An Invitation to the Arithmetic Langlands

Geometric Langlands Reading Seminar 1

Daebeom Choi January 26, 2024

University of Pennsylvania

1. A Naive Introduction to the Langlands Program

2. Galois Representations and Modular Forms

3. Adelization and Automorphic Representations

A Naive Introduction to the Langlands Program

Solving Equations

Fundamental Problem in Number Theory

Let $f(x_1, \cdots, x_n) \in \mathbb{Z}[x_1, \cdots, x_n]$. Find all rational/integral solutions of $f(x_1, \cdots, x_n) = 0$.

This is known to be a very hard problem. For example,

$$f(x_1, x_2, x_3) = x_1^n + x_2^n - x_3^n = 0$$

seems like a hard problem.

Solving Equations

Fundamental Problem in Number Theory

Let $f(x_1, \cdots, x_n) \in \mathbb{Z}[x_1, \cdots, x_n]$. Find all rational/integral solutions of $f(x_1, \cdots, x_n) = 0$.

This is known to be a very hard problem. For example,

$$f(x_1, x_2, x_3) = x_1^n + x_2^n - x_3^n = 0$$

seems like a hard problem.

Easier Problem

Let
$$f(x_1, \cdots, x_n) \in \mathbb{Z}[x_1, \cdots, x_n]$$
.

- 1. When does $f(x_1, \dots, x_n) = 0$ have a solution in \mathbb{F}_p ?
- 2. How many solutions are there?

Quadratic Reciprocity

Let's begin with the simplest nontrivial case: $f(x) = x^2 - m$.

m = 5Let $f(x) = x^2 - 5$. Then $\exists x \in \mathbb{F}_p \text{ s.t. } f(x) = 0 \iff p \equiv \pm 1 \mod 5 \text{ or } p = 2, 5.$ Let's begin with the simplest nontrivial case: $f(x) = x^2 - m$.

m = 5Let $f(x) = x^2 - 5$. Then $\exists x \in \mathbb{F}_p \text{ s.t. } f(x) = 0 \iff p \equiv \pm 1 \mod 5 \text{ or } p = 2, 5.$

Quadratic Reciprocity

Let $f(x) = x^2 - m$, *m* square-free. Then there exists a congruence class *S* mod 4*m* such that, if $p \nmid 4m$, then

 $\exists x \in \mathbb{F}_p \text{ s.t. } f(x) = 0 \iff p \in S \mod 4m.$

What happens if we consider a cubic polynomial?

Cubic Equation

Let $f(x) = x^3 + x^2 - 2x - 1$. Then the list of primes for which $f(x) = 0 \mod p$ has a solution includes

 $p = 7, 13, 29, 41, 43, 71, 83, 97, 113, 127, \cdots$

What happens if we consider a cubic polynomial?

Cubic Equation Let $f(x) = x^3 + x^2 - 2x - 1$. Then the list of primes for which $f(x) = 0 \mod p$ has a solution includes

 $p = 7, 13, 29, 41, 43, 71, 83, 97, 113, 127, \cdots$

Indeed,

 $\exists x \in \mathbb{F}_p \text{ s.t. } f(x) = 0 \iff p \equiv \pm 1 \mod 7 \text{ or } p = 7.$

The essence of the class field theory is that this is always possible if the Galois group of f is abelian.

Class Field Theory

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial whose Galois group is abelian. Then, there exists a number N, called the conductor of f, and a congruence class $S \mod N$ such that

$$\exists x \in \mathbb{F}_p \text{ s.t. } f(x) = 0 \iff p \in S \mod N$$

apart from a finite number of exceptions.

Note that the Galois group of $x^3 + x^2 - 2x - 1$ is C_3 .

The essence of the class field theory is that this is always possible if the Galois group of f is abelian.

Class Field Theory

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial whose Galois group is abelian. Then, there exists a number N, called the conductor of f, and a congruence class $S \mod N$ such that

 $\exists x \in \mathbb{F}_p \text{ s.t. } f(x) = 0 \iff p \in S \mod N$

apart from a finite number of exceptions.

Note that the Galois group of $x^3 + x^2 - 2x - 1$ is C_3 .

Naive form of the Langlands Program Extend this to arbitrary monic irreducible f(x).

An Example

Let $f(x) = x^3 - x^2 + 1$, whose Galois group is S_3 . The list of primes for which $f(x) = 0 \mod p$ has a solution includes

 $5, 7, 11, 17, 19, 23, 37, 43, 53, 59, 61, 67, 79, 83, 89, 97, \cdots$

Can you guess the pattern?

An Example

Let $f(x) = x^3 - x^2 + 1$, whose Galois group is S_3 . The list of primes for which $f(x) = 0 \mod p$ has a solution includes

 $5, 7, 11, 17, 19, 23, 37, 43, 53, 59, 61, 67, 79, 83, 89, 97, \cdots$

Can you guess the pattern?

Note: $a_p = -1, 0$ or 2. Therefore this is equivalent to $a_p \neq -1$.

The list of primes for which $f(x) = 0 \mod p$ does **not** have a solution includes

 $2, 3, 13, 29, 31, 41, 47, 71, 73, \cdots$

 and

$$F(q) = q - q^{2} - q^{3} + q^{6} + q^{8} - q^{13} - q^{16} + q^{23} - q^{24} + q^{25} + q^{26} + q^{27} - q^{29} - q^{31} + q^{39} - q^{41} - q^{46} - q^{47} + q^{48} + q^{49} - q^{50} - q^{54} + q^{58} + 2q^{59} + q^{62} + q^{64} - q^{69} - q^{71} - q^{73} + \cdots$$

The list of primes for which $f(x) = 0 \mod p$ does **not** have a solution includes

 $2, 3, 13, 29, 31, 41, 47, 71, 73, \cdots$

and

$$F(q) = q - q^{2} - q^{3} + q^{6} + q^{8} - q^{13} - q^{16} + q^{23} - q^{24} + q^{25} + q^{26}$$

+ $q^{27} - q^{29} - q^{31} + q^{39} - q^{41} - q^{46} - q^{47} + q^{48} + q^{49}$
- $q^{50} - q^{54} + q^{58} + 2q^{59} + q^{62} + q^{64} - q^{69} - q^{71} - q^{73} + \cdots$

Less Naive form of the Langlands Program

For **arbitrary** monic irreducible f(x), \exists a special function F whose coefficients contain the information whether f(x) = 0 is solvable or not apart from a finite number of exceptions.

The list of primes for which $f(x) = 0 \mod p$ does **not** have a solution includes

 $2, 3, 13, 29, 31, 41, 47, 71, 73, \cdots$

and

$$F(q) = q - q^{2} - q^{3} + q^{6} + q^{8} - q^{13} - q^{16} + q^{23} - q^{24} + q^{25} + q^{26}$$

+ $q^{27} - q^{29} - q^{31} + q^{39} - q^{41} - q^{46} - q^{47} + q^{48} + q^{49}$
- $q^{50} - q^{54} + q^{58} + 2q^{59} + q^{62} + q^{64} - q^{69} - q^{71} - q^{73} + \cdots$

Less Naive form of the Langlands Program

For **arbitrary** monic irreducible f(x), \exists a special function F whose coefficients contain the information whether f(x) = 0 is solvable or not apart from a finite number of exceptions.

