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ABSTRACT

LIFTINGS OF ELEMENTARY ABELIAN COVERS OF CURVES

Jianing Yang

David Harbater

Given a Galois cover of curves f over a field of characteristic p, the lifting problem asks whether there

exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction

is f . In this thesis, we try to answer this question in the case of elementary abelian p-groups. We

prove a combinatorial criterion for lifting an elementary abelian p-cover, dependent on the branch

loci of its p-cyclic subcovers. Moreover, we study how branch points of a lift coalesce on the special

fiber. Finally, we construct lifts for several families of (Z/2)3-covers of various conductor types,

both with equidistant branch locus geometry and non-equidistant branch locus geometry.
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CHAPTER 1

INTRODUCTION

Given a smooth curve over a field k of characteristic p, e.g. Fp, we can study its lift to characteristic

0, which is a smooth (relative) curve over a mixed characteristic complete discrete valuation ring R

with residue field k, e.g. the p-adic integers Zp. Moreover, if we let a finite group act on the curve

and take the quotient, we obtain a Galois cover of such curves. The Lifting Problem asks: given a

Galois cover of smooth curves in characteristic p, X G−→ P1
k, when can we lift it to characteristic 0?

Which groups can be realized as Galois groups of covers that lift? One famous result in the area is

the Oort conjecture, which states that all cyclic covers lift. This topic is also related to the Inverse

Galois Problem, deformation theory, étale fundamental groups, and patching, etc..

The focus of my thesis is on the elementary abelian case, i.e. (Z/p)n-covers of smooth projective

curves. It is known that some of them lift, while some of them don’t, but results about when they

lift are very incomplete. My main result, which generalizes Barry Green and Michel Matignon’s

criterion for lifting Z/p×Z/p-covers [GM98], applies to all elementary abelian p-covers of P1
k, where

k is an algebraically closed field of characteristic p. I have shown the following branch cycle criterion,

a precise version of which will be stated in section 3 (Theorem 3.4.1, see also Section 1.2).

Theorem 1.0.1 (Imprecise version). Let C : X → P1
k be a (Z/p)n-Galois cover, and m1+1 ≤ · · · ≤

mn + 1 be the conductors of its n generating Z/p-subcovers. Then C can be lifted to characteristic

0 if and only if mi ≡ −1 mod pn−i for 1 ≤ i ≤ n − 1 and these Z/p-subcovers can be respectively

lifted with branch loci B1, . . . , Bn that satisfy a certain combinatorial criterion.

Moreover, I construct explicit lifts for several new families of (Z/2)3-covers, including the first

known lifts for elementary abelian covers with non-equidistant geometry beyond (Z/p)2. Finally, I

classify all admissible Hurwitz trees for certain types of (Z/2)3-covers. I also translate the p-rank

stratification of the Artin-Schreier space to a stratification of the characteristic 0 Hurwitz space by
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the branch locus coalescing behavior of p-cyclic covers in characteristic 0.

1.1 The Lifting Problem and Oort Groups

Let R be a complete mixed characteristic p discrete valuation ring with field of fractions K and

algebraically closed residue field k. Then we can state the lifting problem as follows:

Question 1.1.1 (The global lifting problem). Let f : Xk
G−→ P1

k be a Galois branched cover of

smooth projective curves. Does there exist some choice of R, and a smooth projective R-curve XR

such that the special fiber of XR
G−→ P1

R′ is f? If the answer is yes, we say that f lifts.

Remark 1.1.2. A smooth projective curve always lifts over any complete discrete valuation ring

R with residue field k [SGA03, III, Corollaire 6.10 and Proposition 7.2]. However, simply taking

the equation defining Xk, lifting its coefficients to R does not always work, since there may not be

a G-action on XR that reduces to the one on Xk.

There are various obstructions to lifting. First of all, the Hurwitz bound [Har77, IV.2] tells us that,

if |G| > 84(g(X) − 1), then Xk
G−→ P1

k does not lift. For abelian groups, however, Hurwitz bounds

do not give obstructions.

A key statement concerning the lifting problem is the Oort conjecture.

Theorem 1.1.3 (Oort conjecture). The answer to the lifting problem is positive if G is cyclic.

In the case of prime to p groups, it was proven by Grothendieck, using the “tame Riemann existence

converse” [Obu17, Theorem 1.5], . The Z/p case was proven by Oort-Sekiguchi-Suwa [OSS] in

1989, using Artin-Schreier theory. The Z/p2 case was proven by Green-Matignon [GM98] in 1998,

by reducing to the local lifting problem and using Artin-Schreier-Witt theory. Finally the Oort

conjecture was proven for general cyclic groups by Obus-Wewers [OW14] and Pop [Pop14] in 2014.

This result motivates the natural question: for which finite groups G do all G-covers lifts? For

which finite groups G do some G-covers lift? we define the following:
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Definition 1.1.4. A finite group G for which every G-Galois cover X → P1
k lifts to characteristic 0

is called an Oort group for k. If there exists a G-Galois cover that lifts, G is called a weak Oort

group.

In particular, all Oort groups are local Oort groups. The Oort conjecture states that cyclic groups

are Oort groups. A more detailed classification of Oort groups and weak Oort groups will be

discussed in the next chapter.

Example 1.1.5. Let Xk = P1
k, and G = (Z/p)n. Then G embeds into the additive group of k

and has an additive action on Xk. Suppose that the G-Galois cover Xk → P1
k lifts to R. Then G

acts on the generic fiber XK . However, since the genus of XK is 0, the group of automorphisms of

XK embeds into PGL2(K̄), which does not contain (Z/p)n for n > 1 except for (Z/2)2. Therefore,

elementary abelian p-groups, apart from p-cyclic groups and the Klein-four group, are not Oort

groups.

Meanwhile, they are shown to be be weak Oort groups in [Mat99].

1.2 Outline of the Chapters

In Chapter 2, we introduce the notations that we will use throughout this thesis. In Section 2.1, we

state the local-global principle, which reduces the global lifting problem to the local lifting problem.

Then we define the local Oort groups and weak local Oort groups, as well as summarize known

classifications of these groups. In Section 2.2, we discuss some results from Chapter 4 of [Ser] on

ramification groups, and degree of the different, which will be used in Chapter 3. We also define

the conductor as in [GM98]. In Section 2.3, we define a local G-cover of rings, and show that an

Artin-Schreier extension of local rings can be written in certain standard form. In Section 2.4, we

define the branch locus of a cover, and give a brief construction of a Hurwitz tree associated with

a branched cover. In Section 2.5, we states the Different Criterion, and a branch cycle criterion

for lifting Z/p × Z/p-covers, which we generalize in Chapter 3. We also list some lifting results

for p-cyclic covers due to Oort-Sekiguchi-Suwa and for (Z/p)2-covers due to Green-Matignon and

Pagot.
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In Chapter 3, we prove the Branch Cycle Criterion for lifting general elementary abelian p-covers.

In Section 3.1, we define ramification jumps for a (Z/p)n-extension, and compute them in terms of

conductors of intermediate extensions. In Section 3.2, we define the conductor type of a (Z/p)n-

cover, and show that these covers can be defined by a n-tuple of Artin-Schreier equations of certain

form. In Section 3.3, we prove some lemmas regarding the degrees of the special different and the

generic different. In Section 3.4, we prove the following main theorem (Theorem 3.4.1).

Theorem 1.2.1 (Branch Cycle Criterion). Let G = (Z/p)n. Suppose k[[z]]/k[[t]] is a G-extension

of conductor type (m1 + 1, . . . ,mn + 1). Then there is a lifting of G to a group of automorphisms

of R[[Z]] if and only if the following two conditions hold:

1. mi ≡ −1 mod pn−i for 1 ≤ i ≤ n− 1,

2. k[[z]]G1 , . . . , k[[z]]Gn can be lifted with branch loci B1, . . . , Bn such that for any subset of k

branch points {Bi1 , . . . , Bik}, | ∩1≤j≤k Bij | =
(minj(mij ) + 1)(p− 1)k−1

pk−1
.

In Chapter 4, we discuss the way in which branch points of a lift coalesce on the special fiber. In

Section 4.1, we state a result by Pries-Zhu on stratification of the space of Artin-Schreier covers. In

Section 4.2, we prove a condition on the branch locus geometry of a lift of an Artin-Schreier cover

(Proposition 4.2.1).

