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ABSTRACT

GEOMETRY OF GRADIENT FLOWS FOR ANALYTIC COMBINATORICS

Stephen Gillen

Robin Pemantle

Analytic combinatorics in several variables (ACSV) analyzes the asymptotic

growth of generating function coefficients in a direction r. It uses Morse theory on

the pole variety V := {H = 0} ⊆ (C∗)d to deform the torus T in the multivariate

Cauchy Integral Formula via the downward gradient flow for the log-linear function

h = hr = −
∑d

j=1 rj log |zj|, giving a homology decomposition of T into cycles

around critical points of h on V . The deformation can flow to infinity at finite height

when the height function is not a proper map. This happens only in the presence

of a critical point at infinity (CPAI): a sequence of points on V approaching a point

at infinity, and such that log-normals to V converge projectively to r. The CPAI is

called heighted if the height function also converges to a finite value. The central

questions that I have attempted to answer involve analyzing whether all CPAI are

heighted, and in which directions CPAI can occur. I attempted to answer these

questions by examining sequences converging to faces of the toric compactification

defined by a multiple of the Newton polytope P of the polynomial H. The idea

is to show that any projective limit of log-normals of a sequence converging to a

face F must be parallel to F . This turns out to be true but only under further
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hypotheses. It implies that CPAI must always be heighted and can only occur

in directions parallel to some face of P . The extra hypotheses hold in smooth

cases under generically satisfied conditions. In addition, I show under a smoothness

condition, that a point in a codimension-1 face F can only be a CPAI for directions

parallel to F , and that the directions for a codimension-2 face can be a larger set,

which can be computed explicitly and still has positive codimension. The question

of whether non-heighted CPAI exist in general is left open; I conjecture that they

do not exist.
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Chapter 1

Introduction

1.1 Analytic combinatorics

Univariate generating functions

A sequence an having combinatorial interest can often be encoded as a generating

function, that is, as coefficients of a power series
∑∞

n=0 anz
n of a concisely described

function f(z). For example, the Fibonacci numbers have a generating function of

1

1− z − z2
= 1 + 1z + 2z2 + 3z3 + 5z4 + ....

It is often possible to use complex methods to estimate an via analytic properties

of the function f(z) represented by this power series. For example, the radius of

convergence R is the smallest modulus of any singularity of f , which determines
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the limsup asymptotics at the exponential level:

lim sup
n→∞

1

n
log |an| = − logR .

Finer information can be obtained via singularity analysis when the asymptotic be-

havior of f near its minimum modulus singularities is known. This correspondence

is made explicit in the transfer theorems of [FO90]. As a simple example, consider

the Fibonacci numbers, for which f(z) = 1/(1 − z − z2). The minimum modulus

pole is 1
ϕ
and has multiplicity 1; here ϕ = 1+

√
5

2
is the golden ratio. The Fibonacci

numbers grow asymptotically like a constant times ϕn. A historical example, which

doesn’t quite fit into our framework but is useful for motivation, is the sequence

p(n) given by the number of partitions of the integer n. The generating function is

easily seen to be given by the infinite product 1∏∞
k=1(1−zk)

. Complex contour methods

that are considerably more involved were used, over a century ago, to derive the

Hardy-Ramanujan estimate [HR17]:

an ∼ 1

4n
√
3
eπ
√

2n/3 .

Multivariate generating functions

For univariate generating functions, there is a direct connection between the leading

asymptotics of the coefficients of a univariate generating function and the locations

and natures of its minimum-modulus singularities. Analytic combinatorics in

several variables (ACSV) is the science of doing this for multivariate generating

functions, that is, studying the asymptotic behavior of the array of coefficients of
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a multivariate generating function f(z1, ..., zd) =
∑

r arz
r. Here and throughout

this dissertation, multinomial power notation is used: when z and r are vectors of

length d, then

zr :=
d∏

j=1

z
rj
j .

Asymptotic behavior of the coefficients ar as ||r|| → ∞ can depend on the direction

r̂ := r/||r||, and formulae can look quite different as r varies over different regions

of projective space. For this reason, ACSV studies asymptotic formulae for ar as

||r|| → ∞ with r
||r|| → r̂, either for r̂ fixed or varying over a given cone (equivalently,

r varying over a given set in projective space). For example, the binomial coefficients(
r+s
r

)
have the multivariate generating function 1

1−x−y
=
∑∞

r,s=0

(
r+s
r

)
xrys. The

coefficients obey a single asymptotic formula in terms of |r| := r+ s, r̂ := r/(r+ s)

and ŝ := s/(r + s), namely

ars =

(
r + s

r

)
∼
[
r̂−r̂ŝ−ŝ

]|r|√ 1

2π|r|r̂ŝ
.

Diagonal principle

The coefficients of a rational generating function f = g/h in one variable are com-

pletely understood. Partial fraction decomposition allows one to write an exact

expression for the coefficient an as a sum an =
∑

j qj(n)ρ
−n
j where ρj are the roots

of h and qj are polynomials depending on g of degree less than the multiplicity of

the corresponding root of h. This is detailed, for example, in [Sta97].

3



In more than one variable, as will be seen, the asymptotic behavior of the coef-

ficients ar of a rational series F = G/H can be highly nontrivial. The difficulty of

extracting asymptotic formulae for ar from analytic properties of F vary greatly in

difficulty. Moreover, the problem of coefficient asymptotics for rational multivari-

ate functions is universal for a much wider class of generating functions. This is

summarized in a well-known result and a conjecture from 2015.

Proposition 1.1.1. Let A =
∑

r arz
r be any algebraic generating function in

variables z1, . . . , zd, meaning that P (A, z1, . . . , zd) = 0 for some polynomial P in d+1

variables with rational coefficients. Then there is a rational functionG/H =
∑

s bsz
s

in d + 1 variables such that A is embedded as an N -diagonal of G/H in the sense

that ar = br′1,r′1,r′2,...,r′d , where r
′ = Nr for some unimodular d-by-d integer matrix N .

Proof. The roots of such an embedding theorem and its converse were given by

Furstenberg in [Fur67]. Denef and Lipschitz [DL87] gave a general proof, but with

G/H having potentially 2d variables rather than d + 1. Getting down to d + 1

variables, the best possible result, was achieved by Safonov [Saf00].

Strictly larger than the class of algebraic generating functions is the class of

D-finite generating functions. In one variable, these are defined to be multivari-

ate series solving a linear differential equation with polynomial coefficients. More

formally, F is D-finite if and only if there are polynomials P, P0, P1, . . . , Pn such

that P (z)+
∑n

j=0 Pj(z)F
(j)(z) = 0; here F (j) denotes the jth derivative and F (0) =

F . Equivalently, F is D-finite if and only if F and its derivatives span a finite-
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dimensional vector space over the polynomials. This second definition extends to

multivariate series. It is known that the diagonal of any multivariate D-finite se-

ries, and in particular the diagonal of any multivariate rational series, is D-finite;

see [Lip88]. However, the coefficients of any diagonal of a rational series must sat-

isfy a condition known as global boundedness, which means that F is analytic in a

neighborhood of the origin and aF (bz) has integer coefficients for some a, b ∈ Q;

see [Chr15] for details. There, Christol conjectured that this condition is in fact nec-

essary and sufficient for a univariate D-finite series to be embeddable as a diagonal

of a rational series.

Conjecture 1.1.2 ([Chr15, Conjecture 10]). Any globally bounded univariate D-

finite series is the diagonal of some rational multivariate series.

We see, therefore, that estimation of coefficients of rational multivariate func-

tions is universal for the problem of estimating coefficients of algebraic power series

(and effectively so, meaning that there is an algorithm to compute such a multivari-

ate rational function), and conjecturally universal for univariate globally bounded

D-finite series; although this has not been proven, there are no known counterex-

amples. This motivates our interest in rational multivariate series.

Methods

ACSV relies heavily on methods from topology, complex analysis, and computer

algebra. Given a rational generating function F = G/H, let V ⊆ Cd := {z :
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H(z) = 0} denote the affine variety on which H vanishes. Let V ∗ := V ∩ (C∗)d

denote the subset consisting of points of V with all coordinates nonzero. According

to the multivariate Cauchy formula, if T is a torus inside a domain of convergence

for a Laurent series expansion of H in a domain {xeiθ : x ∈ B, θ ∈ (R/(2πR)d},

where B is a convex subset of Rd that is disjoint from the image of V ∗ under taking

coordinate-wise log-modulus, then the coefficients ar are given by

ar =

(
1

2πi

)d ∫
T

z−r−1F (z) dz .

Here, 1 represents the vector of all ones and dz is the holomorphic volume form

dz1∧ · · · ∧dzd. The integrand may also be thought of an integral z−rF (z)ω against

the logarithmic volume form ω := dz1/z1 ∧ · · · ∧ dzd/zd.

The analysis involves replacing the torus T by a sum of other chains of inte-

gration for which the integral can be more readily evaluated. There are two ways

of explaining what chains are sought. One is via the stationary phase principle.

If we can make the phase of the “large” term z−r stationary on V , by finding a

point on V where the gradient of H is parallel to the gradient of z−r, we have a

better chance of evaluating the integral, at least locally. The second is a minimax

principle. When the integrand is larger than the eventual integral but has rapid

oscillation, estimates are difficult. By finding a chain of integration where the max-

imum modulus of z−r is as small as possible, we reduce the maximum modulus of

the integrand as much as possible, in an asymptotic sense. We can then hope that

there is no cancellation and the integral can be read off from local behavior near the
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point where the integrand attains its maximum modulus. Not only are these two

principles known to be the same, but the chain identified by these methods may in

fact be found by a third principle, which is Morse theoretic.

The torus is a cycle representing a homology class in Hd((C∗)d \ V ). The ho-

mology of variety V ∗ and its complement in (C∗)d can be described by stratified

Morse theory. Given a proper height function h, the homology of V can always be

described in terms of cycles attaining a maximum at some critical point of h on V .

If V is not smooth, this must be interpreted in the stratified sense as a critical point

for h restricted to some stratum of V . Similarly, the homology of the complement of

V can be decomposed to tubes around these same cycles in V , or in the non-smooth

case, around cycles in strata of V (see the definition of a Whitney stratification in

the next section).

Furthermore, this decomposition is effective, given the ability to compute down-

ward gradient flows. The height function h is taken to be hr so that the downward

gradient flows push the contour to where the maximum modulus of the integrand

is smallest. In the smooth case, the downward gradient flow is the gradient flow

of h restricted to V . In the non-smooth case, it is a more complicated vector flow

pieced together near different strata by a partition of unity.

For our purposes, all the above serves only as motivation for the problem we are

about to describe. The problem ensues from the fact that Morse theory assumes

that height functions are proper meaning that the set of points whose height is
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in any compact interval must be compact. The next section details how Morse

theory fails for nonproper functions. The remainder of the dissertation concerns

methodology for recognizing when this happens and sufficient conditions for such

failures not to occur.

1.2 Critical points at infinity

The gradient flow or stratified gradient flow for hr tells us how to deform T down-

wards in height. Morse theory assumes that h : V ∗ → R is a proper function. When

it is not, there is no guarantee of a decomposition of T into cycles near critical points

of h, and in fact we know examples where there is not such a decompostion. Instead,

under the downward gradient flow of h on V , the cycle T flows out to infinity before

ever reaching a low enough height to encounter a critical point. (Note: For us, the

coordinate hyperplanes, where one or more variables are zero, are also considered

to be “at infinity.”) When this happens, there must be a critical point at infinity

(CPAI). To state this more precisely, we need a few definitions.

Definition 1.2.1 (Whitney stratification).

A Whitney stratified space is a finite collection of disjoint manifolds, called strata,

in Euclidean space satisfying the containment condition and the two Whitney con-

ditions.