Langlands-Tunnell Theorem, 1981 We can do this if deg $f \le 4$.

One more Example, but with two variables

Let

$$f(x,y) = y^2 + y - x^3 + x^2.$$

Let n_p be the number of solutions of f(x, y) = 0 in \mathbb{F}_p , and $b_p := p - n_p$.

p	2	3	5	7	11	13	17	19	23	29	31
b _p	-2	-1	1	-2	1	4	-2	0	-1	0	7

One more Example, but with two variables

Let

$$f(x, y) = y^2 + y - x^3 + x^2.$$

Let n_p be the number of solutions of f(x, y) = 0 in \mathbb{F}_p , and $b_p := p - n_p$.

р	2	3	5	7	11	13	17	19	23	29	31
b_p	-2	-1	1	-2	1	4	-2	0	-1	0	7

Let

$$F(q) = q \prod_{n=1}^{\infty} (1-q^n)^2 (1-q^{11n})^2 = \sum_{n=1}^{\infty} a_n q^n$$

Eichler Reciprocity

$$a_p = b_p$$

p	2	3	5	7	11	13	17	19	23	29
b _p	-2	-1	1	-2	1	4	-2	0	-1	0

 $F(q) = q - 2q^{2} - q^{3} + 2q^{4} + q^{5} + 2q^{6} - 2q^{7} - 2q^{9} - 2q^{10} + q^{11} - 2q^{12}$ + $4q^{13} + 4q^{14} - q^{15} - 4q^{16} - 2q^{17} + 4q^{18} + 0q^{19} + 2q^{20} + 2q^{21}$ - $2q^{22} - q^{23} - 4q^{25} - 8q^{26} + 5q^{27} - 4q^{28} + 0q^{29} + 2q^{30} + \cdots$

p	2	3	5	7	11	13	17	19	23	29
b _p	-2	-1	1	-2	1	4	-2	0	-1	0

$$F(q) = q - 2q^{2} - q^{3} + 2q^{4} + q^{5} + 2q^{6} - 2q^{7} - 2q^{9} - 2q^{10} + q^{11} - 2q^{12} + 4q^{13} + 4q^{14} - q^{15} - 4q^{16} - 2q^{17} + 4q^{18} + 0q^{19} + 2q^{20} + 2q^{21} - 2q^{22} - q^{23} - 4q^{25} - 8q^{26} + 5q^{27} - 4q^{28} + 0q^{29} + 2q^{30} + \cdots$$

Taniyama-Shimura-Weil Conjecture, or the Modularity Theorem, proved by Taylor-Wiles, Breuil-Conrad-Diamond-Taylor We can do this for any elliptic curve over \mathbb{Q} .

р	2	3	5	7	11	13	17	19	23	29
b _p	-2	-1	1	-2	1	4	-2	0	-1	0

$$F(q) = q - 2q^{2} - q^{3} + 2q^{4} + q^{5} + 2q^{6} - 2q^{7} - 2q^{9} - 2q^{10} + q^{11} - 2q^{12} + 4q^{13} + 4q^{14} - q^{15} - 4q^{16} - 2q^{17} + 4q^{18} + 0q^{19} + 2q^{20} + 2q^{21} - 2q^{22} - q^{23} - 4q^{25} - 8q^{26} + 5q^{27} - 4q^{28} + 0q^{29} + 2q^{30} + \cdots$$

Taniyama-Shimura-Weil Conjecture, or the Modularity Theorem, proved by Taylor-Wiles, Breuil-Conrad-Diamond-Taylor We can do this for any elliptic curve over \mathbb{Q} .

Another Naive Form of the Langlands Program Extend this to general equations.

Galois Representations and Modular Forms

Dedekind Domain

Dedekind Domain

A Dedekind domain is a Noetherian 1-dimensional normal domain.

Examples

- 1. If K is a finite extension of \mathbb{Q} , then the **ring of integers** \mathcal{O}_K , the integral closure of \mathbb{Z} , is a Dedekind domain.
- If X is a smooth affine curve over a field k, then the ring of global sections Γ(X, O_X) is a Dedekind domain.

Dedekind Domain

Dedekind Domain

A Dedekind domain is a Noetherian 1-dimensional normal domain.

Examples

- 1. If K is a finite extension of \mathbb{Q} , then the **ring of integers** \mathcal{O}_K , the integral closure of \mathbb{Z} , is a Dedekind domain.
- If X is a smooth affine curve over a field k, then the ring of global sections Γ(X, O_X) is a Dedekind domain.

Existence and Uniqueness of Prime Factorization

In a Dedekind domain D, every nonzero ideal I can be uniquely represented as a product of prime ideals:

$$I=P_1^{e_1}\cdots P_r^{e_r},$$

where P_1, \ldots, P_r are distinct nonzero prime ideals of D.

Especially, if K is a finite extension of \mathbb{Q} and p is a prime

$$p\mathcal{O}_K=P_1^{\mathbf{e}_1}\cdots P_r^{\mathbf{e}_r}.$$

In this case, e_i is the **ramification index** of P_i . Note that \mathcal{O}_K/P_i is a finite extension of \mathbb{F}_p . $f_i = [\mathcal{O}_K/P_i : \mathbb{F}_p]$ is the **inertia degree** of P_i .

Especially, if K is a finite extension of \mathbb{Q} and p is a prime

$$p\mathcal{O}_K=P_1^{\mathbf{e}_1}\cdots P_r^{\mathbf{e}_r}.$$

In this case, e_i is the ramification index of P_i . Note that \mathcal{O}_K/P_i is a finite extension of \mathbb{F}_p . $f_i = [\mathcal{O}_K/P_i : \mathbb{F}_p]$ is the inertia degree of P_i .

Why should we care?

Let $K = \mathbb{Q}[x]/f(x)$ for a monic irreducible polynomial $f(x) \in \mathbb{Z}[x]$ and

$$p\mathcal{O}_K=P_1^{\mathbf{e}_1}\cdots P_r^{\mathbf{e}_r}.$$

Factorization

Apart from a finite number of primes p,

$$f(x) = p_1(x)^{e_1} \cdots p_r(x)^{e_r}$$

in \mathbb{F}_p , where p_i is a monic irreducible polynomial in $\mathbb{F}_p[x]$ of degree f_i .

Good News!

Almost Everywhere Unramifiedness

Apart from a finite number of primes p, $e_i = 1$.

Galois Action

If K is a Galois extension, then e_i and f_i are constant.