Proposition 1.2.2. Consider the component of ASg,s containing an Artin-Schreier cover f : X →

P1
k with p-rank s, which corresponds to the partition [e1, ..., er+1] of d + 2, with each ej ̸≡ 1 mod

p. Suppose f is branched at {c1, . . . , cr+1}. As above, f is given by an equation of the form

yp − y =

r+1∑
i=1

fi(
1

x− ci
), where ei = deg(fi) + 1. Then there exists a lift of f to R whose generic

fiber is a degree p Kummer cover with d + 2 branch points, ei of which coalesce to ci on P1
k for

1 ≤ i ≤ r + 1.

Conversely, any lift of f is a Z/p-cover with d + 2 branch points, ei of which coalesce to ci on P1
k

for 1 ≤ i ≤ r + 1.

We then give an interpretation of the Pries-Zhu result in the characteristic 0 setting.
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In Chapter 5, we apply results from Chapters 3 and 4 to the case (Z/2)3 in characteristic 2. In

Section 5.1, we prove that a (Z/2)3-cover of type (4, 4, 4) can only be lifted equidistantly (Proposition

5.1.4), and the Hurwitz tree for the lift has branch partition (1, 1, 1, 1, 1, 1, 1), see Figure 5.2. We

also show that a codimension 1 subspace of these covers lift (Proposition 5.1.6), generalizing the

construction in [Mat99]. In Section 5.2, we construct lifts for all (Z/2)3-covers of type (4, 4, 2r), r ≥ 3

(Proposition 5.2.2). The construction uses a generalized version of a Klein-four lift in [Mit] (Lemma

5.2.1), and results in [Pag] (Proposition 2.5.4). The resulting Hurwitz tree has branch partition

(3, 3, 3, 2, . . . , 2), see Figure 5.3. They are the first known non-equidistant lifts for a (Z/p)n-cover

with n > 2.
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CHAPTER 2

BACKGROUND AND NOTATIONS

Now we give precise definitions for the relevant objects, and state the questions being studied more

carefully. Throughout this thesis, we will use the following notations and assumptions:

• Let k be an algebraically closed field of characteristic p.

• Let R be a finite extension of W (k), the ring of Witt vectors over k ([Ser], Section 2.6), i.e.

R is a complete discrete valuation ring of characteristic 0 with residue field k. Let K be the

fraction field of R. We always allow extension of R if necessary.

• Let π be the uniformizer of R, and v be the valuation on R with respect to π.

• A curve is assumed to be reduced, connected, and projective unless stated otherwise.

• A G-(Galois) cover of curves X → Y is a finite, generically separable morphism such that the

group of automorphisms AutY (X) is isomorphic to G, and acts transitively on each fiber.

2.1 The Local Lifting Problem

The following Local-global principle reduces the lifting problem to one of local nature.

Theorem 2.1.1 (Local-global principle [Gar96]). Let f : Y → X be a G-cover of smooth

projective curves over k. For each closed point y ∈ Y , let Iy ≤ G be the inertia group. If, for all y,

the Iy-extension ÔY,y/ÔX,f(y) lifts over R, then f lifts over R.

Before stating the local lifting problem, let us take a closer look at the p-adic open disk SpecR[[T ]].

By the Weierstrass preparation theorem [B1], the points on the open disk, i.e. the prime ideals of

R[[T ]] are:

1. Height 0: (0).
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2. Height 1: (π) (vertical divisor), and ideals generated by distinguished polynomials over R

(horizontal divisors).

3. Height 2: (π, T ) (the unique maximal ideal).

Remark 2.1.2. For the horizontal divisors of SpecR[[T ]], since the generator f is a monic polyno-

mial, R[T ]/(f) is a finite extension of R. Then the divisor is defined over R[T ]/(f). Since we allow

finite extensions of R, we can just consider the horizontal divisors as elements of R, after possible

extension. These consists of a closed point on the generic fiber SpecK[[T ]], and a closed point on

the special fiber Speck[[t]].

With the above notations, we can now ask:

Question 2.1.3 (The local lifting problem). Suppose G is a finite group, and k[[z]]/k[[t]]

is a (possibly ramified) G-Galois extension. Does there exist some R, and a G-Galois extension

R[[Z]]/R[[T ]] such that the G action on R[[Z]] reduces to the given G action on k[[z]]?

Definition 2.1.4. If the local lifting problem has a solution for a G-extension k[[z]]/k[[t]]. We say

that the extension lifts to characteristic 0, and R[[Z]]/R[[T ]] is a lift of the extension.

We then have the corresponding definitions for local Oort groups and weak local Oort groups for k.

In fact, the classification of Oort groups are determined by that of local Oort groups.

Theorem 2.1.5 ([CGH08]). A finite group G is an Oort group for p, if and only if every cyclic-by-p

subgroup (P ⋊ Z/m) of G is a local Oort group.

Moreover, a finite cyclic-by-p group is an Oort group if and only if it is a local Oort group [CGH17].

Hence from now on, we are only going to look at the local lifting problem, and when we say (weak)

Oort groups, we mean (weak) local Oort groups.

The following obstruction to the local lifting problem is due to Chinburg, Guralnick and Harbater.
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Theorem 2.1.6 ([CGH08]). All local Oort groups must be one of the following: cyclic groups,

dihedral groups Dpn for any n, the group A4 (for char(k) = 2), and Q2n , n ≥ 4 (for char(k) = 2).

Furthermore, the Hurwitz tree obstruction [BW09] rules out all the quaternion groups. All these

possible candidates are known to be Oort groups, apart from dihedral groups with n > 1. As

discussed in chapter 1 and by Theorem 2.1.5, all cyclic groups are local Oort groups. Bouw and

Wewers [BW06] show that Dp is a local Oort group for all odd p. Pagot [Pag] proves that the Klein-

four group, D2 = Z/2× Z/2 is a local Oort group for p = 2. Obus proves that A4 [Obu16] and D9

[Obu15] are local Oort groups. Weaver [Wea17] proves that D4 is a local Oort group. Finally, Dang

[Dan20] proves that D25 and D27 are local Oort groups.

Meanwhile, the question of whether a finite group G is a weak Oort groups is sometimes called the

Inverse Galois Problem for lifting. Some known weak Oort groups are (Z/p)n for all n [Mat99] and

G = Z/pn ⋊ Z/m whenever G is center-free [Obu15]. In [CGH08] groups that are not weak Oort

groups are called anti-Oort groups, i.e. no G-Galois cover lifts, for example, (Z/p)2 × Z/n.

For a weak Oort group G that is not an Oort group, we can look more closely and ask which G-

covers lift. The subjects of this study are the elementary abelian p-covers in particular. Matignon,

in proving elementary abelian p-groups are weak Oort groups, constructs lifts for a special family

of (Z/p)n-covers of type (pn−1, . . . , pn−1).

Theorem 2.1.7 ([Mat99]). (Z/p)n is a weak Oort group for all n ≥ 1.

However, no other lifts were previously known for (Z/p)n-covers for n ≥ 3.

2.2 Ramification Theory and Conductors

Definition 2.2.1. Let L/K be a Galois extension of complete dicretely valued fields and G be its

Galois group. For each integer i ≥ −1, let Gi be the set of s ∈ G satisfying vL(s(x)−x) ≥ i+1 ∀x ∈

OL, where OL is the corresponding valuation ring. Then Gi is a normal subgroup of G, called the

i-th ramification group of L/K.
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Definition 2.2.2. With the above notation, let A be the discrete valuation ring in K with maximal

ideal m, and B its integral closure in L. Let DB/A be the different of B/A ([Ser], Section 3.3). Then

the degree of the different dB/A is the length of B/DB/A as an A/m-module.

In the case where B/A is k[[z]]/k[[t]], B/P = A/m for any prime ideal P of B, since k is algebraically

closed. Then the degree of the different equals to vB(DB/A).

Proposition 2.2.3 ([Ser] IV.2, Proposition 4). If DL/K := DB/A denotes the different of L/K,

then

vL(DL/K) =
i=∞∑
i=0

(|Gi| − 1).

Here, |Gi| = 1 for i sufficiently large, so this is a finite sum.

In the case where B/A is tamely ramified, for example, K[[Z]]/K[[T ]], char(K) = 0, the degree of

the different equals to (|G0| − 1) times the number of ramification points.

Definition 2.2.4. For a Z/p-extension k((z))/k((t)) given by the Artin-Schreier equation

zp − z = f(
1

t
),

where f(1t ) ∈ k[t−1], we call m+ 1 := deg(f) + 1 the conductor of the extension.

