An Invitation to the Arithmetic Langlands

Geometric Langlands Reading Seminar 1

Daebeom Choi
January 26, 2024
University of Pennsylvania

Table of contents

1. A Naive Introduction to the Langlands Program
2. Galois Representations and Modular Forms
3. Adelization and Automorphic Representations

A Naive Introduction to the Langlands Program

Solving Equations

Fundamental Problem in Number Theory

Let $f\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$. Find all rational/integral solutions of

$$
f\left(x_{1}, \cdots, x_{n}\right)=0 .
$$

This is known to be a very hard problem. For example,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{n}+x_{2}^{n}-x_{3}^{n}=0
$$

seems like a hard problem.

Solving Equations

Fundamental Problem in Number Theory

Let $f\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$. Find all rational/integral solutions of

$$
f\left(x_{1}, \cdots, x_{n}\right)=0 .
$$

This is known to be a very hard problem. For example,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{n}+x_{2}^{n}-x_{3}^{n}=0
$$

seems like a hard problem.

Easier Problem

Let $f\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Z}\left[x_{1}, \cdots, x_{n}\right]$.

1. When does $f\left(x_{1}, \cdots, x_{n}\right)=0$ have a solution in \mathbb{F}_{p} ?
2. How many solutions are there?

Quadratic Reciprocity

Let's begin with the simplest nontrivial case: $f(x)=x^{2}-m$.

$$
\begin{aligned}
& m=5 \\
& \text { Let } f(x)=x^{2}-5 \text {. Then } \\
& \qquad \exists x \in \mathbb{F}_{p} \text { s.t. } f(x)=0 \Longleftrightarrow p \equiv \pm 1 \bmod 5 \text { or } p=2,5 .
\end{aligned}
$$

Quadratic Reciprocity

Let's begin with the simplest nontrivial case: $f(x)=x^{2}-m$.

$$
m=5
$$

Let $f(x)=x^{2}-5$. Then

$$
\exists x \in \mathbb{F}_{p} \text { s.t. } f(x)=0 \Longleftrightarrow p \equiv \pm 1 \bmod 5 \text { or } p=2,5 .
$$

Quadratic Reciprocity

Let $f(x)=x^{2}-m, m$ square-free. Then there exists a congruence class S mod $4 m$ such that, if $p \nmid 4 m$, then

$$
\exists x \in \mathbb{F}_{p} \text { s.t. } f(x)=0 \Longleftrightarrow p \in S \bmod 4 m .
$$

Harder Case

What happens if we consider a cubic polynomial?

Cubic Equation

Let $f(x)=x^{3}+x^{2}-2 x-1$. Then the list of primes for which $f(x)=0 \bmod p$ has a solution includes

$$
p=7,13,29,41,43,71,83,97,113,127, \cdots
$$

Harder Case

What happens if we consider a cubic polynomial?

Cubic Equation

Let $f(x)=x^{3}+x^{2}-2 x-1$. Then the list of primes for which $f(x)=0 \bmod p$ has a solution includes

$$
p=7,13,29,41,43,71,83,97,113,127, \cdots
$$

Indeed,

$$
\exists x \in \mathbb{F}_{p} \text { s.t. } f(x)=0 \Longleftrightarrow p \equiv \pm 1 \bmod 7 \text { or } p=7 .
$$

Class Field Theory

The essence of the class field theory is that this is always possible if the Galois group of f is abelian.

Class Field Theory

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial whose Galois group is abelian. Then, there exists a number N, called the conductor of f, and a congruence class $S \bmod N$ such that

$$
\exists x \in \mathbb{F}_{p} \text { s.t. } f(x)=0 \Longleftrightarrow p \in S \bmod N
$$

apart from a finite number of exceptions.

Note that the Galois group of $x^{3}+x^{2}-2 x-1$ is C_{3}.

Class Field Theory

The essence of the class field theory is that this is always possible if the Galois group of f is abelian.

Class Field Theory

Let $f(x) \in \mathbb{Z}[x]$ be a monic irreducible polynomial whose Galois group is abelian. Then, there exists a number N, called the conductor of f, and a congruence class $S \bmod N$ such that

$$
\exists x \in \mathbb{F}_{p} \text { s.t. } f(x)=0 \Longleftrightarrow p \in S \bmod N
$$

apart from a finite number of exceptions.
Note that the Galois group of $x^{3}+x^{2}-2 x-1$ is C_{3}.
Naive form of the Langlands Program
Extend this to arbitrary monic irreducible $f(x)$.

An Example

Let $f(x)=x^{3}-x^{2}+1$, whose Galois group is S_{3}. The list of primes for which $f(x)=0 \bmod p$ has a solution includes
$5,7,11,17,19,23,37,43,53,59,61,67,79,83,89,97, \cdots$
Can you guess the pattern?

An Example

Let $f(x)=x^{3}-x^{2}+1$, whose Galois group is S_{3}. The list of primes for which $f(x)=0 \bmod p$ has a solution includes

$$
5,7,11,17,19,23,37,43,53,59,61,67,79,83,89,97, \cdots
$$

Can you guess the pattern?

Answer

Let

$$
F(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{23 n}\right)=\sum_{n=1}^{\infty} a_{n} q^{n} .
$$

Then

$$
\exists x \in \mathbb{F}_{p} \text { s.t. } f(x)=0 \Longleftrightarrow a_{p}=2 \text { or } 0 \text { or } p=23 .
$$

Note: $a_{p}=-1,0$ or 2 . Therefore this is equivalent to $a_{p} \neq-1$.

The list of primes for which $f(x)=0 \bmod p$ does not have a solution includes

$$
2,3,13,29,31,41,47,71,73, \cdots
$$

and

$$
\begin{aligned}
F(q)= & q-q^{2}-q^{3}+q^{6}+q^{8}-q^{13}-q^{16}+q^{23}-q^{24}+q^{25}+q^{26} \\
& +q^{27}-q^{29}-q^{31}+q^{39}-q^{41}-q^{46}-q^{47}+q^{48}+q^{49} \\
& -q^{50}-q^{54}+q^{58}+2 q^{59}+q^{62}+q^{64}-q^{69}-q^{71}-q^{73}+\cdots
\end{aligned}
$$

The list of primes for which $f(x)=0 \bmod p$ does not have a solution includes

$$
2,3,13,29,31,41,47,71,73, \cdots
$$

and

$$
\begin{aligned}
F(q)= & q-q^{2}-q^{3}+q^{6}+q^{8}-q^{13}-q^{16}+q^{23}-q^{24}+q^{25}+q^{26} \\
& +q^{27}-q^{29}-q^{31}+q^{39}-q^{41}-q^{46}-q^{47}+q^{48}+q^{49} \\
& -q^{50}-q^{54}+q^{58}+2 q^{59}+q^{62}+q^{64}-q^{69}-q^{71}-q^{73}+\cdots
\end{aligned}
$$

Less Naive form of the Langlands Program

For arbitrary monic irreducible $f(x), \exists$ a special function F whose coefficients contain the information whether $f(x)=0$ is solvable or not apart from a finite number of exceptions.