Fundamental Equality

$$\sum_{i=1}^r \mathbf{e}_i f_i = [K : \mathbb{Q}].$$

In particular, if K is Galois, apart from a finite number of primes p,

$$fr = [K : \mathbb{Q}]$$

Frobenius Endomorphism

All in all, to know the prime factorization, if K is Galois, apart from a finite number of primes p, it is enough to know f. Let

$$p\mathcal{O}_{K}=P_{1}^{e}\cdots P_{r}^{e}.$$

Frobenius Endomorphism

All in all, to know the prime factorization, if K is Galois, apart from a finite number of primes p, it is enough to know f. Let

$$p\mathcal{O}_{K}=P_{1}^{\mathbf{e}}\cdots P_{r}^{\mathbf{e}}.$$

Frobenius element

Apart from a finite number of primes p, , there exists a natural element $Fr_p \in Gal(K/\mathbb{Q})$, the **Frobenius element**, defined up to conjugacy, s.t.

- 1. Maps P_i to P_i for some i.
- 2. Induces the Frobenius endomorphism on $\mathcal{O}_{\mathcal{K}}/P_i$.
- 3. The order of Fr_p is f.

Interim Summary

To solve the equation, it is enough to find **Frobenius**.

One natural way to recognize the Frobenius is by using a representation. Return to $x^3 - x^2 + 1!$ Its Galois group is S_3 . This

- 1. Has three conjugacy classes, and
- 2. Admits a unique faithful 2-dim representation

 $\rho: \operatorname{Gal}(K/\mathbb{Q}) \simeq S_3 \to \operatorname{GL}_2(\mathbb{C}).$

One natural way to recognize the Frobenius is by using a representation. Return to $x^3 - x^2 + 1!$ Its Galois group is S_3 . This

- 1. Has three conjugacy classes, and
- 2. Admits a unique faithful 2-dim representation

 $\rho: \operatorname{Gal}(K/\mathbb{Q}) \simeq S_3 \to \operatorname{GL}_2(\mathbb{C}).$

We can distinguish conjugacy classes by the trace of ρ .

Conjugacy Class	$tr(\rho(c))$
id	2
(1 2)	0
(1 2 3)	-1

Reciprocity in terms of the Galois representation

Let

$$F(q) = q \prod_{n=1}^{\infty} (1-q^n)(1-q^{23n}) = \sum_{n=1}^{\infty} a_n q^n.$$

Then, apart from a finite number of primes p,

 $\mathbf{a}_{p} = \mathrm{tr}(\rho(\mathrm{Fr}_{p})).$

Reciprocity in terms of the Galois representation

Let

$$F(q) = q \prod_{n=1}^{\infty} (1-q^n)(1-q^{23n}) = \sum_{n=1}^{\infty} a_n q^n.$$

Then, apart from a finite number of primes p,

 $a_p = \operatorname{tr}(\rho(\operatorname{Fr}_p)).$

A refined form of Langlands Program - Version 1 For a Galois representation ρ : Gal $(\bar{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_n$, there exists a special function $F(q) = \sum_n a_n q^n$ such that

 $a_p = \operatorname{tr}(\rho(\operatorname{Fr}_p)).$

apart from a finite number of primes p.

Let K be a Galois extension of \mathbb{Q} . Then there exists a natural projection

 $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Gal}(K/\mathbb{Q}).$

Since $Gal(K/\mathbb{Q})$ is a finite group, its representation theory over \mathbb{C} is well known. We can produce a lot of representations

 $\operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{GL}_n(\mathbb{C}).$

Let K be a Galois extension of \mathbb{Q} . Then there exists a natural projection

 $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{Gal}(K/\mathbb{Q}).$

Since $Gal(K/\mathbb{Q})$ is a finite group, its representation theory over \mathbb{C} is well known. We can produce a lot of representations

 $\operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{GL}_n(\mathbb{C}).$

By composing them, we have representations

 $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_n(\mathbb{C})$

with a finite image. They are called Artin representations.

Let *E* be an elliptic curve over \mathbb{Q} . Then $E(\overline{\mathbb{Q}})$

- 1. Is an abelian group, and
- 2. $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $E(\overline{\mathbb{Q}})$.

Hence, its l^n -torsion $E(\overline{\mathbb{Q}})[l^n]$ is also a $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ -module.
Let *E* be an elliptic curve over \mathbb{Q} . Then $E(\overline{\mathbb{Q}})$

- 1. Is an abelian group, and
- 2. $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $E(\overline{\mathbb{Q}})$.

Hence, its l^n -torsion $E(\overline{\mathbb{Q}})[l^n]$ is also a $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ -module.

Fact: $E(\overline{\mathbb{Q}})[I^n]$ is isomorphic to $(\mathbb{Z}/I^n\mathbb{Z})^2$ as an abelian group.

Hence, the action of $\mathsf{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ defines a representation

Let *E* be an elliptic curve over \mathbb{Q} . Then $E(\overline{\mathbb{Q}})$

- 1. Is an abelian group, and
- 2. $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on $E(\overline{\mathbb{Q}})$.

Hence, its I^n -torsion $E(\bar{\mathbb{Q}})[I^n]$ is also a $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ -module. **Fact**: $E(\bar{\mathbb{Q}})[I^n]$ is isomorphic to $(\mathbb{Z}/I^n\mathbb{Z})^2$ as an abelian group. Hence, the action of $Gal(\bar{\mathbb{Q}}/\mathbb{Q})$ defines a representation

$$\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}/I^n\mathbb{Z}),$$

By taking limit $n \to \infty$, we obtain

$$\rho_{E,I}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Z}_I).$$

This is the **I-adic Tate module** of *E*.

Lefschetz Fixed Point Theorem

Let n_p be the number of points of E in \mathbb{F}_p , and $b_p := p - n_p$. Then

 $\operatorname{tr}(\rho_{E,l}(\mathsf{Fr}_p)) = b_p$

apart from a finite number of primes p.

Lefschetz Fixed Point Theorem

Let n_p be the number of points of E in \mathbb{F}_p , and $b_p := p - n_p$. Then

 $\operatorname{tr}(\rho_{E,l}(\operatorname{Fr}_p)) = b_p$

apart from a finite number of primes p.

Modularity Theorem, refined version For any elliptic curve E over \mathbb{Q} , there exists a special function,

$$F_E(q) = \sum_n a_n q^n$$

such that

 $a_p = \operatorname{tr}(\rho_{E,l}(\operatorname{Fr}_p)).$

apart from a finite number of primes p, for any choice of prime I.

Upper Half Plane with the $SL_2(\mathbb{Z})$ action

Figure 1: Fundamental domains of the $\mathsf{SL}_2(\mathbb{Z})$ action on $\mathbb{H},$ PC: Wikipedia

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} z = \frac{az+b}{cz+d}$$

The Modular Group, $SL_2(\mathbb{Z})$, has some special subgroups, such as

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathsf{SL}_2(\mathbb{Z}) \mid \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \right\}.$$

The Modular Group, $SL_2(\mathbb{Z})$, has some special subgroups, such as

$$\Gamma(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \operatorname{SL}_2(\mathbb{Z}) \mid \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod N \right\}.$$

A congruence subgroup is a subgroup of $SL_2(\mathbb{Z})$ that contains $\Gamma(N)$ for some N. For instance,

$$\Gamma_{1}(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_{2}(\mathbb{Z}) \mid \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \mod N \right\},$$

$$\Gamma_{0}(N) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}_{2}(\mathbb{Z}) \mid \begin{bmatrix} a & b \\ c & d \end{bmatrix} \equiv \begin{bmatrix} * & * \\ 0 & * \end{bmatrix} \mod N \right\}.$$

For any

$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathsf{GL}_2^+(\mathbb{R}),$$

a natural number k and a function $F:\mathbb{H}\rightarrow\mathbb{C},$ we define $F|_k\gamma$ by

$$F|_k \gamma(z) := (\det \gamma)^{\frac{k}{2}} (cz+d)^{-k} F(\gamma z)$$
$$= (\det \gamma)^{\frac{k}{2}} (cz+d)^{-k} F\left(\frac{az+b}{cz+d}\right).$$

This is the **slash operator**.

