken
∞ (M)−Rep(F,G) '

Homπexit
∞ (M)−Rep(Θ(F ),Θ(G)) is a quasi isomorphism. If F,G are in the image of

the functor Θ, they are made from functors on the closed pure strata and exit

maps. We need to say any closed morphism between them is given by a morphism

defined on the individual strata. For x0 in the boundary we can define the map

Φ0(x0) : (limx→x0 F0(x))→ (limx→x0G0(x)) as (limx→x0 Φ0(x)). The map in higher

dimensions is similarly defined by taking a limiting sequence of simplices. (Any

choice will give the same limit because of the pasting laws).
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We can define a constructible graded vector bundle just as in the 1-categorical

case. Then a super connection on a constructible vector bundle is

Definition 4.1.8. A flat connection on a constructible graded vector bundle {Si, Vi, f̃i}

on a stratified space {Si,Mi, fi} is given by

1. An flat super connection ∇i = d− Ai0 − Ai1 − Ai2... on the bundle Si|Si
.

2. Exit maps αi:

Vi−1

��

f ∗i (Vi−1)
αi //oo

��

Si

��
Mi−1 ∂Si //fioo ∂Si

3. Maps αij of bundles over Sij

Vi

αi ��?
??

??
??
αj
// Si
αij

��
Sj

4. Such that the αi are compatible with the connection, αi∇j = ∇iαi

5. And the αi are compatible with each other ‘αiαj = αi’

We can define a category of constructible vector bundles with connection, by

defining a morphism of degree k to be a morphism of degree k on each pure stratum

that commutes with the exit maps α. We have that the differential commutes

with the αs because the morphisms and the connections do. Call this category

Flatconst∞ (M).
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Theorem 4.1.9. There is an equivalence of categories

Σ : πbroken∞ (M)−Rep→ Flatconst∞ (M)

Proof. Given a transport Fi on each closed pure stratum S̄i, we can build a vector

bundle Si as in the case of the last chapter. We take the attaching maps f̃i to be

zero. The maps αi of transports give bundle maps by the way we topologise the

bundles. And the conditions on the transports translate to the conditions on the

vector bundles.

We define the connection on the pure strata by differentiating the transport as

before. We saw that the compatibility of the αs with the transport is equivalent to

the compatibility of the corresponding connection. This gives an equivalence at the

level of objects.

The correspondence for objects also gives an equivalence of maps by recogniz-

ing that each closed morphism Φ determines and is determined by a cone objectF 0

Φ G

 and that the compatibility for morphisms αiΦj = Φiαi gives the correct

compatibility for the cone objects αi

F j 0

Φj Gj

 =

F i 0

Φi Gi

αi.
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4.2 Comments

Here we talk informally about some possible lines of future investigations. Things

are not stated here precisely let alone proved.

4.2.1 Relation to the work of K.Igusa

Notice that in the last section we did not use Igusa’s formulation of writing parallel

transports as sections of a bundle over PM . We could do this by replacing the

path space by an appropriate space of exit paths that is defined as a subspace of

the space of all paths PM . This was not necessary. It was enough for our purposes

to look at parallel transport forms on each individual strata that were compatible

with the exit maps. But it’s an interesting line to pursue in the future.

4.2.2 Relation to the work of Block-Smith

Block-Smith formulate this slightly differently. By Swan’s theorem, a vector bundle

is equivalent to a module over C∞(M). The information of a (flat) super connection

on a vector bundle is given by a “cohesive module” over Ω∗(M), the forms on

M .(Cohesive modules are elements of PΩ∗(M) and not modules over the algebra

Ω∗(M). See [Bl05].)

We may adapt our constructible vector bundles to their language as follows:

Let’s say we have just two strata, i.e. we have:

M0
f1←− ∂S1

i1−→ S1
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We can define an algebra A of stratified forms as the direct sum Ω∗(M0)⊕Ω∗(∂S1)⊕

Ω∗(S1) plus formal elements f ∗1 , i
∗
1, α

∗ that satisfy the obvious relations

i∗1.ωS1 = i∗1(ωS1), α
2 = 0, αω = i∗1ωα

etc. Now a module for this algebra satisfies exactly the relations for the constructible

vector bundles that we saw were needed. This can be easily extended to the case

of many strata with relations such as αiαj = αi etc.

When our space is a simplicial complex stratified by the simplices, we have

Ω∗(Si) ∼ R. And the algebra of stratified forms reduces to just the exit maps. This

returns us to the folk case of MacPherson we discussed in section 2.2.5. There are

extensions of the simplicial case to include perversities. See for example [Vy99]. One

line for future inquiries is to extend our results to include perversities for general

(not contractible) strata.

4.2.3 Relation to the work of Jacob Lurie

Jacob Lurie [JL-A] proves a derived equivalence of sheaves and exit path represen-

tations for his ∞-categories. In the case of functors to C(k) we can give explicit

definitions of the sheaf obtained from a functor. We will briefly say how that story

would go without proofs.

Recall that taking parallel sections of a vector bundle defined a locally constant

sheaf in the ordinary case. We would like to do the same in our ∞ setting.

For a functor F : π≤1(X) → V ect the sections of a sheaf F over an open set
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were given as F(U) = {s ∈Maps(U,E)|s(y) = F (γ)(s(x))} where γ is any path in

U .

This definition wouldn’t work in the higher setting because homotopic paths

have different transport maps and as such we shouldn’t expect any sections y this

definition, even when U is contractible, say. So we weaken the condition s(y) =

F (f)(s(x)).

Let F : π∞(X) → C(k) be a functor (local system). Given an open set U a

section of the sheaf s over U is a choice

1. For each point x ∈ U , an element s0(x) ∈ Fx

2. For a 1-simplex σ joining x and y, an element s1(y) ∈ Fy[1], such that

d.s1(y) = s0(y)− F0(σ)s0(x).

3. For a 2-simplex σ joining x, y and z, an element s2(z) ∈ Fz[2], such that

d.s2(z) = F1(σ)s0(x)− s1(∂σ).

4. For a n + 1-simplex σ joining x0, ..xn, an element sn(xn) ∈ Fxn [n], such that

d.sn(xn) = Fn(σ)sn(x0)− sn(∂σ).

Here ∂ is the boundary of a simplex and d the differential in F (σ).

It’s easy to see that F(U) is a complex of vector spaces by addition, differential

etc. defined pointwise. So this gives us a functor

(π∞(M), C(k))→ PSh(M)
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where PSh(M) is presheaves of complexes.

We need to say F defined this way is actually a sheaf. This is a version of the

nerve theorem in topology that says that the homotopy type of a space can be re-

covered from a Cech-complex. The sheaf would be locally constant (in cohomology)

because over a contractible (U, x0), we can show that the restriction F(U)→ Fx0 is

a quasi isomorphism. The functor going in reverse that takes a sheaf to a parallel

transport can be given as a kind of Kan extension.
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