The list of primes for which $f(x)=0 \bmod p$ does not have a solution includes

$$
2,3,13,29,31,41,47,71,73, \cdots
$$

and

$$
\begin{aligned}
F(q)= & q-q^{2}-q^{3}+q^{6}+q^{8}-q^{13}-q^{16}+q^{23}-q^{24}+q^{25}+q^{26} \\
& +q^{27}-q^{29}-q^{31}+q^{39}-q^{41}-q^{46}-q^{47}+q^{48}+q^{49} \\
& -q^{50}-q^{54}+q^{58}+2 q^{59}+q^{62}+q^{64}-q^{69}-q^{71}-q^{73}+\cdots
\end{aligned}
$$

Less Naive form of the Langlands Program

For arbitrary monic irreducible $f(x), \exists$ a special function F whose coefficients contain the information whether $f(x)=0$ is solvable or not apart from a finite number of exceptions.

Langlands-Tunnell Theorem, 1981
We can do this if $\operatorname{deg} f \leq 4$.

One more Example, but with two variables

Let

$$
f(x, y)=y^{2}+y-x^{3}+x^{2} .
$$

Let n_{p} be the number of solutions of $f(x, y)=0$ in \mathbb{F}_{p}, and $b_{p}:=p-n_{p}$.

p	2	3	5	7	11	13	17	19	23	29	31
b_{p}	-2	-1	1	-2	1	4	-2	0	-1	0	7

One more Example, but with two variables

Let

$$
f(x, y)=y^{2}+y-x^{3}+x^{2} .
$$

Let n_{p} be the number of solutions of $f(x, y)=0$ in \mathbb{F}_{p}, and $b_{p}:=p-n_{p}$.

p	2	3	5	7	11	13	17	19	23	29	31
b_{p}	-2	-1	1	-2	1	4	-2	0	-1	0	7

Let

$$
F(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}=\sum_{n=1}^{\infty} a_{n} q^{n}
$$

Eichler Reciprocity

$$
a_{p}=b_{p}
$$

p	2	3	5	7	11	13	17	19	23	29
b_{p}	-2	-1	1	-2	1	4	-2	0	-1	0

$$
\begin{aligned}
F(q)= & q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}-2 q^{9}-2 q^{10}+q^{11}-2 q^{12} \\
& +4 q^{13}+4 q^{14}-q^{15}-4 q^{16}-2 q^{17}+4 q^{18}+0 q^{19}+2 q^{20}+2 q^{21} \\
& -2 q^{22}-q^{23}-4 q^{25}-8 q^{26}+5 q^{27}-4 q^{28}+0 q^{29}+2 q^{30}+\cdots
\end{aligned}
$$

p	2	3	5	7	11	13	17	19	23	29
b_{p}	-2	-1	1	-2	1	4	-2	0	-1	0

$$
\begin{aligned}
F(q)= & q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}-2 q^{9}-2 q^{10}+q^{11}-2 q^{12} \\
& +4 q^{13}+4 q^{14}-q^{15}-4 q^{16}-2 q^{17}+4 q^{18}+0 q^{19}+2 q^{20}+2 q^{21} \\
& -2 q^{22}-q^{23}-4 q^{25}-8 q^{26}+5 q^{27}-4 q^{28}+0 q^{29}+2 q^{30}+\cdots
\end{aligned}
$$

Taniyama-Shimura-Weil Conjecture, or the Modularity Theorem, proved by Taylor-Wiles, Breuil-Conrad-Diamond-Taylor
We can do this for any elliptic curve over \mathbb{Q}.

p	2	3	5	7	11	13	17	19	23	29
b_{p}	-2	-1	1	-2	1	4	-2	0	-1	0

$$
\begin{aligned}
F(q)= & q-2 q^{2}-q^{3}+2 q^{4}+q^{5}+2 q^{6}-2 q^{7}-2 q^{9}-2 q^{10}+q^{11}-2 q^{12} \\
& +4 q^{13}+4 q^{14}-q^{15}-4 q^{16}-2 q^{17}+4 q^{18}+0 q^{19}+2 q^{20}+2 q^{21} \\
& -2 q^{22}-q^{23}-4 q^{25}-8 q^{26}+5 q^{27}-4 q^{28}+0 q^{29}+2 q^{30}+\cdots
\end{aligned}
$$

Taniyama-Shimura-Weil Conjecture, or the Modularity Theorem, proved by Taylor-Wiles, Breuil-Conrad-Diamond-Taylor
We can do this for any elliptic curve over \mathbb{Q}.

Another Naive Form of the Langlands Program

Extend this to general equations.

Galois Representations and Modular Forms

Dedekind Domain

Dedekind Domain

A Dedekind domain is a Noetherian 1-dimensional normal domain.

Examples

1. If K is a finite extension of \mathbb{Q}, then the ring of integers \mathcal{O}_{K}, the integral closure of \mathbb{Z}, is a Dedekind domain.
2. If X is a smooth affine curve over a field k, then the ring of global sections $\Gamma\left(X, \mathcal{O}_{X}\right)$ is a Dedekind domain.

Dedekind Domain

Dedekind Domain

A Dedekind domain is a Noetherian 1-dimensional normal domain.

Examples

1. If K is a finite extension of \mathbb{Q}, then the ring of integers \mathcal{O}_{K}, the integral closure of \mathbb{Z}, is a Dedekind domain.
2. If X is a smooth affine curve over a field k, then the ring of global sections $\Gamma\left(X, \mathcal{O}_{X}\right)$ is a Dedekind domain.

Existence and Uniqueness of Prime Factorization

In a Dedekind domain D, every nonzero ideal I can be uniquely represented as a product of prime ideals:

$$
I=P_{1}^{e_{1}} \ldots P_{r}^{e_{r}}
$$

where P_{1}, \ldots, P_{r} are distinct nonzero prime ideals of D.

Especially, if K is a finite extension of \mathbb{Q} and p is a prime

$$
p \mathcal{O}_{K}=P_{1}^{e_{1}} \cdots P_{r}^{e_{r}} .
$$

In this case, e_{i} is the ramification index of P_{i}. Note that \mathcal{O}_{K} / P_{i} is a finite extension of $\mathbb{F}_{p} . f_{i}=\left[\mathcal{O}_{K} / P_{i}: \mathbb{F}_{p}\right]$ is the inertia degree of P_{i}.

Especially, if K is a finite extension of \mathbb{Q} and p is a prime

$$
p \mathcal{O}_{K}=P_{1}^{e_{1}} \ldots P_{r}^{e_{r}} .
$$

In this case, e_{i} is the ramification index of P_{i}. Note that \mathcal{O}_{K} / P_{i} is a finite extension of $\mathbb{F}_{p} . f_{i}=\left[\mathcal{O}_{K} / P_{i}: \mathbb{F}_{p}\right]$ is the inertia degree of P_{i}.

Why should we care?
Let $K=\mathbb{Q}[x] / f(x)$ for a monic irreducible polynomial $f(x) \in \mathbb{Z}[x]$ and

$$
p \mathcal{O}_{K}=P_{1}^{e_{1}} \ldots P_{r}^{e_{r}} .
$$

Factorization

Apart from a finite number of primes p,

$$
f(x)=p_{1}(x)^{e_{1}} \cdots p_{r}(x)^{e_{r}}
$$

in \mathbb{F}_{p}, where p_{i} is a monic irreducible polynomial in $\mathbb{F}_{p}[x]$ of degree f_{i}.

Good News!

Almost Everywhere Unramifiedness
 Apart from a finite number of primes $p, e_{i}=1$.