For any

$$\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathsf{GL}_2^+(\mathbb{R}),$$

a natural number k and a function $F:\mathbb{H}\rightarrow\mathbb{C},$ we define $F|_k\gamma$ by

$$F|_k \gamma(z) := (\det \gamma)^{\frac{k}{2}} (cz+d)^{-k} F(\gamma z)$$
$$= (\det \gamma)^{\frac{k}{2}} (cz+d)^{-k} F\left(\frac{az+b}{cz+d}\right)$$

This is the slash operator.

Note that this is defined in a way that the following holds:

$$F|_k\gamma(z)(dz)^{\otimes rac{k}{2}}=F(\gamma z)(d(\gamma z))^{\otimes rac{k}{2}}.$$

Modular Forms

Modular form

A weak modular form of weight k and level N is a holomorphic function $F : \mathbb{H} \to \mathbb{C}$ s.t. $F|_k \gamma = F$ for any $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_1(N)$, i.e. $F(\gamma z) = (cz + d)^k F(z).$

Modular Forms

Modular form

A weak modular form of weight k and level N is a holomorphic function $F : \mathbb{H} \to \mathbb{C}$ s.t. $F|_k \gamma = F$ for any $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_1(N)$, i.e. $F(\gamma z) = (cz + d)^k F(z)$.

Note that
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \Gamma_1(N)$$
, so $F(z) = F(z+1)$. Hence $F(z) = F_0(q)$ where $q = e^{2\pi i z}$

for a holomorphic function F_0 on a punctured disc.

The same holds for $F|_k\gamma(z)$ where $\gamma \in SL_2(\mathbb{Z})$, so $F|_k\gamma(z) = F_0^{\gamma}(q)$.

Modular Forms

Modular form

A weak modular form of weight k and level N is a holomorphic function $F : \mathbb{H} \to \mathbb{C}$ s.t. $F|_k \gamma = F$ for any $\gamma = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma_1(N)$, i.e. $F(\gamma z) = (cz + d)^k F(z).$

Note that
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \Gamma_1(N)$$
, so $F(z) = F(z+1)$. Hence
 $F(z) = F_0(q)$ where $q = e^{2\pi i z}$

for a holomorphic function F_0 on a punctured disc.

The same holds for $F|_k\gamma(z)$ where $\gamma \in SL_2(\mathbb{Z})$, so $F|_k\gamma(z) = F_0^{\gamma}(q)$.

F is a **modular form** if F_0^{γ} holomorphic, and a **cusp form** if $F_0^{\gamma}(0) = 0$.

Eisenstein Series: weight 2k, level 1, non-cusp form.

$$E_{2k}(z) = \frac{1}{2\zeta(2k)} \sum_{(m,n)\in\mathbb{Z}^2\setminus(0,0)} \frac{1}{(mz+n)^{2k}} = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

Eisenstein Series: weight 2k, level 1, non-cusp form.

$$E_{2k}(z) = \frac{1}{2\zeta(2k)} \sum_{(m,n)\in\mathbb{Z}^2\setminus(0,0)} \frac{1}{(mz+n)^{2k}} = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

Modular Discriminant: weight 12, level 1, cusp form.

$$\Delta(q) = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n.$$

Eisenstein Series: weight 2k, level 1, non-cusp form.

$$E_{2k}(z) = \frac{1}{2\zeta(2k)} \sum_{(m,n)\in\mathbb{Z}^2\setminus(0,0)} \frac{1}{(mz+n)^{2k}} = 1 - \frac{4k}{B_{2k}} \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

Modular Discriminant: weight 12, level 1, cusp form.

$$\Delta(q) = q \prod_{n=1}^{\infty} (1-q^n)^{24} = \sum_{n=1}^{\infty} \tau(n)q^n.$$

Our Examples: weight 1/level 23, weight 2/level 11. Cusp forms.

$$F(q) = q \prod_{n=1}^{\infty} (1-q^n)(1-q^{23n}), F_E(q) = q \prod_{n=1}^{\infty} (1-q^n)^2(1-q^{11n})^2$$

A refined form of Langlands Program - Version 2 For an irreducible Galois representation ρ : Gal $(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow$ GL₂, there exists a cusp form $F(q) = \sum_{n} a_n q^n$ such that

 $a_p = \operatorname{tr}(\rho(\operatorname{Fr}_p)).$

apart from a finite number of primes p.

Caution: This is trivially false for various reasons.

In the rest of presentation, we will improve the preceeding formulation:

- 1. Make this statement works in both direction.
- 2. Generalize this from GL_2 to arbitrary reductive group.

Consider

$Y(N):=\Gamma(N)\backslash\mathbb{H},\ Y_0(N):=\Gamma_0(N)\backslash\mathbb{H},\ Y_1(N):=\Gamma_1(N)\backslash\mathbb{H}.$

Note that $SL_2(\mathbb{Z})\setminus\mathbb{H}$ is the moduli space of curves elliptic curves. In the same vein, these are moduli space of elliptic curves with a level structure.

Consider

$$Y(N) := \Gamma(N) \setminus \mathbb{H}, \ Y_0(N) := \Gamma_0(N) \setminus \mathbb{H}, \ Y_1(N) := \Gamma_1(N) \setminus \mathbb{H}.$$

Note that $SL_2(\mathbb{Z})\setminus\mathbb{H}$ is the moduli space of curves elliptic curves. In the same vein, these are moduli space of elliptic curves with a level structure.

$$Y_1(N) = moduli space of pairs (E, P)$$

E : an elliptic curve
P : a point of order N.

Consider

$$Y(N) := \Gamma(N) \setminus \mathbb{H}, \ Y_0(N) := \Gamma_0(N) \setminus \mathbb{H}, \ Y_1(N) := \Gamma_1(N) \setminus \mathbb{H}.$$

Note that $SL_2(\mathbb{Z})\setminus\mathbb{H}$ is the moduli space of curves elliptic curves. In the same vein, these are moduli space of elliptic curves with a level structure.

 $Y_1(N) =$ moduli space of pairs (E, P)E: an elliptic curve P: a point of order N.

