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1 Preliminaries: Lie Groups and Representa-

tion Theory

1.1 The Haar Measure

Let G be a locally compact topological group. Then, up to multiplication by a

positive real number, there is a unique measure µ which satisfies:

• ∀x ∈ X,∃ a neighborhood U of x such that µ(U) <∞.

• µ(M) = supK<<M µ(K) for any M open.

• µ is right-invariant, i.e. ∀f ∈ L1(G, dµ)+,∀g ∈ G, we have
∫
G
f(xg)dµ(x) =∫

G
f(x)dµ(x).

The first two are criterion of Radon measure. Such µ is called a Haar measure.

(Kowalski, Theorem 5.2.1)

1.2 The Language of Representation Theory

A representation is irreducible if it does not have a proper invariant subspace.

Let π1 : G→ GL1(V ), π2 : G→ GL2(V ) be two representations. Then π1⊕π2 :

G → V ⊕ W where G acts by g(v, w) = (gv, gw) is the direct sum of two

representations. A representation is semisimple if it is isomorphic to a direct

sum of irreducible representations.
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Representation-Function Correspondence Let π : G → GL1(C) = C×

be a character. Then we can define a corresponding right C[G]−module CG,

with G acting via g • f(x) = f(xg) = π(g)f(x),∀g, x ∈ G. Such right modules

are in bijection with characters on G. (Refer to the definition of induced repre-

sentations, Kowalski Page 44)

Let π : G → GLn(C) be a representation. Define its C−character to be

χ : G → C, g 7→ Tr(π(g)). (Kowalski, Page 111). Over an algebraically closed

field of characteristic 0, then two finite-dimensional semisimple representations

are isomorphic if and only if they have the same character. (Kowalski, Page

112)

2 Review of Arithmetic Langlands

Let K be a function field over Fq. Let X be the abstract algebraic curve defined

by the places ofK, and let |X| denote the set of places (i.e. valuations) ofK. Let

|X| denote the points of X, and for x ∈ |X|, let Kx be the completion of K at x,

and kx = Ox/Px the residue field at x. Then we can define the group of adèles

A =
∏′

x∈|X|Kx. Here, the restricted product means that for (ax)x∈|X| ∈ A, all

but finitely many ax come from Ox.We can define a topology1 on A that makes

it a locally compact group (so that we can perform harmonic analysis on it).

Note that K ↪→ A, and A/K is compact.

Now define O =
∏

x∈|X|Ox, and we have GLn(O) ≤ GLn(A) is a maximal

compact subgroup.

Remark. The reason behind considering a maximal compact subgroup is so that

1The adèle topology is strictly finer than the product of the metric topology induced by
valuations on each component.
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we can define a Haar measure under which GLn(O) is finite. We can even scale

it so that it restricts to a probability measure on GLn(O), i.e. µ(GLn(O)) = 1.

We know from class field theory and the representation-function correspon-

dence that characters on Gal(K/K) corresponds bijectively to representations

of GL1(A) on functions of GL1(K)\GL1(A).

Conjecture 2.1. Langlands conjectures that there is such bijection for n−dimensional

representations, called automorphic representations.

Refer to Frenkel, Page 16 for a more detailed explanation.

2.1 Smoothness and Cuspidality

2.1.1 Smoothness

Representations Let π is a representation of a locally compact group G on

a complex vector space E. Then π is called smooth if ∀v ∈ E, it is invariant

under the action of an open compact subgroup of G. Equivalently, this means

that the action of G on E is continuous under the discrete topology of E. (Refer

to Florian Herzig’s notes on smooth representations) Equivalently, this means

that E =
⋃

K≤G compactE
K

Functions Let F be a field of characteristic zero. Since all places of a function

field are non-archimedean, we have GLn(K)\GLn(A) ∼=
∏

x∈|X|GLn(Ox).

Definition 2.1. A function f : GLn(K)\GLn(A)→ F is smooth if it is locally

constant on each of GLn(Ox)⇔ f is invariant with respect to an open compact

subgroup. The latter is the general definition.

Remark. For intuitions of this definition, refer to the smoothness of represen-

tations and the function-representation correspondence. The real significance

of this definition is that it is an analogue of the Schwartz Space (in Euclidean
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spaces, these are smooth functions with tame growth), which is closed under

Fourier transform and is dense in Lp, for any finite p > 1. In the case of a

locally compact group, and our definition of smoothness, the Schwartz class is

simply the compactly supported smooth functions. For more context, refer to

Section 3.1 of Bump (Starts on Page 254).