Containment: there is a partial order on the strata such that Sα < Sβ if and only
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if Sα ⊆ Sβ, where Sβ denotes the topological closure of Sβ.

Second Whitney condition: if Sα < Sβ, xn ∈ Sβ, yn ∈ Sα, xn → y ∈ Sα and yn → y,

then any limit of the secants xnyn is contained in the limit τ of the tangent spaces to

Sβ at the xn. (This implies the first Whitney condition, that the tangent space to Sα

at y is also contained in τ .) For details, see any of the references [GM88], [MPW22,

Appendix D] or [Whi].

Any algebraic variety admits a Whitney stratification, and any complex alge-

braic variety admits a Whitney stratification whose strata are complex manifolds.

Definition 1.2.2 (lognormal space). Let H be a polynomial in d variables, whose

affine variety in the complex torus is denoted V ∗ ⊆ (C∗)d. Let {Sα : α ∈ I} be a

stratification of V ∗ into complex manifolds, and let codim(S) denote the complex

codimension of the stratum S. For z in any stratum S, let Tz(S) denote the tangent

space to S at z which has real codimension 2d − 2 codim(S). Define the lognor-

mal space Nz(V ) to be the orthogonal complement in R2d to Tz(V ) after mapping

backward by the pointwise exponential map, then mapping forward again. More

formally, if ϕ : U → W is the exponential map on an open set in (C∗)d which is

one to one, onto a neighborhood of z, then Nz(S) is the image under dϕ of the

orthogonal complement in R2d ∼= Cd of the tangent space to ϕ−1(S) at ϕ−1(z).

Definition 1.2.3 (CPAI). Fix a polynomial H in d variables and a Whitney strat-

ification {Sα : α ∈ I} of its zero set V ∗ in (C∗)d. Let R ⊆ (C∗)d × CPd−1 be the

relation holding for the pair (z, r) if and only if z ∈ S for some stratum S and
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r ∈ Nz(S). A CPAI is a limit point (z∗, r∗) of a sequence (zn, rn) of pairs in the

relation R such that z∗ /∈ V ∗. In other words, z∗ must be a point at infinity, where

infinity includes the coordinate hyperplanes as well as the hyperplanes at infinity.

We say that the sequence (zn, rn) witnesses the CPAI. A CPAI is called heighted if

the sequence hr∗(zn) has a finite limit point, and the set of such limit points for a

given r∗ are called critical values at infinity (CVAI) in direction r∗ and denoted by

β(r∗).

This definition, while a bit clunky, is precisely what is needed in [BMP22] to

establish the Morse method for non-proper functions. In particular, they show

that in the absence of heighted CPAI with heights in an interval [a, b], the usual

Morse theoretic results hold over that interval. For example, under this condition,

if also there are no critical points for h on V ∗ with critical values in [a, b], then

there is a deformation retraction of the set V ∗ ∩ {z : hr̂(z) ≤ b} onto the set

V ∗ ∩ {z : hr̂(z) ≤ a}, hence these two spaces are homotopy equivalent.

A few important clarifications are necessary:

1. Finding CPAI entails more than simply projectivizing the equations. One

must have an affine witness sequence, hence the algebra involves saturations

of ideals.

2. In [BMP22], the possibility is left open that a CPAI could exist but not be

heighted, meaning that for any witness sequence, the heights of the points do

not approach a finite number.
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3. Finally, it is possible for two sequences of points approaching criticality to con-

verge to the same point in CPd but have their heights converging to different

values.

The first of these three concerns is already addressed in [BMP22]. My current

research, building on a Mathematics Research Communities (MRC) workshop in

which I participated, attempts to address the latter two issues by compactifying V

in the toric variety X of the Newton polytope of H instead of ordinary complex

projective space: If Q is the Newton polytope of H, enlarged to make it normal

(see Definition 2.1.3), and {m1, ...,ms} := Q ∩ Zd, then X is defined to be the

Zariski closure of the image of the map Φ : (C\{0})d → CPs−1 given by Φ(t) =

[tm1 : ... : tms ].

Throught this dissertation I assume that V is smooth. Later I will point out

whether I hope and conjecture that many of the results can be generalized to strat-

ified varieties. Under certain generically satisfied conditions, compactifying in X

guarantees that the only directions for which CPAI can exist are those parallel to

a face of the Newton polytope, and that if the images in X of two CPAI witness

sequences converge to the same point in this new compactification, then the heights

for the corresponding height function converge to the same finite number. These

results also lead naturally to the conclusion that CPAI (as defined in [BMP22]) cor-

respond to points at infinity with well-defined heights in the toric compactification.

In addition, when the geometry of the Newton polytope satisfies certain conditions,
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this compactification admits a simplified coordinate system near any point at in-

finity, which is much easier to work with than are limits of sequences of points in

affine space.

1.3 Main results of thesis

The first main results of this thesis, and the ones that follow most easily from the

structure of the toric variety XA, are Theorem 2.3.5 and Corollary 2.3.6. Theorem

2.3.5 shows which monomials converge to finite values, and which converge to zero,

when a sequence converges to a point in the interior of the face at infinity X0(F )

in XA corresponding to a face F of Q. As an immediate consequence, Corollary

2.3.6 shows that the height function hr extends continuously to X0(F ) whenever r

is parallel to F .

The second set of main results concerns the projective convergence of the log-

gradient of H under a generically satisfied condition. Theorem 3.2.1 shows that,

for a sequence of points on V ∗ approaching the interior of a face at infinity X0(F )

on XA, projective limits of log-gradient directions are parallel to the face where

the limit occurs, under the assumption that the log-gradient does not approach the

zero vector under a certain normalization. Theorem 3.2.2 shows that, for generic

polynomials H, the hypotheses of Theorem 3.2.1 hold at all points at infinity p that

are limits of sequences contained in V ∗. As an immediate consequence, Corollary
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3.3.1 shows that, under this generic condition, all CPAI are heighted and can only

occur in directions parallel to a face of the Newton polytope P of H.

The final set of main results explores cases for which the generic condition fails at

one or more points p. Chapter 4 describes a few examples that refine one’s intuition;

the most important, in Section 4.3, shows that it is possible for a heighted CPAI

to exist in a direction not parallel to any face of P when the generic condition fails

at a point in the interior of the face at infinity in XA corresponding to a face of

codimension 2. When the compactification of V behaves sufficiently nicely near p,

Theorems 5.4.2 and 5.5.3 show that p ∈ X0(F ) can only be a CPAI for directions

parallel to F if F has codimension 1, but if F has codimension 2, then we have

only that p is a CPAI for directions in a codimension-1 set that can be computed

explicitly and contains all directions parallel to F . The result for codimension 2

also holds for higher codimension when the cone of inward-pointing normals from

F into Q is simplicial.
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Chapter 2

Toric Variety Background and

Height Convergence

2.1 Background: The Newton Polytope and

Normality

Definition 2.1.1. A convex polytope can be defined either as the convex hull of a

finite set of points in Rd, or as a bounded intersection of finitely many half-spaces.

Definition 2.1.2. Let H be a Laurent polynomial in d variables, a finite sum of

terms of the form
∑n

j=1 cjz
mj where cj ̸= 0 and mj ∈ Zd. Then the Newton polytope

of H is the convex hull of the exponent vectors mj.

Definition 2.1.3. A convex polytope Q ⊆ Rd is called a lattice polytope if all of

its vertices are in Zd. (For example, the Newton polytope of a Laurent polynomial

14



H is a lattice polytope.) A lattice polytope Q is called normal if, for every positive

integer k, every point in kQ ∩ Zd can be written as a sum of exactly k points in

Q ∩ Zd. (If this is true for all sufficiently large integers k, but not necessarily for

every positive integer k, then Q is called very ample.)

In the work that follows, I adopt the following setup: Let H be a Laurent

polynomial in d variables with complex coefficients. Let P be its Newton polytope.

Assume WLOG that P has full dimension d; otherwise, a monomial change of

coordinates reduces to this case.

Let Q = κP be an enlargement of P that is normal, where κ is a positive integer.

By [CLS11, Theorem 2.2.11], for any d > 1, the scaling factor κ = d − 1 is always

sufficient. Faces of normal polytopes are normal, and normality of Q implies Q is

very ample. Let A = P ∩ Zd, and let A = Q ∩ Zd = {m1, ...,ms} be the set of

integer lattice points on and inside Q. We define a map Φ : (C∗)d → CPs−1 given by

Φ(z) = [zm1 : · · · : zms ] and define XA to be the closure of the image of Φ in CPs−1.

The topological and Zariski closures are equal by GAGA (Proposition 7 in [Ser56]).

For ACSV purposes, we will primarily be using the fact that it is the topological

closure. The set XA is a closed subset of CPs−1 and is therefore compact, so every

sequence has a convergent subsequence. Let {zn}∞n=1 be a sequence of points in

(C∗)d such that their images Φ(zn) ∈ XA converge to a point p. We are chiefly

concerned with the case where zn does not converge to an affine point, that is, the

sequence “goes to infinity.”
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2.2 Classifying points in XA into faces at infinity

I will now describe what it means for a point p ∈ XA ⊆ CPs−1 to be in the “face

at infinity” corresponding to a face F of the enlarged Newton polytope Q. This is

called the “torus orbit” corresponding to F in the language of [GKZ94], but I think

“face at infinity” is a lot more intuitive for ACSV purposes, at least when F is not

all of Q.

Definition 2.2.1. Suppose that F be a face of Q. Let X0(F ), the interior of the

face at infinity corresponding to F , be the set of all points p in XA such that the

nonzero coordinates of p in CPs−1 are precisely those coordinates j corresponding

to lattice points mj in Zd ∩F . Let X(F ) denote the closure of X0(F ) in CPs−1, or

equivalently, in XA. We call X(F ) the face at infinity corresponding to F .

Notice that a point p ∈ X(F ) must have coordinates equal to zero in all posi-

tions corresponding to lattice points outside F , but some of the coordinates of p in

positions corresponding to lattice points in F may also be zero. Also, when F is all

of Q (which is considered a face of itself), X(Q) is all of XA, and X0(Q) is the set

of points p in XA whose coordinates in CPs−1 are all nonzero.

An important result from the literature is that every point in XA is in X0(F )

for exactly one face F of Q.

Lemma 2.2.2 (Faces at infinity). Let p ∈ XA. Then p is in the interior of the face at

infinity corresponding to exactly one face F ; that is, there exists a unique face F of
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Q (of some dimension) such that the nonzero coordinates of p are precisely those in

positions corresponding to lattice points in Zd∩F . (If p has all nonzero coordinates,

then F = Q.) Furthermore, for every face F , X(F ) ∼= XA∩F is nonempty and has

dimension equal to the dimension of F .

Proof. See Proposition 1.9 of Chapter 5 of [GKZ94] and Proposition 2.1.6(b) of

[CLS11].

2.3 Which monomials converge as we move to-

ward a face at infinity?

I will add the following notation: Let F be the face of Q such that p resides in the

interior of the face at infinity corresponding to F , and let F be the corresponding

face of the original Newton polytope P . In addition, it will be useful to have

notation for the polytope Q and the face F with one of the vertices of F shifted to

the origin, as well as for the convex cone of all directions that point from F into Q.

Definition 2.3.1. Let v be a vertex of F , and let v be the corresponding vertex of

P (so that v = κv). We will define the following notation:

1. Q̃ = Q− v,

2. F̃ = F − v,

3. P̃ = P − v,
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4. F̃ = F − v,

5. LF is the linear span of F̃ (this is the span of differences of points in F and

does not depend on which vertex v was chosen),

6. π(Q̃) is the image of Q̃ in the quotient space Rd/LF (which does not depend

on v because the difference between any two of them is in LF ), and

7. σF is the nonnegative linear span of the preimage (under the quotient map)

of π(Q̃) (and also does not depend on v).