Galois Action

If K is a Galois extension, then e_{i} and f_{i} are constant.

Fundamental Equality

$$
\sum_{i=1}^{r} e_{i} f_{i}=[K: \mathbb{Q}] .
$$

In particular, if K is Galois, apart from a finite number of primes p,

$$
f r=[K: \mathbb{Q}]
$$

Frobenius Endomorphism

All in all, to know the prime factorization, if K is Galois, apart from a finite number of primes p, it is enough to know f. Let

$$
p \mathcal{O}_{K}=P_{1}^{e} \cdots P_{r}^{e} .
$$

Frobenius Endomorphism

All in all, to know the prime factorization, if K is Galois, apart from a finite number of primes p, it is enough to know f. Let

$$
p \mathcal{O}_{K}=P_{1}^{e} \cdots P_{r}^{e} .
$$

Frobenius element

Apart from a finite number of primes p, there exists a natural element $\operatorname{Fr}_{p} \in \operatorname{Gal}(K / \mathbb{Q})$, the Frobenius element, defined up to conjugacy, s.t.

1. Maps P_{i} to P_{i} for some i.
2. Induces the Frobenius endomorphism on \mathcal{O}_{K} / P_{i}.
3. The order of Fr_{p} is f.

Interim Summary

To solve the equation, it is enough to find Frobenius.

Return to the Example

One natural way to recognize the Frobenius is by using a representation.
Return to $x^{3}-x^{2}+1$! Its Galois group is S_{3}. This

1. Has three conjugacy classes, and
2. Admits a unique faithful 2-dim representation

$$
\rho: \operatorname{Gal}(K / \mathbb{Q}) \simeq S_{3} \rightarrow \mathrm{GL}_{2}(\mathbb{C}) .
$$

Return to the Example

One natural way to recognize the Frobenius is by using a representation.
Return to $x^{3}-x^{2}+1$! Its Galois group is S_{3}. This

1. Has three conjugacy classes, and
2. Admits a unique faithful 2-dim representation

$$
\rho: \operatorname{Gal}(K / \mathbb{Q}) \simeq S_{3} \rightarrow \mathrm{GL}_{2}(\mathbb{C}) .
$$

We can distinguish conjugacy classes by the trace of ρ.

Conjugacy Class	$\operatorname{tr}(\rho(c))$
id	2
$\left(\begin{array}{ll}1 & 2\end{array}\right)$	0
$\left(\begin{array}{ll}1 & 2\end{array}\right)$	-1

Reciprocity in terms of the Galois representation

Let

$$
F(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{23 n}\right)=\sum_{n=1}^{\infty} a_{n} q^{n} .
$$

Then, apart from a finite number of primes p,

$$
a_{p}=\operatorname{tr}\left(\rho\left(\operatorname{Fr}_{p}\right)\right) .
$$

Reciprocity in terms of the Galois representation

Let

$$
F(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{23 n}\right)=\sum_{n=1}^{\infty} a_{n} q^{n}
$$

Then, apart from a finite number of primes p,

$$
a_{p}=\operatorname{tr}\left(\rho\left(\operatorname{Fr}_{p}\right)\right) .
$$

A refined form of Langlands Program - Version 1

For a Galois representation $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{n}$, there exists a special function $F(q)=\sum_{n} a_{n} q^{n}$ such that

$$
a_{p}=\operatorname{tr}\left(\rho\left(\operatorname{Fr}_{p}\right)\right)
$$

apart from a finite number of primes p.

Examples of Galois representations

Let K be a Galois extension of \mathbb{Q}. Then there exists a natural projection

$$
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Gal}(K / \mathbb{Q}) .
$$

Since $\operatorname{Gal}(K / \mathbb{Q})$ is a finite group, its representation theory over \mathbb{C} is well known. We can produce a lot of representations

$$
\operatorname{GaI}(K / \mathbb{Q}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})
$$

Examples of Galois representations

Let K be a Galois extension of \mathbb{Q}. Then there exists a natural projection

$$
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{Gal}(K / \mathbb{Q}) .
$$

Since $\operatorname{Gal}(K / \mathbb{Q})$ is a finite group, its representation theory over \mathbb{C} is well known. We can produce a lot of representations

$$
\operatorname{GaI}(K / \mathbb{Q}) \rightarrow \mathrm{GL}_{n}(\mathbb{C}) .
$$

By composing them, we have representations

$$
\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{n}(\mathbb{C})
$$

with a finite image. They are called Artin representations.

Let E be an elliptic curve over \mathbb{Q}. Then $E(\overline{\mathbb{Q}})$

1. Is an abelian group, and
2. $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $E(\overline{\mathbb{Q}})$.

Hence, its I^{n}-torsion $E(\overline{\mathbb{Q}})\left[I^{n}\right]$ is also a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-module.

Let E be an elliptic curve over \mathbb{Q}. Then $E(\overline{\mathbb{Q}})$

1. Is an abelian group, and
2. $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $E(\overline{\mathbb{Q}})$.

Hence, its I^{n}-torsion $E(\overline{\mathbb{Q}})\left[I^{n}\right]$ is also a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-module.
Fact: $E(\overline{\mathbb{Q}})\left[I^{n}\right]$ is isomorphic to $\left(\mathbb{Z} / I^{n} \mathbb{Z}\right)^{2}$ as an abelian group.
Hence, the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ defines a representation

Let E be an elliptic curve over \mathbb{Q}. Then $E(\overline{\mathbb{Q}})$

1. Is an abelian group, and
2. $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on $E(\overline{\mathbb{Q}})$.

Hence, its I^{n}-torsion $E(\overline{\mathbb{Q}})\left[I^{n}\right]$ is also a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-module.
Fact: $E(\overline{\mathbb{Q}})\left[l^{n}\right]$ is isomorphic to $\left(\mathbb{Z} / l^{n} \mathbb{Z}\right)^{2}$ as an abelian group.
Hence, the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ defines a representation

$$
\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z} / I^{n} \mathbb{Z}\right)
$$

By taking limit $n \rightarrow \infty$, we obtain

$$
\rho_{E, l}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\mathbb{Z}_{l}\right) .
$$

This is the I -adic Tate module of E.

Lefschetz Fixed Point Theorem

Let n_{p} be the number of points of E in \mathbb{F}_{p}, and $b_{p}:=p-n_{p}$. Then

$$
\operatorname{tr}\left(\rho_{E, /}\left(\operatorname{Fr}_{p}\right)\right)=b_{p}
$$

apart from a finite number of primes p.

Lefschetz Fixed Point Theorem

Let n_{p} be the number of points of E in \mathbb{F}_{p}, and $b_{p}:=p-n_{p}$. Then

$$
\operatorname{tr}\left(\rho_{E, /}\left(\operatorname{Fr}_{p}\right)\right)=b_{p}
$$

apart from a finite number of primes p.

Modularity Theorem, refined version

For any elliptic curve E over \mathbb{Q}, there exists a special function,

$$
F_{E}(q)=\sum_{n} a_{n} q^{n}
$$

such that

$$
a_{p}=\operatorname{tr}\left(\rho_{E, l}\left(\operatorname{Fr}_{p}\right)\right) .
$$

apart from a finite number of primes p, for any choice of prime I.