Exercise: Find a simillar description for Y(N), $Y_0(N)$. They have natural compactification

 $Y(N) \subseteq X(N), Y_0(N) \subseteq X_0(N) \text{ and } Y_1(N) \subseteq X_1(N).$

Geometric Description of Modular Forms

Let $S_k(N)$ (resp. $M_k(N)$) be the \mathbb{C} -vector space of cusp (resp. modular) forms. Recall that the slash operator is defined such that

$${\sf F}|_k\gamma(z)(dz)^{\otimesrac{k}{2}}={\sf F}(\gamma z)(d(\gamma z))^{\otimesrac{k}{2}}$$

and we require

$$F|_k = F$$
, i.e. $F(z)(dz)^{\otimes \frac{k}{2}} = F(\gamma z)(d(\gamma z))^{\otimes \frac{k}{2}}$

for a modular form F.

Geometric Description of Modular Forms

Let $S_k(N)$ (resp. $M_k(N)$) be the \mathbb{C} -vector space of cusp (resp. modular) forms. Recall that the slash operator is defined such that

$${\sf F}|_k\gamma(z)(dz)^{\otimesrac{k}{2}}={\sf F}(\gamma z)(d(\gamma z))^{\otimesrac{k}{2}}$$

and we require

$$F|_{k} = F$$
, i.e. $F(z)(dz)^{\otimes \frac{k}{2}} = F(\gamma z)(d(\gamma z))^{\otimes \frac{k}{2}}$

for a modular form F.

Geometric Description of $S_2(N)$

$$S_2(\mathbb{N}) \simeq \Gamma\left(X_1(\mathbb{N}), \Omega^1_{X_1(\mathbb{N})}\right).$$

Exactly the same statement holds for $\Gamma_0(N)$ and $X_0(N)$.

We can obtain simillar description for a general weight k. Let

 $\pi: \mathcal{E} \to X_1(N)$

be the universal family of elliptic curves, and

$$\lambda := \pi_* \Omega^1_{\mathcal{E}/X_1(N)}$$

be the Hodge line bundle.

We can obtain simillar description for a general weight k. Let

 $\pi: \mathcal{E} \to X_1(N)$

be the universal family of elliptic curves, and

$$\lambda := \pi_* \Omega^1_{\mathcal{E}/X_1(N)}$$

be the Hodge line bundle.

Geometric Description of $M_k(N)$

 $M_k(\mathbf{N}) \simeq \Gamma(X_1(\mathbf{N}), \lambda^{\otimes k}).$

This explains the last condition in the defintion:

$$F|_k\gamma(z) = F|_k\gamma(z+1)$$
 for $\gamma \in \mathsf{SL}_2(\mathbb{Z})$, so $F|_k\gamma(z) = F_0^\gamma(q)$.

F is a modular form if F_0^{γ} holomorphic, and a cusp form if $F_0^{\gamma}(0) = 0$.

The points in $D_N := X_1(N) \setminus Y_1(N)$ are called **cusps**.

The last condition corresponds to the regularity of the section at cusps.

This explains the last condition in the defintion:

$${\sf F}|_k\gamma(z)={\sf F}|_k\gamma(z+1)$$
 for $\gamma\in{\sf SL}_2(\mathbb{Z})$, so ${\sf F}|_k\gamma(z)={\sf F}_0^\gamma(q).$

F is a modular form if F_0^{γ} holomorphic, and a cusp form if $F_0^{\gamma}(0) = 0$.

The points in $D_N := X_1(N) \setminus Y_1(N)$ are called **cusps**.

The last condition corresponds to the regularity of the section at cusps.

Geometric Description of $S_k(N)$

 $S_k(N) \simeq \Gamma(X_1(N), \lambda^{\otimes k}(D_N)).$

Let n be an integer prime to N. Let

where

$$\alpha(E,P) = (E,nP), \ \beta(E,P) = (E/NP,P).$$

This is the **Hecke correspondence** T_n of $X_1(N)$.

Let n be an integer prime to N. Let

where

$$\alpha(E,P) = (E,nP), \ \beta(E,P) = (E/NP,P).$$

This is the **Hecke correspondence** T_n of $X_1(N)$.

The definition of T_n is a bit more complicated for a general n.

The **Hecke operator** T_n on $S_k(N)$ is

$$T_n = \alpha_* \beta^* : S_k(N) \to S_k(N).$$

Hecke Algebra for N = 1

On $S_k(1)$, $\{T_n\}_{n\in\mathbb{N}}$ is

- 1. Simultaneously diagonalizable.
- 2. If F is a common eigenfunction of $\{T_n\}_{n\in\mathbb{N}}$ such that

$$F(q)=q+\sum_{n=2}^{\infty}a_nq^n,$$

then $T_p F = a_p F$.

3. If F and G are nonzero common eigenfunctions of T_n with the same eigenvalues, then they coincide up to a constant.

Hecke Algebra for N = 1

On $S_k(1)$, $\{T_n\}_{n\in\mathbb{N}}$ is

- 1. Simultaneously diagonalizable.
- 2. If F is a common eigenfunction of $\{T_n\}_{n\in\mathbb{N}}$ such that

$$F(q)=q+\sum_{n=2}^{\infty}a_nq^n,$$

then $T_pF = a_pF$.

3. If F and G are nonzero common eigenfunctions of T_n with the same eigenvalues, then they coincide up to a constant.

Essentially nothing holds for general N.

The origin of the problem:

if $f(z) \in S_k(N)$, then $f(dz) \in S_k(dN)$, which has the same info

Oldforms

An element $f \in S_k(N)$ given by

f(z)=g(dz)

For some $d \mid N$ and $g \in S_k(N/d)$, is called an **oldform**.

Let $S_k(N)^{\text{old}}$ be the subspace spaned by oldforms.

The origin of the problem:

if $f(z) \in S_k(N)$, then $f(dz) \in S_k(dN)$, which has the same info

Oldforms

An element $f \in S_k(N)$ given by

f(z)=g(dz)

For some $d \mid N$ and $g \in S_k(N/d)$, is called an **oldform**.

Let $S_k(N)^{\text{old}}$ be the subspace spaned by oldforms.

There is a natural inner product on $S_k(N)$, given by

$$\langle f,g\rangle = \int_{\Gamma_1(N)\setminus\mathbb{H}} f(z)\overline{g(z)}y^{k-2}dxdy$$

The **newform** is defined as an element of $S_k(N)^{\text{new}} = (S_k(N)^{\text{old}})^{\perp}$.

Hecke Algebra for $S_k(N)^{\text{new}}$ On $S_k(N)^{\text{new}}$, $\{T_n\}_{n\in\mathbb{N}}$ is

- 1. Simultaneously diagonalizable.
- 2. If F is a common eigenfunction of $\{T_n\}_{n\in\mathbb{N}}$ such that

$$F(q)=q+\sum_{n=2}^{\infty}a_nq^n,$$

then $T_pF = a_pF$.

3. If F and G are nonzero common eigenfunctions of T_n with the same eigenvalues, then they coincide up to a constant.

The **Hecke eigenform** is an element of $S_k(N)^{\text{new}}$ that satisfies (2) above.

A refined form of Langlands Program - Version 3

There exists a one-to-one correspondence between

- 1. irreducible Galois representation $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2$
- 2. Hecke eigenform F

such that, apart from a finite number of primes p,

 $a_{\rho}(F) = \operatorname{tr}(\rho(\operatorname{Fr}_{\rho})).$

Caution: Still, this is trivially false for various reasons.