Regardless of the choice of v, σF is the set of all vectors that can be written as

x + y for some x ∈ LF and y ∈ kQ̃ for some sufficiently large positive integer k.

(Note: If F has codimension 1, then σF is a half-space.)

Lemma 2.3.2. Suppose that the k points m1, ...,mk ∈ Q satisfy m1 + · · ·+mk ∈

kF . Then m1, ...,mk ∈ F .

Proof. If F = Q, this is obvious, so we will assume F ⊊ Q. Because F is a proper

face of Q, it has a supporting hyperplane whose intersection with Q is exactly

F , and such that for some c ∈ R, the outward-pointing normal vector N to this

hyperplane satisfies N ·m = c for all m ∈ F , and N ·m < c for all m ∈ Q\F . We

have that m1+···+mk

k
∈ F , so N ·m1+···+N ·mk

k
= c. But every term of the sum in the

numerator is at most c, so all must be exactly c.

Lemma 2.3.3. Suppose F is a face of the normal convex lattice polytope Q. (F

could be all of Q, or a face of positive codimension.) Then any integer vector
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x ∈ LF ∩ Zd can be written as an integer linear combination of integer vectors in

F̃ ∩Zd, or alternatively as an integer linear combination of lattice points in F ∩Zd

with coefficients adding up to zero.

Proof. Let g be the dimension of F . Then it is possible to choose vertices v0,v1, ...,vg

of F such that {vk−v0 : 1 ≤ k ≤ g} is a basis for LF . Therefore, x can be recovered

as a rational linear combination of the vectors vk − v0 ∈ F̃ ∩ Zd for 1 ≤ k ≤ g, or

alternatively, a rational linear combination of the vk ∈ F ∩ Zd for 0 ≤ k ≤ g with

the coefficients adding up to zero. Clearing denominators and rearranging terms to

get plus signs, we get that there exist nonnegative integers ak, bk (for 0 ≤ k ≤ g)

and a positive integer c such that

(
g∑

k=0

akvk

)
+ cx =

(
g∑

k=0

bkvk

)
and such that (

∑g
k=0 ak) = (

∑g
k=0 bk). Let K be this common sum.

By convexity of KF , we have the following:(
g∑

k=0

akvk

)
∈ KF

(
g∑

k=0

akvk

)
+ cx =

(
g∑

k=0

bkvk

)
∈ KF

Therefore, again by convexity,(
g∑

k=0

akvk

)
+ x ∈ KF.

By normality of the polytope Q, (
∑g

k=0 akvk) + x can be written as the sum of

exactly K lattice points w1, ...,wK in Zd ∩Q, and by Lemma 2.3.2, these K lattice
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points are actually in Zd ∩ F . (These are not necessarily vertices of F .) Therefore,

subtracting (
∑g

k=0 akvk), we have that

x =
K∑
j=1

wj −
g∑

k=0

akvk

can be written as an integer linear combination of lattice points in Zd ∩ F with

coefficients adding up to K −
∑g

k=0 ak = 0, so if v is any vertex of F , then

x =
K∑
j=1

(wj − v)−
g∑

k=0

ak(vk − v)

is an integer linear combination of integer vectors in F̃ ∩ Zd as desired.

Corollary 2.3.4. When Q is normal, the map Φ : (C∗)d → CPs−1 is injective on

(C∗)d. [Note: Φ is not necessarily injective on all of Cd, if it is even defined there.]

Proof. Setting F = Q in Lemma 2.3.3 and noting that LQ is all of Rd, we see that

the standard basis vector e1 can be written as an integer linear combination of

lattice points in Q with coefficients adding up to zero, so e1 =
∑s

j=1 njmj, with∑s
j=1 nj = 0.

Now suppose p ∈ Φ((C∗)d). Then it is of the form [Ctm1 : ... : Ctms ], where

C, t1, ..., td ̸= 0. Setting n = (n1, ..., ns), we can see that

pn = C
∑s

j=1 njt
∑s

j=1 njmj = C0te1 = t1,
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regardless of C. We can similarly recover the remaining coordinates t2, ..., td (re-

peating the process with e1 replaced with each of the remaining standard basis

vectors), and the point in (C∗)d that maps to p is therefore unique.

It will be helpful to view (C∗)d as a subset ofXA, with the injection Φ acting as an

embedding. All Laurent monomials are defined at points in (C∗)d; it will be helpful

to determine which Laurent monomials can be extended continuously to the interior

of certain faces at infinity in XA. The following lemma defines the value of certain

monomials at points at infinity p ∈ XA by taking limits of monomials evaluated at

points on sequences {zn}∞n=1 in (C∗)d such that Φ(zn) converges to p. Specifically, if

p is in the interior of the face at infinity in XA corresponding to a face F of Q, then

pm can be defined whenever m ∈ σF , and it is nonzero whenever m ∈ LF . (Note

that the notation pm does not conflict with the usual multinomial power notation

because p ∈ CPs−1 and m ∈ Zd have s and d coordinates respectively, and s > d

whenever Q has dimension d.)

Theorem 2.3.5 (Which Laurent monomials converge). Suppose that {zn}∞n=1 is a

sequence in (C∗)d with Φ(zn) converging to a point p ∈ XA in the interior of the

face at infinity corresponding to F .

1. Then zmn converges to a finite nonzero value pm (dependent on p but not on

the sequence) for all integer vectors m ∈ F̃ , and if m is any other integer

vector in Q̃, then zmn converges to pm = 0.
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2. In fact, zmn converges to a finite nonzero value pm (dependent on p but not

on the sequence) for all integer vectors m ∈ LF , and if m is any other integer

vector in σF , then zmn converges to pm = 0.

Proof. Let v be one of the vertices of F , and assume without loss of generality that

{m1, ...,ms} is ordered so that ms = v. I will first show part 1, that zmn converges

to a finite value for all m in Q̃ = Q− v, and that value is nonzero if and only if m

is in F̃ = F − v.

Let P1 = [zm1
1 : ... : zms

1 ], P2 = [zm1
2 : ... : zms

2 ], ... be a sequence in the image of

Φ that converges to p ∈ CPs−1. The point p is in the face at infinity corresponding

to F , so the last coordinate in p (which corresponds to v = ms) is nonzero, so the

same is true of Φ(zn) for sufficiently large n; we can therefore choose the chart of

CPs−1 in which we divide by the last coordinate. If we represent p ∈ CPd−1 as

p = [P1 : ... : Ps−1 : 1], we get that

(
zm1−v
n , ..., zms−v

n

)
→ (P1, ..., Ps−1, 1).

Because p ∈ X0(F ), the nonzero coordinates of p are precisely those in positions

corresponding to lattice points in Zd ∩ F , so z
mj−v
n converges to a nonzero number

when mj ∈ F (equivalently, if mj − v ∈ F̃ ), and zero otherwise. All of the lattice

points in Q̃ are mj − v for some j ∈ {1, ..., s}, so we see that for all m ∈ Q̃, zmn

converges to a finite value for all m in Q̃, and that value is nonzero if and only if
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m is in F̃ . Furthermore, this value depends only on the coordinates of p and not

on the sequence used to approach p.

For part 2, suppose that m ∈ Zd ∩ σF . If g is the dimension of F , then it is

possible to choose vertices v0,v1, ...,vg of F such that {vk − v0 : 1 ≤ k ≤ g} is

a basis for LF . Then m can be written as x + y for some x ∈ LF and y ∈ kQ̃

(where, in Q̃, we can choose v = v0 without loss of generality) for some sufficiently

large positive integer k. I need to show briefly that x and y can be chosen to be

integer vectors. The vector x ∈ LF can be written as a rational linear combination

of vectors in F̃ as x =
∑g

j=1 aj(vj − v). Now, simply let x0 =
∑g

j=1 bj(vj − v),

where bj is the greatest integer less than or equal to aj. Then x0 is an integer linear

combination of vectors in F̃ , so x0 ∈ LF ∩ Zd, and x − x0 is a nonnegative linear

combination of vectors in F̃ ⊆ Q̃, so x − x0 and also y0 = x − x0 + y are in the

nonnegative linear span of Q̃ and therefore in k0Q̃ for some sufficiently large positive

integer k0. Because x0+y0 = x+y = m, y0 is also an integer vector. Furthermore,

because x0 ∈ LF , we have that m ∈ LF if and only if y0 ∈ LF ∩ k0Q̃ = k0F̃ . (Any

vector in LF will satisfy the equation of a supporting hyperplane of F̃ as a face of

Q̃.)

Next, I will show that zx0 converges to a nonzero constant. By Lemma 2.3.3, x0

can be written as
∑K

j=1 cjwj for some positive integer K, integers cj, and integer

vectors wj ∈ F̃ ∩ Zd. Therefore, the Laurent monomial zx0 can be written as
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a product
∏K

j=1(z
wj)cj , where the monomials zwj have been shown in part 1 to

converge to finite nonzero values independent of the sequence chosen.

Finally, because y0 is in k0Q̃ for some positive integer k0, then normality implies

that it can be written as a sum of k0 integer points yj ∈ Q̃. By Lemma 2.3.2, they

are all in F̃ if and only if y0 is in k0F̃ . Writing y0 =
∑k0

j=1 yj, we see by part

1 that the product zy0 =
∏k0

j=1 z
yj will have all factors approaching finite values

independent of the sequence, and the values will be all nonzero if and only if each

yj ∈ F̃ , which is true if and only if y0 is in k0F̃ (that is, when m ∈ LF ).

Therefore, zm = zx0zy0 approaches a nonzero finite value that depends on p

alone if m ∈ LF , and zero when m ∈ σF\LF .

WARNING: Not all monomials either converge for all sequences whose limit is p

or go to zero or infinity. For some, convergence behavior depends on the sequence.

Later, we will see an example of a “phantom” heighted CPAI in an unexpected

direction, where the log-gradient direction does not converge to parallel to the face.

An ACSV application immediately follows, namely the continuous extension of

the height function hr to X0(F ) provided that r ∈ LF (or in simpler language,

provided that r is parallel to F ).

Corollary 2.3.6. Under the hypotheses of Lemma 2.3.5, whenever r ∈ Zd is parallel

to F , the height function hr(zn) converges to a finite value that depends on p but

not on the sequence chosen.
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Proof. The height function hr(z) is given by−
∑d

j=1 rk log |zk| = − log |zr|, so hr(zn)

converges whenever the monomial zrn converges to a finite nonzero value.

Notice that we did not actually need normality for the convergence of the height

function; we could get convergence of the modulus even if we only had the exponent

vector as a rational linear combination of the exponent vectors of monomials in

F with coefficients adding up to zero. However, we did need normality for the

injectivity of Φ; otherwise, the preimage of a point in the image of Φ could have

finite cardinality greater than 1, which would mean that Φ could not be thought of

as an embedding of V ∗ into XA, and XA would not be a compactification of V ∗ in

the traditional sense. Also, the convergence of the Laurent monomials themselves

(not just their moduli) will come in handy when we examine convergence of the

log-gradient vector, each of whose components is a linear combination of these

monomials.

Finally, even if r has rational components and the monomial zr is multivalued, its

modulus is well-defined by taking positive real roots, so we also get convergence of

the height function to a finite nonzero value when r ∈ Qd is parallel to F . Therefore,

because any real number can be approximated by rationals, hr converges to a finite

nonzero value for all r ∈ Rd that are parallel to F . (Note: The asymptotics in

an irrational direction are defined as the limit of the asymptotics in neighboring

directions. This idea will come up again later when considering the limitations of

reducing the number of variables.)
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Chapter 3

Log-Gradient Convergence:

Generic Smooth Case

Let H be a polynomial, and let V ⊆ Cd be its zero set. Recall that the log-gradient

of H, denoted ∇logH, is defined as
(
z1

∂H
∂z1

, ..., zd
∂H
∂zd

)
and is the normal to the hy-

persurface H = 0 when the coordinates are changed to the natural logarithms of

the original variables. If V ∗ = V ∩ (C∗)d is smooth, a critical point at infinity

exists in direction r when there is a sequence {zn}∞n=1 with one or more coordi-

nates approaching either zero or infinity, such that the projective directions of the

log-gradient vectors approach the direction of r. By compactness, there exists a

subsequence such that Φ(zn) converges in XA to some point p.
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Multiplying H by a monomial factor does not change the projective direction

of the log-gradient vector for points in (C∗)d satisfying H = 0. (However, it may

change the log-gradient direction for points that do not satisfy H = 0.)

