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ABSTRACT

THE MODULI SPACE OF SINGULAR GREAT CIRCLE FIBRATIONS OF S3 AND THEIR

DYNAMICS

Jingye Yang

Herman R. Gluck

The Hopf fibrations of S3 by great circles are one of the most important examples of the great

circle fibrations of S3, and have plenty of important geometric and topological features. The other

great circle firbations of S3 will deformation retract to the subspace of Hopf fibrations and thus

has the homotopy type as S2 ∪ S2. Among these great circle fibrations, only very few of them

are differentiable. Starting from there, we expand the category of classic great circle fibrations of

S3 to the category of general great circle fibrations of S2, containing classic great circle fibrations

as its subspace and other fibrations called singular great circle fibrations of S3. We will show

that the moduli space of general great circle fibratioins have parellel properties as classic great

circle fibrations. Specifically, the moduli space of general great circle can be characterized as weakly

distance-decreasing maps between two unit S2’s with degree 0, while the classic great circle fibrations

are corresponding to strictly distance-decreasing maps. We also visualize the formation of the

standard singular fibration from a path of non-singular great circle fibrations starting from a Hopf

fibration. In the end, we proved that the smooth great circle fibrations of S3 are dense in the moduli

space of general great circle fibrations of S3.
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CHAPTER 1

INTRODUCTION

1.1. Background

Think of a fiber bundle in which the fibers start to move around in the total space until some

kind of singularity develops: perhaps some fibers bump into one another so that they are no longer

disjoint, while other fibers may develop their own individual singularities. To separate these two

phenomena from one another in a low-dimensional setting, we focus on fibrations of the three-sphere

by great circles, and ask how these great circle fibers can move about within the three-sphere, until

they first bump into one another. The advantage in starting this way is that we already know a

concrete moduli space for the family of all smooth fibrations of the three-sphere by great circles:

there are two components, according to right or left-handed screw sense, and a moduli space for

each component is the family of all smooth mappings f : S2 → S2 with |df | < 1 at each point. Each

component deformation retracts to its subspace of constant maps, and these in turn correspond to

the space of Hopf fibrations with given screw sense.

One kind of singularity formation is loss of differentiability while still remaining a continuous fibra-

tion ... not easily visible to the naked eye. But another kind of singularity formation is visually

striking, with some great circle fibers intersecting their neighbors at a pair of antipodal points like

longitudes meeting at the poles, while at the same time in a different location, other fibers are

crossing one another like the many vapor trails of airplanes in the sky ... all happening in spite of

this singular fibration being a limit of nonsingular smooth fibrations.

1.2. Organization

This thesis is organized in the following way. We will first introduce some definitions and lemmas

which will be helpful for the rest of this work.

In Chapter 2, we will describe the structure of the oriented Grassmann manifold G̃2R4. Explicitly,

we will show and prove two equivalent ways to characterize G̃2R4:
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Theorem 1. Consider R4 as the space of quaternions, we will have two different correspondences

of G̃2R4 as S2 × §2:

1. Consider an oriented 2-plane in R4 as a 2-algebra, then used the Hodge star operator to

decompose the oriented Grassmannian G̃2R4

2. Directly map a 2-algebra a ∧ b to S2 × S2 via (a−1b, ba−1)

and these two correspondences are identical.

This theorem helps us to understand the geometric structure of G̃2R4 and facilitate the proof of our

main theorem in the following chapters.

In Chapter 3, we will give an overview of the moduli space of the great circle fibrations of S3 and

its homotopy type, following the argument by H. Gluck and F. Warner.

In Chapter 4, we will prove our first main theorem:

Theorem 2. The moduli space of all (non-singular or singular) great circle fibrations over S3 is

the closure of the moduli space of non-singular great circle fibrations of S3 in the compact-open

topology and consists of two connected components, each of which corresponds to the family of all

continuous maps f : S2 → S2 which

1. have degree zero and

2. are weakly distance-decreasing, that is, d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ S2 .

With this main theorem, we will discover the dynamics of the continuous formation of a singular

fibration from a path of (smooth) non-singular fibrations. This result will be elaborated with

animation in Chapter 5. Meanwhile, we will prove the homotopy type of such moduli space of all

great circle fibrations over S3:

Theorem 3. Each component of this enlarged moduli space still deformation retracts to its subspace

of constant maps, corresponding to the Hopf fibrations with a given screw sense so that it has the

2



homotopy type of the disjoint union of two copies of S2.

In Chapter 6, inspired by the dynamics of a specific example in Chapter 5, we will prove a general

"smooth approximation" result as our last main theorem:

Theorem 4. The smooth great circle fibrations of the three-sphere are dense in the continuous

ones in the compact-open topology, and therefore dense in all great circle fibrations (singular or

non-singular.)

3



CHAPTER 2

THE GRASSMANN MANIFOLD G̃2R4

2.1. Introuction

We will first give the definition of Stiefel manifold :

VkRn = {(v1, .., vk)T | vi ∈ Rn for i = 1, ..., k is an orthonormal subset}

It has the induced topology as the subsapce of Rkn. Notice that O(n) acts on VkRn smoothly and

transitively with the isotropy subgroup O(n − k), we know VkRn ∼= O(n)/O(n − k). If k < n, we

also have Vk
∼= SO(n)/SO(n − k). The general Grassmann manifold (also called Grassmannian)

G̃kRn is a space that consists of all oriented k-dimensional linear subspaces of the n-dimensional

real vector space Rn. We can define a quotient topology on it induced from the Stiefel manifold

VkRn. Specifically, let

p : VkRn 7→ G̃kRn

be the quotient map that takes the tuple of k orthonormal vectors to the oriented subspace spanned

by these vectors. In addition, we can check that VkRn ∼= O(n)/O(n − k) as a lie group acts on

G̃kRn smoothly and transitively with the isotropy subgroup isomorphic to SO(k), hence

G̃kRn ∼= VkRn/SO(k) ∼= O(n)/(O(n− k)× SO(k))

and this shows that G̃kRn is a homogeneous space. Similarly, we can define the (unoriented)

Grassmannian GkRn as the space of all k-dimensional linear subspaces of the n-dimensional real

vector space Rn, which is isomorphic to O(n)/(O(n−k)×O(k)) as a smooth homogeneous manifold.

From this point forward, we will mainly focus on G̃2R4 or G2R4.
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2.2. G̃2R4 ∼= S2 × S2 in two ways

We will show that G̃2R4 is isomorphic to S2 × S2 in two different ways, using the exterior algebra

or quaternions, both of which make important roles in the following chapters.

The exterior algebra
∧
(V ) of a vector space V over a field K (assume dimV = n) is defined as the

quotient algebra of the tensor algebra T (V ) by the two-sided ideal I generated by all elements of

the form x⊗ x for x ∈ V . The tensor product induced wedge product x∧ y = [x⊗ x] where [x⊗ x]

stands for the equivalent class of x⊗ x in
∧
(V ) = T (V )/I. It is also a graded algebra since

∧
(V ) =

∧0
(V )⊕

∧1
(V )⊕ · · · ⊕

∧n
(V )

where
∧k(V ) is the kth exterior power of V defined as the vector subspace spanned by elements of

the form:

v1 ∧ v2 ∧ · · · ∧ vk , vi ∈ V, i = 1, 2, · · · , k

We also call the element of
∧k(V ) a k-vector.

If V is a Euclidean space with an inner product, it induces the canonical inner product between

decomposable k-vectors in
∧k(V ) as

⟨v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk⟩ = det
(
⟨vi, wj⟩

)
,

and this is extended bilinearly to a non-degenerate inner product on
∧k(V ). We also treated it as

a Riemannian manifold with this standard Euclidean metric. In the following discussion, We will

only work with
∧2(R4).

Let’s define the subspace W ⊂
∧2(R4) of all decomposable 2-vectors u ∧ v such that its length

∥u ∧ v∥ = 1, or equivalently (u, v) is an orthonormal basis of the plane they spanned. Then we

can identify G̃2R4 with W in the following way: let P ∈ G̃2R4 be an oriented two-plane through

the origin in R4, and u,v is an orthonormal basis for P ordered by its orientation, we have the

association

P ↔ u ∧ v

5



Moreover, this association is actually a diffeomorphism, because O(4) acts on W smoothly and

transitively with the isotropy group O(2)× SO(2), and the association is equivariant with respect

to this action. Notice that G̃2R4 has the induced geometry from this association as a Riemannian

submanifold of
∧2(R4). For this reason, we will use oriented 2-plane P or its associated decompos-

able unit 2-vector ωP = u ∧ v interchangeably to represent an element of G̃2R4.