Upper Half Plane with the $\mathrm{SL}_{2}(\mathbb{Z})$ action

Figure 1: Fundamental domains of the $\mathrm{SL}_{2}(\mathbb{Z})$ action on \mathbb{H}, PC: Wikipedia

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] z=\frac{a z+b}{c z+d} .
$$

Modular Group

The Modular Group, $\mathrm{SL}_{2}(\mathbb{Z})$, has some special subgroups, such as

$$
\Gamma(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\mathbb{Z}) \left\lvert\,\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \bmod N\right.\right\}
$$

Modular Group

The Modular Group, $\mathrm{SL}_{2}(\mathbb{Z})$, has some special subgroups, such as

$$
\Gamma(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \bmod N\right.\right\}
$$

A congruence subgroup is a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ that contains $\Gamma(N)$ for some N. For instance,

$$
\begin{aligned}
& \Gamma_{1}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right] \bmod N\right.\right\}, \\
& \Gamma_{0}(N)=\left\{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{SL}_{2}(\mathbb{Z}) \left\lvert\,\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \equiv\left[\begin{array}{ll}
* & * \\
0 & *
\end{array}\right] \bmod N\right.\right\} .
\end{aligned}
$$

For any

$$
\gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{GL}_{2}^{+}(\mathbb{R})
$$

a natural number k and a function $F: \mathbb{H} \rightarrow \mathbb{C}$, we define $\left.F\right|_{k} \gamma$ by

$$
\begin{aligned}
\left.F\right|_{k} \gamma(z) & :=(\operatorname{det} \gamma)^{\frac{k}{2}}(c z+d)^{-k} F(\gamma z) \\
& =(\operatorname{det} \gamma)^{\frac{k}{2}}(c z+d)^{-k} F\left(\frac{a z+b}{c z+d}\right) .
\end{aligned}
$$

This is the slash operator.

For any

$$
\gamma=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \mathrm{GL}_{2}^{+}(\mathbb{R})
$$

a natural number k and a function $F: \mathbb{H} \rightarrow \mathbb{C}$, we define $\left.F\right|_{k} \gamma$ by

$$
\begin{aligned}
\left.F\right|_{k} \gamma(z) & :=(\operatorname{det} \gamma)^{\frac{k}{2}}(c z+d)^{-k} F(\gamma z) \\
& =(\operatorname{det} \gamma)^{\frac{k}{2}}(c z+d)^{-k} F\left(\frac{a z+b}{c z+d}\right) .
\end{aligned}
$$

This is the slash operator.
Note that this is defined in a way that the following holds:

$$
\left.F\right|_{k} \gamma(z)(d z)^{\otimes \frac{\kappa}{2}}=F(\gamma z)(d(\gamma z))^{\otimes \frac{\kappa}{2}} .
$$

Modular Forms

Modular form

A weak modular form of weight k and level N is a holomorphic function $F: \mathbb{H} \rightarrow \mathbb{C}$ s.t. $\left.F\right|_{k} \gamma=F$ for any $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{1}(N)$, i.e.

$$
F(\gamma z)=(c z+d)^{k} F(z)
$$

Modular Forms

Modular form

A weak modular form of weight k and level N is a holomorphic function $F: \mathbb{H} \rightarrow \mathbb{C}$ s.t. $\left.F\right|_{k} \gamma=F$ for any $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{1}(N)$, i.e.

$$
F(\gamma z)=(c z+d)^{k} F(z) .
$$

Note that $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \Gamma_{1}(N)$, so $F(z)=F(z+1)$. Hence

$$
F(z)=F_{0}(q) \text { where } q=e^{2 \pi i z}
$$

for a holomorphic function F_{0} on a punctured disc.
The same holds for $\left.F\right|_{k} \gamma(z)$ where $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, so $\left.F\right|_{k} \gamma(z)=F_{0}^{\gamma}(q)$.

Modular Forms

Modular form

A weak modular form of weight k and level N is a holomorphic function $F: \mathbb{H} \rightarrow \mathbb{C}$ s.t. $\left.F\right|_{k} \gamma=F$ for any $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{1}(N)$, i.e.

$$
F(\gamma z)=(c z+d)^{k} F(z) .
$$

Note that $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \Gamma_{1}(N)$, so $F(z)=F(z+1)$. Hence

$$
F(z)=F_{0}(q) \text { where } q=e^{2 \pi i z}
$$

for a holomorphic function F_{0} on a punctured disc.
The same holds for $\left.F\right|_{k} \gamma(z)$ where $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$, so $\left.F\right|_{k} \gamma(z)=F_{0}^{\gamma}(q)$.
F is a modular form if F_{0}^{γ} holomorphic, and a cusp form if $F_{0}^{\gamma}(0)=0$.

Examples of Modular Forms

Eisenstein Series: weight $2 k$, level 1 , non-cusp form.

$$
E_{2 k}(z)=\frac{1}{2 \zeta(2 k)} \sum_{(m, n) \in \mathbb{Z}^{2} \backslash(0,0)} \frac{1}{(m z+n)^{2 k}}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} .
$$

Examples of Modular Forms

Eisenstein Series: weight $2 k$, level 1 , non-cusp form.

$$
E_{2 k}(z)=\frac{1}{2 \zeta(2 k)} \sum_{(m, n) \in \mathbb{Z}^{2} \backslash(0,0)} \frac{1}{(m z+n)^{2 k}}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} .
$$

Modular Discriminant: weight 12, level 1, cusp form.

$$
\Delta(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n} .
$$

Examples of Modular Forms

Eisenstein Series: weight $2 k$, level 1 , non-cusp form.

$$
E_{2 k}(z)=\frac{1}{2 \zeta(2 k)} \sum_{(m, n) \in \mathbb{Z}^{2} \backslash(0,0)} \frac{1}{(m z+n)^{2 k}}=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n} .
$$

Modular Discriminant: weight 12, level 1, cusp form.

$$
\Delta(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n} .
$$

Our Examples: weight $1 /$ level 23 , weight $2 /$ level 11. Cusp forms.

$$
F(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{23 n}\right), F_{E}(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}
$$

The Langlands Program

A refined form of Langlands Program - Version 2

For an irreducible Galois representation $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}$, there exists a cusp form $F(q)=\sum_{n} a_{n} q^{n}$ such that

$$
a_{p}=\operatorname{tr}\left(\rho\left(\operatorname{Fr}_{p}\right)\right)
$$

apart from a finite number of primes p.

Caution: This is trivially false for various reasons.
In the rest of presentation, we will improve the preceeding formulation:

1. Make this statement works in both direction.
2. Generalize this from GL_{2} to arbitrary reductive group.

Modular Curves

Consider

$$
Y(N):=\Gamma(N) \backslash \mathbb{H}, \quad Y_{0}(N):=\Gamma_{0}(N) \backslash \mathbb{H}, \quad Y_{1}(N):=\Gamma_{1}(N) \backslash \mathbb{H} .
$$

Note that $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is the moduli space of curves elliptic curves. In the same vein, these are moduli space of elliptic curves with a level structure.