Denote Funct(GLn(K)\GLn(A)) the set of smooth functions. Then GLn(A)

acts on Funct(GLn(K)\GLn(A)) by right translation.

Remark. 1.

Funct(GLn(K)\GLn(A))GLn(O) ∼=Set Funct(GLn(K)\GLn(A)/GLn(O)).

2. Funct(GLn(K)\GLn(A)) is not stable under the action of GLn(A).

2.1.2 Cuspidality

A matrix A is unipotent if ∃n ∈ N such that (A − 1)n = 0. A parabolic sub-

group of GLn is a proper subgroup of GLn containing a conjugate of all upper-

triangular matrices (Bump, Page 426). The unipotent radical of a parabolic

subgroup be the subgroup of all unipotent matrices.

Functions

Definition 2.2. f ∈ Funct(GLn(K)\GLn(A)) is cuspidal if ∀g ∈ GLn(A) and

∀ unipotent radical U of any parabolic subgroup,
∫
U(A)/U(K)

f(u • g)dµ(u) = 0,

where µ is a Haar measure on U(A)/U(K).

Denote the set of cuspidal functions Functcusp(GLn(K)\GLn(A)). We have

the following properties of cuspidal functions

1. Functcusp(GLn(K)\GLn(A)) has a GLn(A) action.
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2. Cuspidal functions are automatically compactly supported.

For a motivation of this definition, refer to Bump, Pages 421-422.

Representations Let π be an irreducible representation of GLn(A). Then

π is cuspidal automorphic if HomGLn(A)(π,Functcusp(GLn(K)\GLn(A))) ̸= 0.

(Note that by Multiplicity-One Theorem on Page 52 of Bump, this module of

homomorphisms of GLn(A)−modules is either 0 or has dimension-1.) Here is

an important structure theorem:

Proposition 2.1. Functcusp(GLn(K)\GLn(A)) decomposes into a Hilbert space

direct sum of irreducible subrepresentations.

Refer to Theorem 3.3.2 in Bump. By definition of cuspidal representation,

these subrepresentations are apparently cuspidal. (Inclusion into the direct sum)

Again, by the Multiplicity-One theorem, each direct summand has multiplicity

one.

2.2 The Hecke Algebra

Although Funct(GLn(K)\GLn(A)/GLn(O)) does not admit a GLn(A)−acion,

it does admit an action by the Hecke Algebra.

2.2.1 Definition

Let x ∈ |X|, then H(GLn(Kx), GL−n(Ox)) is the set of functions on GLn(Kx)

that are compactly supported and GLn(Ox)−biinvariant. Mutiplication is given

by convolution:

f1 ∗ f2 =

∫
GLn(Kx)

f1(g1 • g2)f2(g−11 )µ(g1),
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where µ is the probability Haar measure on GLn(Ox). The multiplicative iden-

tity is the characteristic function of GLn(Ox). Here are several basic properties:

1. Compactly supported GLn(Ox)−biinvariant functions on GLn(Kx) corre-

spond to compactly supported functions onGLn(Ox)\GLn(Kx)/GLn(Ox).

2. The Hecke algebra is commutative. Idea of proof is this: define the trans-

form f(−) 7→ f((−−1)tr). This is an anti-homomorphism. Note that

GLn(Kx) =
⋃

a1≤···≤an
GLn(Ox)diag(π

a1 , · · · , πan)GLn(Ox), where π is

a uniformizer. Since the transform preserves the diagonal matrices, this

anti-homomorphism is the identity.2

3. The Hecke algebra is associative

The global Hecke algebraH(GLn(A), GLn(O)) is defined as
⊗′

x∈|X|H(GLn(Kx), Gln(Ox)).

Here the restricted tensor product means that this algebra is spanned by ten-

sors in which almost all components are units in their corresponding local Hecke

algebras.

Note that by definition of the adèle, GLn(A) =
∏′

x∈|X|GLn(Kx), and also

GLn(O) =
∏

x∈|X|GLn(Ox), and by definition of the local Hecke algebra it

is easy to check that elements in the Hecke algebra define class functions on

GLn(K)\GLn(A)/GLn(O).