Let’s denote e1, e2, e3, e4 the standard Euclidean basis of R4. The Hodge star operator ∗ is defined

as the unique linear operator

∗ :
∧2

(R4) 7→
∧2

(R4)

such that

∗(ei ∧ ej) = ek ∧ el

where i, j, k, l is any permutation of {1, 2, 3, 4} and ei ∧ ej ∧ ek ∧ el = e1 ∧ e2 ∧ e3 ∧ e4. For example

∗(e1 ∧ e2) = e3 ∧ e4, ∗(e1 ∧ e3) = −e2 ∧ e4, etc.

Since ∗ is an involution and symmetric operator, it has two eigenvalues 1 and −1 associated with

two orthogonal eigenspaces. Explicitly, H. Gluck and F. Warner proved that:

Theorem 2.2.1.
∧2(R4) has an orthogonal direct sum decomposition into two eigenspaces associated

with the Hodge star ∗’s 1 and −1 eigenvalues.

∧2
(R4) = E− ⊕ E+

ω =
ω − ∗ω

2
+

ω + ∗ω
2

and we have 6 fixed bais vectors

b−1 =
e1 ∧ e2 − e3 ∧ e4

2
, b−2 =

e1 ∧ e3 + e2 ∧ e4
2

, b−3 =
e1 ∧ e4 − e2 ∧ e3

2
(2.1)

for E−,

b+1 =
e1 ∧ e2 + e3 ∧ e4

2
, b+2 =

e1 ∧ e3 − e2 ∧ e4
2

, b+3 =
e1 ∧ e4 + e2 ∧ e3

2
(2.2)

6



for E+. They all have length 1√
2

and are mutually orthogonal.

In addition, let S2
− and S2

+ denote the round 2-spheres of radius 1√
2

centered at the origin in the

eigenspaces E− and E+ respectively, then G̃2R4 as a subspace of
∧2(R4) is exactly equal to S2

−×S2
+.

This theorem gives a concrete geometric model of G̃2R4 as a product of two orthogonal 2-spheres

with radius 1√
2
. Next, we will give another description of G̃2R4 with quaternions.

In the quaternion model, we identify R4 with the space of quaternions, namely (a, b, c, d) ∼= a+ bi+

cj + dk. (Notice that We will use (e1, e2, e3, e4) and (1, i, j,k) interchangeably depending on the

context (if we are using exterior algebra model or quaternion model)). Now we can directly define

another diffeomorphism

π : G̃2R4 7→ S2 × S2 (2.3)

that maps the oriented plane P spanned by an orthonormal basis (u, v), to the point (u−1v, vu−1) ∈

S2 × S2. Here "inverse" means the inverse of u, v ∈ R4 as a quaternion, which is equal to its

conjugate ū, v̄. Note that both of the coordinates

π−(u, v) = u−1v and π+(u, v) = vu−1

are pure imaginary quaternions with the norm equal to 1. In fact, both left and right multiplication

of a unit quaternion (u−1 in our case) are rotations of R4, taking the orthonormal basis (u, v) into

the other orthonormal bases (1, u−1v) and (1, vu−1). Therefore, both S2’s are the unit spheres in

the subspace of pure imaginary quaternions (i.e. spanned by i, j and k).

It is useful to write down π’s inverse. For a pair of pure imaginary quaternion (a, b). We have

π−1(a, b) = ⟨c, ca⟩ the oriented plane spanned by c and ca, where c is the midpoint of any geodesic

arc connecting them on S2. This can be confirmed through a simple computation, utilizing the fact

that conjugation by a pure imaginary quaternion results in the rotation of the 2-sphere around that

quaternion by π radians.

In the next section, we will prove that given suitable bases, these two models of G̃2R4 are identical,

despite the different scales of geometry (the quaternion model has
√
2 times larger norm)

7



2.3. Equivalence of two models of G̃2R4

In this section, we will prove the following theorem

Theorem 2.3.1. By matching the bases (5.2), (5.3) for exterior algebra model with the basis (i, j,k)

for the quaternion model, these two ways of G̃2R4 ∼= S2 × S2 are identical.

Before we start the proof, let’s define several notations for convenience and clarity. For any oriented

plane P ∈ G̃2R4, assume its associated 2-vector ωP = u ∧ v for an orthonormal frame u, v ∈ P .

Then its exterior algebra model maps ωP to (ωP−∗ωP
2 , ωP+∗ωP

2 ) ∈ S2
−×S2

+. It can be further written

in the coordinate with respect to b−1 , b
−
2 , b

−
3 and b+1 , b

+
2 , b

+
3 . Namely,

ωP − ∗ωP

2
= x1b

−
1 + x2b

−
2 + x3b

−
3 (2.4)

and
ωP − ∗ωP

2
= y1b

+
1 + y2b

+
2 + y3b

+
3 (2.5)

where
∑3

i=1 x
2
i =

∑3
i=1 y

2
i = 1. We will use ((x1, x2, x3), (y1, y2, y3)) to represent the coordinate of

P in the exterior algebra model in the proof.

In the quaternion model, P = ⟨u, v⟩ where u and v will be treated as two unit orthogonal quater-

nions. According to 2.3, P = ⟨u, v⟩ was mapped to (u−1v, vu−1) ∈ S2 × S2. Under the basis i, j,k

for both of S2, it can be written as

u−1v = x̃1i+ x̃2j+ x̃3k (2.6)

and

vu−1 = ỹ1i+ ỹ2j+ ỹ3k (2.7)

where, similar to the case of the exterior algebra model,
∑3

i=1 x̃
2
i =

∑3
i=1 ỹ

2
i = 1. We also use

((x̃1, x̃2, x̃3), (ỹ1, ỹ2, ỹ3)) as its coordinate in the quaternion’s model. Then the theorem is equivalent

8



to say

((x1, x2, x3), (y1, y2, y3)) = ((x̃1, x̃2, x̃3), (ỹ1, ỹ2, ỹ3)) (2.8)

Proof. First, assume P passes through the real line (x-axis) and P = ⟨u, v⟩ = ⟨1, v⟩ or ⟨e1, v⟩. In

this case, v = v1e2 + v2e3 + v3e4 = v1i+ v2j+ v3k. Notice that

ωP = 1 ∧ v

= v1e1 ∧ e2 + v2e1 ∧ e3 + v3e1 ∧ e3

= v1(b
−
1 + b+1 ) + v2(b

−
2 + b+2 ) + v3(b

−
3 + b+3 )

(2.9)

Therefore, P = ωP has the coordinate ((x1, x2, x3), (y1, y2, y3)) = ((v1, v2, v3), (v1, v2, v3)) in the

exterior algebra model.

Now let’s treat 1, v as quaternions and we have that

(1−1 · v, v · 1−1) = (v, v) = (v1i+ v2j+ v3k, v1i+ v2j+ v3k) (2.10)

This shows that P has the coordinate ((x̃1, x̃2, x̃3), (ỹ1, ỹ2, ỹ3)) = ((v1, v2, v3), (v1, v2, v3)) in the

quaternion model. Therefore, 2.8 is true when P passes through the real line.

Now let’s assume P is an arbitrary plane. We know that left and right multiplication of unit

quaternion in R4 is equivalent to some rotation in SO(4), we can define a quaternion action on a

decomposable 2-vector by element-wise multiplication, i.e. q · (u∧ v) = qu∧ qv and expand linearly

to all 2-vectors. Because of the definition and linearity, it’s easy to check that this quaternion action

commutes with the Hodge star automorphism ∗ on any 2-vectors. For example, q · (∗(u ∧ v)) =

∗(q · (u ∧ v)).

Now, let u−1 act on ωP = u ∧ v, we have u−1 · ωP = 1 ∧ u−1v. Moreover, we can compute its

9



decomposition into S2
− × S2

+ in the exterior algebra model as follows

u−1 · ωP = (
u−1 · ωP − ∗(u−1 · ωP )

2
,
u−1 · ωP + ∗(u−1 · ωP )

2
)

= (
u−1 · ωP − u−1 · (∗ωP )

2
,
u−1 · ωP + u−1 · (∗ωP )

2
)

= (u−1 · ωP − ∗ωP

2
, u−1 · ωP + ∗ωP

2
)

= u−1 · (ωP − ∗ωP

2
,
ωP + ∗ωP

2
)

(2.11)

The equation above suggests that we can first compute the coordinate of u−1 · ωP in the exterior

model and then let u act on it to recover the coordinate of ωP = (ωP−∗ωP
2 , ωP+∗ωP

2 ), which is our

goal. Notice that the first and the third equations of 2.11 imply that E− and E+ are invariant

subspaces under the action of left multiplication.

Assume that u−1v = k1e2+k2e3+k3e4 or equivalently = k1i+k2j+k3k, then from previous argument

for P passing through the real line, we know u−1 ·ωP = (k1b
−
1 +k2b

−
2 +k3b

−
3 )+(k1b

+
1 +k2b

+
2 +k3b

+
3 ).

