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A Naive Introduction to the

Langlands Program



Solving Equations

Fundamental Problem in Number Theory

Let f (x1, · · · , xn) ∈ Z[x1, · · · , xn]. Find all rational/integral solutions of

f (x1, · · · , xn) = 0.

This is known to be a very hard problem. For example,

f (x1, x2, x3) = xn1 + xn2 − xn3 = 0

seems like a hard problem.

Easier Problem

Let f (x1, · · · , xn) ∈ Z[x1, · · · , xn].

1. When does f (x1, · · · , xn) = 0 have a solution in Fp?

2. How many solutions are there?

2



Solving Equations

Fundamental Problem in Number Theory

Let f (x1, · · · , xn) ∈ Z[x1, · · · , xn]. Find all rational/integral solutions of

f (x1, · · · , xn) = 0.

This is known to be a very hard problem. For example,

f (x1, x2, x3) = xn1 + xn2 − xn3 = 0

seems like a hard problem.

Easier Problem

Let f (x1, · · · , xn) ∈ Z[x1, · · · , xn].

1. When does f (x1, · · · , xn) = 0 have a solution in Fp?

2. How many solutions are there?

2



Quadratic Reciprocity

Let’s begin with the simplest nontrivial case: f (x) = x2 −m.

m = 5

Let f (x) = x2 − 5. Then

∃x ∈ Fp s.t. f (x) = 0 ⇐⇒ p ≡ ±1 mod 5 or p = 2, 5.

Quadratic Reciprocity

Let f (x) = x2 −m, m square-free. Then there exists a congruence class

S mod 4m such that, if p ∤ 4m,then

∃x ∈ Fp s.t. f (x) = 0 ⇐⇒ p ∈ S mod 4m.
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Harder Case

What happens if we consider a cubic polynomial?

Cubic Equation

Let f (x) = x3 + x2 − 2x − 1. Then the list of primes for which

f (x) = 0 mod p has a solution includes

p = 7, 13, 29, 41, 43, 71, 83, 97, 113, 127, · · ·

Indeed,

∃x ∈ Fp s.t. f (x) = 0 ⇐⇒ p ≡ ±1 mod 7 or p = 7.
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Class Field Theory

The essence of the class field theory is that this is always possible if the

Galois group of f is abelian.

Class Field Theory

Let f (x) ∈ Z[x ] be a monic irreducible polynomial whose Galois group

is abelian. Then, there exists a number N, called the conductor of f ,

and a congruence class S mod N such that

∃x ∈ Fp s.t. f (x) = 0 ⇐⇒ p ∈ S mod N

apart from a finite number of exceptions.

Note that the Galois group of x3 + x2 − 2x − 1 is C3.

Naive form of the Langlands Program

Extend this to arbitrary monic irreducible f (x).
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An Example

Let f (x) = x3 − x2 + 1, whose Galois group is S3. The list of primes for

which f (x) = 0 mod p has a solution includes

5, 7, 11, 17, 19, 23, 37, 43, 53, 59, 61, 67, 79, 83, 89, 97, · · ·

Can you guess the pattern?

Answer

Let

F (q) = q
∞∏
n=1

(1− qn)(1− q23n) =
∞∑
n=1

anq
n.

Then

∃x ∈ Fp s.t. f (x) = 0 ⇐⇒ ap = 2 or 0 or p = 23.

Note: ap = −1, 0 or 2. Therefore this is equivalent to ap ̸= −1.
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The list of primes for which f (x) = 0 mod p does not have a solution

includes

2, 3, 13, 29, 31, 41, 47, 71, 73, · · ·

and

F (q) =q − q2 − q3 + q6 + q8 − q13 − q16 + q23 − q24 + q25 + q26

+ q27 − q29 − q31 + q39 − q41 − q46 − q47 + q48 + q49

− q50 − q54 + q58 + 2q59 + q62 + q64 − q69 − q71 − q73 + · · ·

Less Naive form of the Langlands Program

For arbitrary monic irreducible f (x), ∃ a special function F whose

coefficients contain the information whether f (x) = 0 is solvable or not

apart from a finite number of exceptions.

Langlands-Tunnell Theorem, 1981

We can do this if deg f ≤ 4.
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One more Example, but with two variables

Let

f (x , y) = y2 + y − x3 + x2.