Proposition 2.2. If π is a (irreducible) representation of GLn(Kx), then π
GLn(Ox)

is a (irreducible) representation of the Hecke algebra.

The idea of proof is as follows: for any v ∈ π and compactly supported

function f on GLn(Kx), define f • v =
∫
GLn(Kx)

f(g)g(v)µ(g). Apparently if f

is in the Hecke algebra and v ∈ πGLn(Ox), then f • v ∈ πGLn(Ox).

2https://math.stackexchange.com/questions/4425013/why-is-the-hecke-algebra-
commutative. Alternatively, refer to Bump, Theorem 1.4.2.
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Corollary 2.0.1. We can strengthen the proposition a bit: There is a bijection

between isomorphism classes of irreducible spherical representations of GLn(Kx)

and irreducible representations of the Hecke algebra given by the above.

Proof can be found at (https://bogdanzavyalov.com/refs/notes/Spherical Representations.pdf,

Theorem 1.18, proof right after Remark 1.19) 3 For the other direction, let π

be an irreducible representation of the Hecke algebra into M, then consider

the GLn(Kx)− module HGLn(Kx)⊗H(GLn(Kx),GLn(Ox)) (M/X), where X is the

maximal subspace for which XGLn(Ox) = 0, and HGLn(Kx) the algebra of locally

constant (i.e. smooth) functions on GLn(Kx) under ∗. Note that GLn(Kx) car-

ries an obvious action on HGLn(Kx) ⊗H(GLn(Kx),GLn(Ox)) (M/X). For a more

general result with stronger restrictions, refer to Bump, Proposition 4.2.7.

2.2.2 Structure Theorem

Hecke Operators For x ∈ |X|, and wx a uniformizer in Ox. For 1 ≤ i ≤ n,

define T i
x ∈ H(GLn(Kx), GLn(Ox)) to be the characteristic function of the

GLn(Ox)−double coset of (wx, · · · , wx, 1, · · · , 1).

Theorem 2.1. H(GLn(Kx), GLn(Ox)) ∼= C[T 1
x , · · · , Tn

x , (T
n
x )
−1].

This is a corollary of Satake’s Isomorphism Theorem. 4

Consequences Firstly, since every irreducible module over a ring is cyclic,

and by the structure theorem H(GLn(Kx), GLn(Ox)) is an integral domain, we

know that it must be a 1−dimensional free module. Since the annihilator of a

1−dimensional simple free module is a prime ideal, the isomorphism classes of

H(GLn(Kx), GLn(Ox))−modules correspond to Spec(Ql[T
1
x , · · · , Tn

x , (T
n
x )
−1]).

On the other hand, since irreducible H(GLn(Kx), GLn(Ox))−modules corre-

spond one-to-one to spherical irreducible representations of GLn(Kx), we know

3Actually can replace Ox with any compact open subgroup of Kx.
4Reference: http://sporadic.stanford.edu/bump/math263/hecke.pdf, Proposition 37
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that they correspond to conjugacy classes of diagonalizable matrices inGLn(Ql).

(Frenkel, Page 31 right after 2.8) This is because if A is an irreducible module

over the Hecke algebra under the representation πx, thenA is fH(GLn(Kx), GLn(Ox)).

Let the eigenvalues of f under T 1
x , · · · , Tn

x be respectively z1, · · · , zn. Note that

that (z1, · · · , zn). If π′x is isomorphic to πx, then the set of eigenvalues of f

under π′x is (y1, · · · , yn), equal to a conjugation of (z1, · · · , zn). Recall that each

irreducible GLn(A)−representation π =
⊗′

x∈|X| πx, where πx is a spherical rep-

resentation of GLn(Kx). Then corresponding to each such π, there is a collection

{γx}x∈|X|, of conjugacy classes of diagonal matrices.

3 Transitioning to Geometric Langlands

3.1 Algebraic Geometry Preliminaries

3.1.1 Étale Morphism and Étale Fundamental Group

Let X,Y be schemes. A morphism f : Y → X is finite if for any affine open

subset U ⊆ X,Γ(f−1(U),OY ) is a finite Γ(U,OX)−algebra. (Milne, Page 4).