Therefore, we have

ωP = (k1u · b−1 + k2u · b−2 + k3u · b−3 ) + (k1u · b+1 + k2u · b+2 + k3u · b+3 ) (2.12)

Therefore, we only need to compute the action of u on these 6 basis vectors u ·b−i and u ·b+i which is

much simpler than directly computing ωP ’s coordinate of the exterior model. This is the essence of

using this group action. For convenience, we will denote u = u1+u2e2+u3e3+u4e4 or equivalently

= u1 + u2i+ u3j+ u4k in the following computatioin.

10



Let’s compute the first part of 2.12. Specifically, we have

u · b−1 = u · e1 ∧ e2 − e3 ∧ e4
2

=
ue1 ∧ ue2 − ue3 ∧ ue4

2

=
(u1e1 + u2e2 + u3e3 + u4e4) ∧ (−u2e1 + u1e2 + u4e3 − u3e4)

2

− (−u3e1 − u4e2 + u1e3 + u2e4) ∧ (−u4e1 + u3e2 − u2e3 + u1e4)

2

=
(u21 + u22 + u23 + u24)e1 ∧ e2 − (u21 + u22 + u23 + u24)e3 ∧ e4

2

=
e1 ∧ e2 − e3 ∧ e4

2

= b−1

since u21 + u22 + u23 + u24 = ∥u∥ = 1.

We can compute the action on the other 5 basis vectors exactly in the same way, and have that

u · b−i = b−i , for i = 1, 2, 3 (2.13)

and

(
u · b+1 u · b+2 u · b+3

)
=

(
b+1 b+2 b+3

)
1− 2(u23 + u24) 2(u2u3 − u1u4) 2(u2u4 + u1u3)

2(u2u3 + u1u4) 1− 2(u22 + u24) 2(u3u4 − u1u2)

2(u2u4 − u1u3) 2(u3u4 + u1u2) (1− 2(u22 + u23))

 (2.14)

We denote the rotation matrix in 2.14 as Mu.

With 2.13 and 2.14, we finally have the coordinate ((x1, x2, x3), (y1, y2, y3)) of ωP in the exterior

algebra model:

(x1, x2, x3) = (k1, k2, k3)

(y1, y2, y3) = (k1, k2, k3) M
T
u

(2.15)
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Next, we will compute the coordinate ((x̃1, x̃2, x̃3), (ỹ1, ỹ2, ỹ3)) of ωP in the quaternion model.

Remember that P = ⟨u, v⟩ in quaternion model with basis i, j,k is mapped to (u−1v, vu−1) =

(u−1v, u(u−1v)u−1) = ((x̃1, x̃2, x̃3), (ỹ1, ỹ2, ỹ3)). The first entry u−1v equals k1i+k2j+k3k thus has

the coordinate (x̃1, x̃2, x̃3) = (k1, k2, k3).

For the second entry, it is exactly the rotation of R3 by unit quaternion conjugation. Specifically,

if we have p = p1i + p2j + p3k in the 3-dimensional space considered as a quaternion with a real

coordinate equal to zero, and q = q1 + q2i + q3j + q4k is a unit quaternion, then p′ = qpq−1 =

p′1i+p′2j+p′3k is another vector in the 3-dimensional space by spatial rotation and can be computed

with matrix multiplication as


p′1

p′2

p′3

 =


1− 2(q23 + q24) 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) 1− 2(q22 + q24) 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) (1− 2(q22 + q23))



p1

p2

p3

 (2.16)

Now if we let p = u−1v and q = u, according to 2.16, we have


ỹ1

ỹ2

ỹ3

 =


1− 2(u23 + u24) 2(u2u3 − u1u4) 2(u2u4 + u1u3)

2(u2u3 + u1u4) 1− 2(u22 + u24) 2(u3u4 − u1u2)

2(u2u4 − u1u3) 2(u3u4 + u1u2) (1− 2(u22 + u23))



k1

k2

k3

 (2.17)

With 2.17, we finally have

(x̃1, x̃2, x̃3) = (k1, k2, k3)

(ỹ1, ỹ2, ỹ3) = (k1, k2, k3) M
T
u

(2.18)

Comparing (2.15) and (2.18), we come to the conclusion that these two models of G̃2R4 ∼= S2 × S2

are identical.

12



CHAPTER 3

GREAT CIRCLE FIBRATIONS OF S3

3.1. Introduction

In this chapter, we will breifly describe the results in the paper by Herman Gluck and Frank Warner,

which discussed important properties of the moduli space of (non-singular) great circle fibrations of

S3.

Their work contains four main theorems:

What does an oriented great circle fibration of S3 look like as a submanifold of G̃2R4? The answer

is

Theorem 3.1.1 (Gluck and Warner). A submanifold of G̃2R4 ∼= S2×S2 corresponds to a fibration

F of S3 by oriented great circles if and only if it is the graph of a distance decreasing map f from

either S2 factor to the other.

Then, they discuss the smoothness property of F and its associated map f :

Theorem 3.1.2 (Gluck and Warner). The great circle fibration F is differentiable if and only if the

corresponding distance decreasing map f is differentiable with |df | < 1. Inspired by the Borsuk-Ulam

theorem, they showed

Theorem 3.1.3 (Gluck and Warner). Any fibration of S3 by great circles must contain some

orthogonal pair of circles.

At last, they prove the homotopy type of such moduli space

Theorem 3.1.4 (Gluck and Warner). The space of all oriented great circle fibrations of S3 defor-

mation retracts to the subspace of Hopf fibrations, and hence has the homotopy type of a pair of

disjiont two-spheres.

Since our work is closely related to the theorem 3.1.1, 3.1.2, and 3.1.4, we will give a quick review
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on these results. We will refer to the paper by Herman Gluck and Frank Warner as [GSF] for

convenience.

3.2. Non-singular great circle fibrations

in the paper [GSF], they rely on the first model of G̃2R4 ∼= S2 ×S2 introduced in Chapter 2, where

they treat each fiber as a 2-vector in
∧2(R4).

In this model, a family of oriented great circle on S3 will correspond to a subspace of G̃2R4. In

general, this family of oriented circles will neither be disjoint from one another, nor will their union

be all of S3. So theorem 3.1.1 describes the submanifolds of the Grassmannian G̃2R4 which avoid

these pitfalls, and hence represent oriented great circle fibrations of S3. Namely, the corresponding

subspace of G̃2R4 should be the graph of some distance decreasing map f from one S2 to the other.

But it doesn’t answer how singularity of fibrations will develop as some fibers are bumped into each

other or they never cover the whole S3. We discuss this in rigorous details in Chapter 3, Chapter

4 and Chapter 5.

Based on this correspondence, they also notice that F is a smooth oriented great circle fibration of

S3, then the corresponding distance decreasing map f is also differentiable, and theorem 3.1.2 gives

a necessary and sufficient statements between the smoothness of these two categories. However, we

know there are plenty of non-differentiable distance-decreasing maps between round two-spheres.

Hence there are plenty of non-differentiable great circle fibrations of S3 as well. This encourges

us to prove that the smooth ones are actually dense in the continuous ones in the open-compact

topology. Details are in the chapter 6.

Finally, it is worthwhile to mention that the space of all Hopf fibrations (namely, translate the stan-

dard canonical Hopf fibration by an orthogonal matrix in O(4)) are corresponding to the constant

maps f ’s from one S2 to the other, and therefore a disjoint union of two copies of S2.

3.3. Homotopy type of the moduli space

Since the family of Hopf fibrations are in the center of the all great circle fibrations of S3 and they

carry many good properties, they proved theorem 3.1.4 in the [GSF] that the moduli space of all
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great circle fibrations will deformation retracts to the subsapce of Hopf fibrations, and thus the

moduli space of all great circle fibrations has the homotopy type of S2 ∪ S2. In the proof, they

relied on the important result, "Borsuk–Ulam theorem", which implies the closed image of strictly

distance-decreasing map f : S2 7→ S2 assoicated to a fibration F will be contained in a unique

closed spherical cap.

We will show the same type of results for general great circle fibrations including singular ones.

The proof has the similar flavor as the proof of theorem 3.1.4 but with different treatments using

Borsuk–Ulam theorem. We will give the details argument in Chapter 4.

In the end, we want to emphasize again that we will treat the following objects as exactly identical

through the whole work: an orineted 2-plane P , the oriented unit circle (fiber) C ⊂ P , a pair of

orthonormal basis ⟨u, v⟩ ∈ P and a point of the oriented Grassmann manifold G̃2R4.
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CHAPTER 4

SINGULAR FIBRATIONS OF S3 BY GREAT CIRCLES

4.1. Introduction

In Chapter 3, we demonstrated that the moduli space of non-singular great circle fibrations of S3

can be described as mapping spaces of strictly distance-dicreasing maps f : S2 7→ S2. In this

chapter, we will enlarge our target category, and consider "singular fibrations" as well.

