Question 1C. Find the degree 4 Taylor approximation about x=0 of the function below. For your numerical answer, enter the coefficient of x^4 .

$$\frac{d}{dx} \int_0^{2x} \cosh(t^2) dt$$

Question 2A. The value of $\int_2^3 \frac{3x^2-1}{x^3-x} \ dx$ can be expressed as $\ln k$. Determine k without using the substitution $u=x^3-x$.

Question 3A. Compute the interval of convergence for the power series below.

$$\sum_{n=5}^{\infty} \frac{(x-1)^n}{2^n n (\ln n)^3}$$

$\bigcirc (-1,3]$			
$\bigcirc (-3,1)$			
\bigcirc $[-1,3)$			
\bigcirc $[-1,3]$			
$\bigcirc (-1,3)$			
\bigcirc $[-3,1]$			
\bigcirc $(-3,1]$			
\bigcirc [-3,1)			

Question 4B. For the curve given parametrically by $x(t)=t^3\cos\frac{1}{t}$, $y(t)=t^3\sin\frac{1}{t}$, the arc length for $0 \le t \le A$ is which of the following?

$$\bigcirc \ rac{1}{27}(9A^2+1)^{3/2}$$

$$\bigcirc \ \frac{1}{27}\sqrt{9A^2+1}$$

$$\bigcirc \left[\left(9A^2 + 1
ight)^{3/2} - 1
ight]$$

$$\bigcirc \frac{1}{27} \Big[\big(9A^2 + 1 \big)^{3/2} - 1 \Big]$$

Question 5B. The series below converges for all values of p strictly bigger than some number k. Find k. In your written work, justify divergence when p=k and convergence when p>k.

$$\sum_{n=1}^{\infty} \left(e^{2/n^p} - 1 \right)$$

Question 6C. A continuous function f(x) satisfies $0 \le f(x)$, for $0 \le x \le 1$. When the region between y = f(x) and the x-axis, as x goes from 0 to 1, is rotated around the y-axis, the resulting solid has volume 8π . If $F(x) = \int_0^x f(x) dx$ and $\int_0^1 F(x) dx = 1$, find F(1) (the answer is a whole number).