This should be thought of an analogy of finite cover in topology.

f is flat if for any affine open set V ⊆ Y and U ⊆ X such that f(V ) ⊆

U,Γ(V,OY ) is a flat Γ(U,OX)-module. (Milne, Page 8) When X and Y are

varieties, this means that for all closed points x ∈ X (i.e. residue field at the

point is a finite extension of the base field) such that f−1(x) ̸= ∅, we have

dim(f−1(x)) = dim(Y )− dim(X). (Milne, Page 10)

f : Y → X of finite type is unramified if ∀y ∈ Y,OY,y/mf(y)OY,y is an un-

ramified extension of the residue field at x. Note that OY,y can be viewed as an

OX,x−module. A morphism is étale if it is flat and unramified. (Milne, 21-22)
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We can think of an étale morphism as an analogue of local homeomorphisms in

topology. (Milne, Page 39)

Let Y
f→ X,Z

g→ X be two étale morphisms. Then HomX(Y, Z) are de-

fined to be morphims ϕ : Y → Z suh that f = ϕ(g). A family of morphisms

{ϕi : Xi → X}i∈I is an étale cover of X if each ϕi is étale, and the images cover

X. With this in mind we can define étale sheafs on X. (Stacks Project, 59.4)

Recall that the fundamental group of a topologcal space is isomorphic to the

group of deck transformations of its universal cover. (Hatcher, Proposition 1.40)

We aim to generalize this to schemes. Pick x ∈ X a geometric point. We say

Xi is Galois over X if Xi
fi→ X is a finite étale surjection and AutX(Xi) ∼=Set

HomX(x, Y ), which can be understood as the geometric fiber of Y over x.

There exists a projective system {Xi}i∈I of Galois covers of X with surjec-

tive finite Galois X−homomorphisms ϕij : Xj → Xi for j ≥ i that uniquely

pro-represents the functor F : FET/X → Set, Y 7→ HomX(x, Y ).5 This means

that ∀Z ∈ FET/X, lim−→HomX(Xi, Z) ∼=Set F (Z). Then define the profinite group

π1(X,x) = lim←−AutX(Xi). (Milne, Pages 39-40) Note that the projective system

plays the role of the universal cover.

3.1.2 ℓ−adic Sheafs and Cohomology

An ℓ−adic sheaf on Xet is a projective system {Fn}n∈N of étale sheaves (i.e.

contravariant functors from the category of étale morphisms of schemes to X

to sets satisfying the usual gluing conditions of the sheaf definition) such that

Fn+1 → Fn induces an isomorphism Fn+1/ℓ
nFn+1

∼=→ Fn. Note that F0 = 0 and

Fn is a Z/(ℓn)-module. (Milne, Page 163-164)

5FeT/X is the category of finite étale X−schemes.
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Define the cohomology to beHr(X,F ) = lim←−n
Hr(X,Fn).Note that lim←−Z/(ℓn) =

Zℓ acts on Hr(X,F ). The cohomology of an ℓ−adic sheaf is constructible if X

can be written as a finite union of locally closed subschemes Y on which the

sheaf of cohomology groups is locally constant. (Stacks project, 59.76)

3.1.3 Stacks and Algebraic Stacks

(Referece: John Voight’s notes on Deligne-Mumford Stacks. Can also be found

in Milne.) Stacks arise in two situations:

1. When the moduli space parametrizing certain objects does not distinguish

between isomorphic objects.

2. When a group acts on a variety, the quotient might not be a scheme.

Category fibered in groupoids Let S be a scheme, F a category. Call F

an S−category if it is equipped with a functor p : F → Sch/S. Now F is fibered

in groupoids if:

1. (Lifting of arrows) For all arrows ϕ : U → V in Sch/S and ∀y ∈ p−1(V ),

there exists an arrow f : x→ y in F such that p(x) = U and p(f) = ϕ.

2. (Lifting of diagrams) For all diagrams x
f→ z

g← y in F , and for any

ϕ : p(x) → p(y) with p(f) = p(g) ◦ ϕ, there is a unique ψ : x → y in F

such that f = g ◦ ψ and p(ψ) = ϕ.