Remark 2.2.5. By [Ser] IV.2, Exercise 5b, if we let G = Gal(k((z))/k((t))) as above, then Gm = G

and Gm+1 = 1.

Now we will give some information on the upper numbering of ramification groups, the Herbrand

function, and some properties.

Definition 2.2.6. If u is a real number ≥ −1, Gu denotes the ramification group Gi, where i is the

smallest integer ≥ u. Then define the Herbrand function for L/K to be

φ(u) =

∫ u

0

dt

(G0 : Gt)
.

9



When we need to specify the extension, write φL/K .

By [Ser], page 73, we have that for a positive integer m,

φ(m) + 1 =
1

g0

i=m∑
i=0

gi, (2.1)

where gi := |Gi|.

Now we can define the upper numbering of the ramification groups:

Gφ(u) = Gu.

Then the lower numbering is compatible with subgroups while the upper numbering is compatible

with quotient groups. Namely,

Proposition 2.2.7 ([Ser] Chapter IV, Propositions 2 and 14). Let H be a subgroup of G. Then

Hi = Gi ∩H for all i. Let H be a normal subgroup of G. Then (G/H)v = GvH/H for all v.

Finally, we state Herbrands’s theorem, which is used to prove the above proposition.

Lemma 2.2.8. Let H be a normal subgroup of G, and K ′ ⊂ L be the fixed field of L. If v = φL/K′(u)

then GuH/H = (G/H)v.

2.3 Artin-Schreier Covers

Definition 2.3.1. Suppose a domain A is integrally closed in its field of fractions. A G-extension

of rings B/A is a ring extension such that Frac(B)/Frac(A) is a G-Galois field extension, and B is

the integral closure of A in Frac(B). Then the action of G on Frac(B) restricts to an action on B,

and BG = A.

If B/A is a G-extension, then SpecB → SpecA is a G-Galois cover of schemes, and we sometimes

also call B/A a G-cover.
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Remark 2.3.2. In particular, we can consider local G-extensions of the form R[[Z]]/R[[T ]] or

k[[z]]/k[[t]]. Since R[[T ]] and k[[t]] are regular local rings, they are integrally closed in K((T )) and

k((t)), thus satisfying the assumption in the above definition.

A Z/p-extension k[[z]]/k[[t]] is called an Artin-Schreier extension of local rings. Since Speck[[z]] →

Speck[[t]] is a Z/p-cover of schemes, we sometimes also call k[[z]]/k[[t]] an Artin-Schreier cover.

By Artin-Schreier theory, it can be defined by an equation of the form zp − z = f(t), called an

Artin-Schreier equation, where f(t) ∈ k((t)).

Proposition 2.3.3. Every Artin-Schreier extension k[[z]]/k[[t]] can be defined by an Artin-Schreier

equation in the standard form:

zp − z =

m∑
i=1

cit
−i,

where p ∤ m, cm ̸= 0, and ci = 0 if p divides i.

Proof. Assume that k[[z]]/k[[t]] is defined by the equation

zp − z =
i∑

i=−m

nftyeit
i = f(t−1) + g(t),

where f(t−1) =
∑m

i=1 e−i
1
ti
∈ t−1k[t−1], p ∤ m and g(t) ∈ k[[t]]. We will show that after a sequence

of changes of variables, this extension can be defined by an equation in the standard form.

First observe that any element u ∈ k[[t]] can be written as xp − x for some x ∈ k((t)), by taking

x = −u− up − up
2 − · · · . Thus taking z′ = z + g(t) + g(t)p + g(t)p

2
+ · · · , k[[z]]/k[[t]] can be given

by z′p − z′ = f(t−1).

Similarly, for each i divisible by p, e1/p−i ∈ k because k is algebraically closed. Let z” = z′−e
1/p
−i t

−i/p.

Then z”p − z” = z′p − z′ − e−it
−i + e

1/p
−i t

−i/p. Proceed this way, we can “absorb” all the terms in

f(t−1) with exponent divisible by p. Thus we arrive at the standard form.
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Remark 2.3.4. If we are allowed to choose a uniformizer of k[[t]], we can simplify the equation

further. We can write f(t−1) = t−mh(t), where h(t) ∈ k[t] has a non-zero constant term. Then

h(t) is a m-th power in k[[t]], since k is algebraically closed. Thus replacing t with a m-th root t′ of

1/f(t−1), which is a uniformizer of k[[t]], k[[z]]/k[[t]] can be defined by

zp − z =
1

t′m
,

with p ∤ m.

2.4 Branch Locus Geometry and Hurwitz Trees

2.4.1. Branch locus of a lift

In order to discuss the geometry of the branch locus, we first give a precise definition of what we

mean by branch points of a cover in characteristic 0, both in the global scenario and in the local

scenario.

Definition 2.4.1. Let f : C → P1
R be a G-Galois branched cover of smooth projective (relative)

curves over R. Assume that it is unramified at the prime ideal (π). Then the branch points of f are

the étale divisors b of P1
R such that f is ramified at f−1(b) ⊂ C. Enlarge R so that all the branch

points are R-rational. The set of branch points is called the branch locus of f .

Remark 2.4.2. Note that a branch point consists of a closed point on the generic fiber P1
K and a

closed point on the special fiber P1
k. In some other literatures, branch points of a lift refer to closed

points on the generic fiber, whereas here they refer to the étale (horizontal) divisors of P1
R. Since

they are R-rational, they can be considered as elements of R plus ∞.

Definition 2.4.3. Let R[[Z]]/R[[T ]] be a G-extension. Assume that the cover f : SpecR[[Z]] →

SpecR[[T ]] is unramified at the prime ideal (π). Then the branch points of R[[Z]]/R[[T ]] are the

divisors b of SpecR[[T ]] such that f is ramified at f−1(b). Enlarge R so that all branch points are

R-rational. The set of branch points is called the branch locus of R[[Z]]/R[[T ]].

12



Again, for local covers, we can consider branch points bi of R[[Z]]/R[[T ]] as elements of R, assuming

it is not ramified at infinity. When we say v(bi−bj), it is the valuation of the corresponding element

of R we shall mean.

2.4.2. Hurwitz trees

A (Z/p)n-cover over R is determined by its Z/p-subcovers, and Z/p-cover in characteristic 0 is in

turn determined by its branch locus. Therefore, we want to study these covers by studying the

geometry of its branch locus. One way to describe that geometry is through Hurwitz trees. The

concept of Hurwitz trees was first introduced in [GM99], and they were first precisely defined in

Henrio’s thesis [Hen00].

A Hurwitz tree consists of combinatorial data that tells us which branch points are closer to each

other than the other branch points, how close they are, among other information. We will also use

Hurwitz trees to construct lifts of Artin-Schreier covers, and combine the them to construct lifts of

elementary abelian covers in certain cases. Finally, the Hurwitz tree obstruction [BW09] Theorem

4.2 essentially states that, if a local G-cover lifts to characteristic 0, then there exists a Hurwitz

tree of corresponding type. This enables us to classify possible branch locus geometry for lifting an

elementary abelian cover of a given conductor type, and thus refine our search for lifts.

For a precise definition of a Hurwitz tree as a rooted metric tree, see [BW09]. Since for the purpose

of the discussion in this thesis, only the configuration of branch points as leaf nodes of the Hurwitz

tree is needed, we will provide the construction of the Hurwitz tree associated to a branched cover,

given in Section 4.2.1 of Obus’ exposition [Obu17], instead.

Definition 2.4.4 (Models). Given a smooth projective curve C over K, a R-model of C is a normal

arithmetic surface [Liu, Chapter 9] C → SpecR together with an isomorphism C ⊗R K ∼= C.

Definition 2.4.5. A semi-stable model C of C is a R-model of C whose special fiber is semi-stable,

i.e. C ⊗R k is reduced and its only singularities are ordinary double points [Liu, Definition 10.3.1].

Let R[[Z]]/R[[T ]] be a G-extension with branch locus B = {b1, . . . , br}, and ramification locus

13



(preimage of B) B′ = {a1, . . . , as}. Let Y (X) be the minimal semi-stable model of P1
K such that

elements of B′ (B) and ∞ do not coalesce on the special fiber. Then G acts on each irreducible

component of Yk, and its "quotient" is an irreducble component of Xk.

The underlying tree of the Hurwitz tree for R[[Z]]/R[[T ]] is built from the dual graph Γ of the

semi-stable curve Xk. Namely,

• Vertices and edges of Γ correspond to irreducible components and nodes of Xk, and there is an

edge between two vertices if and only if their corresponding irreducible components intersect.