Lemma 3.0.1. Let F be a multivariate polynomial, and let m be a Laurent mono-

mial. Then for points on the variety defined by F with all nonzero coordinates,

the log-gradient of mF is projectively equivalent to the log-gradient of F ; in fact,

∇log(mF ) = m∇logF for points on V ∗.

Proof. We begin with the case in which m is a single variable, say z. In this case,

all coordinates besides the z-coordinate of the log-gradient of zF are simply z times

the corresponding coordinate of the log-gradient of F . The z-component of the

log-gradient of F is z ∂
∂z
(zF ) = z2 ∂F

∂z
+ zF · 1 by the product rule. For points on the

variety, F evaluates to zero, so the result is equal to z times the log-gradient of F

for points on the variety. Therefore, the log-gradient of zF is projectively equivalent

to the log-gradient of F (specifically, z times the log-gradient of F ) for points on

V (F ) ∩ (C∗)d, and (replacing F with z−1F ) the same is true for multiplication by

z−1.

Iterating this procedure gives the result for all Laurent monomials.
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3.1 Standard Rescaling: Motivation

It will frequently be the case that the log-gradient vector will have magnitude

approaching infinity as the sequence goes to infinity with images in XA converging

to p. So in order to show something about the limit of the direction of the log-

gradient, we will need to focus on a particular way of rescaling the log-gradient

vector to look at limit in projective space; we will divide through all components

of the log-gradient by a monomial zv corresponding to one of the vertices of the

original Newton polytope P . To understand why the rescaling we choose is (usually)

correct, we take a look at a very simple example. Suppose H = 1+x+x2+xy+x2y,

so that its log-gradient is given by the vector

(x+ 2x2 + xy + 2x2y, xy + x2y).

In this example, the Newton polytope is the quadrilateral with vertices (0,0), (1,1),

(2,1), and (2,0) and is already normal, and the equation H = 0 can be solved for y

to give y = −1−x−x2

x(1+x)
. Suppose that x is approaching -1, so that y approaches infinity,

and Φ(z) = [1 : x : x2 : xy : x2y] approaches p = [0 : 0 : 0 : 1 : −1] ∈ XA, located on

the face at infinity corresponding to the top edge of P ; we denote this edge by F . In

our example, we simply divide through by xy to produce [y−1+2xy−1+1+2x : 1+x]

as a projective direction, which approaches [0+0+1+2(−1) : 1+ (−1)] = [−1 : 0].

(This is indeed parallel to the horizontal edge F .) The idea is that, as we grow closer

to p, monomials on the edge F (in this case, xy and x2y) are “dominant” compared

to monomials in the rest of P (in this case, 1, x, and x2). Therefore, dividing
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every term by one of these “dominant” monomials (say, zv for v some vertex of F)

should cause all terms to approach either zero or a nonzero constant, and because

the log-gradient has the same monomials in it as the original polynomial (except

for the lack of a constant term), there will exist monomials that do not approach

zero. The only problem that could arise is that, with just the right choices of

coefficients for H, the contributions of those “dominant” monomials could happen

to cancel, leaving the zero vector, meaning that we rescaled too far and have lost the

information about the limiting projective direction. When a “singularity at infinity”

like this occurs, we have examples that have a positive-dimensional set of possible

limiting projective directions for the log-gradient, depending on the sequence chosen

(more on this later). But generically, there will be at least one component where

the contributions of the “dominant” monomials do not exactly cancel, and in such

cases, it is sufficient to show that this rescaling of the log-gradient can be written

as the sum of two components: one that is always parallel to F for every zn, and

one that approaches the zero vector.

3.2 If z−v∇logH approaches a nonzero vector, then

the limiting direction is parallel to F.

As before, suppose that Φ(zn) converges to a point p ∈ XA in the interior of the

face at infinity corresponding to some face F of Q (and the corresponding face F
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of P). We choose a vertex v of F , let v = κv be the corresponding vertex of F ,

and define the rescaled log-gradient as z−v∇logH. By the earlier lemmas, each of

the monomials in z−v∇logH will approach either zero or a nonzero constant, and

for generic H, z−v∇logH will approach a finite nonzero vector in the limit. When

this occurs, we can show that this limiting vector is parallel to F .

Theorem 3.2.1. Suppose {zn}∞n=1 is a sequence in V ∗ such that Φ(zn) converges

to a point p in the interior of the face at infinity corresponding to a face F of Q.

(F need not be a facet, and it is impossible for it to be a vertex.) If z−v∇logH does

not approach the zero vector, then its limit is parallel to F .

Proof. First, notice that the log-gradient of a monomial is simply

∇logz
m = (m1z

m, ...,mdz
m) = zmm.

So if H =
∑

m∈P cmzm, then z−v∇logH = z−v
∑

m∈P cmzmm =
∑

m∈P cmzm−vm.

Let HF be the component of H consisting of all terms whose monomials are in

F , so that H−HF has all of the terms whose monomials are in P\F . We split this

up into two components as follows:

C1 =
∑

m∈F cmzm−vm+ z−v(H −HF)v

C2 =
∑

m∈P\F cmzm−vm− z−v(H −HF)v

It is clear that C1 + C2 =
∑

m∈P cmzm−vm. Two claims must now be justified:

1. For every zn, C1 is parallel to F (that is, C1 is in LF , which is also the linear

span of differences of points in F), and

30



2. C2 approaches zero.

For the first claim, notice that C1 is a linear combination of vectors in F , where

the sum of the coefficients is

∑
m∈F

cmzm−v + z−v(H −HF) = z−vHF + z−v(H −HF) = z−vH,

which is zero for all zn because zn ∈ V . Therefore, for all zn, C1 is in the linear

span of differences of vectors in F , so it is in LF (and parallel to F ).

For the second claim, we will need to apply Lemma 2.3.5 to show which mono-

mials approach finite values and which approach zero. By construction, we have

that Q̃ = Q− v = κ(P − v) = κP̃ ⊇ P̃ (because P̃ has the origin as a vertex), and

similarly, F̃ = κF̃ ⊇ F̃ . From this, we see from Lemma 2.3.5 that when m ∈ F

(or equivalently, m − v ∈ F̃ ⊆ F̃ ), zm−v approaches a finite nonzero number, and

when m ∈ P\F (or equivalently, m − v ∈ P̃\F̃ ⊆ Q̃\F̃ ), zm−v approaches zero.

However, because H − HF contains only the terms of H whose monomials are in

P\F , C2 is a sum of finitely many terms all of whose monomials are of the form

zm−v for m ∈ P\F , so all of these terms (and C2 itself) approach zero.

We know that when p is a point in the interior of the face at infinity correspond-

ing to the face F of Q, and m is a lattice point in the corresponding face F of P , the

limiting value of zn
m−v (where v is a vertex of F as before) when zn approaches p is

nonzero and depends only on p, and not on the sequence {zn}∞n=1 used to approach
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p. For the following theorem, it will be useful to define pm−v to be that limiting

value.

Theorem 3.2.2. The hypotheses of Theorem 3.2.1 are generic; that is, if we fix

a Newton polytope P , then for generic coefficients cm of H, z−v∇logH does not

approach the zero vector at any point at infinity p ∈ XA that is the limit of Φ(zn)

for some sequence {zn}∞n=1. (This means that, for a given Newton polytope P , the

space of possible Laurent polynomials H such that there exists a point p at infinity

in XA at which the normalized log-gradient under the standard rescaling converges

to the zero vector, has positive codimension in the space of all Laurent polynomials

with Newton polytope P .)

Proof. First, we will fix a specific p. We saw above in the proof of the second claim

of Theorem 3.2.1 that C2 and z−v(H − HF)v approach zero, so as zn approaches

p, we have that z−v∇logH approaches the same vector as
∑

m∈F cmzm−vm, which

is
∑

m∈F cmpm−vm. Therefore, in order for z−v∇logH to approach the zero vector,

we must have that the coefficients of H satisfy

∑
m∈F

cmpm−vm = 0.

Similarly, because {zn}∞n=1 is contained in V , we have that for every zn, z
−v
n H(zn) =∑

m∈P cmzm−v = 0, and because zm−v approaches zero when m ∈ P\F , we must

have that ∑
m∈F

cmpm−v = 0
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in order for p to be a limit of a sequence contained in V . Combining these, we get

∑
m∈F

cmpm−v

m
1

 = 0.

For this specific p, this condition means that the coefficient vector c of H lies

in the null space of the matrix Bp whose columns are pm−v

m
1

. Let s be the

number of lattice points in F (which is the number of entries in c), and let j be

the dimension of F . Then because F has dimension j, there are j + 1 affinely

independent lattice points in F , so there are j + 1 linearly independent vectors

among the

m
1

, and because all of the pm−v are nonzero, Bp has rank j + 1, so

its null space has dimension s − (j + 1). By Lemma 2.2.2, the face at infinity

corresponding to F has dimension j, the same as the dimension of F , so the set of

coefficient vectors c for which there exists such a p for this face F is the union of

these null spaces and has dimension at most s− (j+1)+ j = s− 1. Finally, taking

the union over the finitely many faces F of Q does not change the dimension, so

the condition is generic.

This genericity will turn out to be quite important. We will later see an example

of a heighted CPAI in an unexpected direction (not parallel to any proper face of

Q) in a case when the generic condition manages to fail at a point p in the face at

infinity corresponding to a face F of codimension 2.
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3.3 For H satisfying the generic condition, CPAI’s

can only occur in directions parallel to proper

faces of Q and must be heighted.

By this I mean that convergence of the height function and convergence of the

log-gradient should imply that all CPAI are heighted. Notice that I am using the

ACSV definition of the existence of a CPAI throughout; equivalence with Terrence’s

definition would be nice, but I’m not yet to the point of seeing why it’s useful.

Corollary 3.3.1. Suppose that the rescaled log-gradient never vanishes on the toric

compactification of the variety at any face at infinity. Then our previous results

imply that any critical point at infinity on such a variety must be heighted and in

a direction parallel to some face F of the Newton polytope P of H.