Note that (2) implies that the map in (1) is unique up to isomorphism. It also

implies that f is an isomorphism in F if and only if p(f) is an isomorphism

in Sch/S. Let U ∈ Sch/S, then F(U), which is the fiber of F over U, is the

category whose objects are p−1(U) and whose arrows f are sent to the identity

on U under p.
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Here is one example of categories fibered in groupoids which provides strong

topological intuitions: recall that in topology, if G is a topological group, then

the category of principal G−bundles is a groupoid. In that case we can define

the classifying space BG of principal G-bundles. For example, S1 is the classi-

fying space for Z,Tn is the classifying space for Zn,∧nS1 is the classifying space

for the free group with n generators, and a connected hyperbolic manifold is

the classifying space for its fundamental group... Now let G be a group scheme

over Spec(K). Then we can define a category fibered in groupoids BG, whose

objects are principal G−bundles (or G−torsors), and morphisms are morphisms

of G−torsors.

Stacks Now we define stacks. Let F be a category fibered in groupoids over

S such that the assignment Sch/S → Set is a sheaf of groupoids:

1. For U a scheme over S and x, y ∈ F(U), the functor IsomU (x, y) : Sch/U →

Set, V 7→ the set of isomorphisms of F(V ) between x|V and y|V , is a sheaf

over U in the étale topology. Here, let ϕ : V ↪→ U be the inclusion, define

x|V = ϕ∗(x).

2. The descent datum needs to be effective. i.e. For all étale covers by

S−schemes {Ui → U},∀xi ∈ F(Ui), and all isomorphisms aij : xi|Ui×UUj
→

xj |Ui×UUj
satisfying the cocycle condition, there exists x ∈ F(U) and iso-

morphisms ai : x|Ui → xi in F(Ui) such that aij = aj |Ui×UUj ◦ ai|−1Ui×UUj
.

We can try to understand this definition from the perspectives of Bunn/S, S a

scheme. This is the category of vector bundles of rank n over U ∈ Sch/S, with

morphisms pullbacks, i.e. there is a morphism M/U → M ′/U ′ if and only if

∃ϕ : U → U ′ an S-scheme morphism such that M = ϕ∗(M ′). Note that Bunn/S

is a category fibered in groupoids by mapping a bundle over U to U ∈ Sch/S,
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and the lifting of arrows the pullback. Moreover, Bunn/S is a stack: Condition

(1) says that isomorphisms of bundles on the same scheme can be defined locally

on an open cover and glued in a unique way. Condition (2) says that line bundles

can be glued.

Remark. Bunn is actually an algebraic stack (Olsson, Definition 8.1.4 and

Lemma 8.1.8), which are stacks with extra properties. The standard reference

for algebraic stacks is Champs Algébriques.

3.1.4 Grothendieck Correspondence between Functions and Sheaves

Let Y be a scheme and Db(Y ) the derived category of ℓ−adic sheaves with con-

structible cohomologies. Given ϕ : Y → X a morphism of schemes, we have the

pullback functor ϕ∗ : Db(X)→ Db(Y ).

Now suppose Y is a scheme over Fq. Then note thatMorSch/Fq
(Spec(Fq), Y ) ∼=Set

Hom(I(Y ),Fq), which is a finite set. The claim is that every F ∈ Db(Y ) gives

rise to a function on MorSch/Fq
(Spec(Fq), Y ). If Y = Spec(Fq), then an ob-

ject of Db(Y ) is a complex of finite-dimensional Ql-vector spaces, acted on by

Gal(Fq/Fq) ∼= πet
1 (Spec(Fq)). Note that the action of the Frobenius element of

Gal(Fq/Fq) ∼= Ẑ = lim←−Z/nZ. The Frobenius element is the element in Ẑ that

has image 1 under projection to every Z/nZ.6 We define the function to be the

alternating sum of the traces of the Frobenius element.

Remark. Here is the action of Gal(Fq/Fq) : Firstly note that Ql−vector spaces,

when viewed as schemes over Spec(Fq), which is a point, are trivially étale Ga-

lois covers (note that locally free modules are projective, and projective modules

are flat) of Spec(Fq. Then refer to the definition of the étale fundamental group

6Note that the Frobenius element is a generator of every finite quotient of Gal(Fq/Fq). It

is a topological generator of Ẑ with the Krull topology, i.e. Gal(Fq/Fq) is the closure of the
cyclic subgroup generated by the Frobenius.
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as the inverse limit of automorphism groups of étale Galois covers.

Now let Y be any scheme, F ∈ Db(Y ), then ∀y ∈ Y, let f(y) be the value of

the function defined above for Fy ∈ Db(Spec(Fq)), which is the pullback of F

under inclusion.