• We append a vertex v0, connected via an edge e0, to the vertex v1 corresponding to the

component ∞ specializes to. Call this the root node of the Hurwitz tree. Then v0 correspond

to the open unit disk D0 := SpecR[[T ]], and v1 correspond to the smallest open disk D1 ⊂ D0

such that B ⊂ D1.

• For each bi ∈ B, append a vertex xi, via an edge ei, to the vertex wj , corresponding to the

component bi specializes to. Call these the leaf nodes of the Hurwitz tree. Then each wj

correspond to the smallest open disk containing all bi such that xi is connected to wj .

• Finally, note that there is a partial ordering on the vertices of the Hurwitz tree as a rooted tree,

given by its distance to v0. For each edge eij between vi ≤ vj , the open disk corresponding

to vi is contained in the open disk corresponding to vj . Define the thickness of eij to be the

radius of this annulus. Edges connected to leaf nodes have thickness 0.

Definition 2.4.6. We say that a branch locus B has equidistant geometry if v(bi − bj) = ρ, ρ ≥ 0

fixed, for all pairs of distinct branch points bi, bj ∈ B. Otherwise, i.e. if some branch points

are closer to each other than they are to the others, we say the branch locus has non-equidistant

geometry.

Remark 2.4.7. The Hurwitz tree of a cover with equidistant branch locus has all branches of size 1

(single leaves), whereas the Hurwitz tree of a cover with non-equidistant branch locus has branches

with multiple leaves. Further restrictions on the sizes of branches will be discussed in Chapter 4.
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2.5 Liftings of Z/p and Z/p× Z/p-Covers

It is easy to use Artin-Schreier theory and Kummer theory to find birational lifts ([Mit] Definition

2.4.1) of a G-extension in terms of explicit equation. We often use the following different criterion

for verifying that a birational lift is an actual lift in the sense of Definition 2.1.4.

Theorem 2.5.1 (The different criterion [GM98] Section 3.4). Suppose B/A := /R[[T ]] is a

local G-extension. Let Bk = B/πB, Ak = A/πA, and B̃k be the integral closure of Bk. Define

δk(B) = dimk(B̃k/Bk). Let dη be the degree of the generic different, i.e. DB⊗RK/A⊗RK , and let ds

be the degree of the special different, i.e. DBk/Ak
. Then dη = ds + 2δk(B), and dη = ds if and only

if B/R[[T ]] is a lift of k[[z]]/k[[t]] := Bk/Ak and consequently B = K[[Z]].

For a local Z/p-cover k[[z]]/k[[t]], we can write down explicit equations for its lift to R, with ζp ∈ R,

where ζp is a primitive p-th root of unity. Denote λ := ζp − 1.

Theorem 2.5.2 ([GM98] Theorem 4.1, [OSS] Theorem 2.2). The equation

((λX + 1)p)/λp = T−m

defines a p-cyclic cover C of P1
R which after normalization is étale outside the disc |T | < 1 (i.e.

outside {x ∈ P1
K : |T (x)| < 1}). The special fiber is smooth and induces the extension of k[[t]]

defined by the equation

xp − x = t−m.

In this way we cover all p-cyclic extensions of k[[t]]. Moreover the set {a ∈ Cη : |T (a)| < 1} is an

open disc and X−1/m is a parameter.

We can show that dη = (m + 1)(p − 1) = ds, and the different criterion gives the first part of the

statement. For the second part, from the equation

Xp +
p

λ
Xp−1 + · · ·+ p

λp−1
X = T−m,
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we see that mod π, x−m is a uniformizer in k((t))[x], and applying the Weierstrass Preparation

Theorem we get that X1/m is a parameter for the open disc.

Using the different criterion, Green and Matignon proved a criterion for lifting local G-covers in the

case where G = Z/p × Z/p. In Chapter 3, we will generalize this criterion to G = (Z/p)n for an

arbitrary n. Here we state the original theorem more succinctly, combining the two cases into one.

Theorem 2.5.3 ([GM98] Theorem 5.1). Let G be an abelian group isomorphic to (Z/p)2. Let

Gi, 1 ≤ i ≤ p + 1, be the p + 1 subgroups of order p. Assume that G is a group of automorphisms

of k[[z]] and arrange Gi in such a way that the extensions k[[z]]Gi/k[[z]]G have conductors mi + 1,

with m1 ≤ m2 ≤ · · · ≤ mp+1. Denote the conductor of the extension k[[z]]/k[[z]]Gi by m′
i +1. Then

the following holds:

If there is a lifting of G to a group of automorphisms of R[[Z]] then m1 ≡ −1 mod p, m′
1 =

m2p − m1(p − 1), mi = m2, and m′
i = m1, for 2 ≤ i ≤ p + 1. In this case the two covers

R[[Z]]Gi/R[[Z]]G for i = 1, 2 have (p− 1)
m1 + 1

p
common geometric branch points.

Conversely, if m1 ≡ −1 mod p and if one can lift k[[z]]Gi/k[[z]]G for i = 1, 2 in such a way that the

corresponding covers have (p− 1)
m1 + 1

p
common geometric branch points, then the normalization

of the compositum of these two covers lifts k[[z]]/k[[z]]G.

Applying this criterion to the case of p = 2, Pagot [Pag] constructs explicit lifts of (Z/2)2-covers of

type (m,m), both with equidistant geometry and with non-equidistant geometry (Definition 2.4.6).

He also constructs lifts of (Z/2)2-covers of type (m1,m2),m1 ̸= m2, with non-equidistant geometry.

The key ingredient of his constructions of lifts whose branch locus has non-equidistant geometry is

the following construction of a non-equidistant Z/2-cover, whose Hurwitz tree has branches of size

2. Here we state the version in Matignon’s notes on Pagot’s thesis.

Proposition 2.5.4 ([MatNotes] Proposition 3.3). Let char(k) = 2, and ρ ∈ W (k)alg such that

v(2)/2 ≤ v(ρ) < v(2). Let T1, . . . , Tr ∈ R with v(Ti−Tj) = 0 for i < j and Q(X) :=
∏

1≤i≤r(X−Ti).
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Let α ∈ R with v(α) = 0. Let

F (X) := Q(X)
∏

1≤i≤r

(
X − Ti − 2ρα

T
1/2
i

Q′(Ti)
+ ρ2α2 1

Q′(Ti)2

)
.

Then we can write F (X) =
∏

1≤i≤r(X − Ti)(X − T̃i), where v(Ti − T̃i) = v(ρ2) and the cover

Y 2 = F (X) has good reduction over R[(4/ρ2)1/(2r−1] relatively to the coordinate T : (
2

ρ
)

2
2r−1X. An

equation for the special fiber of the cover is

w2 − w = ᾱ2 1

t2r−1
,

where ᾱ is the image of α mod π.

Pagot uses a corollary of this proposition to prove that (Z/2)2 are local Oort groups for k of

characteristic 2.

Finally, Mitchell [Mit] constructs a new type of non-equidistant lift for certain (Z/2)2-covers, whose

branch locus geometry is different from that of Pagot’s covers. We will discuss this in detail in

Chapter 5.
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CHAPTER 3

BRANCH CYCLE CRITERION FOR (Z/p)n-COVERS

In this chapter, we first prove the necessary lemmas on the degree of the special different, i.e. the

degree of different of k((z))/k((t)), related to ramification jumps, and the degree of the generic

different, i.e. the degree of different of K((Z))/K((T )). Then we arrive at the main result of this

thesis (Theorem 3.4.1), which is a combinatorial criterion for lifting elementary abelian p-covers.

3.1 Ramification Jumps

Definition 3.1.1. Let L/K be a G = (Z/p)n-Galois totally ramified extension of local fields in

characteristic p. Let Im (I l) be the m-th ramification group in lower numbering (upper numbering).

For 0 ≤ i ≤ n − 1, define the i-th lower (upper) ramification jump be the positive integer m such

that the p-rank of Im (I l) is at least n− i and the p-rank of Im+1 (I l+1) is at most n− i− 1.

In this section, the ramification jumps are always with respect to the lower numbering unless

specified otherwise. Note that the ramification jumps can coincide when the quotient Im/Im+1 has

order greater than p.