One envisions a great circle fibration within this moduli space where the fibers begin to shift within

the total space until a singularity arises: perhaps some fibers bump into one another, so that they

are no longer disjoint, while other fibers may develop their own individual singularities.

To separate these two phenomena from one another in a low-dimensional setting, we focus on the

fibrations of the three-sphere by oriented great circles and investigate "how these great circle fibers

can move about within the three-sphere until they first bump into one another". We call these

fibrations "singular fibrations of S3."

The advantage of starting this way is that we already know a concrete moduli space for the family

of all continuous (smooth) fibrations of the three-sphere by oriented great circles: there are two

components, according to right or left-handed screw sense, and a moduli space for each component

is the family of all smooth mappings f : S2 7→ S2 with ∥df∥ < 1 at each point. If we are in

the category of continuous fibrations instead of smooth fibrations, then "the family of all smooth

mappings f : S2 7→ S2 with ∥df∥ < 1 at each point" will be loosened to "the family of all distance-

decreasing mappings f : S2 7→ S2".

Based on this, we will give a rigorous argument of singular great circle fibrations of S3 and the

moduli space of all great circle fibrations (singular or non-singular). Explicitly, we will prove that:

Theorem 4.1.1. The singular and non-singular great circle fibrations of the three-sphere correspond

to two copies of the family of all continuous maps f : S2 7→ S2 which
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1. has degree zero, and

2. are weakly distance-decreasing, that is, d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ S2.

4.2. Enlarged moduli space of great circle fibrations of S3 with singular fibrations

In this section, we will first introduce the definition of singular great circle fibrations and their

topology. Later we will prove the main theorem presented in the Introduction section.

4.2.1. Singular great circle fibrations

Recall in Chapter 3, we learned that the moduli space of (non-singular) great circle fibrations of S3

corresponds to two copies of all strictly distance-decreasing continuous maps f : S2 → S2. let’s call

this moduli space G. Moreover, it is endued with compact-open topology as a subspace of C(S2, S2),

the mapping space of all continuous maps on the two-sphere. Inspired by this result, we are able to

consider a bigger picture of general great circle fibrations.

Definition 4.2.1. The moduli space of general great circle fibrations of S3, denoted as SG, is the

closure of each component of the moduli space G (all continuous non-singular great circle fibrations of

S3) in the mapping space C(S2, S2) with compact-open topology. Therefore, the singular fibrations

are defined as those in the complement SG \ G.

Notice that for non-singular fibrations, its corresponding map f : S2 7→ S2 is strictly distance-

decreasing, and then must have degree zero since its image can’t be the whole S2. Therefore, we

hypothesize that for all general great circle fibrations, their associated maps will all have degree 0

and weakly distance-decreasing. This again leads to the main theorem of this Chapter.

It is useful to point out that the compact-open topology imposed on C(S2, S2) is the same as the

topology induced from the uniform metric d(f, g) = sup{d(f(x), g(x)), x ∈ S2}, since both S2’s

are compact metric spaces. Therefore, any singular fibration can be approximated uniformly by a

sequence of continuous non-singular fibrations in G, or speaking equivalently, a sequence of strictly

distance-decreasing maps.
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4.2.2. Proof of main theorem

In this section, we will give detailed proof of the main theorem 4.1.1.

Proof. ("⇒") Given any singular great circle fibrations of S3, called F̃ with corresponding map

f : S2 → S2, by definition 4.2.1, it can be approximated uniformly (or in contact-open topology)

by a sequence of continuous fibrations Fn ∈ G with corresponding maps fn : S2 → S2. Therefore,

we have

d(fn(x), fn(y)) < d(x, y), (4.1)

for x, y ∈ S2.

Moreover,

d(f(x),f(y)) ≤ d(f(x), fn(x)) + d(fn(x), fn(y)) + d(fn(y), f(y))

< d(f(x), fn(x)) + d(x, y) + d(fn(y), f(y)), (4.2)

Now let n → ∞, we have

d(f(x), f(y)) ≤ d(x, y) x, y ∈ S2 (4.3)

This proves the second neccesary condition of the theorem 4.1.1.

To show the degree of f is 0, we need to look at previous results from Chapter 3. By Borsuk–Ulam

theorem we know the image of any fn ∈ G of a continous great circle fibration will always stay in

an open hemisphere. Since f can be approximated uniformly by fn, f ’s image will also stay in an

open disk of S2 (we will show later it will stay in a closed hemisphere as well). This implies f is

null-homotopic, and therefore has degree 0.

("⇐") In the other hand, given a weekly distance decreasing map with degree zero, we know it

is null-homotopic by Hopf Degree theorem. To proceed, let’s prove a lemma from Borsuk–Ulam

theorem
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Lemma. Every map f : S2 → S2 which is null-homotopic must take a pair of antipodal points to

the same image.

Proof: Proof by contradiction. If there exists a null-homotopic f : S2 → S2 takes no antipodal pairs

to the same image. Then for each pair of x,−x ∈ S2, we will move points f(x) and f(−x), which

are distinct, along the great circle generated by them at the same speed until they become a pair of

antipodal points. If f(x) already equal −f(−x), they don’t need to move. Specifically, if we imagine

the sphere S2 is center at the origin, then the homotopy H from f to the antipodal-preserving map

g is defined as

H(x, t) =
(1− t)f(x) + t(f(x)−f(−x)

2 )

C
(4.4)

where C = ∥(1− t)f(x) + t(f(x)−f(−x)
2 )∥.

Now H takes f continuously to an antipodal-preserving map g. But we know from the classic

Borsuk–Ulam theorem that this map g must have an odd degree, see [?] for details. Then f will

also have an odd degree, which contradicts the assumption that f is null-homotopic which has a

degree of zero.

Now back to the proof of the main theorem. given a weekly distance decreasing map f with degree

zero, it is null-homotopic and therefore by the lemma above, f must take a pair of antipodal points

to the same image, say f(x∗) = f(−x∗). Because f is weakly distance-decreasing, the image of f

will be contained in a closed hemisphere centered at f(x∗). Now, according to lemma 6.3.7, once we

compress this hemisphere towards its center f(x∗) by a ratio of (1− ϵ), it will immediately become

a strictly distance-decreasing map . By shrinking ϵ, we can approximate uniformly f by a strictly

distance-decreasing map, and this is exactly the definition of f representing a singular great circle

fibration.

This completes the proof of the main theorem 4.1.1.
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4.3. Homotopy type of SG

From theorem 3.1.4, we knew that the space of all oriented (non-singular) great circle fibrations of

S3 will deformation retracts to the subspace of Hopf fibrations. We will adpat the original proof in

the [GSF] to show a strong results

Theorem 4.3.1. The moduli space SG of general great circle fibrations of S3 will deformation

retracts to the subsapce of Hopf fibrations, and hence has the homotopy type of a pair of disjoint

two-sphere.

Proof. From the proof of theorem 4.1.1, we know that the map of f associated to a general great

circle fibration F of S3 (possibly singular) will take a pair of antipodal points, say x∗ and −x∗ to

the same image, and thus the whole image of f will be restrained in a closed hemisphere of centered

at f(x∗). However, this closed hemisphere may not be unique. For example, if the image of f is half

of equator. We cannot use this hemisphere to construct a deformation retraction as in the paper

[GSF].

Instead, let’s look at the image f(S2) in S2 and define its center of mass as

c =

∫
S2

f(x) ds (4.5)

where ds is the area form of S2 such that the center c is weighted sum of position vector f(x).

Notice that f(S2) is contained in some hemisphere, so c is far away from the origin. Hence, we can

orthogonally project c back to the sphere and denote the projected point as c′. Namely, c′ = c
∥c∥ .

Because the continuity of integral and norm function, c′ varies continuously with respect to f ∈ SG

with uniform metric.

Now let’s shrink the image f(S2) along the geodesic towards the center c′ until f(S2) ≡ c′. Obviously

the shrunk maps are still weakly distance-dicreasing with degree zero and thus represents a legit

general great circle fibrations of S3. This shrinking process is continuous as well. Since the final

constant map is a Hopf fibration and all Hopf firations are fixed in the whole process, thus we define
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a deformation retraction of SG to the subsapce of all Hopf Fibrations.

In the end, we have the homotopy type of SG ∼= S2 ∪ S2.
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CHAPTER 5

DYNAMICS OF SINGULARITY FORMATION

5.1. Introduction

In this chapter, we will compute a typical singular great circle fibration on S3, which will be described

below. We will call this singular fibration the "standard" one since it represents a good model for

the family of general singular great circle fibrations on S3 and has an inspiring visualization of its

formation from a path of non-singular ones. We use those two different models of G̃2R4 introduced

in Chapter 2 to achieve this. For consistency, we will follow the same notations and symbols in

Chapter 2 unless otherwise stated.