- We did not specify the base field of ρ ,
- We need more than cusp forms for it to be true,

among many others. Nevertheless, this serves as a good starting point!

Good news: Now we know enough to formulate some theorems!

Deligne-Serre (k = 1), Eichler-Shimura (k = 2), Deligne (k > 2) For any Hecke eigenform $F \in S_k(N)^{new}$ and a prime *l*, there exists an irreducible Galois representation

 $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{Q}_l})$

such that

 $a_p(F) = \operatorname{tr}(\rho(\operatorname{Fr}_p)).$

apart from a finite number of primes p,

Hence, at least one direction of the conjecture is true!

A special case of the Artin's conjecture, Khare-Wintenberger 09

If $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{C})$ is an irreducible representation such that det $\rho(c) = -1$, where *c* is the complex conjugation, then there exists a weight 1 Hecke eigenform *F* such that

 $a_p(F) = \operatorname{tr}(\rho(\operatorname{Fr}_p)).$

apart from a finite number of primes p.

A special case of the Artin's conjecture, Khare-Wintenberger 09 If $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{C})$ is an irreducible representation such that det $\rho(c) = -1$, where c is the complex conjugation, then there exists a weight 1 Hecke eigenform F such that

 $a_p(F) = \operatorname{tr}(\rho(\operatorname{Fr}_p)).$

apart from a finite number of primes p.

Modularity Theorem, a rigorous statement If *E* is an elliptic curve over \mathbb{Q} , there exists a weight 2 Hecke eigenform *F* of $\Gamma_0(N)$ such that

 $a_p(F) = \operatorname{tr}(\rho_{E,l}(\operatorname{Fr}_p)).$

apart from a finite number of primes p and any prime l.
Adelization and Automorphic Representations

Goal: Provide a 'natural' description of the congruence subgroups.

Goal: Provide a 'natural' description of the congruence subgroups. We use *p*-adic numbers to do this. Recall that

$$\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z} \text{ and } \mathbb{Q}_p = \mathbb{Z}_p \left[rac{1}{p}
ight].$$

They have natural topology, which makes them a topological ring, and a local basis at 0 is given by

$$\mathbb{Z}_p \supset p\mathbb{Z}_p \supset \cdots \supset p^{n-1}\mathbb{Z}_p \supset p^n\mathbb{Z}_p \supset p^{n+1}\mathbb{Z}_p \supset \cdots$$

Goal: Provide a 'natural' description of the congruence subgroups. We use *p*-adic numbers to do this. Recall that

$$\mathbb{Z}_{p} := \varprojlim \mathbb{Z}/p^{n}\mathbb{Z} \text{ and } \mathbb{Q}_{p} = \mathbb{Z}_{p}\left[rac{1}{p}
ight].$$

They have natural topology, which makes them a topological ring, and a local basis at 0 is given by

$$\mathbb{Z}_p \supset p\mathbb{Z}_p \supset \cdots \supset p^{n-1}\mathbb{Z}_p \supset p^n\mathbb{Z}_p \supset p^{n+1}\mathbb{Z}_p \supset \cdots$$

We also topologize algebraic groups over \mathbb{Q}_p , e.g. $GL_n(\mathbb{Q}_p)$ has a basis

$$\mathsf{GL}_n(\mathbb{Z}_p) \supset \mathbb{1}_n + p\mathsf{M}_n(\mathbb{Z}_p) \supset \cdots \supset \mathbb{1}_n + p^{n-1}\mathsf{M}_n(\mathbb{Z}_p) \supset \mathbb{1}_n + p^n\mathsf{M}_n(\mathbb{Z}_p) \cdots$$

The $\textbf{Adele} \ (\text{over} \ \mathbb{Q})$ is defined by

$$\mathbb{A}_{\mathbb{Q}} := \mathbb{R} \times \prod_{p}' \mathbb{Q}_{p} = \left\{ \left(a_{\infty}, a_{2}, a_{3}, \cdots \right) \mid a_{p} \in \mathbb{Z}_{p} \text{ for almost every } p \right\}.$$

The **Adele** (over \mathbb{Q}) is defined by

$$\mathbb{A}_{\mathbb{Q}} := \mathbb{R} \times \prod_{p}' \mathbb{Q}_{p} = \left\{ \left(a_{\infty}, a_{2}, a_{3}, \cdots \right) \mid a_{p} \in \mathbb{Z}_{p} \text{ for almost every } p \right\}.$$

It is a locally compact topological ring whose basis at 0 is given by

$$U \times \prod_{i=1}^{r} p_i^{e_i} \mathbb{Z}_{p_i} \times \prod_{p \nmid N} \mathbb{Z}_p$$

where $N = p_1^{e_1} \cdots p_r^{e_r}$ and U is any open subset containing 0.

The **Adele** (over \mathbb{Q}) is defined by

$$\mathbb{A}_{\mathbb{Q}} := \mathbb{R} \times \prod_{p}' \mathbb{Q}_{p} = \left\{ \left(a_{\infty}, a_{2}, a_{3}, \cdots \right) \mid a_{p} \in \mathbb{Z}_{p} \text{ for almost every } p \right\}.$$

It is a locally compact topological ring whose basis at 0 is given by

$$U \times \prod_{i=1}^{r} p_i^{\mathbf{e}_i} \mathbb{Z}_{p_i} \times \prod_{p \nmid N} \mathbb{Z}_p$$

where $N = p_1^{e_1} \cdots p_r^{e_r}$ and U is any open subset containing 0. The 'diagonal embedding' $\mathbb{Q} \to \mathbb{A}_{\mathbb{Q}}$ is discrete and cocompact. **Exercise:** $\mathbb{Q} \setminus \mathbb{A}_{\mathbb{Q}} \simeq \mathbb{R}/\mathbb{Z} \times \prod_p \mathbb{Z}_p$, $\mathbb{Q} \setminus \mathbb{A}_{\mathbb{Q}} / \prod_p \mathbb{Z}_p \simeq \mathbb{R}/\mathbb{Z}$. Although it looks scary, its appropriate quotient is just a manifold! Have ${\sf GL}_2(\mathbb{R})/{\sf O}_2(\mathbb{R})\simeq \mathbb{H}$ in mind! Let

$$\operatorname{GL}_2(\mathbb{Q}_p) \supset \operatorname{GL}_2(\mathbb{Z}_p), \operatorname{GL}_2(\mathbb{R}) \supset \operatorname{O}_2(\mathbb{R})$$

be the maximal compact subgroups.

Have $\mathsf{GL}_2(\mathbb{R})/\mathsf{O}_2(\mathbb{R})\simeq \mathbb{H}$ in mind! Let

$$\operatorname{GL}_2(\mathbb{Q}_p) \supset \operatorname{GL}_2(\mathbb{Z}_p), \operatorname{GL}_2(\mathbb{R}) \supset \operatorname{O}_2(\mathbb{R})$$

be the maximal compact subgroups. Then

$$Z(\mathbb{A}_{\mathbb{Q}})\mathsf{GL}_{2}(\mathbb{Q})\backslash\mathsf{GL}_{2}(\mathbb{A}_{\mathbb{Q}})/\mathsf{O}_{2}(\mathbb{R})\times\prod_{p}\mathsf{GL}_{2}(\mathbb{Z}_{p})\simeq\mathsf{SL}_{2}(\mathbb{Z})\backslash\mathbb{H}.$$

Where Z is the center of GL_2 , i.e. the diagonal matrices.