Proof. Let {zn}∞n=1 be a sequence witnessing a critical point at infinity, meaning

that Φ(zn) converges to some point p ∈ XA, and ∇logH converges projectively to

some direction R ∈ CPd−1. Then p lies in X0(F ) for some face F , so by Theorem

3.2.1, R is parallel to F . Therefore, p is a CPAI in only one projective direction,

and it is parallel to F , so by Corollary 2.3.6 of Lemma 2.3.5, the height function in

this direction converges to a finite number, so p is a heighted CPAI.
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Chapter 4

Examples and counterexamples

4.1 Paraboloid example: H = 1− 2x+ x2 + 1− 2y +

y2 − z

In this example, P is the convex hull of (0,0,0), (2,0,0), (0,2,0), and (0,0,1), so XA

is actually smooth everywhere except the point corresponding to the apex (0,0,1)

in P . The variety given by z = (x − 1)2 + (y − 1)2 is a smooth paraboloid when

viewed in affine space, but there is a point on the compactified variety such that

the direction of the log-gradient vector cannot be defined uniquely. The Newton

polytope is a tetrahedron whose base lies in the xy-plane, and the gradient of H

(1,1,0) is orthogonal to the xy-plane. For a point (x, y, z) on V ∗, the log-gradient

direction is given by
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[−2x+ 2x2 : −2y + 2y2 : −z] = [2x(x− 1) : 2y(y − 1) : −(x− 1)2 − (y − 1)2],

where the z-coordinate vanishes to higher order at (1,1,0) than the x- and y-

coordinates (so that, at least in this example, any limiting log-gradient direction

of a sequence of points approaching (1,1,0) will be parallel to the xy-plane). If we

choose a sequence of points on V ∗ with x = 1 and y approaching 1, we get that the

log-gradient direction is

[0 : 2y(y − 1) : −(y − 1)2] = [0 : 2y : −(y − 1)],

which approaches [0 : 2 : 0]. Similarly, if we choose a sequence of points with

y = 1 and x approaching 1, the log-gradient direction approaches [2 : 0 : 0] (and

clearly, any other projective direction parallel to the xy-plane can be achieved by

choosing sequences approaching (1,1,0) with x−1
y−1

held constant). Furthermore, in

either case, the points have images in XA that converge to the same point p in the

compactified variety, the point whose coordinates in CPs−1 are 1 in all positions

corresponding to monomials in the xy-plane (that is, not containing the variable

z), and 0 in the rest. Therefore, there is no way to extend the direction of the

log-gradient continuously to this point p ∈ XA.
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4.2 Cone example: H = 1− 2x+ x2+1− 2y+ y2− z2

In this example, the Newton polytope is an exact multiple of the convex hull of the

origin and the standard basis vectors, so XA is isomorphic to CP3. This example,

despite the fact that V (H) is not even smooth (in particular, the ordinary gradient

is zero at (1,1,0)), turns out to be very similar to the paraboloid example. The

Newton polytope is a tetrahedron whose base lies in the xy-plane. For a point

(x, y, z) on V ∗, the log-gradient direction is given by

[−2x+ 2x2 : −2y + 2y2 : −2z2] = [2x(x− 1) : 2y(y − 1) : −2(x− 1)2 − 2(y − 1)2],

where the z-coordinate vanishes to higher order at (1,1,0) than the x- and y-

coordinates (so that, in this example as well, any limiting log-gradient direction of

a sequence of points approaching (1,1,0) will be parallel to the xy-plane). If we

choose a sequence of points on V ∗ with x = 1 and y approaching 1, we get that the

log-gradient direction is

[0 : 2y(y − 1) : −2(y − 1)2] = [0 : 2y : −2(y − 1)],

which approaches [0 : 2 : 0]. Similarly, if we choose a sequence of points with

y = 1 and x approaching 1, the log-gradient direction approaches [2 : 0 : 0] (and

clearly, any other projective direction parallel to the xy-plane can be achieved by

choosing sequences approaching (1,1,0) with x−1
y−1

held constant). Furthermore, in
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either case, the points have images in XA that converge to the same point p in the

compactified variety, the point whose coordinates in CPs−1 are 1 in all positions

corresponding to monomials in the xy-plane (that is, not containing the variable

z), and 0 in the rest. Therefore, there is no way to extend the direction of the

log-gradient continuously to this point p ∈ XA.

4.3 A heighted CPAI in an unexpected direction

Let H = z− y− (x− 1)2, and let F be the edge (one-dimensional face) determined

by (0,0,0) and (1,0,0). Note that as in the previous two examples, we can choose

v = 0. We can easily see that any sequence {zn}∞n=1 in (C∗)d that converges to

(1,0,0) in Cd will have images Φ(zn) in XA that converge to the point p whose

coordinates are 1 for m in F and 0 otherwise. The curve defined by (1+ t, t, t+ t2)

is contained in the variety V = V (H), and (1 + t, t, t + t2) converges to (1,0,0) as

t → 0. However, ∇logH has direction

[−2x(x− 1) : −y : z] = [−2(1 + t)t : −t : t+ t2] = [−2(1 + t) : −1 : 1 + t],

which converges to [-2 : -1 : 1]. This direction is not parallel to any face of the

Newton polytope of H.

Furthermore, the exponentiated height in this direction is
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z

x2y
=

t+ t2

(1 + t)2t
=

1

1 + t
,

which converges to 1 as t → 0. Therefore, this is a heighted CPAI in a direction

that is not parallel to any face of the Newton polytope! Despite this, and despite

the fact that the height function in this direction does not extend continuously to

F , the height function does approach finite values along certain curves in V ∗. As

a matter of fact, in this example we can use the fact that z = y + (x − 1)2 to

substitute different functions of t for x and y and find parameterizations for curves

approaching (1,0,0) for which the log-gradient of H approaches any direction at all

of the form [α : −1 : 1]. For example, if we take the path

(1 + γt, t, t+ γ2t2) ∈ V,

we get that ∇logH has direction

[−2x(x− 1) : −y : z] = [−2(1 + γt)γt : −t : t+ γ2t2] = [−2γ(1 + γt) : −1 : 1 + γ2t],

which converges to [−2γ : −1 : 1]. On the other hand, we can instead take the path

(1 + t, t2, 2t2) ∈ V,

which results in a log-gradient direction of

[−2x(x− 1) : −y : z] = [−2(1 + t)t : −t2 : 2t2] = [−2(1 + t) : −t : 2t],

which converges to the direction [-2:0:0] as t → 0 and is indeed parallel to F .
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Chapter 5

Beyond the Generic Case

When the generic hypotheses of Theorem 3.2.1 are satisfied, any point p at infinity in

the compactification of V in XA has a unique direction to which the log-gradient can

converge when a sequence {zn}∞n=1 in (C∗)d has images Φ(zn) in XA converging to p,

and that direction is always parallel to the face F for which p is in the corresponding

face at infinity. We now turn our attention beyond the generic condition mentioned

above and look for information about limiting log-gradient directions for a point p

in some cases in which the set of directions to which log-gradients can converge as

Φ(zn) approaches p has positive dimension. But first, some background concerning

monomial transformations is in order.

40



5.1 Background: Monomial Transformations

Let A be a d-by-d matrix of integers that is invertible over the rationals. For our

purposes, the monomial transformation defined by A is the map τA : (C∗)d →

(C∗)d given by

τA(z1, ..., zd) =

(
d∏

j=1

(z
a1j
j ), ...,

d∏
j=1

(z
adj
j )

)
.

Each coordinate is a Laurent monomial and may contain negative exponents. No-

tice that when τA is defined in this way, we have that τA(z) = eA log(z) (which is

single-valued because A is an integer matrix, even though log(z) is multivalued),

where ez and log(z) refer to componentwise exponentiation and natural logarithm

respectively (and where we consider z as a column vector). Therefore, monomial

transformations correspond to integer linear transformations in log space (the space

where the coordinates are the natural logarithms of the original coordinates), with

the caution that τA is injective only if A is unimodular (has determinant ±1). How-

ever, τA is surjective if A is invertible, even if it is not unimodular: One point in

the preimage of z can be found as eA
−1 Log(z), where Log takes the principal value

of the natural logarithm of each component

A monomial transformation τA naturally induces a map on Laurent polynomials

H in C[z1, z−1
1 , ..., zd, z

−1
d ], given by τ ∗A(H) = H ◦ τA. For example, if H(z) = zi

simply takes the ith component, then τ ∗A(H) =
∏d

j=1 z
aij
j , and therefore if H(z) = zr
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is any Laurent monomial, then

τ ∗A(H) =
d∏

j=1

z
∑d

i=1 riaij
j = zA

T r.

We see that performing a monomial transformation will perform a linear transfor-

mation on the exponent vector of each term of H, and therefore on the Newton

polytope P , so the following basic lemma about linear tranformations on polytopes

will be useful.

Lemma 5.1.1. Let P be the convex hull of a finite set A ⊆ Rd, and let T be an

affine transformation (a linear transformation L followed by a translation) on Rd.

Then the convex hull of T (A) is T (P). Furthermore, if T is invertible, then for

every face F of P , we have that T (F) is a face of T (P).

Proof. The first statement follows directly from linearity of L and the definition

of convex hull. For the second, if S is a supporting hyperplane for F as a face

of P , then injectivity implies that the preimage of T (S) ∩ T (P) is no larger than

S ∩ P = F , so T (S) is a supporting hyperplane for T (P).

It is a well-known fact that if g(z) = f(Az), then ∇g(z) = AT ((∇f)(Az)). It is

not too difficult to come up with a similar equation for log-gradients and monomial

transformations.

Lemma 5.1.2. Let τA be the monomial transformation defined by the d-by-dmatrix

A, let f : Cd → C be a function that is continuously differentiable in a neighborhood
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of τA(z), and let g(z) = f(τA(z)). Then

∇logg(z) = AT∇logf(τA(z)),

where ∇logf(τA(z)) means the log-gradient of the outer function f evaluated at the

inner function τA(z).

Proof. If y = τA(z) and g(z) = f(τA(z)) = f(y), then we have by the multivariate

chain rule that

∇logg =


z1

∂g
∂z1

...

zd
∂g
∂zd

 =


z1(

∂f
∂y1

· ∂
∂z1

∏d
j=1(z

a1j
j ) + ...+ ∂f

∂yd
· ∂
∂z1

∏d
j=1(z

adj
j ))

...

zd(
∂f
∂y1

· ∂
∂zd

∏d
j=1(z

a1j
j ) + ...+ ∂f

∂yd
· ∂
∂zd

∏d
j=1(z

adj
j ))



=


a11

∂f
∂y1

∏d
j=1(z

a1j
j ) + ...+ ad1

∂f
∂yd

∏d
j=1(z

adj
j )

...

a1d
∂f
∂y1

∏d
j=1(z

a1j
j ) + ...+ add

∂f
∂yd

∏d
j=1(z

adj
j )

 = AT


∂f
∂y1

∏d
j=1(z

a1j
j )

...

∂f
∂yd

∏d
j=1(z

adj
j )

 ,

where each ∂f
∂yi

means the value of that partial derivative at τA(z). The value of

the monomial zi at τA(z) is
∏d

j=1(z
aij
j ), so the result follows.

Remark 5.1.3. For the case where F is a Laurent polynomial, there is a shorter

proof. If f(z) = zr is a Laurent monomial, then ∇logf(z) = rzr = rf(z), and

g(z) = f(τA(z)) = zA
T r, so

∇logg(z) = AT rzA
T r = AT rf(τA(z)) = AT∇logf(τA(z)),

and the result for all Laurent polynomials then follows by linearity.
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5.2 Transforming the Newton Polytope for Anal-

ysis Near X0(F )

The goal of this section is to transform coordinates so that a face at infinity becomes

an intersection of coordinate hyperplanes {y1 = · · · = yk = 0}. Subject to certain

conditions, it will then be possible to compute the space of possible limiting log-

gradient directions, and therefore the set of all possible directions for CPAI.

Recall that when the rescaled log-gradient approaches a nonzero vector, a point

p ∈ XA can be a CPAI for a single direction only. However, when it fails (typically

at only finitely many points), it will be possible for a single point to be a CPAI for

a codimension-1 set of directions. When F is not a facet, not all of these will be

parallel to F .

Let F be a facet (codimension-1 face) of the Newton polytope P . If the d lattice

points v,v1, ...,vd−1 ∈ Zd are affinely independent, they define a hyperplane normal

to the integer vector given by the formal d-by-d determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e1 · · · ed

v1 − v

...

vd−1 − v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
of

the “matrix” whose first row has as entries the standard basis vectors, and whose

second through last rows are the vectors vj −v (similar to taking a cross product).
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Define the inward-pointing normal to F to be the minimum-modulus integer

vector nF that is normal to the facet F and is oriented such that nF ·m ≥ 0 for all

m ∈ P̃ = P − v.