Specifically, in the second section, we will use the exterior algebra model to compute the positions

of fibers in the standard singular fibration. As a result, We will prove that

Theorem 5.1.1. The standard singular fibration consists of two families of great circles:

1. "The red ones": all the great circles on S3 which run through point 1. Most of them counted

with only one orientation, except for those intersecting with the ⟨i, j⟩-plane, which counted with

both orientations.

2. "The blue ones": all the great circles on S2(1, i, j) ⊂ S3 where S2(1, i, j) means the unit

two-sphere inside the space R3 spanned by 1, i, j. Most of them are counted with only one

orientation, except for those running through the point 1, which counted with both orientations.

"The red ones" and "the blue ones" overlap on those great circle fibers with both orientations counted,

and we call them "the orange ones".

Remark. We will give the definition of "red", "blue" and "orange" fibers in the following section.

In the third section, we will "visualize" how the non-singular great circle fibrations will continuously

develop into the standard singular fibration. We will use the quaternion model to compute the
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position of a specific fiber and stereographically project onto the R3 for visualization.

Before we give the definition of the standard singular fibration, let’s first make some conventions.

In either model (exterior algebra or quaternion) of G̃2R4 ∼= S2
− × S2

+, we will use "−" or "+" to

represent the left or right two-sphere. According to theorem 2.3.1, since both of these two models

are identical once we match their bases (5.2) and (5.3) for exterior algebra model with (i, j,k) for

quaternion model, we will always stick to this matching such that we can benefit from switching

between these two models without interrupting the true underlying fibration. We will also follow

the exact notation of (5.2) and (5.3) for the bases of the exterior algebra model and (i, j,k) for the

basis of the quaternion model. In addition, we will call the planes spanned by ⟨b−1 , b
+
2 ⟩, ⟨b

+
1 , b

+
2 ⟩

and ⟨i, j⟩ in S2
− and S2

+ "equatorial", and call b−3 , b+3 and k the "north poles" lying in the "upper

hemisphere" while −b−3 , −b+3 and −k the "south poles" in the "lower hemisphere". This will help

us visualize the dynamics in the following section.

Now let’s give the definition of the standard singular fibration:

Definition 5.1.1. In either model (exterior algebra or quaternion) of G̃2R4 (there is no difference

since the underlying fibration is identical), we define a "folding" map fs : S2
− 7→ S2

+ (from the left

two-sphere S2
− to the right two-sphere S2

+), as follows:

fs(x) =

{
x if x in the upper hemisphere

fs(x
∗) if x in the lower hemisphere

(5.1)

where x∗ means the reflection through the equatorial circle. e.g., i∗ = i, j∗ = j, k∗ = −k (in the

exterior algebra model); (b+1 )
∗ = b+1 , (b+2 )

∗ = b+2 , (b+3 )
∗ = −b+3 (in the quaternion model), etc.

Notice that here we identify S2
− with S2

+ via corresponding basis vectors (e.g. b−i to b+i , i ∈ S2
− to

i ∈ S2
+, etc).

Then the standard singular fibration is the fibration associated with this distance-decreasing map,

denoted as S.
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5.2. Computation of the standard singular fibration

In this section, we will give an explicit algebraic expression of the standard singular fibration in the

context of exterior algebra model. At the end, we will quickly mention how to reproduce the exact

same results in the quaternion model, which confirms their equivalence again.

5.2.1. Singular fibers of the standard singular fibration

Recall that in Chpater 2, under the correspondence of an oriented plane P spanned by an orthonor-

mal basis ⟨u, v⟩ ∈ P with the unit 2-vecotor ωP = u ∧ v, we show that G̃2R4 ∼= S2
− × S2

+, on which

we fix two convex bases:

b−1 =
e1 ∧ e2 − e3 ∧ e4

2
, b−2 =

e1 ∧ e3 + e2 ∧ e4
2

, b−3 =
e1 ∧ e4 − e2 ∧ e3

2
(5.2)

on S2
−,

b+1 =
e1 ∧ e2 + e3 ∧ e4

2
, b+2 =

e1 ∧ e3 − e2 ∧ e4
2

, b+3 =
e1 ∧ e4 + e2 ∧ e3

2
(5.3)

on S2
+. The decomposition of ωP into these two spheres can be written as

G̃2R4 ∼= S2
− × S2

+

ω =
ω − ∗ω

2
+

ω + ∗ω
2

(5.4)

In Chapter 3 and Chapter 4, we showed how a general great circle fibration, as a submanifold of

G̃2R4, corresponds to a weakly distance-decreasing map from either left S2
− or right S2

+ to the other

one.

With all these backgrounds, We are able to compute each fiber of the standard singular fibration

defined in the definition 5.1.1.

In the equation 5.1, we know the standard singular fibration has two components: one corresponds

to the identity map on the upper hemisphere (called the "red fibers"), while the other corresponds
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to the folding map of the lower hemisphere (called the "blue fibers"). These two components also

intersect at the identity map on the equator (called the "orange fibers"). We will recover each of

them from the graph of fs to the fiberss of S as great circles in S3 ⊂ R4

(1) "Red fibers"

Let’s restrict fs to the upper hemisphere S2
−
∣∣
U

(we will use subscript "U" to mean "upper"), and

consider any point x ∈ S2
−
∣∣
U
. We can expand x with respect to the basis

x = x1b
−
1 + x2b

−
2 + x3b

−
3

(5.5)

where x21 + x22 + x23 = 1 and x3 ≥ 0.

According to the formula (5.1), we have

fs(b
−
1 ) = b+1

fx(b
−
2 ) = b+2

fx(b
−
3 ) = b+3

(5.6)

Combining (5.5) and (5.6), we get

f(x) = x1b
+
1 + x2b

+
2 + x3b

+
3 (5.7)

Therefore, using formula (5.4), we can recover the original great circle fiber Cx corresponding to

(x, f(x)) as

Cx = x+ f(x)

= x1b
−
1 + x2b

−
2 + x3b

−
3 + x1b

+
1 + x2b

+
2 + x3b

+
3

= x1(
e1 ∧ e2 − e3 ∧ e4

2
) + x2(

e1 ∧ e3 + e2 ∧ e4
2

) + x3(
e1 ∧ e4 − e2 ∧ e3

2
)

+ x1(
e1 ∧ e2 + e3 ∧ e4

2
) + x2(

e1 ∧ e3 − e2 ∧ e4
2

) + x3(
e1 ∧ e4 + e2 ∧ e3

2
)

= e1 ∧ (x1e2 + x2e3 + x3e4)

(5.8)
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where x3 ≥ 0 is the only restriction.

The result above shows what "red fibers" looks like on S3 ⊂ R4: they are all the great circles

on S3 which run through point 1. Most of them counted with only one orientation (from 1 to

(x1e2 + x2e3 + x3e4) when x3 > 0), except for those with x3 = 0, which are e1 ∧ (x1e2 + x2e3)

passing through ⟨i, j⟩ plane, with both orientations. This is exactly the theorem 5.1.1 part 1.

(2) "Blue fibers"

For the blue fibers, we will restrict fs to the lower hemisphere S2
−
∣∣
L

(subscript "L" means "lower").

Given any point x ∈ S2
−
∣∣
L
, similar to (5.5), it can be expressed with respect to the basis as

x = x1b
−
1 + x2b

−
2 − x3b

−
3 (5.9)

where x21 + x22 + x23 = 1 and x3 ≥ 0.

With formula (5.1), we have

fs(b
−
1 ) = b+1

fx(b
−
2 ) = b+2

fx(−b−3 ) = b+3

(5.10)

and thus

f(x) = x1b
+
1 + x2b

+
2 + x3b

+
3 (5.11)
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Again, using formula (5.4), we can recover the original great circle fiber Cx corresponding to (x, f(x))

as

Cx = x+ f(x)

= x1b
−
1 + x2b

−
2 − x3b

−
3 + x1b

+
1 + x2b

+
2 + x3b

+
3

= x1(
e1 ∧ e2 − e3 ∧ e4

2
) + x2(

e1 ∧ e3 + e2 ∧ e4
2

)− x3(
e1 ∧ e4 − e2 ∧ e3

2
)

+ x1(
e1 ∧ e2 + e3 ∧ e4

2
) + x2(

e1 ∧ e3 − e2 ∧ e4
2

) + x3(
e1 ∧ e4 + e2 ∧ e3

2
)

= x1e1 ∧ e2 + x2e1 ∧ e3 + x3e2 ∧ e3

= e1 ∧ (x1e2 + x2e3) + x3e2 ∧ e3

= e1 ∧ (x1e2 + x2e3) +
x3
x2

e2 ∧ (x1e2 + x2e3)

= (e1 +
x3
x2

e2) ∧ (x1e2 + x2e3) (if x2 ̸= 0)

(5.12)

where x21 + x22 + x23 = 1 and x3 ≥ 0.