Let np be the number of solutions of f (x , y) = 0 in Fp, and bp := p− np.

p 2 3 5 7 11 13 17 19 23 29 31

bp -2 -1 1 -2 1 4 -2 0 -1 0 7

Let

F (q) = q
∞∏
n=1

(1− qn)2(1− q11n)2 =
∞∑
n=1

anq
n

Eichler Reciprocity

ap = bp
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p 2 3 5 7 11 13 17 19 23 29

bp -2 -1 1 -2 1 4 -2 0 -1 0

F (q) =q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 − 2q12

+ 4q13 + 4q14 − q15 − 4q16 − 2q17 + 4q18 + 0q19 + 2q20 + 2q21

− 2q22 − q23 − 4q25 − 8q26 + 5q27 − 4q28 + 0q29 + 2q30 + · · ·

Taniyama-Shimura-Weil Conjecture, or the Modularity Theorem,

proved by Taylor-Wiles, Breuil-Conrad-Diamond-Taylor

We can do this for any elliptic curve over Q.

Another Naive Form of the Langlands Program

Extend this to general equations.
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Galois Representations and

Modular Forms



Dedekind Domain

Dedekind Domain

A Dedekind domain is a Noetherian 1-dimensional normal domain.

Examples

1. If K is a finite extension of Q, then the ring of integers OK , the

integral closure of Z, is a Dedekind domain.

2. If X is a smooth affine curve over a field k , then the ring of global

sections Γ(X ,OX ) is a Dedekind domain.

Existence and Uniqueness of Prime Factorization

In a Dedekind domain D, every nonzero ideal I can be uniquely

represented as a product of prime ideals:

I = Pe1
1 · · ·P

er
r ,

where P1, . . . ,Pr are distinct nonzero prime ideals of D.
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Especially, if K is a finite extension of Q and p is a prime

pOK = Pe1
1 · · ·P

er
r .

In this case, ei is the ramification index of Pi . Note that OK/Pi is a

finite extension of Fp. fi = [OK/Pi : Fp] is the inertia degree of Pi .

Why should we care?

Let K = Q[x ]/f (x) for a monic irreducible polynomial f (x) ∈ Z[x ] and

pOK = Pe1
1 · · ·P

er
r .

Factorization

Apart from a finite number of primes p,

f (x) = p1(x)
e1 · · · pr (x)er

in Fp, where pi is a monic irreducible polynomial in Fp[x ] of degree fi .
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Good News!

Almost Everywhere Unramifiedness

Apart from a finite number of primes p, ei = 1.

Galois Action

If K is a Galois extension, then ei and fi are constant.

Fundamental Equality

r∑
i=1

ei fi = [K : Q].

In particular, if K is Galois, apart from a finite number of primes p,

f r = [K : Q]
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Frobenius Endomorphism

All in all, to know the prime factorization, if K is Galois, apart from a

finite number of primes p, it is enough to know f . Let

pOK = Pe
1 · · ·Pe

r .

Frobenius element

Apart from a finite number of primes p, , there exists a natural element

Frp ∈ Gal(K/Q), the Frobenius element, defined up to conjugacy, s.t.

1. Maps Pi to Pi for some i .

2. Induces the Frobenius endomorphism on OK/Pi .

3. The order of Frp is f .

Interim Summary

To solve the equation, it is enough to find Frobenius.
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Return to the Example

One natural way to recognize the Frobenius is by using a representation.

Return to x3 − x2 + 1! Its Galois group is S3. This

1. Has three conjugacy classes, and

2. Admits a unique faithful 2-dim representation

ρ : Gal(K/Q) ≃ S3 → GL2(C).

We can distinguish conjugacy classes by the trace of ρ.

Conjugacy Class tr(ρ(c))

id 2

(1 2) 0

(1 2 3) -1
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Reciprocity in terms of the Galois representation

Let

F (q) = q
∞∏
n=1

(1− qn)(1− q23n) =
∞∑
n=1

anq
n.

Then, apart from a finite number of primes p,

ap = tr(ρ(Frp)).

A refined form of Langlands Program - Version 1

For a Galois representation ρ : Gal(Q̄/Q)→ GLn, there exists a special

function F (q) =
∑

n anq
n such that

ap = tr(ρ(Frp)).

apart from a finite number of primes p.
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Examples of Galois representations

Let K be a Galois extension of Q. Then there exists a natural projection

Gal(Q̄/Q)→ Gal(K/Q).