Proposition 5.2.1. When F is a facet, it is possible to apply an affine transforma-

tion to P to move the hyperplane defined by F to one of the coordinate hyperplanes,

in such a way that the rest of the polytope ends up being above (as opposed to be-

low) the coordinate hyperplane. If AT is the matrix of this transformation, then

H = τ ∗A(H/zv) will have a constant term, but no negative powers of zd.

Proof. We simply subtract v and then left-multiply by any invertible (not necessar-

ily orthogonal!) matrix AT whose last row is the inward-pointing normal. Under

any such transformation, the lattice point m will be sent to a vector whose last

entry is nF · (m− v), which is nonnegative if m ∈ P and zero if m ∈ F . Therefore,

AT F̃ will be contained in the coordinate hyperplane zd = 0, and the transformed

Laurent polynomial τ ∗A(H/zv) will have no negative powers of zd, but it may of

course have negative powers of the other variables. The term that used to have

exponent vector v will become a constant term.

If the sequence converges to the face at infinity corresponding to F before the

monomial transformation, then it (or any subsequence of it) can only converge to

the face at infinity corresponding to {zd = 0} afterwards; assuming we chose the

columns of A to be a lattice basis, which is possible in the case of a facet, the same

set of coordinates in CPs−1 is approaching zero.
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Now suppose that F is a codimension-k face of P with k > 1, and suppose that

F1, ...,Fk be k facets whose intersection is F with linearly independent inward-

pointing normals. In the remainder of this section, we will apply similar logic to

construct an invertible monomial transformation matrix (which will be called N

from this point forward to avoid confusion with the set A of lattice points defining

XA) with the last k columns being the inward-pointing normals to these k facets,

and NT P̃ will be contained in Rd−k×Rk
≥0 (the intersection of half-spaces where the

last k variables are nonnegative).

Definition 5.2.2. Suppose that F is a codimension-k face of the Newton polytope

P of a Laurent polynomial H, let v be a vertex of F , and let v = κv be the

corresponding vertex of the face F = κF of Q. Suppose that F1, ...,Fk are k

facets whose intersection is F with linearly independent inward-pointing normals,

and let F1, ..., Fk be the corresponding facets of Q. Let N be any integer matrix,

invertible over the rationals, whose last k columns are the inward-pointing normals

to F1, ...,Fk. We define the following notation:

1. H = τ ∗N(z
−vH),

2. P = NT (P − v), the Newton polytope of H,

3. Q = κP , an integer multiple of P that is normal (any integer κ ≥ max{1, d−1}

suffices, so we can assume WLOG that the same κ is used to normalize both

Q and Q),
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4. A = Q ∩ Zd = {m1, ...,ms} (in general, we can have s ≥ s), and

5. Φ : (C∗)d → CPs−1 is the map given by Φ(w) = [wm1 , ...,wms ] (and XA is

the closure of the image of the map Φ).

Remark 5.2.3. We cannot say that Φ = Φ ◦ τN : their target spaces can be in

different projective spaces, as when Q contains additional lattice points that are

not images of lattice points of Q̃ under the linear transformation given by NT .

Also, Φ is injective, while Φ ◦ τN may not be.

The following lemma about monomial transformations helps us to reduce to the

case where p is located in a face lying in the intersection of the last k coordinate

hyperplanes.

Lemma 5.2.4. Under the assumptions and notation in Definition 5.2.2, suppose

also that {zn}∞n=1 ⊆ V ∗ is a sequence such that Φ(zn) converges to some point p in

the face at infinity in XA corresponding to F , and that the projective direction of

∇logH evaluated at zn converges in CPd−1 to some direction R ∈ CPd−1 (but the

magnitude of ∇logH might approach zero or infinity). Then:

1. H has a constant term, but no negative powers of any of the last k variables,

and

2. There exists a sequence {wn}∞n=1 ⊆ V (H) ∩ (C∗)d such that:

(a) {τN(wn)}∞n=1 is a subsequence of {zn}∞n=1,
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(b) The images of wn under the map Φ converge in XA to a point p on the

face at infinity corresponding to the face F = NT F̃ of codimension k

that is contained in the intersection of the last k coordinate hyperplanes,

and

(c) ∇logH evaluated at wn converges projectively to NTR, which is parallel

to the intersection of the last k coordinate hyperplanes if and only if R

is parallel to F .

Proof. For item 1, note that the exponent vectors of the monomials in H are exactly

those of the form NT (m−v), where m is a monomial vector in H. We know that H

has a term with exponent vector v because v is a vertex of the Newton polytope of

H, so H has a term with monomial NT (v−v) = 0 (a constant term). Furthermore,

for each Fj, the inward-pointing normal nFj
has the property that nFj

· m̃ ≥ 0

for all m̃ ∈ P̃ , and the last k coordinates of any exponent vector of H (which are

NT (m− v) for m an exponent vector of a term in H, so in particular m ∈ P) are

all of the form nFj
· m̃ for some m̃ ∈ P̃ and therefore nonnegative.

For item 2(a), first recall that τN is surjective, so for each n we will let un be a

point in the preimage of zn under τN , and by compactness ofXA as a closed subset of

projective space, this sequence has a subsequence {wn}∞n=1 (with τN(wn) = zmn for

some increasing sequence of positive integers {mn}∞n=1) such that Φ(wn) converges

in XA to some point p. (I’m sure there has to be a more artful way of doing this to

take advantage of the way that the branches of the multivalued function eN
−1 log(z)
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come together, but at this point I just need some strategy that works.) Clearly,

H(wn) = z−v
mn

H(zmn) = 0 because zmn ∈ V ∗.

For 2(b), it is clear that F has codimension k, and it is clear that it is contained

in the intersection of the last k coordinate hyperplanes because each of the last k

coordinates of a point in F = NT (F − v) is the dot product of a normal to a facet

Fj with a vector that is a difference of two points in F ⊆ Fj, and is therefore zero.

We know by Lemma 2.2.2 that p is in the face at infinity in XA corresponding to

some face G of Q; we need to show that G = F . Notice that vertices m of Q map

in one-to-one correspondence to vertices NT (m−v) of Q (the same cannot be said

in general with “vertices” replaced by “lattice points”), with m ∈ F if and only if

NT (m− v) ∈ F . Notice also that if m is a lattice point of Q, then the component

of Φ(wn) corresponding to the lattice point NT (m− v) ∈ Q is w
NT (m−v)
n = zm−v

mn
,

a monomial that converges to a finite value that is nonzero if m ∈ F , and zero

if m ∈ Q\F , by Lemma 2.3.5 because p ∈ X0(F ). (Recall that the origin is in

Q, so no further rescaling is necessary in Φ because one of the coordinates of Φ

is identically 1, and all coordinates approach finite values.) Therefore, the face G

contains NT (m − v) for all m ∈ F , and because it is convex, it contains their

convex hull, which is F . On the other hand, if G is not contained in F , then G

contains a vertex of Q that is not in F , and this vertex is of the form NT (m − v)

for some vertex (in particular, some lattice point) m of Q that is not in F , so that

w
NT (m−v)
n = zm−v

mn
approaches zero (contradiction).
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For 2(c), for ease of notation we let H̃ = z−vH. We first note by Lemma 3.0.1

that ∇logH̃(zmn) is projectively equivalent to ∇logH(zmn) because zmn ∈ V ∗. Be-

cause H = H̃ ◦ τN , we have by Lemma 5.1.2 that ∇logH(wn) = NT∇logH̃(zmn).

Multiplication by an invertible matrix NT is still well-defined as a continuous func-

tion from CPd−1 to itself (because NT (cr) = cNT r, and because NT is invertible

we have that NT r = 0 implies r = 0), so if p is the standard projection map

from C∗\{0} to CPd−1 (the assumption that ∇logH(zn) converges projectively to

anything implies that its value is not the zero vector for sufficiently large n, even

though its magnitude may converge to zero), then the equation

p(∇logH(wn)) = NTp(∇logH(zmn))

holds in projective space for all sufficiently large n. By assumption, the sequence

p(∇logH(zmn)) converges in CPd−1 to R, so p(∇logH(wn)) converges in CPd−1 to

NTR as desired (even though ∇logH(wn) may itself have converged to the zero

vector in Cd).

5.3 A Modified Simple Condition

The goal of the next few sections is to determine the possible directions in which

a CPAI can occur for some meaningful examples when the generic condition in

Theorem 3.2.2 fails somewhere in the closure of V ∗ in XA. The result ultimately

achieved, Theorem 5.5.3, holds when p lies on a face F such that σF/LF is simpli-
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cial, the variety V (H) is smooth near p after a monomial transformation, and the

Jacobian of the log-gradient of H is nondegenerate. The conclusion is that a single

point can be a critical point at infinity for a set of directions of codimension 1 but

not a set of directions of full dimension. When p is in a face F of codimension 2 or

more, then p can be a CPAI for directions not parallel to F .

We have to be careful because the geometry of the polytope near a face of

codimension k may not be the same as the product of a k-dimensional orthant with

Rd−k. As an example of what happens when we apply a monomial transformation

in such a case, the apex of a square pyramid is contained in four facets, so near its

apex, a square pyramid is not diffeomorphic to an orthant in R3, and no monomial

coordinate change can make each of the facets containing the apex lie in a coordinate

hyperplane. Let H = 1+ x+ y+ xy+ z. Then Q is a square pyramid, and a factor

of 2 is sufficient to make Q normal. If F is the apex, F is the intersection of

four facets, with normals


1

0

0

,

0

1

0

,

−1

0

−1

, and


0

−1

−1

. To construct a monomial

transformation, we have to choose three of these four normal vectors to be able to

transform them into the three coordinate vectors. This monomial transformation

can be constructed by placing these vectors into the rows of NT =


1 0 0

0 1 0

−1 0 −1

.
The resulting transformation τ ∗N on C[x, x−1, y, y−1, z, z−1] is given by τ ∗N(x) =

51



xz−1, τ ∗N(y) = y, and τ ∗N(z) = z−1. We divide by z and apply the monomial

transformation: H = τ ∗N(H/z) = z + x + yz + xy + 1 has a constant term and no

negative powers (at all, because F has dimension zero). However, H has no term

involving y alone, meaning that y is not guaranteed to approach zero in a sequence

{wn}∞n=1 ⊆ (C∗)d whose images in XA converge to the apex.

If the polytope Q is simple, meaning that every vertex of Q is adjacent to

precisely d edges (and no more), then the problem goes away immediately. If we let

v be a vertex of a face F , then the nonnegative span of Q̃ = Q − v is a simplicial

cone σv (the cone over a (d−1)-simplex, the only (d−1)-dimensional polytope with

only d vertices), and the faces of Q containing v correspond to faces of σv, which are

the nonnegative linear spans of all subsets of the d linearly independent vectors that

generate σv. In particular, any face F of codimension k is the nonnegative linear

span of some (d − k)-element subset of these vectors, and the facets containing

F are in correspondence with the (d − 1)-element subsets of the generators of σv

containing the d− k generators of F , of which there are exactly k.

Rather than restrict to simple polytopes, the following definition allows us to

conclude all geometric facts related to simple polytopes that we need for our pur-

poses.

Definition 5.3.1 (modified simple condition). Say that Q satisfies the modified

simple condition if σF/LF is a cone over a (k − 1)-simplex. This is the same thing
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as requiring that F is contained in exactly k (and no more) faces of Q of dimension

1 + dimF .

The lemma below shows that for any convex polytope Q, we can take a small

neighborhood around a point q in the interior of F , intersect it with Q, and the

cone we get from that is σF and has faces G′ that correspond exactly to Q’s faces

G of the same dimension that contain F . It’s really supposed to be “geometrically

obvious,” but I still felt the need to supply an argument.

Lemma 5.3.2. Let F be a face of Q of codimension k. Then σF is the nonnegative

linear span of Q̃ − q, where q is a point in the interior of F̃ , and σF is also the

intersection of the defining half-spaces of Q̃ whose bounding hyperplanes contain F̃ .