The result above shows what "blue fibers" looks like on S3 ⊂ R4: They consist of all the great

circles on S2(1, i, j) ⊂ S3, the unit two-sphere in the subspace R3 spanned by 1, i, j. If x3 ̸= 0, the

fiber Cx has only one orientation by the "right-hand rule". The right-hand rule means that imagine

you are in the Euclidean space R3 = ⟨1, i, j⟩, then curl the fingers of your right hand in the direction

of the orientation of this blue great circle (from (e1 +
x3
x2
e2) to (x1e2 + x2e3)) and your thumb must

point in the direction of the upper half-space containing j instead of −j. When x3 = 0, this rule

fails unambiguously and all the fibers go through the poles 1 and −1 of the two-sphere S2(1, i, j),

in which case they are counted with both orientations.

Remark. The last expression in the (5.12) requires x2 ̸= 0. If x2 = 0 but x1 ̸= 0, we can used

Cx = (e1 − x3
x1
e3) ∧ (x1e2 + x2e3) instead for visualizaiton. If x1 = x2 = 0, then Cx = e2 ∧ e3. Both

cases confirm the theorem 5.1.1 part 2.

5.2.2. (3)"Orange fibers"

The "Orange fibers" correspond to the fs restricted to the equator, which is the intersection of both

"blue fibers" and "red fibers". In such case, x is simply x1b
−
1 + x2b

−
2 and Cx = e1 ∧ (x1e2 + x2e3).
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Figure 5.1: "Red", "Blue" and "Orange" fibers on the standard singular fibrations S

This can be easily verified via direct computation as above or let x3 = 0 in the equation (5.8) or

(5.12).

Since the only restriction on x1 and x2 is x21 + x22 = 1, the fiber Cx has both two orientations and

are two separate points in the base space of S.

Finally, we show the figures of the standard singular fibrations, and how they lie in G̃2R4 as parts

of two diagonals, repsectively. See Figure 5.1, Figure 5.2a and Figure 5.2b.

5.3. Dynamics of the standard singular fibration

In this section, we will describe how the standard singular fibration is formed through a path of

(continuous) non-singular great circle fibraions on S3. We will use the quaternion model to achieve

the computation.
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(a) (b)

Figure 5.2: "Red fibers" as the main diagonal G1R3 and "blue fibers" as an anti-diagonal G2R3

5.3.1. Formation of the singular fibration

Let’s first define a specific path of continuous great circle fibrations that converges to the standard

singular fibration S.

Definition 5.3.1. A (canonical) path of continuous great circle fibrations, denoted as Ft, converging

to the standard singular fibration S, is defined as the homotopy of the corresponding distance-

decreasing maps ft in either the exterior algebra model or the quaternion model (again, they are

identical). Specifically, for any x ∈ S2
−,

ft(x) =

{
t ·

>
kx if x in the upper hemisphere

ft(x
∗) if x in the lower hemisphere

(5.13)

and t ∈ [0, 1]. Here,
>
kx means the shortest geodesic (i.e. shortest arc of a great circle) connecting

from k, the north pole, to the point x, and t ·
>
kx means the end point of the geodesic evenly shrunk

from
>
kx towards k by a multiplier t to the arc length (or equivalently to the radian).

Remark. It is worthwhile to point out that when t = 1, ft(x) = fs(x), corresponding to the standard

singular fibration S and when t = 0, ft(x) ≡ k, corresponding to the Hopf fibration containing 1∧k
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and i ∧ j. Therefore, this homotopy takes this Hopf fibration F0 continuously throught a path of

great circle fibrations Ft to the standard singular fibration F1 = S.

To understand this formation, let’s focus on the most important subspace, the equatorial torus Tt

of Ft and compute explicitly how it evolves as t grows from 0 to 1. The definition of Tt is

Definition 5.3.2. With the same notation as in 5.3.1, we restrict ft to the equator S1
e of S2

−, then

the map ft
∣∣
S1
e
: S1

e 7→ shrunk S1
e will correspond to a circle worth of great circle fibres, and call it

the equatorial torus Tt.

We have following very important oberservations directly from defintions and previous chapters:

1. When t = 1, Tt is the image of the diagonal map D : S1 7→ G̃2R4 ∼= S2×S2 to the equators of

each S2. This corresponds to the "orange fibers" in the standard singular fibration, consisting

of all oriented fibers passing through 1 and intersecting with the plane ⟨i, j⟩.

2. When t = 0, Tt is exactly the equator of the space S2
− × {k}, which correspond to the Hopf

fibration in the remark above. Therefore, the total space of Tt in S3 is exactly the Clifford

torus in the middle of the three-shere.

3. When 0 < t < 1, Tt will correspond to a path of compressed torus in the middle of S3 as a

subbundle of Ft. They are not flat.

With these critical observations, we can visualize the homotopy ft as the dynmaics of the formation

of the standard singular fibration S.

Specifically, we will use the stereographic projection to project this process into R3 ∪ {∞}.

Definition 5.3.3. The stereographic projection is a map P : Sn 7→ Rn ∪ {∞}. Let N denote the

north pole (0, · · · , 0, 1) of Sn ⊂ Rn+1 and Rn be identified with the hyperplane {x|xn+1 = 0} in

Rn+1. Given any point x = (x1, · · · , xn+1) ∈ Sn \ {N}, then P (x) is the the point of intersection
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of the line Nx with Rn. In coordinates,

P (x) =
(x1, · · · , xn+1)

1− xn+1
(5.14)

We let P (N) := ∞.

Now let’s compute the coordinate of the image of Tt in R3 after stereographic projection. Recall

that we will use the quaternion model in this computation.

Given any point a ∈ S1
e ⊂ S2

− on the equator of the domain two-sphere, which can be represented

as a unit pure imaganiry quaternion a = cos θi+ sin θj for θ ∈ [−π, π], we have that

ft(a) = t ·
>
ka = cos

tπ

2
a+ sin

tπ

2
k (5.15)

To visualize the transformation of Tt, we need to first recover its corresponding fibers in S3. Ac-

cording to the Section 2.2, we have that the corresponding fiber of (a, ft(a)) is ct ∧ cta, where ct is

the midpoint of any geodesic arc connecting a and ft(a) on S2. Therefore, we have

ct = cos
tπ

4
a+ sin

tπ

4
k (5.16)

Hence,

cta = (cos
tπ

4
a+ sin

tπ

4
k)a

= − cos
tπ

4
− sin

tπ

4
ak

(5.17)

Therefore, we recover the fiber associated with (a, ft(a)) as

ct ∧ cta = (cos
tπ

4
a+ sin

tπ

4
k) ∧ (− cos

tπ

4
− sin

tπ

4
ak) (5.18)
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and a point x on this fiber is

x = cosφ(cos
tπ

4
a+ sin

tπ

4
k) + sinφ(− cos

tπ

4
− sin

tπ

4
ak)

= cosφ(cos
tπ

4
(cos θi+ sin θj) + sin

tπ

4
k)

+ sinφ(− cos
tπ

4
− sin

tπ

4
(cos θi+ sin θj)k)

= − sinφ cos
tπ

4
+ (cosφ cos

tπ

4
cos θ − sinφ sin

tπ

4
sin θ)i

+ (cosφ cos
tπ

4
sin θ + sinφ sin

tπ

4
cos θ)j+ cosφ sin

tπ

4
k

(5.19)

where φ ∈ [−π, π].

If we write this in the Euclidean coordinate, we finally have the coordinate for a general point

x ∈ Tt,

x =
(
− sinφ cos

tπ

4
, cosφ cos

tπ

4
cos θ − sinφ sin

tπ

4
sin θ,

cosφ cos
tπ

4
sin θ + sinφ sin

tπ

4
cos θ, cosφ sin

tπ

4

) (5.20)

Next, we will apply the stereographic projection onto this point x, which gives the deserved visual

representative point P (x) as

P (x) =

( − sinφ cos tπ
4

1− cosφ sin tπ
4

,
cosφ cos tπ

4 cos θ − sinφ sin tπ
4 sin θ

1− cosφ sin tπ
4

,

cosφ cos tπ
4 sin θ + sinφ sin tπ

4 cos θ

1− cosφ sin tπ
4

) (5.21)

Finally, we use the Matlab to make the animation to show how the Tt look like in R3 and how it

gradually tansforms from the Clifford torus to the "singular" two-sphere S2(1, i, j). See Figure 5.3.
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(a) Clifford torus inside of a Hopf fibraiton (b) T0.2

(c) T0.4 (d) T0.6

(e) T0.8 (f) singular sphere in the standard singular fibration

Figure 5.3: The development of Tt
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CHAPTER 6

SMOOTH APPROXIMATION OF SINGULAR GREAT CIRCLE FIBRATIONS OF S3

6.1. Introduction

In the previous chapter, we see how a typical singular fibration can be developed continuously

through a path of non-singular fibrations. However, each of these non-singular fibrations is not

differentiable. This is because the folding point on the equator is too "sharp" such that the change

of the velocity when you move from the south pole to the north pole of the domain sphere will break

when you pass the equator.