Since Gal(K/Q) is a finite group, its representation theory over C is well

known. We can produce a lot of representations

Gal(K/Q)→ GLn(C).

By composing them, we have representations

ρ : Gal(Q̄/Q)→ GLn(C)

with a finite image. They are called Artin representations.
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Let E be an elliptic curve over Q. Then E (Q̄)

1. Is an abelian group, and

2. Gal(Q̄/Q) acts on E (Q̄).

Hence, its ln-torsion E (Q̄)[ln] is also a Gal(Q̄/Q)-module.

Fact: E (Q̄)[ln] is isomorphic to (Z/lnZ)2 as an abelian group.

Hence, the action of Gal(Q̄/Q) defines a representation

Gal(Q̄/Q)→ GL2(Z/lnZ),

By taking limit n→∞, we obtain

ρE ,l : Gal(Q̄/Q)→ GL2(Zl).

This is the l-adic Tate module of E .
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Lefschetz Fixed Point Theorem

Let np be the number of points of E in Fp, and bp := p − np. Then

tr(ρE ,l(Frp)) = bp

apart from a finite number of primes p.

Modularity Theorem, refined version

For any elliptic curve E over Q, , there exists a special function ,

FE (q) =
∑
n

anq
n

such that

ap = tr(ρE ,l(Frp)).

apart from a finite number of primes p, for any choice of prime l .
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Upper Half Plane with the SL2(Z) action

Figure 1: Fundamental domains of the SL2(Z) action on H, PC: Wikipedia

[
a b

c d

]
z =

az + b

cz + d
.
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Modular Group

The Modular Group, SL2(Z), has some special subgroups, such as

Γ(N) =

{[
a b

c d

]
∈ SL2(Z) |

[
a b

c d

]
≡

[
1 0

0 1

]
mod N

}
.

A congruence subgroup is a subgroup of SL2(Z) that contains Γ(N) for

some N. For instance,

Γ1(N) =

{[
a b

c d

]
∈ SL2(Z) |

[
a b

c d

]
≡

[
1 ∗
0 1

]
mod N

}
,

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z) |

[
a b

c d

]
≡

[
∗ ∗
0 ∗

]
mod N

}
.
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For any

γ =

[
a b

c d

]
∈ GL+2 (R),

a natural number k and a function F : H→ C, we define F |kγ by

F |kγ(z) := (det γ)
k
2 (cz + d)−kF (γz)

= (det γ)
k
2 (cz + d)−kF

(
az + b

cz + d

)
.

This is the slash operator.

Note that this is defined in a way that the following holds:

F |kγ(z)(dz)⊗
k
2 = F (γz)(d(γz))⊗

k
2 .
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Modular Forms

Modular form

A weak modular form of weight k and level N is a holomorphic

function F : H→ C s.t. F |kγ = F for any γ =

[
a b

c d

]
∈ Γ1(N), i.e.

F (γz) = (cz + d)kF (z).

Note that

[
1 1

0 1

]
∈ Γ1(N), so F (z) = F (z + 1). Hence

F (z) = F0(q) where q = e2πiz

for a holomorphic function F0 on a punctured disc.

The same holds for F |kγ(z) where γ ∈ SL2(Z), so F |kγ(z) = F γ
0 (q).

F is a modular form if F γ
0 holomorphic, and a cusp form if F γ

0 (0) = 0.
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A weak modular form of weight k and level N is a holomorphic

function F : H→ C s.t. F |kγ = F for any γ =

[
a b

c d

]
∈ Γ1(N), i.e.

F (γz) = (cz + d)kF (z).

Note that

[
1 1

0 1

]
∈ Γ1(N), so F (z) = F (z + 1). Hence
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Examples of Modular Forms

Eisenstein Series: weight 2k , level 1, non-cusp form.

E2k(z) =
1

2ζ(2k)

∑
(m,n)∈Z2\(0,0)

1

(mz + n)2k
= 1− 4k

B2k

∞∑
n=1

σ2k−1(n)q
n.

Modular Discriminant: weight 12, level 1, cusp form.

∆(q) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn.