Lemma 3.1.2. Let L/K be a G = (Z/p)n-Galois totally ramified extension of complete dicretely

valued fields with residue characteristic p. Suppose L/K can be written as a tower of Z/p-extensions

L = Kn/Kn−1/ . . . /K1/K0 = K, where Ki+1/Ki has conductor m(i) + 1 (Definition 2.2.4, such

that m(0) ≤ m(1) ≤ · · · ≤ m(n−1). Then the l-th lower ramification jump of L/K is m(l). Moreover,

the degree of the different of L/K (Definition 2.2.3) is
n−1∑
l=0

(m(l) + 1)pn−l−1(p− 1).

Proof. First we use induction on n to compute the ramification jumps. When n = 1, G = Z/p. Let

m + 1 be the conductor of L = K1/K0 = K. Then by [Ser], Chapter IV, exercise 2.5, Gm = Z/p

and Gm+1 = 1. Thus the unique ramification jump is one less than the conductor.

Suppose the statement about the ramification jumps is true for n − 1. Consider L/K as in the
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hypothesis, and let H = (Z/p)n−1 be the Galois group of L/K1. Then m(l), for 1 ≤ l ≤ n − 1, is

the (l − 1)-th ramification jump of H. Let Hi be the i-th ramification group of L/K1. First note

that by Equation 2.1,

φL/K1
(m(0)) + 1 =

1

|H0|

m(0)∑
i=0

|Hi| =
1

pn−1
(m(0) + 1)pn−1 = m(0) + 1,

where φ is the Herbrand function (Definition 2.2.6), and φL/K1
(m) > m(0) for m > m(0). Since

m(0) ≤ m(1), H = Hm(0) = Im(0) ∩ H by Proposition 2.2.7, and H ⊆ Im(0) . Thus Im(0)/H =

Im(0)H/H = (G/H)φL/K1
(m(0)) = (G/H)m(0) = Z/p by Herbrand’s theorem (Lemma 2.2.8), hence

Im(0) = (Z/p)n.

Now, let l be the largest integer such that m(l) = m(0). We have

Im(l)+1H/H = (G/H)ϕL/K1
(m(l)+1) = 1,

so Im(l)+1 ⊆ H. Then Im(l)+1 = Im(l)+1 ∩ H = Hm(l)+1 = (Z/p)n−l−1. Therefore m(i) is the i-th

ramification jump of L/K for all 0 ≤ i ≤ l. Similarly, for all i > l, Im(i) = Im(i) ∩H = Hm(i) , and

Im(i)+1 = Im(i)+1 ∩H = Hm(i)+1, so m(i) is the i-th lower ramification jump.

Finally, by 2.2.3, we get that the degree of the different of L/K is

ds =
∞∑
j=0

(|Ij | − 1)

=

n−1∑
l=0

(m(l) −m(l+1))(pn−l − 1)

=

n−2∑
l=0

m(l)(pn−l − pn−l−1) +m(n−1)(p− 1) + pn−1 − 1

=

n−1∑
l=0

m(l)pn−l−1(p− 1) +

n−1∑
l=0

pn−l−1(p− 1)

=
n−1∑
l=0

(m(l) + 1)pn−l−1(p− 1).
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Remark 3.1.3. One can check that if we take the tower of extensions L/LGjn−1/ · · · /LGj0 , where

ji is the i-th lower ramification jump, then the ascending sequence of conductors in the hypothesis

of the above lemma can always be achieved.

3.2 Conductor Type

For an elementary abelian p-cover k[[z]]/k[[t]] where G = (Z/p)n, whether a G can be lifted to

characteristic 0 often depends on the conductors of its Z/p-subcovers. For ease of notation, we

define a (Z/p)n-cover of certain (conductor) type.

Definition 3.2.1. Let G = (Z/p)n, and {Gi} be the set of (Z/p)n−1-subgroups of G. Let k be

an algebraically closed field of characteristic p. Suppose that G is a group of automorphisms of

k[[z]] as a k-algebra, and the extensions k[[z]]Gi/k[[z]]G have conductors mi + 1. Suppose that

(m1 +1, . . . ,mn +1) is the lexicographically smallest n-tuple of conductors such that the following

conditions hold:

1. k[[z]]G1 , . . . , k[[z]]Gn are linearly disjoint over k[[z]]G,

2. m1 ≤ m2 ≤ · · · ≤ mn.

Then we say that k[[z]]/k[[z]]G is a cover of type (m1 + 1, . . . ,mn + 1).

Remark 3.2.2. Note that this is different from the notations in Mitchell’s thesis [Mit], where he

calls such covers of type (m1, . . . ,mn).

Proposition 3.2.3. With the notations in the above definition, let K0 := k((t)) and Ki = k((z))Gi

for 1 ≤ i ≤ n. Then K1,Ki, i ≥ 2 over K0 be defined by the Artin-Schreier equations:

wp
1 − w1 = f1(

1

t
) =

1

tm1

wp
i − wi = fi(

1

t
) =

∑
1≤j≤mi, p∤m′

ci,j
tj

,
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where the leading coefficients of fi and fj are Fp-linearly independent if mi = mj and cpi,mi
̸= ci,mi

for i ≥ 2.

Proof. First, by 2.3.3, for some uniformizer t of K0, K1/K0 can be defined by wp
1 − w1 =

1
tm1 , and

with that same uniformizer t, Ki/K0 can be defined by Artin-Schreier equations as above.

Suppose that mi = mj for some i < j. Then (mi,mj) must also be the lexicographically the smallest

tuple of conductors satisfying the conditions in Definition 3.2.1 for the extension KiKj/K0. Suppose

aci,mi + bcj,mj = 0 for some a, b ∈ k. Then there is a Z/p-subextension of KiKj/K0 defined

by wp − w = afi(
1
t ) + bfj(

1
t ), the right-hand-side of which has degree strictly less than mi, i.e.

its conductor is strictly less than mi, giving a contradiction. Thus ci,m1 and cj,mj are linearly

independent over k.

Finally, suppose cpi,mi
= ci,mi for some i ≥ 2. Then a Fp-linear combination of w1 and wi gener-

ates Z/p-subextension of K1Ki/K0 having conductor strictly less than mi, again a contradiction.

Therefore, cpi,mi
̸= ci,mi for i ≥ 2.

3.3 Key Lemmas

Lemma 3.3.1. Let G = (Z/p)n, and k[[z]]/k[[t]] be a G-cover of type (m1 + 1, . . . ,mn + 1), where

k[[t]] = k[[z]]G. Then for 0 ≤ l ≤ n− 1, the l-th lower ramification jump of k((z))/k((t)) is

plml+1 − (p− 1)
∑
1≤i≤l

pi−1mi.

I will include two proofs for this lemma. This first one is more reminiscent of Green and Matignon’s

original proof for the case Z/p× Z/p [Mat99, Theorem 5.1].

Proof. Using notations in Definition 3.2.1, let K0 = k((t)), and Ki := k((z))Gi for 1 ≤ i ≤ n. By

Lemma 3.1.2, it suffices to show that the conductor of the extension K0 · · ·Kl+1/K0 · · ·Kl, denoted

m(l) + 1, is plml+1 − (p− 1)
∑
1≤i≤l

pi−1mi + 1.
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For the base case l = 0, it follows from the hypothesis that the conductor of K1/K0 is m1 + 1.

Now assume that the conductor of K0 · · ·Kl−1Kl/K0 · · ·Kl−1 is

m+ 1 := pl−1ml − (p− 1)
∑

1≤i≤l−1

pi−1mi + 1,

and similarly the extension K0 · · ·Kl−1Kl+1/K0 · · ·Kl−1 has conductor

m′ + 1 := pl−1ml+1 − (p− 1)
∑

0≤i≤l−1

pi−1mi + 1.

Then by the assumption ml+1 ≥ ml, we have that m′ ≥ m.

By Proposition 2.3.3, after a change of variables in K0 · · ·Kl−1, we can write, with respect to a

uniformizer zl−1 ∈ K0 · · ·Kl−1, the extension K0 · · ·Kl−1Kl/K0 · · ·Kl−1 as

wp
l − wl =

1

zml−1

. (3.1)

With respect to the same uniformizer zl−1, the extension K0 · · ·Kl−1Kl+1/K0 · · ·Kl−1 can be writ-

ten as

wp
l+1 − wl+1 =

∑
0≤i≤m′, p∤i

ei
zil−1

, (3.2)

where em′ ̸≡ 1 mod π if m = m′, and epm′ ̸= em′ by Proposition 3.2.3.

Note that vK0···Kl
(w−1

l ) = m, so w−1
l = uz′m for some uniformizer z′ of K0 · · ·Kl and unit u ∈ k.