This incites us to prove the main theorem of this chapter.

Theorem 6.1.1 (Smooth Approximation). The smooth non-singular great circle fibrations of the

three-sphere are dense in the continuous ones in the compact-open topology, and therefore dense in

the moduli space of general great circle fibrations SG.

In another word, any great circle fibration of S3, including singular fibrations, can be approximated

by a sequence of smooth regular great circle fibrations.

In the second section, we will prove this theorem in the following steps:

1. Convert the question of "smooth approximation of the fibrations" into the question of "smooth

approximation of Lipschitz maps",

2. Change the spherical metric on S2 to the Euclidean straight-line metric and construct a smooth

approximation in the R3,

3. Project back to the sphere S2.

Since the proof involves many important technical details which may distract us from understanding

the core ideas, we will move the proof for these details to the last section.
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6.2. Smooth approximation

In this section, we will give a complete proof of the main theorem 6.1.1 in this chapter, putting off

many important technical details to the next section, such that the flow of reasoning will not be

interrupted.

Before we give the proof, let’s first give a quick introduction on Lipschitz maps and some useful

conventions. Recall the definition of Lipschitz continuity:

Definition 6.2.1. Given two metric spaces (X, dX) and (Y, dY ), where dX , dY denote the metrics

on the spaces X and Y , a function f : X 7→ Y is called Lipschitz (continuous) if there exists a real

constant K ≥ 0 such that, for all x1 and x2 in X, dY (f(x1), f(x2)) ≤ K · dX(x1, x2). The smallest

such K will be called the Lipschitz constant of f .

Note that f is distance-decreasing (weakly or strictly) is equivalent to the condition that the Lips-

chitz constant of f is not bigger than 1.

Since we will benefit from two different metrics or distance functions on S2 to give constructive proof

of this theorem, let’s make some important conventions for clarity. Specifically, denote the Euclidean

straight-line distance and the induced spherical distance as e(x, y) and d(x, y) for x, y ∈ S2 ⊂ R3,

e(x, y) = ∥x− y∥

and

d(x, y) = inf{L(λ): λ a piecewise continuously differentiable curve from x to y on S2}

and call the corresponding Lipschitz constants Ke and Kd.

We will also use subscripts to distinguish the domain two-sphere S2
− and the codomain two sphere

S2
+ if necessary. Now we are ready to give the proof of the main theorem 6.1.1.

Proof. Given any continuous great circle fibration F , let’s denote its corresponding continuous map
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on S2 as f : S2 7→ S2. Then we have Kd(f) ≤ 1 and according to Chapter 4, the image of f will

be contained in a hemisphere. Our goal is to construct an arbitrarily close smooth f ′ : S2 7→ S2

with Lipschitz constant Kd(f
′) < 1 such that it corresponds to a smooth non-singular great circle

fibration.

First, we switch to the Euclidean distance function on S2. According to the lemma 6.3.5 in the next

section, Ke(f) ≤ 1 as well. Then we shrink the image of f in the hemisphere towards its center such

that the shrunk fs staying ϵ close to the original map f , where ϵ is arbitrarily small, then by lemma

6.3.7, the Lipschitz constant Ke(fs) is strictly smaller than 1. Let’s assume Ke(fs) ≤ 1−δ(ϵ) where

δ(ϵ) depending on ϵ is positive. This new map, fs, gives us a little room δ(ϵ) for its Lipschitz constant

from 1 but keeps ϵ close to the original map f . If we can approximate this new map fs arbitrarily

close (say within ϵ uniform neighborhood) by a smooth one with a very close Lipschitz constant

(probably bigger but still bounded by a number strictly smaller than 1), then it will correspond to

a smooth great circle fibration which is very close to the original one (less than 2ϵ), which proves

the main theorem. Let’s elaborate above process carefully in steps.

(1) By Kirszbraun’s Theorem (6.3.8), we are able to extend this shrunk fs : S2 7→ S2 ⊂ R3 to a

new map f̄ : R3 7→ R3, with the same Euclidean Lipschitz constant Ke(f̄) = Ke(fs) ≤ 1− δ(ϵ) < 1.

Notice that we are in the category of the straight-line metric now.

(2) According to the important lemma 6.3.9, we can use convolution with a smooth kernel function

to uniformly approximate (in Euclidean distance) f̄ with a smooth map g : R3 7→ R3, and both of

them have the same Lipschitz constant Ke(g) = Ke(f̄). We will choose the map g such that its

image g(x) is uniformly closed to f̄(x), say within an undecided ϵ̃ neighborhood of f̄(x) in R3 for

each x, where the explicit scale of ϵ̃ will be confirmed in the step (3). We restrict g to S2 and also

denote it as g : S2 7→ R3 for simplicity. Notice that its Euclidean Lipschitz constant may be even

smaller after restriction but we will not take advantage of this.

(3) Finally, we project g(S2) Orthogonally (along the radius connecting the origin and g(x)) back to

the original codomain S2 and call this new map f ′ : R3 7→ S2. Notice that this step will (sometimes)
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increase both the distance of the image (i.e. d(f ′(x), f(x)) ≥ e(g(x), f(x))) and the Euclidean

Lipschitz constant (i.e. Ke(f
′) ≥ Ke(g)). However, fortunately, this can be easily controlled by

selecting a very small ϵ̃ in the previous step (2), such that the whole image of g(x) is very close to

the two-sphere (lying in the tubular neighborhood of radius ϵ̃). In this way, the projection within

such a small tubular neighborhood will only increase its Euclidean Lipschitz constant Ke(f
′) by a

small amount such that Ke(f
′) is still strictly less than 1 (even if it may be bigger than Ke(g), this

will work since we shrink f at the beginning to have some room), and increase its uniform distance

from the original map f by less than ϵ as well.

Finally, we have this smooth map f ′ : S2 7→ S2, when is at most 2ϵ uniformly far away from the

original map f by our construction, and will have kd(f ′) ≤ ke(f
′) < 1 according to the lemma. Since

kd(f
′) implies |df ′| < 1, it will correspond to a smooth fibration F ′ of S3 by oriented great circles

which is uniformly close to the original continuous fibration F corresponding f . This completes the

proof.

6.3. Proof of related lemmas

We will follow the same notation as in the last section. Specifically, f : S2 7→ S2 is a continuous

map between two unit S2 ⊂ R3, and we use e(x, y) and d(x, y) to represent Euclidean straight-line

distance and the standard spherical distance on S2 respectively. Ke(f) and Kd(f) are Lipschitz

constants of f in these two metrics. Let’s give some definitions and fundamental results on the

Lipschitz maps first. We won’t prove this because they are standard in any analysis book.

Definition 6.3.1. If U ∈ S2 is a subset, then we can also consider the Lipschitz constant of the

restriction f |U , which will be written as Ke(f, U) or Kd(f, U), depending on the metric to work

with, and regard it as the local Lipschitz constant of f on U .

Definition 6.3.2. Given a sequence {Ui} := U1 ⊃ U2 ⊃ ... ⊃ Un ⊃ ... of decreased open subsets

of S2 containing a point x ∈ S2. It is said that {Ui} converges to x if, given any open subset U

containing x, there is an integer n such that U ⊂ Un . Then the Lipschitz constants K(f, Un) must

decrease as n increases. We call their limit the Lipschitz constant of f at x, and write it as K(f, x).
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It is well-defined since it does not depend on which sequence of open sets {Ui} converging to x we

use.

Lemma 6.3.1. Kd(f) = sup{Kd(f, x) : x ∈ S2}

Lemma 6.3.2. Ke(f) >= sup{Ke(f, x) : x ∈ S2}

Lemma 6.3.3. Ke(f, x) = Kd(f, x) for any x ∈ S2

Lemma 6.3.4. Given an open covering C = {Uα} of S2 and that on each open set Uα, f is

Lipschitz with Lipschitz constant Kd(f, Uα). Then f is Lipschitz with Lipschitz constant Kd(f) =

max{Kd(f, Uα) : Uα ∈ C}

Remark (1). All of the above lemmas are standard: 6.3.1, 6.3.2, 6.3.4 can be shown directly with

the proof by contradiction. 6.3.3 is from the fact that the spherical metric is induced from the

Euclidean inner product, and thus they are locally identical in an infinitesimal neighborhood.

Remark (2). All of the definitions and lemmas can be generalized to arbitrary map f : X 7→ Y

between two metric spaces, where d and e are "pathwise metric" and "induced metric" from ambient

metric spaces X ⊂ X̃ and Y ⊂ Ỹ .

Next, we will list and prove important lemmas used in the proof of the main theorem in the last

section.

Lemma 6.3.5. Kd(f) ≤ 1 ⇔ Ke(f) ≤ 1.