Our Examples: weight 1/level 23, weight 2/level 11. Cusp forms.

F (q) = q
∞∏
n=1

(1− qn)(1− q23n),FE (q) = q
∞∏
n=1

(1− qn)2(1− q11n)2
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The Langlands Program

A refined form of Langlands Program - Version 2

For an irreducible Galois representation ρ : Gal(Q̄/Q)→ GL2, there

exists a cusp form F (q) =
∑

n anq
n such that

ap = tr(ρ(Frp)).

apart from a finite number of primes p.

Caution: This is trivially false for various reasons.

In the rest of presentation, we will improve the preceeding formulation:

1. Make this statement works in both direction.

2. Generalize this from GL2 to arbitrary reductive group.
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Modular Curves

Consider

Y (N) := Γ(N)\H, Y0(N) := Γ0(N)\H, Y1(N) := Γ1(N)\H.

Note that SL2(Z)\H is the moduli space of curves elliptic curves. In the

same vein, these are moduli space of elliptic curves with a level structure.

Y1(N) = moduli space of pairs (E ,P)

E : an elliptic curve

P : a point of order N.

Exercise: Find a simillar description for Y (N),Y0(N).

They have natural compactification

Y (N) ⊆ X (N),Y0(N) ⊆ X0(N) and Y1(N) ⊆ X1(N).
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Geometric Description of Modular Forms

Let Sk(N) (resp. Mk(N)) be the C-vector space of cusp (resp. modular)

forms. Recall that the slash operator is defined such that

F |kγ(z)(dz)⊗
k
2 = F (γz)(d(γz))⊗

k
2

and we require

F |k = F , i.e. F (z)(dz)⊗
k
2 = F (γz)(d(γz))⊗

k
2

for a modular form F .

Geometric Description of S2(N)

S2(N) ≃ Γ
(
X1(N),Ω1

X1(N)

)
.

Exactly the same statement holds for Γ0(N) and X0(N).
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We can obtain simillar description for a general weight k. Let

π : E → X1(N)

be the universal family of elliptic curves, and

λ := π∗Ω
1
E/X1(N)

be the Hodge line bundle.

Geometric Description of Mk(N)

Mk(N) ≃ Γ
(
X1(N), λ⊗k

)
.
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This explains the last condition in the defintion:

F |kγ(z) = F |kγ(z + 1) for γ ∈ SL2(Z), so F |kγ(z) = F γ
0 (q).

F is a modular form if F γ
0 holomorphic, and a cusp form if F γ

0 (0) = 0.

The points in DN := X1(N) \ Y1(N) are called cusps.

The last condition corresponds to the regularity of the section at cusps.

Geometric Description of Sk(N)

Sk(N) ≃ Γ
(
X1(N), λ⊗k(DN)

)
.
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Hecke Operator

Let n be an integer prime to N. Let

X1(nN)

X1(N) X1(N)

α

β

where

α(E ,P) = (E , nP), β(E ,P) = (E/NP,P).

This is the Hecke correspondence Tn of X1(N).

The definition of Tn is a bit more complicated for a general n.

The Hecke operator Tn on Sk(N) is

Tn = α∗β
∗ : Sk(N)→ Sk(N).
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Hecke Algebra for N = 1

On Sk(1), {Tn}n∈N is

1. Simultaneously diagonalizable.

2. If F is a common eigenfunction of {Tn}n∈N such that

F (q) = q +
∞∑
n=2

anq
n,

then TpF = apF .

3. If F and G are nonzero common eigenfunctions of Tn with the same

eigenvalues, then they coincide up to a constant.

Essentially nothing holds for general N.
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Fixing the Problem

The origin of the problem:

if f (z) ∈ Sk(N), then f (dz) ∈ Sk(dN), which has the same info

Oldforms

An element f ∈ Sk(N) given by

f (z) = g(dz)

For some d | N and g ∈ Sk(N/d), is called an oldform.

Let Sk(N)old be the subspace spaned by oldforms.

There is a natural inner product on Sk(N), given by

⟨f , g⟩ =
∫
Γ1(N)\H

f (z)g(z)yk−2dxdy .
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The newform is defined as an element of Sk(N)new = (Sk(N)old)⊥.