Modular Curves

Consider

$$
Y(N):=\Gamma(N) \backslash \mathbb{H}, \quad Y_{0}(N):=\Gamma_{0}(N) \backslash \mathbb{H}, \quad Y_{1}(N):=\Gamma_{1}(N) \backslash \mathbb{H} .
$$

Note that $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is the moduli space of curves elliptic curves. In the same vein, these are moduli space of elliptic curves with a level structure.

$$
\begin{aligned}
Y_{1}(N)= & \text { moduli space of pairs }(E, P) \\
& E: \text { an elliptic curve } \\
& P: \text { a point of order } N .
\end{aligned}
$$

Modular Curves

Consider

$$
Y(N):=\Gamma(N) \backslash \mathbb{H}, \quad Y_{0}(N):=\Gamma_{0}(N) \backslash \mathbb{H}, \quad Y_{1}(N):=\Gamma_{1}(N) \backslash \mathbb{H} .
$$

Note that $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}$ is the moduli space of curves elliptic curves. In the same vein, these are moduli space of elliptic curves with a level structure.

$$
\begin{aligned}
Y_{1}(N)= & \text { moduli space of pairs }(E, P) \\
& E: \text { an elliptic curve } \\
& P: \text { a point of order } N .
\end{aligned}
$$

Exercise: Find a simillar description for $Y(N), Y_{0}(N)$.
They have natural compactification

$$
Y(N) \subseteq X(N), Y_{0}(N) \subseteq X_{0}(N) \text { and } Y_{1}(N) \subseteq X_{1}(N)
$$

Geometric Description of Modular Forms

Let $S_{k}(N)$ (resp. $\left.M_{k}(N)\right)$ be the \mathbb{C}-vector space of cusp (resp. modular) forms. Recall that the slash operator is defined such that

$$
\left.F\right|_{k} \gamma(z)(d z)^{\otimes \frac{k}{2}}=F(\gamma z)(d(\gamma z))^{\otimes \frac{k}{2}}
$$

and we require

$$
\left.F\right|_{k}=F \text {, i.e. } F(z)(d z)^{\otimes \frac{\kappa}{2}}=F(\gamma z)(d(\gamma z))^{\otimes \frac{\kappa}{2}}
$$

for a modular form F.

Geometric Description of Modular Forms

Let $S_{k}(N)$ (resp. $\left.M_{k}(N)\right)$ be the \mathbb{C}-vector space of cusp (resp. modular) forms. Recall that the slash operator is defined such that

$$
\left.F\right|_{k} \gamma(z)(d z)^{\otimes \frac{k}{2}}=F(\gamma z)(d(\gamma z))^{\otimes \frac{k}{2}}
$$

and we require

$$
\left.F\right|_{k}=F \text {, i.e. } F(z)(d z)^{\otimes \frac{\kappa}{2}}=F(\gamma z)(d(\gamma z))^{\otimes \frac{\kappa}{2}}
$$

for a modular form F.

Geometric Description of $S_{2}(N)$

$$
S_{2}(N) \simeq \Gamma\left(X_{1}(N), \Omega_{X_{1}(N)}^{1}\right) .
$$

Exactly the same statement holds for $\Gamma_{0}(N)$ and $X_{0}(N)$.

We can obtain simillar description for a general weight k. Let

$$
\pi: \mathcal{E} \rightarrow X_{1}(N)
$$

be the universal family of elliptic curves, and

$$
\lambda:=\pi_{*} \Omega_{\mathcal{E} / X_{1}(N)}^{1}
$$

be the Hodge line bundle.

We can obtain simillar description for a general weight k. Let

$$
\pi: \mathcal{E} \rightarrow X_{1}(N)
$$

be the universal family of elliptic curves, and

$$
\lambda:=\pi_{*} \Omega_{\mathcal{E} / X_{1}(N)}^{1}
$$

be the Hodge line bundle.
Geometric Description of $M_{k}(N)$

$$
M_{k}(N) \simeq \Gamma\left(X_{1}(N), \lambda^{\otimes k}\right) .
$$

This explains the last condition in the defintion:

$$
\left.F\right|_{k} \gamma(z)=\left.F\right|_{k} \gamma(z+1) \text { for } \gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \text {, so }\left.F\right|_{k} \gamma(z)=F_{0}^{\gamma}(q) .
$$

F is a modular form if F_{0}^{γ} holomorphic, and a cusp form if $F_{0}^{\gamma}(0)=0$.
The points in $D_{N}:=X_{1}(N) \backslash Y_{1}(N)$ are called cusps.
The last condition corresponds to the regularity of the section at cusps.

This explains the last condition in the defintion:

$$
\left.F\right|_{k} \gamma(z)=\left.F\right|_{k} \gamma(z+1) \text { for } \gamma \in \mathrm{SL}_{2}(\mathbb{Z}) \text {, so }\left.F\right|_{k} \gamma(z)=F_{0}^{\gamma}(q) .
$$

F is a modular form if F_{0}^{γ} holomorphic, and a cusp form if $F_{0}^{\gamma}(0)=0$.
The points in $D_{N}:=X_{1}(N) \backslash Y_{1}(N)$ are called cusps.
The last condition corresponds to the regularity of the section at cusps.
Geometric Description of $S_{k}(N)$

$$
S_{k}(N) \simeq \Gamma\left(X_{1}(N), \lambda^{\otimes k}\left(D_{N}\right)\right) .
$$

Hecke Operator

Let n be an integer prime to N. Let

where

$$
\alpha(E, P)=(E, n P), \beta(E, P)=(E / N P, P)
$$

This is the Hecke correspondence T_{n} of $X_{1}(N)$.

Hecke Operator

Let n be an integer prime to N. Let

where

$$
\alpha(E, P)=(E, n P), \beta(E, P)=(E / N P, P) .
$$

This is the Hecke correspondence T_{n} of $X_{1}(N)$.
The definition of T_{n} is a bit more complicated for a general n.
The Hecke operator T_{n} on $S_{k}(N)$ is

$$
T_{n}=\alpha_{*} \beta^{*}: S_{k}(N) \rightarrow S_{k}(N)
$$

Hecke Algebra for $N=1$
On $S_{k}(1),\left\{T_{n}\right\}_{n \in \mathbb{N}}$ is

1. Simultaneously diagonalizable.
2. If F is a common eigenfunction of $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
F(q)=q+\sum_{n=2}^{\infty} a_{n} q^{n}
$$

then $T_{p} F=a_{p} F$.
3. If F and G are nonzero common eigenfunctions of T_{n} with the same eigenvalues, then they coincide up to a constant.

Hecke Algebra for $N=1$

On $S_{k}(1),\left\{T_{n}\right\}_{n \in \mathbb{N}}$ is

1. Simultaneously diagonalizable.
2. If F is a common eigenfunction of $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
F(q)=q+\sum_{n=2}^{\infty} a_{n} q^{n},
$$

then $T_{p} F=a_{p} F$.
3. If F and G are nonzero common eigenfunctions of T_{n} with the same eigenvalues, then they coincide up to a constant.

Essentially nothing holds for general N.

Fixing the Problem

The origin of the problem:
if $f(z) \in S_{k}(N)$, then $f(d z) \in S_{k}(d N)$, which has the same info

Oldforms

An element $f \in S_{k}(N)$ given by

$$
f(z)=g(d z)
$$

For some $d \mid N$ and $g \in S_{k}(N / d)$, is called an oldform.
Let $S_{k}(N)^{\text {old }}$ be the subspace spaned by oldforms.