Tensor products of complexes give rise to products of functions, and pull-

backs/pushforwards of complexes under scheme morphisms give rise to pull-

backs/pushforwards of functions. Actually many functions come from ℓ−adic

sheaves in this way. For example, given a character on an algebraic group over

Fq, we can construct its corresponding character sheaf.

3.2 Langlands Correspondence

More importantly, we know from the structure theorem that every irreducible

direct summand of Functcusp(GLn(K)\GLn(A)) must be a common eigenspace

of T i
x,∀i. Such decomposition has spectrum {γx}x∈|X|, where γx are conjugacy

classes of diagonal matrices.

In the definition of the étale fundamental group, an implicit fact is that this

definition is functorial. Therefore f ∈ MorSch(X,Y ) with f(x) = y induces

a group homomorphism f∗ : πet
1 (Y, y) → πet

1 (X,x). (Milne, Lectures on Étale

Cohomology, Page 29) Therefore let x ∈ |X| then an irreducible representa-

tion Gal(K/K) ∼= π1(x) → GLn(Ql) induces an irreducible representation of

π1(X,x).

Remark. Note that an irreducible representation σ : πet
1 (X,x)→ GLn(Ql) can

be viewed as an ℓ−adic sheaf on Xet. This is because under the Krull Topology

on Xet, we can consider the maximal compact subgroup of π1(X,x). Then the

irreducible ϕ′s can be regarded as lisse (each Fn is locally constant, Stacks Project
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Section 64.18) ℓ−adic sheaves on Xet. (This correspondence can be found on

Milne, Page 164, in a comment right after the definition of ℓ−adic sheaves)

Now consider the Frobenius conjugacy class of x in Gal(K/K), and its image

in π1(X,x). Then under σ, we have a conjugacy class Ax in GLn(Ql). Now take

σx to be the conjugacy class of the semisimple part of any element in Ax. This

exists and is well-defined by the Jordan-Chevalley decomposition theorem.

We say σ and π, a cuspidal automorphic representation of GLn(A) correspond

in the sense of Langlands if ∀x ∈ |X|, σx = γx, where γx is as we defined be-

fore. The Langlands Conjecture (proven by Drinfeld for n = 2 and Lafforgue

for n = 3) states that under the Langlands correspondence, there is a bijection

between the set of σ’s and π’s.

3.3 Hecke Operators and Vector Bundles

3.3.1 GLn(K)\GLn(A)/GLn(O)

Let Bunn denote the isomorphism classes of rank-n vector bundles on X.

We know that GL1(K)\GL1(A)/GL1(O) is the divisor class group, which is

in bijection with the group of line bundles. (i.e. For any line bundle S, ∃D

such that S = OX(D + M), for any principal divisor M) In other words

GL1(K)\GL1(A)/GL1(O) ∼=Set Bun1. The same can be said for arbitrary n,

since any rank-n vector bundle can be trivialized as Kn at the generic point

of X and On
x at all other x ∈ |X|, and the quotienting are merely changes of

trivializations.
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3.3.2 Hecke Operators and Bunn

For x ∈ |X|, denote Hi
x the set of isomorphism classes of triples (M,M ′, β)

where M,M ′ ∈ Bunn and β an embedding of M into M ′ such that M ′/β(M)

has length i and is (noncanonically) isomorphic to kix. Here kx = Ox/mx is the

residue field at x. Now we have functions h← : Hi
x → Bunn, (M,M ′, β) 7→ M

and h→ : Hi
x → Bunn, (M,M ′, β) 7→M ′. Now we have the following

Proposition 3.1. ∀x ∈ |X|, (h←)−1(M)x ∼=Set Gr
i(Mx), where Gr

i(Mx) is the

ith Grassmannian of Mx as a kx−vector space. Similarly, (h→)−1(M ′)x ∼=Set

Grn−i(M ′x).

To prove this, view β as an injection of coherent sheaves and consider the

short exact sequence

0 ker(β|x) Mx M ′x (M ′/β(M))x 0

Note that since kx are finite fields, the fibers have finite cardinality. Here is the

main claim of this subsection:

Theorem 3.1. Under the correspondence between Bunn and GLn(K)\GLn(A)/GLn(O),

we have the following: if f is a function on Bunn, then (h→)!(h
←)∗(f) = T i

x(f).

Here ∗ means pull-back, and ! means summation along the fibers.