Hecke Algebra for Sk(N)new

On Sk(N)new, {Tn}n∈N is

1. Simultaneously diagonalizable.

2. If F is a common eigenfunction of {Tn}n∈N such that

F (q) = q +
∞∑
n=2

anq
n,

then TpF = apF .

3. If F and G are nonzero common eigenfunctions of Tn with the same

eigenvalues, then they coincide up to a constant.

The Hecke eigenform is an element of Sk(N)new that satisfies (2) above.
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A refined form of Langlands Program - Version 3

There exists a one-to-one correspondence between

1. irreducible Galois representation ρ : Gal(Q̄/Q)→ GL2

2. Hecke eigenform F

such that, apart from a finite number of primes p,

ap(F ) = tr(ρ(Frp)).

Caution: Still, this is trivially false for various reasons.

• We did not specify the base field of ρ,

• We need more than cusp forms for it to be true,

among many others. Nevertheless, this serves as a good starting point!
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Good news: Now we know enough to formulate some theorems!

Deligne-Serre (k = 1), Eichler-Shimura (k = 2), Deligne (k > 2)

For any Hecke eigenform F ∈ Sk(N)new and a prime l , there exists an

irreducible Galois representation

ρ : Gal(Q̄/Q)→ GL2(Ql)

such that

ap(F ) = tr(ρ(Frp)).

apart from a finite number of primes p,

Hence, at least one direction of the conjecture is true!
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A special case of the Artin’s conjecture, Khare-Wintenberger 09

If ρ : Gal(Q̄/Q)→ GL2(C) is an irreducible representation such that

det ρ(c) = −1, where c is the complex conjugation, then there exists a

weight 1 Hecke eigenform F such that

ap(F ) = tr(ρ(Frp)).

apart from a finite number of primes p.

Modularity Theorem, a rigorous statement

If E is an elliptic curve over Q, there exists a weight 2 Hecke eigenform

F of Γ0(N) such that

ap(F ) = tr(ρE ,l(Frp)).

apart from a finite number of primes p and any prime l .
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Adelization and Automorphic

Representations



Adelization

Goal: Provide a ‘natural’ description of the congruence subgroups.

We use p-adic numbers to do this. Recall that

Zp := lim←−Z/pnZ and Qp = Zp

[
1

p

]
.

They have natural topology, which makes them a topological ring, and a

local basis at 0 is given by

Zp ⊃ pZp ⊃ · · · ⊃ pn−1Zp ⊃ pnZp ⊃ pn+1Zp ⊃ · · ·

We also topologize algebraic groups over Qp, e.g. GLn(Qp) has a basis

GLn(Zp) ⊃ 1n +pMn(Zp) ⊃ · · · ⊃ 1n +pn−1Mn(Zp) ⊃ 1n +pnMn(Zp) · · ·
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The Adele (over Q) is defined by

AQ := R×
∏′

p

Qp = {(a∞, a2, a3, · · · ) | ap ∈ Zp for almost every p} .

It is a locally compact topological ring whose basis at 0 is given by

U ×
r∏

i=1

peii Zpi ×
∏
p∤N

Zp

where N = pe11 · · · perr and U is any open subset containing 0.

The ‘diagonal embedding’ Q→ AQ is discrete and cocompact.

Exercise: Q\AQ ≃ R/Z×
∏

p Zp, Q\AQ/
∏

p Zp ≃ R/Z.

Although it looks scary, its appropriate quotient is just a manifold!
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Have GL2(R)/O2(R) ≃ H in mind! Let

GL2(Qp) ⊃ GL2(Zp),GL2(R) ⊃ O2(R)

be the maximal compact subgroups.

Then

Z (AQ)GL2(Q)\GL2(AQ)/O2(R)×
∏
p

GL2(Zp) ≃ SL2(Z)\H.

Where Z is the center of GL2, i.e. the diagonal matrices.

Similarly, for N = pe11 · · · perr , let K (N) = K∞ ×
∏

p Kp(N) where

K∞ = O2(R), Kpi (N) = 1n + peii Mn(Zpi ), Kp(N) = GL2(Zp) for p ̸= pi .

Then

Z (AQ)GL2(Q)\GL2(AQ)/K (N) ≃ GL2(Q) ∩
∏
p

Kp\H ≃ Γ(N)\H.