Fixing the Problem

The origin of the problem:
if $f(z) \in S_{k}(N)$, then $f(d z) \in S_{k}(d N)$, which has the same info

Oldforms

An element $f \in S_{k}(N)$ given by

$$
f(z)=g(d z)
$$

For some $d \mid N$ and $g \in S_{k}(N / d)$, is called an oldform.
Let $S_{k}(N)^{\text {old }}$ be the subspace spaned by oldforms.
There is a natural inner product on $S_{k}(N)$, given by

$$
\langle f, g\rangle=\int_{\Gamma_{1}(N) \backslash H \mathbb{H}} f(z) \overline{g(z)} y^{k-2} d x d y .
$$

The newform is defined as an element of $S_{k}(N)^{\text {new }}=\left(S_{k}(N)^{\text {old }}\right)^{\perp}$.
Hecke Algebra for $S_{k}(N)^{\text {new }}$
On $S_{k}(N)^{\text {new }},\left\{T_{n}\right\}_{n \in \mathbb{N}}$ is

1. Simultaneously diagonalizable.
2. If F is a common eigenfunction of $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
F(q)=q+\sum_{n=2}^{\infty} a_{n} q^{n},
$$

then $T_{p} F=a_{p} F$.
3. If F and G are nonzero common eigenfunctions of T_{n} with the same eigenvalues, then they coincide up to a constant.

The Hecke eigenform is an element of $S_{k}(N)^{\text {new }}$ that satisfies (2) above.

A refined form of Langlands Program - Version 3

There exists a one-to-one correspondence between

1. irreducible Galois representation $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}$
2. Hecke eigenform F
such that, apart from a finite number of primes p,

$$
a_{p}(F)=\operatorname{tr}\left(\rho\left(\operatorname{Fr}_{p}\right)\right) .
$$

Caution: Still, this is trivially false for various reasons.

- We did not specify the base field of ρ,
- We need more than cusp forms for it to be true, among many others. Nevertheless, this serves as a good starting point!

Good news: Now we know enough to formulate some theorems!
Deligne-Serre $(k=1)$, Eichler-Shimura $(k=2)$, Deligne $(k>2)$
For any Hecke eigenform $F \in S_{k}(N)^{\text {new }}$ and a prime I, there exists an irreducible Galois representation

$$
\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{Q}_{l}}\right)
$$

such that

$$
a_{p}(F)=\operatorname{tr}\left(\rho\left(\mathrm{Fr}_{p}\right)\right) .
$$

apart from a finite number of primes p,
Hence, at least one direction of the conjecture is true!

A special case of the Artin's conjecture, Khare-Wintenberger 09

If $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ is an irreducible representation such that $\operatorname{det} \rho(c)=-1$, where c is the complex conjugation, then there exists a weight 1 Hecke eigenform F such that

$$
a_{p}(F)=\operatorname{tr}\left(\rho\left(\operatorname{Fr}_{p}\right)\right) .
$$

apart from a finite number of primes p.

A special case of the Artin's conjecture, Khare-Wintenberger 09

 If $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathbb{C})$ is an irreducible representation such that $\operatorname{det} \rho(c)=-1$, where c is the complex conjugation, then there exists a weight 1 Hecke eigenform F such that$$
a_{p}(F)=\operatorname{tr}\left(\rho\left(\operatorname{Fr}_{p}\right)\right) .
$$

apart from a finite number of primes p.

Modularity Theorem, a rigorous statement

If E is an elliptic curve over \mathbb{Q}, there exists a weight 2 Hecke eigenform F of $\Gamma_{0}(N)$ such that

$$
a_{p}(F)=\operatorname{tr}\left(\rho_{E, l}\left(\operatorname{Fr}_{p}\right)\right) .
$$

apart from a finite number of primes p and any prime I.

Adelization and Automorphic Representations

Adelization

Goal: Provide a 'natural' description of the congruence subgroups.

Adelization

Goal: Provide a 'natural' description of the congruence subgroups.
We use p-adic numbers to do this. Recall that

$$
\mathbb{Z}_{p}:=\lim _{\leftarrow} \mathbb{Z} / p^{n} \mathbb{Z} \text { and } \mathbb{Q}_{p}=\mathbb{Z}_{p}\left[\frac{1}{p}\right]
$$

They have natural topology, which makes them a topological ring, and a local basis at 0 is given by

$$
\mathbb{Z}_{p} \supset p \mathbb{Z}_{p} \supset \cdots \supset p^{n-1} \mathbb{Z}_{p} \supset p^{n} \mathbb{Z}_{p} \supset p^{n+1} \mathbb{Z}_{p} \supset \cdots
$$

Adelization

Goal: Provide a 'natural' description of the congruence subgroups.
We use p-adic numbers to do this. Recall that

$$
\mathbb{Z}_{p}:=\lim _{\leftarrow} \mathbb{Z} / p^{n} \mathbb{Z} \text { and } \mathbb{Q}_{p}=\mathbb{Z}_{p}\left[\frac{1}{p}\right]
$$

They have natural topology, which makes them a topological ring, and a local basis at 0 is given by

$$
\mathbb{Z}_{p} \supset p \mathbb{Z}_{p} \supset \cdots \supset p^{n-1} \mathbb{Z}_{p} \supset p^{n} \mathbb{Z}_{p} \supset p^{n+1} \mathbb{Z}_{p} \supset \cdots
$$

We also topologize algebraic groups over \mathbb{Q}_{p}, e.g. $G L_{n}\left(\mathbb{Q}_{p}\right)$ has a basis $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right) \supset 1_{n}+p \mathrm{M}_{n}\left(\mathbb{Z}_{p}\right) \supset \cdots \supset 1_{n}+p^{n-1} \mathrm{M}_{n}\left(\mathbb{Z}_{p}\right) \supset 1_{n}+p^{n} \mathrm{M}_{n}\left(\mathbb{Z}_{p}\right) \cdots$

The Adele (over \mathbb{Q}) is defined by

$$
\mathbb{A}_{\mathbb{Q}}:=\mathbb{R} \times \prod_{p}^{\prime} \mathbb{Q}_{p}=\left\{\left(a_{\infty}, a_{2}, a_{3}, \cdots\right) \mid a_{p} \in \mathbb{Z}_{p} \text { for almost every } p\right\}
$$

The Adele (over \mathbb{Q}) is defined by

$$
\mathbb{A}_{\mathbb{Q}}:=\mathbb{R} \times \prod_{p}^{\prime} \mathbb{Q}_{p}=\left\{\left(a_{\infty}, a_{2}, a_{3}, \cdots\right) \mid a_{p} \in \mathbb{Z}_{p} \text { for almost every } p\right\}
$$

It is a locally compact topological ring whose basis at 0 is given by

$$
U \times \prod_{i=1}^{r} p_{i}^{e_{i}} \mathbb{Z}_{p_{i}} \times \prod_{p \nmid N} \mathbb{Z}_{p}
$$

where $N=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ and U is any open subset containing 0 .