Proof. Given any two points x, y ∈ S2, let d(x, y) = θx,y. Then e(x, y) = 2 sin(θx,y/2), the length

of the chord connecting x and y. Since 2 sin(θ/2) is strictly monotonic function with respect to θ,
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we have

Kd(f) ≤ 1

⇔ d(f(x), f(y)) ≤ d(x, y)

⇔ θf(x),f(y) ≤ θx,y

⇔ 2 sin(θf(x),f(y)/2) ≤ 2 sin(θx,y/2)

⇔ e(f(x), f(y)) ≤ e(x, y)

⇔ Ke(f) ≤ 1

Lemma 6.3.6. Kd(f) ≤ Ke(f)

Proof. This can be verified directly from the previous lemmas. In fact, we have that

kd(f) = sup{Kd(f, x) : x ∈ S2} (Lemma 6.3.1)

= sup{Ke(f, x) : x ∈ S2} (Lemma 6.3.3)

≤ Ke(f) (Lemma 6.3.2)

Lemma 6.3.7. Given that the image of f : S2 7→ S2 is contained in a hemisphere centered at

p, if we shrink the image of f in the hemisphere towards the center p along the geodesic towards

p by a scale 1 − δ, where δ > 0 is a small number, and denote the new shrunk map as fs, then

Kd(fs) < Kd(f) and Ke(fs) < Ke(f).

Proof. This is standard computation.

Next, we will introduce a strong and useful result from Kirszbraun, which guarantees a Lipschitz

extension of f : S2 7→ S2 to the whole space F : R3 7→ R3.
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Theorem 6.3.8 (Kirszbraun). If U is a subset of some Hilbert space H1 with the subsapce metric,

and H2 is another Hilbert space, and f : U 7→ H2 is a Lipschitz-continuous map with Lipschitz

constant L(f, U), then there is a Lipschitz-continuous map F : H1 7→ H2 that extends f and has the

same Lipschitz constant L(f, U).

Proof. (simplest case) Assume H2 is R the real line, we can define

F (x) = inf
u∈U

(f(u) + L(f, U) · d(x, u))

Remark. When H2 = Rm, Daniel Azagra et al.(2021) give another explicit extension formula. More

general proof can be found in the book.

Next, We will prove a very important lemma, which is the smooth approximation of Lipschitz maps

between Euclidean spaces. This lemma helps us to convert a non-smooth Lipschitz map to a smooth

one in the main proof.

Lemma 6.3.9. Any continuous map f : Rn 7→ Rm between two Euclidean spaces (both of standard

Euclidean metrics) with Lipschitz constant L can be approximated uniformly by a smooth Lipschitz

map with the same Lipschitz constant L.

Proof. We will give constructive proof using convolution with a smooth kernel.

(Smoothness) First, define j : R 7→ R as follows

j(x) =


e−

1
x2 if x > 0

0 if x ≤ 0

(6.1)

j(x) ∈ C∞(R) is a smooth function.
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Then we can define a smooth function h : Rn 7→ R from j(x)

h(x) = cj(1− ∥x∥2), for x ∈ Rn

where c > 0 is the constant such that

∫
Rn

h(x)dx = 1

Notice that h(x) ∈ C∞(Rn), h(x) ≥ 0 and supp h ⊂ B1(0), the unit ball at 0.

Let’s define the mollifier,

hϵ(x) =
1

ϵn
h(

x

ϵ
)

Then it’s also true that ∫
Rn

hϵ(x)dx = 1

. Let fϵ be the entry-wise convolution of f by the mollifier hϵ. Specifically,

fϵ = (f1
ϵ , f

2
ϵ , · · · , fm

ϵ )

= f ∗ hϵ

:= (f1 ∗ hϵ, f2 ∗ hϵ, · · · , fm ∗ hϵ)

(6.2)

where each entry

f i
ϵ(x) = f i ∗ hϵ(x)

=

∫
Rn

f i(y)hϵ(x− y)dy

=

∫
Rn

f i(x− y)hϵ(y)dy (change of variable y = x− y)

=
1

ϵn

∫
Bϵ(0)

f i(x− y)h(
y

ϵ
)dy (definition of hϵ)

=

∫
B1(0)

f i(x− ϵy)h(y)dy (change of variable y = ϵy)

(6.3)

41



Then fϵ is a C∞ map because convolution will regularize the map f . Next, we will estimate the

Lipschitz constant of fϵ.

(Lipschitz constant) For any pair of distinct points x1, x2 ∈ Rn, we have that

fϵ(x1)− fϵ(x2) =
(∫

Rn

(f i(x1 − y)− f i(x2 − y))hϵ(y)dy
)
i=1,··· ,m

(6.4)

on the right-hand side, we use subscript "i = 1, · · · ,m" to stand for each coordinate i.

For simplicity, let’s denote

gi(y) := f i(x1 − y)− f i(x2 − y) (6.5)

and

g(y) := (g1(y), g2(y), · · · , gm(y)) = f(x1 − y)− f(x2 − y) (6.6)

Consider an arbitrary random vector Y from some probability space (Ω,F , P ) to Rn with the

probability distribution as

Y ∼ hϵ(y)dy on Rn (6.7)

We denote Zi := gi(Y ) as another random variable. Then

Z := (Z1, · · · , Zm) = (g1(Y ), · · · , gm(Y )) = g(Y ) (6.8)

is a random vector. In this setting of probability and measure theory, we have that

EZ

:= ( EZi )i=1,··· ,m

=

(∫
Ω
gi(Y )dP

)
i=1,··· ,m

=

(∫
Rn

gi(y)hϵ(y)dy

)
i=1,··· ,m

= fϵ(x1)− fϵ(x2) ( 6.4 and 6.5 )

(6.9)
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Now we can take advantage of the Jensen’s inequality to make an estimate on the norm of ∥fϵ(x1)−

fϵ(x2)∥.

Lemma (Jensen’s inequality) Let f be a convex function defined on a convex subset C of n-

dimensional Euclidean space Rn, and let X = (X1, · · · , Xn) be an integrable random vector such

that P[X ∈ C] = 1. Then EX ∈ C, E f(X) exits, and

f(EX) ≤ E f(X). (6.10)

The proof of this inequality is standard in any analysis book.

In our case, let f = ∥ · ∥2 be the squared Euclidean norm and X = Z. Since the squared Euclidean

norm is a convex function, we have

∥fϵ(x1)− fϵ(x2)∥2

= ∥EZ∥2 (6.8)

≤ E ∥Z∥2 Jensen’s inequality (6.10)

= E ∥g(Y )∥2 (6.8)

=

∫
ω
∥g(Y )∥2dP Definition of expectation

=

∫
Rn

∥g(y)∥2 hϵ(y)dy

=

∫
Rn

∥f(x1 − y)− f(x2 − y)∥2hϵ(y)dy (6.6)

≤
∫
Rn

L2∥x1 − x2∥2hϵ(y)dy Lipschitz continuity

= L2∥x1 − x2∥2

(6.11)

This proves that fϵ(x) is also Lipschitz with the Lipschitz constant L, the same as f ’s.

(Uniform approximation) Finally, let’s estimate the uniform distance between fϵ and f . We

will use a similar strategy as above. Specifically, For any fixed x ∈ Rn, let’s consider an arbitrary

random vector Y ′ from some probability space (Ω,F , P ) to Rn with the probability distribution as

Y ′ ∼ h(y′)dy′ on Rn and define Z ′ = f(x− ϵY ′)− f(x), a random vector to Rm.
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Analogous to 6.9, we have

EZ ′

=
(
E(f i(x− ϵY ′)− f i(x))

)
i=1,··· ,m

=

(∫
Ω

(
f i(x− ϵY ′)− f i(x)

)
dP

)
i=1,··· ,m

=

(∫
B1(0)

(
f i(x− ϵy′)− f i(x)

)
h(y′)dy′

)
i=1,··· ,m

(supp h ⊂ B1(0))

=
(
f i
ϵ(x)− f i(x)

)
i=1,··· ,m

According to (6.3)

= fϵ(x)− f(x)

(6.12)

Therefore, we have

∥fϵ(x)− f(x)∥2

= ∥EZ ′∥2

≤ E ∥Z ′∥2 Jensen’s inequality (6.10)

= E ∥f(x− ϵY ′)− f(x)∥2

≤ ϵ2L2 E ∥Y ′∥2 Lipschitz continuity

≤ ϵ2L2

(6.13)

The last inequality above is becuase Y ′ ∼ h(y′)dy′ on Rn and supp h ⊂ B1(0), and thus P(∥Y ′∥2 ≤

1) = 1.

Since L is a fixed constant and ϵ can be chosen arbitrarily small, we proved that fϵ can uniformly

approximate f with the same Lipschitz constant l, which concludes the proof of the lemma.
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