Consequently, the (d−k+ r)-dimensional faces of the cone σF (or alternatively, the

r-dimensional faces of the pointed cone σF/LF ) are in one-to-one-correspondence

with the (d − k + r)-dimensional faces of Q̃ that contain F̃ (or alternatively, with

the (d− k + r)-dimensional faces of Q that contain F ).

Proof. Let q be a point in the interior of F̃ , and let N be a neighborhood of

q sufficiently small such that, out of all the hyperplanes that define the convex

polytope Q̃, the only ones that intersect N are those containing F̃ . Then the

nonnegative linear span of (N ∩ Q̃) − q (subtracting q from every point, not set

minus) is the cone σ̃F given by the intersection of the defining half-spaces of Q̃ whose

bounding hyperplanes contain F̃ (because none of the other defining hyperplanes

intersect N). We now have that the nonnegative linear span of Q̃− q both contains
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σ̃F (the nonnegative linear span of (N ∩ Q̃) − q) and is contained in σF (the sum

of LF and the nonnegative linear span of Q̃), while simultaneously, Q̃ and LF (and

therefore also σF ) are contained in the intersection of the defining half-spaces of Q̃

whose bounding hyperplanes contain F̃ , which is σ̃F . Therefore, σ̃F = σF .

Similarly, the corresponding face of σF to a face G of Q̃ containing F̃ is the

nonnegative linear span of (N ∩G)−q, which is the sum of LF and the nonnegative

linear span of G, which has the same dimension as G and is also the face of σF

cut out by the same set of equations and inequalities that cut out G as a face of

Q̃ (except for the inequalities whose hyperplanes do not contain F̃ ). A face G′ of

σF corresponds to its intersection with Q̃, the face of Q̃ cut out by the same set

of equations and inequalities that cut out G′ as a face of σF (in addition to all of

the defining inequalities of Q̃ whose hyperplanes do not contain F̃ ). Note that a

supporting hyperplane for G as a face of Q̃ is also a supporting hyperplane for G′

as a face of σF , and vice versa.

Now we can see how the hypotheses that Q is modified simple helps us transform

H into a Laurent polynomial H in a “nice” form:

Lemma 5.3.3. In addition to the hypotheses of Lemma 5.2.4, suppose that σF/LF

is simplicial. Then F is the intersection of precisely k facets F1, ..., Fk and no proper

subset of them. For convenience, denote the d variables ofH by x1, ..., xd−k, y1, ..., yk.

Then for a suitable choice of N , H has a term that involves yj to a strictly positive
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power (and possibly also some subset of the x variables, possibly to negative powers)

but does not involve yj′ for any j′ ̸= j.

Proof. If the k-dimensional pointed cone σF/LF is simplicial (viewed as being within

the orthogonal complement of LF and generated by k linearly independent vectors

v1, ...,vk), then σF/LF has precisely k facets (each facet Fj is the set of all nonneg-

ative linear combinations of the (k− 1)-element subset of {v1, ...,vk} that does not

contain vj), so by Lemma 5.3.2, Q has precisely k facets F1, ..., Fk containing F .

The facet normals (within L⊥
F ) of the k facets of σF/LF (which are the same as the

facet normals of the k facets of Q̃ containing F̃ ) are linearly independent (because

if there were a linear relation
∑k

j=1 cjnFj
with some cj nonzero, then taking the

dot product with the generator vj that is in every Fj′ except for Fj, would yield

the contradiction that vj is also in Fj). Then ∩k
j=1F̃j contains F̃ , and because it is

(d− k)-dimensional, it is contained in LF ∩ Q̃, which is just F̃ because F̃ is a face

of Q̃. Therefore, N can be chosen to be an invertible matrix whose last k columns

are the normals to the k facets whose intersection is F .

To show that every proper subset of the Fj has intersection properly containing

F , it suffices to find a point that is in Fj′ for every j′ ̸= j but is not in Fj. This

need not be a lattice point, so as in the proof of Lemma 5.3.2, we can simply take a

sufficiently small neighborhood U around a point q in the interior of F̃ , and U ∩ Q̃

contains a point of the form q + ϵvj that is in every Fj′ except Fj.
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We now have that ∩j′ ̸=jFj′ is a face that properly contains F , so there exists a

vertex uj of P̃ that is contained in every F̃j′ except F̃j (where F̃j = F̃ −v as usual).

Then the term of z−vH with exponent vector uj is mapped by τ ∗N to a term of H

with exponent vector NTuj, which has yj′ = 0 for all j′ ̸= j, and yj > 0 because

uj ̸∈ Fj.

This seems like a stringent condition, but it is actually much better than it

sounds: Because every pointed convex cone in 1 or 2 dimensions is simplicial, every

face of codimension 1 or 2 (even when d is large) will satisfy this modified simple

condition! A sequence in V ∗ cannot converge to a vertex in XA (because when

approaching the point in XA corresponding to a vertex v, the monomial zv has

a nonzero coefficient and dominates all the other monomials of H), so all three-

dimensional examples will satisfy this condition at every face F to which a sequence

in V ∗ could converge. The first time that it can actually affect asymptotics is in

four dimensions, in cases where the generic condition manages to fail at a point on

a face of codimension 3.

5.4 A first step: Paraboloid-like examples with

codimension-1 face

Let F be a codimension-1 face of Q, and suppose that {zn}∞n=1 is a sequence in

(C∗)d such that Φ(zn) converges to a point p in the interior of X0(F ). By Lemma
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5.3.3, there exists a monomial transformation that can be applied to XA to move F

to a coordinate hyperplane y = 0, and convert H into a Laurent polynomial with

no negative powers of y. Let G be the possibly multivalued function solving H = 0

for y in terms of the remaining coordinates, x; in other words, H(x, G(x)) = 0.

Conjecture 5.4.1 (technical conjecture). Let R be a projective limit point of the

log-gradient of points zn. There is a smooth path of finite length in a neighborhood

of p after the change of coordinates, along which the log-gradient of H converges

projectively to R.

Theorem 5.4.2. Assume that p is in the interior of the face at infinity correspond-

ing to a facet F , and that there is a finite-length path terminating at p after the

change of coordinates, along which the log-gradient of H converges projectively to

R. Then R is parallel to the face y = 0.

Proof. Assume the opposite. Let γ : [0, 1] → (C∗)d−1 be a path in the space

defined by the first d− 1 variables, parameterized by normalized arc length in the

first d − 1 variables, so that the arc length along γ from t = a to t = b is b−a
|γ| .

Let y(t) = G(γ(t)), so that H(γ(t), y(t)) = 0. Just as the sequence {zn}∞n=1 was

assumed to be composed entirely of affine points in (C∗)d, we may assume that

y(t) ̸= 0 except at t = 1. Then for all t ∈ [0, 1), y − G(x) locally parametrizes

the same hypersurface near γ(t) as does H = 0. It follows that ∇log(y − G(x)) is

a scalar multiple of ∇logH on γ because they are normal to the same hypersurface

in log space. At a point on γ where t ∈ [0, 1), the log-gradient of y − G(x) has
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projective direction[
x1

∂G

∂x1

: ... : xd−1
∂G

∂xd−1

: G

]
=

[
x1

G

∂G

∂x1

: ... :
xd−1

G

∂G

∂xd−1

: 1

]
.

Under our assumption for contradiction that the log-gradient directions converge

to a direction that is not parallel to F , each
xj

G
∂G
∂xj

converges to a finite number,

possibly zero. Also, because p is in the interior of a facet, each xj converges to a finite

nonzero value, hence 1
G

∂G
∂xj

converges to a finite number for each j ∈ {1, ..., d− 1}.

Let a be chosen close enough to 1 so that 1
G

∂G
∂xj

is uniformly bounded for each j.

Now consider the line integral along γ ⊆ Cd−1 of the vector ∇x(logG) (where the

gradient is taken with respect to the first d − 1 variables). By the fundamental

theorem of line integrals, this line integral is equal to log(γ(1)) − log(γ(0)), which

is infinite because γ(1) = 0 and γ(t) ̸= 0 for t < 1. On the other hand, the line

integral can be evaluated as

∫ 1

0

∇x(logG) · dγ(t)
dt

dt =

∫ 1

0

(
1

G

∂G

∂x1

, ...,
1

G

∂G

∂xd−1

)
· dγ(t)

dt
dt,

which is finite because it is the integral of a bounded quantity over a bounded

interval. We have reached a contradiction, so it must have been the case that the

limiting direction of the log-gradient vectors was parallel to F .

Discussion: Conjecture 5.4.1 appears to be true due to the bounded complex-

ity of semi-algebraic sets, but my lack of familiarity with the relevant algebraic

geometry makes it highly unlikely that I will be able to provide a proof any time

soon.
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5.5 Under certain conditions, p can be a CPAI

for a codimension-1 set of directions, but not

a set of full dimension.

Now, we would like to find the set of directions in which a point p ∈ X0(F ) can be a

CPAI whenever F satisfies the modified simple condition that σF/LF is simplicial.

By Lemmas 5.2.4 and 5.3.3, we may now assume that we are in the following case:

1. H is a Laurent polynomial with no negative powers of any of the last k

variables y1, ..., yk.

2. The sequence {zn}∞n=1 converges to a point p in the face at infinity correspond-

ing to the face F of codimension k that is contained in the intersection of the

last k coordinate hyperplanes.

3. For each j ∈ {1, ..., k}, H has at least one term cmj
zmj that involves the vari-

able yj to a strictly positive power (and possibly also the first d− k variables,

possibly even to negative powers) but does not involve yj′ for any j′ ̸= j.

4. The intersection of Q with the coordinate hyperplane {yj = 0} is a facet Fj,

and F is the intersection of the k facets F1, ..., Fk and (crucially) no proper

subset of them.

As we have seen in Sections 5.2 and 5.3, if p lies in any face satisfying the

modified simple condition (in particular, if F has codimension 1 or 2), then z−vH
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can be monomially transformed to a polynomial H for which there is a sequence

{wn}∞n=1 (playing the role of zn) that makes the above statements true. In this

simplified case, we will find that wn converges in Cd to a point Z.

Lemma 5.5.1. Suppose that H and {zn}∞n=1 satisfy conditions 1-4 above. Then zn

converges to a point Z = (X1, ..., Xd−k, 0, ..., 0) ∈ Cd whose first d− k components

are nonzero and whose last k are zero.

Proof. In this case, we have that σF is all of Rd−k × Rk
≥0, so by Lemma 2.3.5, the

monomials x1, ..., xd−k evaluated at zn (in other words, the first d− k components

of zn) converge to finite nonzero values (call them X1, ..., Xd−k), and the monomials

y1, ..., yk evaluated at zn (in other words, the last k components of zn) converge to

zero. (If F had not satisfied the modified simple condition, we could perhaps still

have performed a monomial transformation, but we would not be guaranteed this

convergence of each yj to zero.) Therefore, the sequence zn converges in Cd to a

point Z = (X1, ..., Xd−k, 0, ..., 0).

By Assumption (1.) above, we know that H, ∇H, and ∇logH are all continuous

at Z. We know that H(Z) = 0 because {zn}∞n=1 ⊆ V converges to Z. No further

rescaling is necessary for the log-gradient because the origin is now in F , so if

∇logH(Z) ̸= 0, then Theorem 3.2.1 would already have given us that the limiting

log-gradient direction at p is unique and parallel to F . (We could show it more

easily now in our special case, but Theorem 3.2.1 does not depend on whether or

not F satisfies the modified simple condition.)
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We now investigate the case where ∇logH(Z) = 0. In this case, it is not hard

to see that ∇H(Z) must be perpendicular to F : For j ∈ {1, ..., d − k}, the jth

component of ∇logH(Z) is Xj (a finite nonzero number) times the corresponding

component of ∇H(Z), so if ∇logH(Z) = 0, then the only entries of ∇H(Z) that

can be nonzero are the last k. This, of course, does not rule out the possibility

that the gradient of H could vanish at Z. However, recall that the example in

Section 4.3 had a heighted CPAI in a direction not parallel to any face of Q, even

though the gradient of H at Z = (1, 0, 0) is (0,-1,1). (Of course, ∇logH at the

same point is the zero vector; otherwise, Theorem 3.2.1 would have implied that

the limiting log-gradient direction must be unique and parallel to F .) Therefore,

we will still be answering interesting questions if we make the further assumption

that the gradient does not vanish at Z. However, given the similarities between the

paraboloid example and the cone example, it would be interesting to see when it is

possible to “resolve” examples with singularities at the limit point (such as the cone

example) into examples where the variety is smooth there (such as the paraboloid).