Remark. We have the diagram Bunnh
← ← Hi

x
h→

→ Bunn. Therefore (h←)∗(f)

is a function on Hi
x.

3.4 Cuspidality and Flag Manifolds

Consider the set of flags Flnn1,n2
, with n1+n2 = n, corresponding to isomorphism

classes of short exact sequences 0 M1 M M2 0 . Then

we have natural maps Bunn
p← Flnn1,n2

p→ Bunn1
×Bunn2

. Then f is cuspidal

15



if and only if q!p
∗(f) = kf for some k for any n1, n2. Observe the similarity

to the definition of the Hecke operators via vector bundles, and remember the

decomposition in Proposition 2.1, and that a function is cuspidal if and only if

it is in the eigenspace of each T i
x.

4 Formulation of Geometric Langlands using Stacks

4.1 Derived Category of ℓ−adic sheaf

Firstly, let F be an S−stack. We first define a quasi-coherent sheaf on F .

Recalled that F p→ S is a category fibered into groupoids. Then a quasi-coherent

sheaf on Y consists of the following data:

1. For each object f ∈ F , a quasi-coherent sheaf Af on p(f) ∈ Sch/S.

2. For each morphism H : f → g in F , with h = p(H), an isomorphism

ϕH : h∗(Ag)
∼=→ Af that satisfies the cocycle condition.

For a more technical definition using the method of descent (for a more detailed

account, refer to Olsson, section 4.3) Now let Y be a category fibered into

groupoids over Spec(Fq).

Remark. We can similarly use the descent method to define ℓ−adic sheaves

on F . Now it makes sense to define Db(Bunn) and then define the function on

Bunn(U), U ∈ Sch/Spec(Fq) corresponding to F ∈ Db(Bunn), satisfying similar

properties as in the case of schemes.

4.2 ”Local” and ”Global” Hecke Stacks

Fixing x ∈ |X|, define the local Hecke stack Hi
x by the condition: for scheme

S/Spec(Fq), we define Hi
x(S) to be the category of triples (M,M ′, β), with M

and M ′ rank-n vector bundles on X × S and β an embedding M ↪→ M ′ of
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coherent sheaves, such that M ′/M is a rank-i vector bundle on {x} × S and

vanishes elsewhere. We can similarly define h→, h← : Hi
x → Bunn. The fiber of

h← is a scheme isomorphic to Gri(Mx) and the fiber of h→ is a scheme isomor-

phic to Grn−i(M
′

x). Define the Hecke Functors: Db(Bunn) → Db(Bunn),F 7→

(h→)!(h
←)∗(F)[i(n − i)], where the bracket denotes the shift functor on the

derived category.

Remark. Note that Hi
x, as a set, is in bijection with the set of isomorphism

classes of Fq-points of Hi.

Now define the global Hecke stackHi byHi(S) (for S ∈ Sch/Spec(Fq)) being

the category of (ϕ,M,M ′, β). Here, ϕ ∈ HomSch/Spec(Fq)(S,X), and M ′/M is a

rank-i vector bundle supported on the graph of ϕ in X × S. We can similarly

define h← and h→. Let s : Hi → X, (ϕ,M,M ′, β) 7→ ϕ. Then define the Hecke

functor Ti : D
b(Bunn)→ Db(X × Bunn),F 7→ (s× h→)!(h

←)∗(F)[i(n− i)].

4.3 Hecke Eigensheaves and Geometric Langlands

Let σ be a representation of the étale fundamental group in Ql and Eσ the

corresponding ℓ−adic sheaf on X, as defined before. An Fσ is a Hecke eigen-

sheaf with respect to σ if for every i, T i(Fσ) ∼= ∧i(Eσ)⊠Fσ, where ∧i(Eσ)⊠Fσ

is an element in Db(X × Bunn). Here ⊠ denotes the external tensor product:

let X be an A−module, Y a B−module, p1 and p2 the two projections. Then

X ⊠ Y is the A×B−module p∗1(X)⊗A×B p∗2(Y ).

Remark. If Fσ is an eigensheaf with respect to σ, then the corresponding func-

tion on GLn(K)\GLn(A)/GLn(O) is an eigen-function for the Hecke operators.

The Geometric Langlands conjecture predicts that for each irreducible σ,

there exists a cuspidal Hecke eigen-sheaf Fσ. (Cuspidality again defined by con-

ditions on rnn1,n2
.
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