The Adele (over \mathbb{Q}) is defined by

$$
\mathbb{A}_{\mathbb{Q}}:=\mathbb{R} \times \prod_{p}^{\prime} \mathbb{Q}_{p}=\left\{\left(a_{\infty}, a_{2}, a_{3}, \cdots\right) \mid a_{p} \in \mathbb{Z}_{p} \text { for almost every } p\right\}
$$

It is a locally compact topological ring whose basis at 0 is given by

$$
U \times \prod_{i=1}^{r} p_{i}^{e_{i}} \mathbb{Z}_{p_{i}} \times \prod_{p \nmid N} \mathbb{Z}_{p}
$$

where $N=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ and U is any open subset containing 0 .
The 'diagonal embedding' $\mathbb{Q} \rightarrow \mathbb{A}_{\mathbb{Q}}$ is discrete and cocompact.
Exercise: $\mathbb{Q} \backslash \mathbb{A}_{\mathbb{Q}} \simeq \mathbb{R} / \mathbb{Z} \times \prod_{p} \mathbb{Z}_{p}, \mathbb{Q} \backslash \mathbb{A}_{\mathbb{Q}} / \prod_{p} \mathbb{Z}_{p} \simeq \mathbb{R} / \mathbb{Z}$.
Although it looks scary, its appropriate quotient is just a manifold!

Have $\mathrm{GL}_{2}(\mathbb{R}) / \mathrm{O}_{2}(\mathbb{R}) \simeq \mathbb{H}$ in mind! Let

$$
G L_{2}\left(\mathbb{Q}_{p}\right) \supset \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right), G \mathrm{~L}_{2}(\mathbb{R}) \supset \mathrm{O}_{2}(\mathbb{R})
$$

be the maximal compact subgroups.

Have $\mathrm{GL}_{2}(\mathbb{R}) / \mathrm{O}_{2}(\mathbb{R}) \simeq \mathbb{H}$ in mind! Let

$$
\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right) \supset \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right), \mathrm{GL}_{2}(\mathbb{R}) \supset \mathrm{O}_{2}(\mathbb{R})
$$

be the maximal compact subgroups. Then

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathrm{O}_{2}(\mathbb{R}) \times \prod_{p} \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) \simeq \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H} .
$$

Where Z is the center of $G L_{2}$, i.e. the diagonal matrices.

Have $\mathrm{GL}_{2}(\mathbb{R}) / \mathrm{O}_{2}(\mathbb{R}) \simeq \mathbb{H}$ in mind! Let

$$
\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right) \supset \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right), \mathrm{GL}_{2}(\mathbb{R}) \supset \mathrm{O}_{2}(\mathbb{R})
$$

be the maximal compact subgroups. Then

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathrm{O}_{2}(\mathbb{R}) \times \prod_{p} \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) \simeq \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H} .
$$

Where Z is the center of $G L_{2}$, i.e. the diagonal matrices.
Similarly, for $N=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, let $K(N)=K_{\infty} \times \prod_{p} K_{p}(N)$ where
$K_{\infty}=\mathrm{O}_{2}(\mathbb{R}), K_{p_{i}}(N)=1_{n}+p_{i}^{e_{i}} \mathrm{M}_{n}\left(\mathbb{Z}_{p_{i}}\right), K_{p}(N)=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ for $p \neq p_{i}$.
Then

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / K(N) \simeq \mathrm{GL}_{2}(\mathbb{Q}) \cap \prod_{p} K_{p} \backslash \mathbb{H} \simeq \Gamma(N) \backslash \mathbb{H} .
$$

Have $\mathrm{GL}_{2}(\mathbb{R}) / \mathrm{O}_{2}(\mathbb{R}) \simeq \mathbb{H}$ in mind! Let

$$
\mathrm{GL}_{2}\left(\mathbb{Q}_{p}\right) \supset \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right), \mathrm{GL}_{2}(\mathbb{R}) \supset \mathrm{O}_{2}(\mathbb{R})
$$

be the maximal compact subgroups. Then

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / \mathrm{O}_{2}(\mathbb{R}) \times \prod_{p} \mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right) \simeq \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H} .
$$

Where Z is the center of $G L_{2}$, i.e. the diagonal matrices.
Similarly, for $N=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, let $K(N)=K_{\infty} \times \prod_{p} K_{p}(N)$ where
$K_{\infty}=\mathrm{O}_{2}(\mathbb{R}), K_{p_{i}}(N)=1_{n}+p_{i}^{e_{i}} \mathrm{M}_{n}\left(\mathbb{Z}_{p_{i}}\right), K_{p}(N)=\mathrm{GL}_{2}\left(\mathbb{Z}_{p}\right)$ for $p \neq p_{i}$.
Then

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / K(N) \simeq \mathrm{GL}_{2}(\mathbb{Q}) \cap \prod_{p} K_{p} \backslash \mathbb{H} \simeq \Gamma(N) \backslash \mathbb{H} .
$$

Upshot: Modular forms lives in $Z\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right) / K(N)$.

This extends to reductive groups: Let
G : a reductive group
K_{∞} : a maximal compact subgroup of $G(\mathbb{R})$
$K_{\text {fin }}$: a compact open subgroup of $\prod_{p} G\left(\mathbb{Q}_{p}\right)$.

This extends to reductive groups: Let
G : a reductive group
K_{∞} : a maximal compact subgroup of $G(\mathbb{R})$
$K_{\text {fin }}$: a compact open subgroup of $\prod_{p} G\left(\mathbb{Q}_{p}\right)$.
Punchline: For $K=K_{\infty} K_{\text {fin }} \subseteq G\left(\mathbb{A}_{\mathbb{Q}}\right)$,
$Z(\mathbb{R}) \backslash G(\mathbb{R}) / K$ is a locally symmetric space,
$Z\left(\mathbb{A}_{\mathbb{Q}}\right) G(\mathbb{Q}) \backslash G\left(\mathbb{A}_{\mathbb{Q}}\right) / K$ is a quotient of $Z(\mathbb{R}) \backslash G(\mathbb{R}) / K$ by $G(\mathbb{Q}) \cap K_{\text {fin }}$.

This extends to reductive groups: Let
G : a reductive group
K_{∞} : a maximal compact subgroup of $G(\mathbb{R})$
$K_{\text {fin }}$: a compact open subgroup of $\prod_{p} G\left(\mathbb{Q}_{p}\right)$.
Punchline: For $K=K_{\infty} K_{\text {fin }} \subseteq G\left(\mathbb{A}_{\mathbb{Q}}\right)$,
$Z(\mathbb{R}) \backslash G(\mathbb{R}) / K$ is a locally symmetric space, $Z\left(\mathbb{A}_{\mathbb{Q}}\right) G(\mathbb{Q}) \backslash G\left(\mathbb{A}_{\mathbb{Q}}\right) / K$ is a quotient of $Z(\mathbb{R}) \backslash G(\mathbb{R}) / K$ by $G(\mathbb{Q}) \cap K_{\text {fin }}$.

Let $M=Z(\mathbb{R}) \backslash G(\mathbb{R}) / K$ and $\Gamma_{K}=G(\mathbb{Q}) \cap K_{\text {fin }}$.
$\Gamma_{K} \backslash M$ is a generalization of the modular curve, 'parameterized' by K.