We will assume, therefore, that ∇logH(Z) = 0 but ∇H(Z) ̸= 0.

Theorem 5.5.2. Suppose that H and {zn}∞n=1 satisfy conditions 1-4, and that at

the point Z, ∇logH = 0 but ∇H ̸= 0. If the Jacobian (on V ) of ∇logH at Z is of

full rank d− 1, then the space of limiting log-gradient directions of H for sequences

converging to Z (that is, the set of directions for which p is a CPAI) has codimension

1 and includes all directions parallel to F ; consequently, if F is not a facet, then
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also some the set of directions for which p is a CPAI includes some directions not

parallel to F .

Proof. By the implicit function theorem, V (H) can be locally parameterized near

p by its tangent space at Z; in other words, for points (z + Z) ∈ V sufficiently

close to Z, the component of z that is parallel to ∇H can be written as a function

G of the (d− 1)-dimensional component perpendicular to ∇H, and the directional

derivatives of G in each of these d − 1 directions is zero at z = 0 (like the vertex

of a paraboloid). Let B be an orientation-preserving orthogonal matrix whose first

d−k columns are the first d−k standard basis vectors (because those directions are

always orthogonal to ∇H(Z) when ∇logH(Z) = 0), the next k − 1 columns are an

orthonormal basis for the remaining directions perpendicular to ∇H(Z), and the

last column is ∇H(Z) divided by its norm.

We now examine ∇logH evaluated at (Bz+ Z), where

z = (W1, ...,Wd−1, G(W1, ...,Wd − 1))

is such that (Bz + Z) ∈ V (H). Now ∇logH(Bz + Z) can be expanded in a Taylor

series as a function of w = (W1, ...,Wd−1) to first order about w = 0 to give that

∇logH(Bz+Z) is locally 0+ Jw (plus terms whose magnitude approaches 0 faster

than Jw), provided that the d-by-(d−1) Jacobian J is of full rank d−1 (has linearly

independent columns) so that Jw is nonzero for small nonzero w and gives a well-

defined limiting log-gradient direction when w approaches 0 in a given direction.

In this case, the set of limiting log-gradient directions for sequences zn approaching
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Z (and therefore the set of directions for which p is a CPAI) is the set of directions

in the column space of J , which is a set of codimension 1.

Now we need to see why p is a CPAI in every direction parallel to F . More

specifically, the first d − k columns of J are all parallel to F (and, being linearly

independent, they span all the directions parallel to F ). To see why the last k

components of the first d−k columns of J are all zero, notice that each of the last k

components of ∇logH is of the form yj
∂H
∂yj

, and when evaluating at (Bz+Z), that yj

factor becomes a linear combination of Wd−k+1, ...,Wd−1, G with no constant term.

This clearly evaluates to zero at w = 0, so if its derivatives with respect to each

of W1, ...,Wd−k do as well, then we are done by the product rule. Terms involving

G have first derivatives with respect to all the Wj variables equal to zero, and the

remaining terms all have a factor of Wj for some j ≥ d−k+1; these do not depend

on W1, ...,Wd−k and are evaluated to zero.

If F is a facet (k−1 = 0), then this shows that p is a CPAI for all the directions

parallel to F , and no other directions.

For concreteness, I will briefly compute the space of limiting log-gradient di-

rections in the example in Section 4.3. We know what the answer should be: all

directions in the span of [1,0,0] and [0,-1,1]. In this example, there is no need to

perform a monomial transformation because F (of codimension k = 2) is already

along the x-axis. We see that ∇logH(1, 0, 0) = 0 and that ∇H(1, 0, 0) = (0,−1, 1)

is perpendicular to F as expected. The matrix B can therefore be taken to be
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
1 0 0

0 u −u

0 u u

, where u =
√
2
2
. In this example, we can parameterize V explicitly

(namely, −uy + uz = u(x − 1)2 for (x, y, z) ∈ V , so G(W1,W2) = uW 2
1 does not

even depend on W2), but this is not necessary; we only need the basic fact that G

is a function whose value and first derivatives with respect to W1 and W2 are zero.

We have that Bz+ Z = (W1 + 1, uW2 − uG, uW2 + uG), so

∇logH(Bz+ Z) = (−2(W1 + 1)W1,−uW2 + uG, uW2 + uG)

has Jacobian matrix

J =


−2 0

0 −u

0 u

 ,

so that p is indeed a CPAI for precisely the codimension-1 set of directions spanned

by [1,0,0] and [0,-1,1]. (The upper right entry of J happened to be zero in this

example, but this is not always the case; this occurred because the first component

of the log-gradient happened to depend only on x. The factor in the first component

of ∇logH(Bz + Z) that arises from the factor of x in x∂H
∂x

is the (W1 + 1), not the

W1.)

As an immediate corollary, we have slightly expanded the (already generic) set

of polynomials H for which we can determine the directions for which a point

p ∈ XA\Φ((C∗)d) is a critical point at infinity.
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Theorem 5.5.3. Suppose that {zn}∞n=1 ⊆ V ∗ has images Φ(zn) that converge to a

point p in the interior of the face at infinity inXA corresponding to a face F ofQ such

that σF/LF is simplicial, and that the directions of ∇logH(zn) in CPd−1 converge

to some direction R. For N a suitable monomial transformation matrix given by

Lemma 5.3.3, let H = τ ∗N(z
−vH), let {wn}∞n=1 be a sequence given by Lemma 5.2.4,

and let Z ∈ Cd be the limit of wn given by Lemma 5.5.1. If z−v
n ∇logH converges to

the zero vector (so that Theorem 3.2.1 gives no conclusion), but ∇H(Z) ̸= 0 and

the Jacobian J of ∇logH(Z) on V (H) is of full rank d − 1, then p is a CPAI for a

codimension-1 set of directions that contains all directions parallel to F .

Proof. Recall that, for points on V ∗, we have by Lemma 3.0.1 that z−v
n ∇logH =

∇log(z
−v
n H), so by Lemma 5.2,

∇logH(wn) = NT∇log(z
−v
mn

H(zmn)) = z−v
mn

NT∇logH(zmn).

If z−v
n ∇logH converges to the zero vector, then ∇logH(wn) must as well. Applying

Theorem 5.5.2, the space of limiting log-gradient directions of H for sequences

converging to Z has codimension 1 and includes all directions parallel to NTF (that

is, to the intersection of the last k coordinate hyperplanes), so by conclusion 2(c) of

Lemma 5.2.4, p (before the monomial transformation) is a CPAI for a codimension-1

set of directions that contains all directions parallel to F .

Remark 5.5.4. As I learned very recently, Theorem 5.5.3 works best in cases when

N is unimodular. When N is not unimodular, the vectors formed by exponents of
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the yj variables of terms in H lie in a proper sublattice of Zk, which therefore cannot

contain all k standard basis vectors. If it happens not to contain any of them, then

the gradient of H at Z vanishes for structural reasons.
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Chapter 6

Future Directions

There are a couple of natural potential extensions of this work that will have to be

left for future research.

6.1 Computing asymptotic contribution of a

CPAI in simple cases

The goal of ACSV is to find the asymptotics of the coefficients (in a given di-

rection) of multivariate generating functions using Morse theory and saddle point

integration. Critical points at infinity have tended to be viewed as an obstruction

to achieving this goal; even when it is possible to find the contribution of each affine

critical point of the height function in a certain direction on V , this may not yield

the dominating asymptotics if there is a heighted CPAI of higher height in the same
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direction. However, if it is possible to analyze the contribution even of such a CPAI,

then its existence would no longer necessarily be an obstruction to the analysis. It

would seem at first glance that a plan for computing the asymptotics of a CPAI

lying on a codimension-k face F satisfying modified simple condition (for example,

any face of codimension 1 or 2), in a direction r parallel to F , would be as follows:

1. Perform a monomial transformation to get H into a form where F becomes

an intersection of coordinate hyperplanes, and r becomes a vector with the

last k coordinates equal to zero.

2. Reduce the number of variables in the monomially transformed generating

function to d− k by setting the last k variables to zero.

3. We are now in an “ordinary” case where we wish to compute the asymptotic

contribution of an affine critical point, so we can apply ACSV results for affine

critical points (for example, the smooth point formula).

There are at least a couple of issues with this proposed approach. One obvious

one is that it would not work to analyze asymptotics in directions not parallel to

a (non-facet) face F , in cases where p ∈ X0(F ) is a CPAI for such a direction.

Another one is much more subtle and goes back to the very definition of “asymp-

totics in direction r.” In reality, the asymptotics in direction r do not just consider

the terms whose exponent vectors are exact scalar multiples of r, but also those

in nearby directions (see Section 8.1 of [PW13]). For instance, a generating func-
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tion such as x−y
1−x−y

could have no nonzero diagonal (xnyn) terms at all but still

have nonzero asymptotics in the diagonal direction because any neighborhood of

the diagonal direction contains a sequence of terms whose coefficients are growing

exponentially (see Example 5.4 in [Mel20]). By reducing the number of variables,

we are declaring all terms in nearby directions irrelevant, except for those directions

that also happen to be parallel to F . Analyzing the asymptotics of CPAI’s without

losing this information will have to be left as a problem for future research.

6.2 Stratified case

The work in this dissertation largely assumes that V ∗ is smooth, or more precisely,

that there does not exist a sequence of singular points zn converging in XA to a

point that is not in Φ((C∗)d). (For instance, finitely many isolated singularities do

not affect behavior at infinity, so they can be ignored when finding CPAI’s.) In

ACSV, non-smooth varieties are handled through stratification, or partitioning into

a disjoint union of finitely many manifolds (“strata”) of different dimensions (and

possibly some isolated points, called 0-dimensional strata). A very rough outline of

computing directions in which CPAI’s can occur for a sequence of points lying in a

(d− k)-dimensional stratum S of V might look like the following:

1. Write the stratum S locally as an intersection of k transversely intersecting

algebraic hypersurfaces V (Hj); if a Whitney stratification (see Appendix C of
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[PW13]) was chosen, then there should be such a decomposition that works

for sufficiently large n.

2. Any vector normal to S at zn is a linear combination of the log-gradients of

the functions Hj at zn.

3. Use the smooth case to analyze the limiting directions for the log-gradient of

each Hj as n grows large.

There are at least a couple of difficulties with this approach: First and fore-

most, item 3 produces limiting log-gradient directions that depend on the Newton

polytope of Hj rather than that of H. A less obvious concern is that the k hyper-

surfaces that intersect transversely at each zn may approach non-transversality in

the limit (meaning that their log-gradients are linearly independent at each zn but

approach being linearly dependent). In this case, we are no longer guaranteed that

any projective limit of a sequence rn of normals to S at zn (where rn is a linear

combination of the log-gradients of the Hj at zn) will be parallel to the span of the

projective limits of the ∇logHj(zn); this is because the sequence of normals could

converge to the zero vector and have projective directions that do not converge to

be in the smaller span of the projective limits of the ∇logHj(zn). Therefore, the

generalization of the methods I have outlined for smooth V ∗ to stratified V ∗ will

also have to be left for future research.
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