Have $GL_2(\mathbb{R})/O_2(\mathbb{R}) \simeq \mathbb{H}$ in mind! Let

$$\operatorname{GL}_2(\mathbb{Q}_p) \supset \operatorname{GL}_2(\mathbb{Z}_p), \operatorname{GL}_2(\mathbb{R}) \supset \operatorname{O}_2(\mathbb{R})$$

be the maximal compact subgroups. Then

$$Z(\mathbb{A}_{\mathbb{Q}})\mathsf{GL}_{2}(\mathbb{Q})\backslash\mathsf{GL}_{2}(\mathbb{A}_{\mathbb{Q}})/\mathsf{O}_{2}(\mathbb{R})\times\prod_{p}\mathsf{GL}_{2}(\mathbb{Z}_{p})\simeq\mathsf{SL}_{2}(\mathbb{Z})\backslash\mathbb{H}.$$

Where Z is the center of GL_2 , i.e. the diagonal matrices.

Similarly, for $N = p_1^{e_1} \cdots p_r^{e_r}$, let $K(N) = K_\infty \times \prod_p K_p(N)$ where

 $\mathcal{K}_{\infty} = \mathsf{O}_{2}(\mathbb{R}), \ \mathcal{K}_{p_{i}}(N) = \mathbb{1}_{n} + p_{i}^{e_{i}}\mathsf{M}_{n}(\mathbb{Z}_{p_{i}}), \ \mathcal{K}_{p}(N) = \mathsf{GL}_{2}(\mathbb{Z}_{p}) \text{ for } p \neq p_{i}.$

Then

$$Z(\mathbb{A}_{\mathbb{Q}})\operatorname{GL}_{2}(\mathbb{Q})\backslash\operatorname{GL}_{2}(\mathbb{A}_{\mathbb{Q}})/K(N)\simeq\operatorname{GL}_{2}(\mathbb{Q})\cap\prod_{p}K_{p}\backslash\mathbb{H}\simeq\Gamma(N)\backslash\mathbb{H}.$$

Have $GL_2(\mathbb{R})/O_2(\mathbb{R}) \simeq \mathbb{H}$ in mind! Let

$$\operatorname{GL}_2(\mathbb{Q}_p) \supset \operatorname{GL}_2(\mathbb{Z}_p), \operatorname{GL}_2(\mathbb{R}) \supset \operatorname{O}_2(\mathbb{R})$$

be the maximal compact subgroups. Then

$$Z(\mathbb{A}_{\mathbb{Q}})\mathsf{GL}_{2}(\mathbb{Q})\backslash\mathsf{GL}_{2}(\mathbb{A}_{\mathbb{Q}})/\mathsf{O}_{2}(\mathbb{R})\times\prod_{p}\mathsf{GL}_{2}(\mathbb{Z}_{p})\simeq\mathsf{SL}_{2}(\mathbb{Z})\backslash\mathbb{H}.$$

Where Z is the center of GL_2 , i.e. the diagonal matrices.

Similarly, for $N = p_1^{e_1} \cdots p_r^{e_r}$, let $K(N) = K_\infty \times \prod_p K_p(N)$ where

 $\mathcal{K}_{\infty} = \mathsf{O}_{2}(\mathbb{R}), \ \mathcal{K}_{p_{i}}(N) = \mathbb{1}_{n} + p_{i}^{e_{i}}\mathsf{M}_{n}(\mathbb{Z}_{p_{i}}), \ \mathcal{K}_{p}(N) = \mathsf{GL}_{2}(\mathbb{Z}_{p}) \text{ for } p \neq p_{i}.$

Then

$$Z(\mathbb{A}_{\mathbb{Q}})\mathrm{GL}_{2}(\mathbb{Q})\backslash\mathrm{GL}_{2}(\mathbb{A}_{\mathbb{Q}})/\mathcal{K}(N)\simeq\mathrm{GL}_{2}(\mathbb{Q})\cap\prod_{p}\mathcal{K}_{p}\backslash\mathbb{H}\simeq\Gamma(N)\backslash\mathbb{H}.$$

Upshot: Modular forms lives in $Z(\mathbb{A}_{\mathbb{Q}})GL_2(\mathbb{Q})\setminus GL_2(\mathbb{A}_{\mathbb{Q}})/K(N)$.

This extends to reductive groups: Let

G : a reductive group $K_{\infty} : \text{ a maximal compact subgroup of } G(\mathbb{R})$ $K_{\text{fin}} : \text{ a compact open subgroup of } \prod_{p} G(\mathbb{Q}_{p}).$ This extends to reductive groups: Let

G : a reductive group $K_{\infty} : \text{ a maximal compact subgroup of } G(\mathbb{R})$ $K_{\text{fin}} : \text{ a compact open subgroup of } \prod_{p} G(\mathbb{Q}_{p}).$

Punchline: For $K = K_{\infty}K_{\text{fin}} \subseteq G(\mathbb{A}_{\mathbb{Q}})$,

 $Z(\mathbb{R})\setminus G(\mathbb{R})/K$ is a locally symmetric space, $Z(\mathbb{A}_{\mathbb{Q}})G(\mathbb{Q})\setminus G(\mathbb{A}_{\mathbb{Q}})/K$ is a quotient of $Z(\mathbb{R})\setminus G(\mathbb{R})/K$ by $G(\mathbb{Q})\cap K_{\text{fin}}$. This extends to reductive groups: Let

$$G : \text{ a reductive group}$$
$$K_{\infty} : \text{ a maximal compact subgroup of } G(\mathbb{R})$$
$$K_{\text{fin}} : \text{ a compact open subgroup of } \prod_{p} G(\mathbb{Q}_{p}).$$

Punchline: For $K = K_{\infty}K_{\text{fin}} \subseteq G(\mathbb{A}_{\mathbb{Q}})$,

 $Z(\mathbb{R})\setminus G(\mathbb{R})/K$ is a locally symmetric space, $Z(\mathbb{A}_{\mathbb{Q}})G(\mathbb{Q})\setminus G(\mathbb{A}_{\mathbb{Q}})/K$ is a quotient of $Z(\mathbb{R})\setminus G(\mathbb{R})/K$ by $G(\mathbb{Q})\cap K_{\text{fin}}$. Let $M = Z(\mathbb{R})\setminus G(\mathbb{R})/K$ and $\Gamma_K = G(\mathbb{Q})\cap K_{\text{fin}}$.