Upshot: Modular forms lives in Z (AQ)GL2(Q)\GL2(AQ)/K (N).
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This extends to reductive groups: Let

G : a reductive group

K∞ : a maximal compact subgroup of G (R)

Kfin : a compact open subgroup of
∏
p

G (Qp).

Punchline: For K = K∞Kfin ⊆ G (AQ),

Z (R)\G (R)/K is a locally symmetric space,

Z (AQ)G (Q)\G (AQ)/K is a quotient of Z (R)\G (R)/K by G (Q) ∩ Kfin.

Let M = Z (R)\G (R)/K and ΓK = G (Q) ∩ Kfin.

ΓK\M is a generalization of the modular curve, ‘parameterized’ by K .

Z (AQ)G (Q)\G (AQ) “ = ” lim←−
K

ΓK\M.
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Automorphic Representations

Let χ : Z (AQ)→ U(1) be a character and F : G (Q)\G (AQ)→ C.

Let L20(G , χ) be the set of functions satisfying

1. [Central Character] F (gz) = χ(z)F (g) for z ∈ Z (AQ)

2. [L2 condition] ∫
Z(AQ)G(Q)\G(AQ)

|F (g)|2dg <∞

3. [Cuspidality] ∫
U(Q)\U(AQ)

F (ug)dg = 0

for any unipotent radical U of a parabolic subgroup P.

The cuspidal automorphic representation of G (AQ) is an irreducible

subrepresentation of L20(G , χ).
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Recall that

Z (AQ)G (Q)\G (AQ) “ = ” lim←−
K

ΓK\M.

Hence, L20(G , χ) reduced to the spectral theory of ΓK\M. In this vein,

Cuspidal automorphic representations ≈ Laplacian eigenspace of ΓK\M.

Example: Let G = GL2 and F ∈ Sk(N). Then

g 7→ F |kg(i) = (det g)
k
2 (ci + d)k f

(
ai + b

ci + d

)
,

originally defined on GL+2 (R), descends to Y1(N).

This is a Laplacian eigenfunction with eigenvalue k(1−k)
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Hecke Operators

For any reductive group G , there exists a theory of Hecke operators for

L20(G , χ), but describing it here is a bit intricate.

If G = GLn, the situation is much simpler:

For each prime p, there exists n operators

Tp,1, · · · ,Tp,n

and we can define the ‘eigenvalues’ of these operators for a cuspidal

automorphic representation π. These eigenvalues are denoted by ap,i (π).
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Our Final Version of the Langlands Program, for GLn

There exists a one-to-one correspondence between

1. Irreducible Galois representation ρ : Gal(Q̄/Q)→ GLn(Ql).

2. Cuspidal automorphic representation π of GLn(AQ).

such that

det(X1n − ρ(Frp)) = X n +
n∑

i=1

(−1)iap,i (π)X n−i .
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Unfortunately, the Langlands program for a reductive group is not a

correspondence between Gal(Q̄/Q)→ G (Ql) and cuspidal automorphic

representations of G .

Langlands Dual

Let G be a reductive group with the root datum (X ∗,∆,X∗,∆
∨). The

Langlands dual GL of G is the reductive group corresponding to

(X∗,∆
∨,X ∗,∆).

If G is semisimple, then this coincides with the Dynkin dual.

G GLn SLn SO2n SO2n+1 Spin(2n)

GL GLn PGLn SO2n Sp2n SO2n/ {±12n}
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Our Final Version of the Langlands Program, for G

Let G be a reductive algebraic group. There exists a one-to-one

correspondence between

1. Galois representation ρ : Gal(Q̄/Q)→ GL(Ql).

2. Automorphic representation π of G .

Of course, we need to specify the relationship between the Hecke

eigenvalues and the image of the Frobenius element, but this is

challenging for a general reductive group.
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This description is very incomplete, since:

1. It does not explain the choice of prime l on the Galois side: this is

related to the l-independence and the theory of motives.

2. Not every Galois representation corresponds to an automorphic

representation. This is related to geometric Galois representation

and the Fontain-Mazur conjecture.

3. Not every automorphic representation corresponds to a Galois

representation. This is related to the notion of algebraic automorphic

representations, the Weil group, and the Langlands group.

4. It does not mention local-global compatability, as we have not

discussed the local Langlands program.

among many others.

However, this is good enough for the Geometric Langlands Program!
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