Because the residue field k is algebraically closed, u1/m ∈ k and zl := w
− 1

m
l ∈ K0 · · ·Kl is a

uniformizer in K0 · · ·Kl. By Equation 3.1, we have

1

z′
=
(
wp
l (1− w1−p

l )
) 1

m
= z−p

l (1− z
m(p−1)
l )

1
m .
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Substituting this into Equation 3.2 we get:

wp
l+1 − wl+1 =

∑
1≤i≤m′

ei

zpil

(
1− i

m
z
m(p−1)
l + · · ·

)
=

∑
1≤i≤m′

ei

zpil
−

∑
1≤i≤m′

i

m
· ei

z
pi−m(p−1)
l

+ · · · . (3.3)

Denote the conductor of K0 · · ·KlKl+1/K0 · · ·Kl by m(l) + 1. After an Artin-Schreier change of

variables as in the proof of Proposition 2.3.3, the highest exponent of 1
zl

is m′ in the first sum, and

pm′ −m(p− 1) in the second sum. Recall that m′ ≥ m, so pm′ −m(p− 1) ≥ m′. Then the highest

exponent of 1
zl

on the right hand side of Equation 3.3 is pm′−m(p−1). Therefore, by the induction

hypothesis, the conductor of K0 · · ·Kl+1/K0 · · ·Kl minus one is

m(l) = pm′ −m(p− 1)

= p

pl−1ml+1 − (p− 1)
∑

1≤i≤l−1

pi−1mi

−

pl−1ml − (p− 1)
∑

1≤i≤l−1

pi−1mi

 (p− 1)

= plml+1 − (p− 1)

p
∑

1≤i≤l−1

pi−1mi + pl−1ml − (p− 1)
∑

1≤i≤l−1

pi−1mi


= plml+1 − (p− 1)

∑
1≤i≤l

pi−1mi.

This concludes the inductive proof that the l-th ramification jump is

m(l) = plml+1 − (p− 1)
∑
1≤i≤l

pi−1mi.

The second proof uses Herbrand’s Formula and upper numbering for ramification groups, and is

somewhat simpler. I would like to thank Andrew Obus for suggesting the idea.

Proof. Let m(l) denote the l-th lower ramification jump of L/K. For the base case l = 0, it follows
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from the hypothesis and Lemma 3.1.2 that m(0) = m1.

For the induction step, assume that m(j) = pjmj+1 − (p − 1)
∑

1≤i≤j p
i−1mi for all j ≤ l − 1. Let

M/K be the (Z/p)l+1-extension K0 · · ·Kl+1/K0, and Γ := Gal(M/K). Recall that Ki/K0 is a

Z/p-extension with conductor mi + 1. Let Γj be the j-th ramification group of M/K with lower

numbering, and φM/K(j) be the Herbrand function [Ser]. Then Γj = ΓφM/K(j), where Γi is the

i-th ramification group of M/K with upper numbering. Let H be the subgroup of Γ such that

MH = Kl+1. By Proposition IV.14 in [Ser],

ΓiH/H = (Γ/H)i =


Z/p, 0 ≤ i ≤ ml+1

1, i > ml+1,

the last equality due to Γ/H ∼= Z/p and the unique upper jump of Kl+1/K equals to its unique lower

jump, which is one less than its conductor. Therefore, the l-th upper ramification jump of M/K is

ml+1. Since the upper numbering for ramification groups is compatible with quotients (Proposition

2.2.7), so are the upper ramification jumps. Thus ml+1 is also the l-th upper ramification jump of

L/K. Moreover, φL/K(m(l)) = ml+1, since m(l) is the l-th lower ramification jump of M/K.

Now, let gj = |Ij |, where Ij is the j-th ramification group of L/K with lower numbering. Observe

that gj = pn−i−1 for m(i) < j ≤ m(i+1). By Formula 2.1 and the induction hypothesis, we have

ml+1 + 1

=1 + φL/K(m(l)) =
1

|G|

m(l)∑
j=0

gj

=
1

pn

(
(m(0) + 1)pn +

l−1∑
i=0

(m(i+1) −m(i))pn−i−1

)

=m1 + 1 +

l−2∑
i=0

pi+1mi+2 − (p− 1)
∑

1≤j≤i+1

pj−1mj − pimi+1 + (p− 1)
∑

1≤j≤i

pj−1mj

 p−i−1

+

m(l) − pl−1ml + (p− 1)
∑

1≤j≤l−1

pj−1mj

 p−l
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=m1 + 1 +
l−2∑
i=0

(mi+2 −mi+1) +m(l)p−l − p−1ml + (p− 1)p−l
∑

1≤j≤l−1

pj−1mj

=m(l)p−l + (p− 1)p−1ml + 1 + (p− 1)p−l
∑

1≤j≤l−1

pj−1mj

=m(l)p−l + 1 + (p− 1)p−l
∑

1≤j≤l

pj−1mj .

Therefore, the l-th ramification jump of L/K is

m(l) = plml+1 − (p− 1)
∑
1≤i≤l

pi−1mi.

Lemma 3.3.2. Let R[[Z]]/R[[T ]] be a local G-cover, and G1, . . . , Gn be defined as in Lemma 3.3.1.

Suppose R[[Z]]G1 , . . . , R[[z]]Gn have branch loci B1, . . . , Bn (Definition 2.4.3), such that for any

k with 1 ≤ k ≤ n and any subset of k branch points {Bi1 , . . . , Bik}, the cardinality of the set

intersection | ∩1≤j≤k Bij | =
(minj(mij ) + 1)(p− 1)k−1

pk−1
. Then the generic different of R[[z]]/R[[t]]

is
n−1∑
l=0

(p− 1)pl(ml+1 + 1).

Proof. Since the generic fiber of the lift R[[Z]]/R[[T ]] is in characteristic 0, it is tamely ramified

at all branch points, each having pn−1 ramification points above it. Thus the generic different is

(p− 1)pn−1 times the total number of branch points, counted without repeat.

Let B = B1 ∪ · · · ∪ Bn be the branch locus of K((Z))/K((T )). We use the inclusion-exclusion

principle to count the number of branch points. For each 1 ≤ i ≤ n, minj(mij ) + 1 is mi + 1 for all

{Bi, Bi2 , . . . , Bik} such that ij ≥ i for all j. There are
(
n−i
k−1

)
such k-subsets. Therefore

dη = (p− 1)pn−1|B|

= (p− 1)pn−1
n∑

k=1

(−1)k−1
n−k+1∑
i=1

∑
ij≥i∀j

|Bi ∩Bi2 ∩ · · · ∩Bik |
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= (p− 1)pn−1
n∑

k=1

(−1)k−1
n−k+1∑
i=1

(
n− i

k − 1

)
(p− 1)k−1p1−k(mi + 1)

= (p− 1)
n−1∑
k=0

(−1)k(p− 1)kpn−k−1
n−k∑
i=1

(
n− i

k

)
(mi + 1).

Observe that for 1 ≤ i ≤ n, the coefficient of mi + 1 is

(p− 1)
∑

0≤k≤n−i

(−1)k(p− 1)kpn−k−1

(
n− i

k

)

=(p− 1)pi−1
∑

0≤k≤n−i

(1− p)kpn−i−k

(
n− i

k

)
=(p− 1)pi−1(1− p+ p)n−i = (p− 1)pi−1.

Thus we have that dη =
n∑

i=1

(p− 1)pi−1(mi + 1) =
n−1∑
l=0

(p− 1)pl(ml+1 + 1).

3.4 Main Theorem

We now state our main result, which generalizes Theorem 5.1 of [GM98].

Theorem 3.4.1. Let G = (Z/p)n. Suppose k[[z]]/k[[t]] is a G-extension of conductor type (m1 +

1, . . . ,mn+1). Then there is a lifting of G to a group of automorphisms of R[[Z]] if and only if the

following two conditions hold:

1. mi ≡ −1 mod pn−i for 1 ≤ i ≤ n− 1,

2. k[[z]]G1 , . . . , k[[z]]Gn can be lifted with branch loci B1, . . . , Bn such that for any subset of k

branch points {Bi1 , . . . , Bik}, | ∩1≤j≤k Bij | =
(minj(mij ) + 1)(p− 1)k−1

pk−1
.

Proof. First we show that the combinatorial conditions on the branch loci of lifts of Ki are necessary.