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) G(\mathbb{Q}) \backslash G\left(\mathbb{A}_{\mathbb{Q}}\right) "=" \lim _{K} \Gamma_{K} \backslash M .
$$

Automorphic Representations

Let $\chi: Z\left(\mathbb{A}_{\mathbb{Q}}\right) \rightarrow \mathrm{U}(1)$ be a character and $F: G(\mathbb{Q}) \backslash G\left(\mathbb{A}_{\mathbb{Q}}\right) \rightarrow \mathbb{C}$.
Let $L_{0}^{2}(G, \chi)$ be the set of functions satisfying

1. [Central Character] $F(g z)=\chi(z) F(g)$ for $z \in Z\left(\mathbb{A}_{\mathbb{Q}}\right)$
2. $\left[L^{2}\right.$ condition]

$$
\int_{Z\left(\mathbb{A}_{\mathbb{Q}}\right) G(\mathbb{Q}) \backslash G\left(\mathbb{A}_{\mathbb{Q}}\right)}|F(g)|^{2} d g<\infty
$$

3. [Cuspidality]

$$
\int_{U(\mathbb{Q}) \backslash U\left(\mathbb{A}_{\mathbb{Q}}\right)} F(u g) d g=0
$$

for any unipotent radical U of a parabolic subgroup P.
The cuspidal automorphic representation of $G\left(\mathbb{A}_{\mathbb{Q}}\right)$ is an irreducible subrepresentation of $L_{0}^{2}(G, \chi)$.

Recall that

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) G(\mathbb{Q}) \backslash G\left(\mathbb{A}_{\mathbb{Q}}\right) "="{\underset{\overleftarrow{k}}{K}}^{\lim _{K}} \Gamma_{K} \backslash M .
$$

Hence, $L_{0}^{2}(G, \chi)$ reduced to the spectral theory of $\Gamma_{K} \backslash M$. In this vein,
Cuspidal automorphic representations \approx Laplacian eigenspace of $\Gamma_{K} \backslash M$.

Recall that

$$
Z\left(\mathbb{A}_{\mathbb{Q}}\right) G(\mathbb{Q}) \backslash G\left(\mathbb{A}_{\mathbb{Q}}\right) "="{\underset{K}{\mid i m}}_{\lim _{K} \backslash M .}
$$

Hence, $L_{0}^{2}(G, \chi)$ reduced to the spectral theory of $\Gamma_{K} \backslash M$. In this vein, Cuspidal automorphic representations \approx Laplacian eigenspace of $\Gamma_{K} \backslash M$.

Example: Let $G=\mathrm{GL}_{2}$ and $F \in S_{k}(N)$. Then

$$
\left.g \mapsto F\right|_{k} g(i)=(\operatorname{det} g)^{\frac{k}{2}}(c i+d)^{k} f\left(\frac{a i+b}{c i+d}\right)
$$

originally defined on $\mathrm{GL}_{2}^{+}(\mathbb{R})$, descends to $Y_{1}(N)$.

Recall that

Hence, $L_{0}^{2}(G, \chi)$ reduced to the spectral theory of $\Gamma_{K} \backslash M$. In this vein, Cuspidal automorphic representations \approx Laplacian eigenspace of $\Gamma_{K} \backslash M$.

Example: Let $G=\mathrm{GL}_{2}$ and $F \in S_{k}(N)$. Then

$$
\left.g \mapsto F\right|_{k} g(i)=(\operatorname{det} g)^{\frac{k}{2}}(c i+d)^{k} f\left(\frac{a i+b}{c i+d}\right)
$$

originally defined on $\mathrm{GL}_{2}^{+}(\mathbb{R})$, descends to $Y_{1}(N)$.
This is a Laplacian eigenfunction with eigenvalue $\frac{k(1-k)}{4}$.
Hence, a modular form gives rise to an automorphic representation.

Hecke Operators

For any reductive group G, there exists a theory of Hecke operators for $L_{0}^{2}(G, \chi)$, but describing it here is a bit intricate.

Hecke Operators

For any reductive group G, there exists a theory of Hecke operators for $L_{0}^{2}(G, \chi)$, but describing it here is a bit intricate.
If $G=G L_{n}$, the situation is much simpler:
For each prime p, there exists n operators

$$
T_{p, 1}, \cdots, T_{p, n}
$$

and we can define the 'eigenvalues' of these operators for a cuspidal automorphic representation π. These eigenvalues are denoted by $a_{p, i}(\pi)$.

Our Final Version of the Langlands Program, for GL_{n}

There exists a one-to-one correspondence between

1. Irreducible Galois representation $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{n}\left(\overline{\mathbb{Q}}_{I}\right)$.
2. Cuspidal automorphic representation π of $G L_{n}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
such that

$$
\operatorname{det}\left(X 1_{n}-\rho\left(\operatorname{Fr}_{p}\right)\right)=X^{n}+\sum_{i=1}^{n}(-1)^{i} a_{p, i}(\pi) X^{n-i}
$$

Unfortunately, the Langlands program for a reductive group is not a correspondence between $\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G\left(\overline{\mathbb{Q}}_{l}\right)$ and cuspidal automorphic representations of G.

Unfortunately, the Langlands program for a reductive group is not a correspondence between $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G\left(\overline{\mathbb{Q}}_{l}\right)$ and cuspidal automorphic representations of G.

Langlands Dual

Let G be a reductive group with the root datum $\left(X^{*}, \Delta, X_{*}, \Delta^{\vee}\right)$. The
Langlands dual G^{L} of G is the reductive group corresponding to $\left(X_{*}, \Delta^{\vee}, X^{*}, \Delta\right)$.

If G is semisimple, then this coincides with the Dynkin dual.

G	GL_{n}	SL_{n}	$\mathrm{SO}_{2 n}$	$\mathrm{SO}_{2 n+1}$	$\mathrm{Spin}(2 n)$
G^{L}	GL_{n}	PGL_{n}	$\mathrm{SO}_{2 n}$	$\mathrm{Sp}_{2 n}$	$\mathrm{SO}_{2 n} /\left\{ \pm 1_{2 n}\right\}$

Our Final Version of the Langlands Program, for G

Let G be a reductive algebraic group. There exists a one-to-one correspondence between

1. Galois representation $\rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G^{\mathrm{L}}\left(\overline{\mathbb{Q}}_{l}\right)$.
2. Automorphic representation π of G.

Of course, we need to specify the relationship between the Hecke eigenvalues and the image of the Frobenius element, but this is challenging for a general reductive group.

This description is very incomplete, since:

1. It does not explain the choice of prime / on the Galois side: this is related to the l-independence and the theory of motives.

This description is very incomplete, since:

1. It does not explain the choice of prime / on the Galois side: this is related to the l-independence and the theory of motives.
2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.

This description is very incomplete, since:

1. It does not explain the choice of prime I on the Galois side: this is related to the l-independence and the theory of motives.
2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.
3. Not every automorphic representation corresponds to a Galois representation. This is related to the notion of algebraic automorphic representations, the Weil group, and the Langlands group.

This description is very incomplete, since:

1. It does not explain the choice of prime I on the Galois side: this is related to the l-independence and the theory of motives.
2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.
3. Not every automorphic representation corresponds to a Galois representation. This is related to the notion of algebraic automorphic representations, the Weil group, and the Langlands group.
4. It does not mention local-global compatability, as we have not discussed the local Langlands program.
among many others.

This description is very incomplete, since:

1. It does not explain the choice of prime I on the Galois side: this is related to the l-independence and the theory of motives.
2. Not every Galois representation corresponds to an automorphic representation. This is related to geometric Galois representation and the Fontain-Mazur conjecture.
3. Not every automorphic representation corresponds to a Galois representation. This is related to the notion of algebraic automorphic representations, the Weil group, and the Langlands group.
4. It does not mention local-global compatability, as we have not discussed the local Langlands program.
among many others.
However, this is good enough for the Geometric Langlands Program!