 $\Gamma_K \setminus M$ is a generalization of the modular curve, 'parameterized' by K.

$$Z(\mathbb{A}_{\mathbb{Q}})G(\mathbb{Q})\backslash G(\mathbb{A}_{\mathbb{Q}}) \quad "=" \quad \varprojlim_{\mathcal{K}} \Gamma_{\mathcal{K}}\backslash M.$$

Let $\chi : Z(\mathbb{A}_{\mathbb{Q}}) \to U(1)$ be a character and $F : G(\mathbb{Q}) \setminus G(\mathbb{A}_{\mathbb{Q}}) \to \mathbb{C}$. Let $L^2_0(G, \chi)$ be the set of functions satisfying

- 1. [Central Character] $F(gz) = \chi(z)F(g)$ for $z \in Z(\mathbb{A}_{\mathbb{Q}})$
- 2. $[L^2 \text{ condition}]$

$$\int_{Z(\mathbb{A}_{\mathbb{Q}})G(\mathbb{Q})\backslash G(\mathbb{A}_{\mathbb{Q}})}|F(g)|^{2}dg<\infty$$

3. [Cuspidality]

$$\int_{U(\mathbb{Q})\setminus U(\mathbb{A}_{\mathbb{Q}})}F(ug)dg=0$$

for any unipotent radical U of a parabolic subgroup P.

The cuspidal automorphic representation of $G(\mathbb{A}_{\mathbb{Q}})$ is an irreducible subrepresentation of $L^2_0(G, \chi)$.

Recall that

$$Z(\mathbb{A}_{\mathbb{Q}})G(\mathbb{Q})\backslash G(\mathbb{A}_{\mathbb{Q}}) \quad "=" \quad \varprojlim_{K} \Gamma_{K}\backslash M.$$

Hence, $L_0^2(G, \chi)$ reduced to the spectral theory of $\Gamma_K \setminus M$. In this vein, Cuspidal automorphic representations \approx Laplacian eigenspace of $\Gamma_K \setminus M$. Recall that

$$Z(\mathbb{A}_{\mathbb{Q}})G(\mathbb{Q})\backslash G(\mathbb{A}_{\mathbb{Q}}) \quad "=" \lim_{K} \Gamma_{K}\backslash M.$$

Hence, $L_0^2(G, \chi)$ reduced to the spectral theory of $\Gamma_K \setminus M$. In this vein, Cuspidal automorphic representations \approx Laplacian eigenspace of $\Gamma_K \setminus M$. **Example:** Let $G = \operatorname{GL}_2$ and $F \in S_k(N)$. Then

$$g \mapsto F|_k g(i) = (\det g)^{\frac{k}{2}} (ci+d)^k f\left(\frac{ai+b}{ci+d}\right),$$

originally defined on $GL_2^+(\mathbb{R})$, descends to $Y_1(N)$.

Recall that

$$Z(\mathbb{A}_{\mathbb{Q}})G(\mathbb{Q})\backslash G(\mathbb{A}_{\mathbb{Q}}) \quad "=" \lim_{K} \Gamma_{K}\backslash M.$$

Hence, $L_0^2(G, \chi)$ reduced to the spectral theory of $\Gamma_K \setminus M$. In this vein, Cuspidal automorphic representations \approx Laplacian eigenspace of $\Gamma_K \setminus M$. **Example:** Let $G = GL_2$ and $F \in S_k(N)$. Then

$$g \mapsto F|_k g(i) = (\det g)^{\frac{k}{2}} (ci+d)^k f\left(\frac{ai+b}{ci+d}\right),$$

originally defined on $GL_2^+(\mathbb{R})$, descends to $Y_1(N)$.

This is a Laplacian eigenfunction with eigenvalue $\frac{k(1-k)}{4}$.

Hence, a modular form gives rise to an automorphic representation.

For any reductive group G, there exists a theory of Hecke operators for $L^2_0(G, \chi)$, but describing it here is a bit intricate.

For any reductive group G, there exists a theory of Hecke operators for $L_0^2(G, \chi)$, but describing it here is a bit intricate.

If $G = GL_n$, the situation is much simpler:

For each prime p, there exists n operators

 $T_{p,1},\cdots,T_{p,n}$

and we can define the 'eigenvalues' of these operators for a cuspidal automorphic representation π . These eigenvalues are denoted by $a_{p,i}(\pi)$.

Our Final Version of the Langlands Program, for GL_n

There exists a one-to-one correspondence between

- 1. Irreducible Galois representation $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_n(\overline{\mathbb{Q}}_l)$.
- 2. Cuspidal automorphic representation π of $GL_n(\mathbb{A}_{\mathbb{Q}})$.

such that

$$\det(X1_n - \rho(\mathsf{Fr}_p)) = X^n + \sum_{i=1}^n (-1)^i a_{p,i}(\pi) X^{n-i}.$$

Unfortunately, the Langlands program for a reductive group is **not** a correspondence between $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to G(\overline{\mathbb{Q}}_l)$ and cuspidal automorphic representations of G.

Unfortunately, the Langlands program for a reductive group is **not** a correspondence between $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to G(\overline{\mathbb{Q}}_I)$ and cuspidal automorphic representations of G.

Langlands Dual

Let *G* be a reductive group with the root datum $(X^*, \Delta, X_*, \Delta^{\vee})$. The **Langlands dual** *G*^L of *G* is the reductive group corresponding to $(X_*, \Delta^{\vee}, X^*, \Delta)$.

If G is semisimple, then this coincides with the Dynkin dual.

G	GL _n	SL _n	SO _{2n}	SO _{2<i>n</i>+1}	Spin(2n)
GL	GL _n	PGL _n	SO _{2n}	Sp _{2n}	$\operatorname{SO}_{2n}/\left\{\pm 1_{2n} ight\}$

Our Final Version of the Langlands Program, for *G*

Let G be a reductive algebraic group. There exists a one-to-one correspondence between

- 1. Galois representation $\rho : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to G^{\mathsf{L}}(\overline{\mathbb{Q}}_{l}).$
- 2. Automorphic representation π of G.

Of course, we need to specify the relationship between the Hecke eigenvalues and the image of the Frobenius element, but this is challenging for a general reductive group.

1. It does not explain the choice of prime *l* on the Galois side: this is related to the *l*-independence and the theory of motives.

- 1. It does not explain the choice of prime *l* on the Galois side: this is related to the *l*-independence and the theory of motives.
- 2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.

- 1. It does not explain the choice of prime *l* on the Galois side: this is related to the *l*-independence and the theory of motives.
- 2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.
- 3. Not every automorphic representation corresponds to a Galois representation. This is related to the notion of algebraic automorphic representations, the Weil group, and the Langlands group.

- 1. It does not explain the choice of prime *l* on the Galois side: this is related to the *l*-independence and the theory of motives.
- 2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.
- 3. Not every automorphic representation corresponds to a Galois representation. This is related to the notion of algebraic automorphic representations, the Weil group, and the Langlands group.
- 4. It does not mention local-global compatability, as we have not discussed the local Langlands program.

among many others.

- 1. It does not explain the choice of prime *l* on the Galois side: this is related to the *l*-independence and the theory of motives.
- 2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.
- 3. Not every automorphic representation corresponds to a Galois representation. This is related to the notion of algebraic automorphic representations, the Weil group, and the Langlands group.
- 4. It does not mention local-global compatability, as we have not discussed the local Langlands program.

among many others.

However, this is good enough for the Geometric Langlands Program!