Suppose k[[z]]/k[[t]] can be lifted to R[[Z]]/R[[T ]]. Then so can all the intermediate extensions. We

show that for any subset of k branch loci {Bi1 , . . . , Bik}, |∩1≤j≤kBij | =
minj(|Bij |)(p− 1)k−1

pk−1
. The
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base case k = 2 is shown in [GM98] (see Theorem 2.5.3). Suppose this is true for k ≤ l, and consider

the extension K0 · · ·Kl+1/K0. Then the number of branch points in the lift of K0 · · ·Kl+1/K0 · · ·Kl

is (p − 1)pl times the number of branch points in the lift of Kl+1/K0 that are not in that of any

Ki/K0 for 1 ≤ i ≤ l. Write d = |B1 ∩ . . . ∩ Bl+1|. Using Lemma 3.3.2, the degree of the generic

different of K0 · · ·Kl+1/K0 · · ·Kl is given by

dη = (p− 1)pl

|Bl+1|+
l∑

k=1

(−1)k
l−k+1∑
i=1

∑
ij≥i,∀2≤j≤k

|Bi ∩Bi2 ∩ . . . ∩Bik ∩Bl+1|


= (p− 1)pl

|Bl+1| − (p− 1)p−1
l−1∑
k=1

(−1)k−1
l−k+1∑
i=1

∑
ij≥i,∀j

|Bi ∩Bi2 ∩ . . . ∩Bik |+ (−1)ld


= (p− 1)

(
pl(ml+1 + 1)−

(
dη,K0···Kl/K0

− (p− 1)(−p)l−1(m1 + 1)(p− 1)l−1p1−l
)
+ pl(−1)ld

)
= (p− 1)

(
pl(ml+1 + 1)−

l∑
i=1

(p− 1)pi−1(mi + 1) + (−1)l−1(p− 1)l(m1 + 1) + pl(−1)ld

)
.

By the different criterion (Theorem 2.5.1), this equals to the degree of special different, which in

this case equals to p − 1 times the conductor of K0 · · ·Kl+1/K0 · · ·Kl. Recall from Lemma 3.1.2

this is

ds,K0···Kl+1/K0···Kl
= (p− 1)

(
plml+1 − (p− 1)

l∑
i=1

pi−1mi + 1
)
.

Dividing both by p− 1, we get

pl(ml+1 + 1)−
l∑

i=1

(p− 1)pi−1(mi + 1) + (−1)l−1(p− 1)l(m1 + 1) + pl(−1)ld

=ds,K0···Kl+1/K0···Kl
/(p− 1) = plml+1 − (p− 1)

l∑
i=1

pi−1mi + 1,

which implies

(−1)l−1(p− 1)l(m1 + 1) + pl(−1)ld = 0.

Hence the l + 1 lifts share |B1 ∩ . . . ∩ Bl+1| = d =
(m1 + 1)(p− 1)l

pl
=

mini(|Bi|)(p− 1)l+1−1

pl+1−1

common branch points, proving that the conditions on the sets Bi are necessary. Furthermore,
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since the number of common branch points is an integer, this also shows that the congruence

conditions mi ≡ −1 mod pn−i for 1 ≤ i ≤ n− 1 are necessary.

Finally, we show that the conditions on the branch loci are sufficient.

We have from the beginning of the proof that the l-th lower ramification jump is

plml+1 − (p− 1)
∑
1≤i≤l

pi−1mi.

Therefore, by Lemma 3.1.2 the degree of the different of k[[z]]/k[[t]] is

ds =
n−1∑
l=0

(m
(l)
1 + 1)(p− 1)pn−l−1

=
n−1∑
l=0

(p− 1)pn−l−1

(
plml+1 − (p− 1)

l∑
i=1

pi−1mi + 1

)

= (p− 1)

(
n−1∑
l=0

pn−1ml+1 − (p− 1)
n−1∑
l=1

l∑
i=1

pn−l+i−2mi +
n−1∑
l=0

pn−l−1

)

= (p− 1)

(
n−1∑
l=0

pn−1ml+1 − (p− 1)

n−1∑
i=1

n−1∑
l=i

pn−l+i−2mi +

n−1∑
l=0

pl

)

= (p− 1)

pn−1mn +

n−1∑
j=1

(
pn−1 −

n−2∑
l=j−1

pl
)
mj +

n−1∑
l=0

pl


= (p− 1)

n−1∑
l=0

pl(ml+1 + 1).

The degree of the generic different of k[[z]]/k[[t]] is

dη =

n−1∑
l=0

(p− 1)pl(ml+1 + 1) = ds.

It thus follows from the different criterion (Theorem 2.5.1) that G lifts to a group of automorphisms

of R[[Z]].
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CHAPTER 4

COALESCING OF BRANCH POINTS

In this chapter, we first introduce a result in Pries-Zhu [PZ], on stratification of the space of Artin-

Schreier covers. We then give an interpretation of the result in terms of branch loci of lifts of these

covers. We give a description of the coalescing behavior of the branch points of the lifts, which will

be used in Chapter 5.

4.1 Stratification of the Space of Artin-Schreier Covers

Consider a smooth projective curve X over k of genus g. The p-rank of X is the integer s such that

the cardinality of Jac(X)[p](k) is ps. We have that 0 ≤ s ≤ g. For g = 1, the p-rank is also called

the Hasse invariant.

Now let X → P1
k be an Artin-Schreier cover in characteristic p. Then s = r(p− 1) for some integer

r ≥ 0 [PZ]. We can study the stratification of ASg, the moduli space of Artin-Schreier covers of

genus g, by p-rank into strata ASg,s consisting of covers with p-rank s. By the Riemann-Hurwitz

formula, 2g − 2 = p(−2) + deg(D), where D is the ramification divisor. Thus g = d(p − 1)/2 for

some integer d. Assume g ≥ 1. Then we have the following result:

Theorem 4.1.1 (Pries-Zhu, 2010). 1. The set of irreducible components of ASg,s is in bijection

with the set of partitions [e1, ..., er+1] of d+2 into r+1 positive integers such that each ej ̸≡ 1

mod p.

2. The irreducible component of ASg,s for the partition [e1, ..., er+1] has dimension d − 1 −∑r+1
j=1⌊(ej − 1)/p⌋.

In fact, the bijection in part 1 can be given explicitly. Since k is algebraically closed, after some

automorphism of P1
k, we can assume that f is not branched at infinity. Let f : X → P1

k be

given by the equation yp − y =

n∑
i=1

fi(
1

x− ci
), where fi are polynomials over k of degrees not
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divisible by p (in particular deg(fi) > 0), and ci ∈ k are distinct. Then it is branched at n points,

{c1, . . . , cn}, and any Artin-Schreier cover branched at these points is of the above form. Let s

be the p-rank of f . The Deuring-Shafarevich theorem [Sub] states that, for X
Z/p−−→ Y over k,

sX − 1 = p(sY − 1) + n(p − 1), where n is the number of branch points on Y . Here the p-rank of

Y = P1
k is 0. Therefore s = (n− 1)(p− 1), and n = r + 1, with r defined as above.

Let ei = deg(fi) + 1. Then ei ̸≡ 1 mod p. By the Riemann-Hurwitz formula,

2g − 2 = p(0− 2) +
r+1∑
i=1

ei(p− 1).

Thus g = (p − 1)(

r+1∑
i=1

ei − 2)/2 = d(p − 1)/2, so
r+1∑
i=1

ei = d + 2 and [e1, . . . , er+1] is a partition of

d+ 2.

4.2 Coalescing of Branch Points of a Lift

Proposition 4.2.1. With the above notation, consider the component of ASg,s of an Artin-Schreier

cover f : X → P1
k with p-rank s which corresponds to the partition [e1, ..., er+1] of d+ 2, with each

ej ̸≡ 1 mod p. Suppose f is branched at {c1, . . . , cr+1}. As above, f is given by an equation of

the form yp − y =

r+1∑
i=1

fi(
1

x− ci
), where ei = deg(fi) + 1. Then there exists a lift of f to R whose

generic fiber is a degree p Kummer cover with d+ 2 branch points, ei of which coalesce to ci on P1
k

for 1 ≤ i ≤ r + 1.

Conversely, any lift of f is a Z/p-cover with d + 2 branch points, ei of which coalesce to ci on P1
k

for 1 ≤ i ≤ r + 1.

Proof. Localizing at each branch point of f , we get r+1 local extensions, of k[[x−ci]], 1 ≤ i ≤ r+1.

Since x−cj is a unit in k[[x−ci]] for all j ̸= i, 1
x−cj

∈ k[[x−ci]] and thus fj( 1
x−cj

) ∈ k[[x−ci]]. Then

there exists an element z = −(fj + fp
j + fp2

j + · · · ) in k[[x− ci]] such that zp − z = fj . Therefore,

after a change of variables, the local extension of k[[x− ci]] is given generically by yp−y = fi(
1

x−ci
).

By the Oort conjecture, after possibly extending R, we can lift these local covers, which give us
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branched covers of SpecR[[x − ci]], branched at bi points on the generic fiber, for some bi > 0, all

coalescing at ci. By the different criterion 2.5.1, the generic different, bi(p−1), equals to the special

different, (deg(fi) + 1)(p − 1), so bi = deg(fi) + 1 = ei. By the proof of Theorem 2.2 in [CGH08],

we can patch these local lifts together to get a smooth Z/p-cover XR → P1
R, with ei branch points

coalescing to the point ci on P1
k.

Let XK → P1
K , branched at m points, be the generic fiber of the lift XR → P1

R. Then by the

Riemann-Hurwitz formula and flatness of XR → P1
R, (m − 2)(p − 1)/2 = gXK

= gX = d(p − 1)/2,

so m =
∑r+1

i=1 ei = d+ 2.

Now we prove the converse. Suppose F : XR → P1
R is a lift of f . Localizing P1

R at the closed point

ci ∈ P1
k, for 1 ≤ i ≤ r+1, we get the inclusion SpecÔP1

R,ci
→ P1

R. Now taking its fiber product with

F , we get an extension R[[z]] of R[[x− ci]] branched at only those branch points of F coalescing at

ci. Suppose there are ni of them.

The reduction of R[[z]]/R[[x−ci]] is an extension of k[[x−ci]] given generically by yp−y = fi(
1

x−ci
), as

shown above. Again, by the different criterion, R[[z]]/R[[x−ci]] has to be branched at deg(fi)+1 = ei

points. Therefore, ni = ei ̸≡ 1 mod p.

Remark 4.2.2. We can therefore interpret Theorem 4.1.1 as a description of K-covers f : X → P1
K

with good reduction, in terms of how their branch points coalesce on the special fiber. Namely,

if XR → P1
R is the smooth model of f , then ei points on P1

R coalesce to the i-th branch point on

the special fiber. Moreover, let Hm,p be the space of p-covers of P1
K branched at m points, and let

Hgood
m,p be the subspace of Hm,p consisting of those covers having good reduction. Then we get a

stratification of Hgood
m,p into strata Hgood

m,p,n of covers whose reduction have n branch points.

Remark 4.2.3. Part 2 of Theorem 4.1.1 can be used to describe the strata Hgood
m,p,n in characteristic

0. Since we construct lifts to R by lifting the coefficients of the defining polynomials for the covers

over k, the component of Hgood
m,p,n consisting of covers with branch locus partition [e1, . . . , en], where

ei points coalesce to one point for each i, is a p-adic neighborhood of a subvariety of Hgood
m,p of
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dimension m− 3−
∑n

i=1⌊(ei − 1)/p⌋.

Corollary 4.2.4. Let f : X → P1
R be a lift of a Z/2-cover of P1

k. Then the number of branch points

of f coalescing to one point over k is even.
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CHAPTER 5

LIFTINGS OF (Z/2)3-COVERS

In this chapter, we apply results in the previous two chapters to construct explicit lifts for (Z/2)3-

covers of various conductor types. We first use Mitchell’s classification [Mit] to show that covers of

type (4, 4, 4) can only be lifted with equidistant geometry. Then we construct lifts for all covers of

type (4, 4, 2r), r ≥ 3, with certain branch locus geometry.

5.1 Hurwitz Trees for (Z/2)3-Covers of Type (4, 4, 4)

In order to simplify the notations, we will only consider the subtrees of the Hurwitz tree rooted at a

vertex connected to v1 (see Section 2.4.2). Call them branches of the Hurwitz tree, and the size of

a branch denotes the number of leaf nodes in that subtree. In each particular case, we will specify

whether the leaves in a branch are equidistant, or there are further branching.

Definition 5.1.1. We say that a Hurwitz tree has branch partition (b1, . . . , bk), if there are k edges

coming from the vertex connected to the root of the tree, each with bi leaves. We say that a

characteristic 0 cover has branch locus geometry (b1, . . . , bk) if its Hurwitz tree has branch partition

(b1, . . . , bk), whose leaves correspond to branch points of the cover.

Proposition 5.1.2 (Mitchell). The only possible Hurwitz trees for a (Z/2)2-cover over R of type

(4, 4) have branch partition (1, 1, 1, 1, 1, 1), (3, 3) and (2, 2, 2) (Figure 5.1).

Lemma 5.1.3. Let C be a Z/2-cover over k, and Ĉ a lift of C to R with non-equidistant geometry.

Then the Hurwitz tree of Ĉ must only have branches with an even number of branch points.

Proof. Suppose the Hurwitz tree of Ĉ has a branch with an odd number of branch points, i.e. there

are an odd number of branch points closer to each other than any other branch point.

Since C is a local cover with Galois group Z/2, there exists a global cover C ′ of P1
k, branched only
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Figure 5.1: Hurwitz trees for Klein-four covers of type (4,4)

at ∞, such that the localization of C ′ at ∞ is C[Har80]. By the proof of Theorem 2.2 in [CGH08],

C ′ lifts to a characteristic 0 cover Ĉ ′, with localization at ∞ isomorphic to Ĉ, thus having the same

geometry of branch locus. After a suitable change of variables, we then have a Z/2-cover of P1
R

having good reduction, with an odd number of branch points coalescing to one point on P1
k, which

is impossible by 4.2.4.

Proposition 5.1.4. The only possible Hurwitz tree for a lift of a (Z/2)3-cover over k of type (4, 4, 4)

is (1, 1, 1, 1, 1, 1, 1), i.e. with equidistant geometry.

Proof. We study possible Hurwitz trees for the lift C, a (Z/2)3-cover over R, by looking at subtrees

corresponding to its (Z/2)2-subcovers. Let C1, C2, C3 be three generating Z/2-subcovers of C.

Below, I will use the same letter to indicate that several branch points belong to the same branch

in the Hurwitz tree. For example, ai and aj are closer to each other than ai is to bk.

Case 1: Suppose C1 × C2 has Hurwitz tree (2, 2, 2), with branch points a1, a2, b1, b2, c1, c2, where
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Figure 5.2: Equidistant Hurwitz tree for (Z/2)3-cover of type (4, 4, 4)

C1, C2 have branch loci {a1, a2, b1, b2} and {b1, b2, c1, c2} respectively. Then by the branch locus

criterion, without loss of generality, we can assume that C3 has branch points a1, b1, c1 and a new

branch point d.

By 5.1.3, since the Hurwitz tree of C3 has at least two branches with only one branch point, it has to

have equidistant geometry. Therefore d is not close to any branch point of C1×C2, i.e. C has Hurwitz

tree (2, 2, 2, 1). Then the subtree corresponding to C1 × C3 has branch locus {a1, a2, b1, b2, c1, d},

thus is of the shape (2, 2, 1, 1), not an allowed Hurwitz tree for Klein-four covers.

Case 2: Suppose C1 × C2 has Hurwitz tree (3, 3), with branch points a1, a2, a3, b1, b2, b3, where

C1, C2 have branch loci {a1, a2, b1, b2} and {a1, a3, b1, b3} respectively. Then we can assume that C3

has branch points a1, b2, b3 and a new branch point d.

Applying 5.1.3 to C3, d must be closer to the a’s than the b’s, i.e. C has Hurwitz tree (4, 3). Then

the third Z/2-subcover C12 of C1 × C2 has branch points a2, a3, b2, b3, and C12 × C3 has branch

locus {a1, a2, a3, d, b2, b3}. Thus the subtree corresponding to C12 × C3 is of shape (4, 2), not an

allowed Hurwitz tree for Klein-four covers.

Therefore, a (Z/2)3-cover over k of type (4, 4, 4) can only be lifted with equidistant geometry.
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Remark 5.1.5. In this special case of (Z/2)2-cover of type (4, 4, 4), the lift only has 7 branch

points. Since (Z/2)3 has 7 Klein-four subgroups, there are 7 Klein-four subcovers, all with distinct

branch loci. Therefore we can look at a candidate Hurwitz tree for the (Z/2)3-cover, take away one

branch point at a time, and check if the remaining subtree is one of the allowed Klein-four Hurwitz

trees. This method will allow us to reach the same conclusion. However, the above proof can be

generalized to more general (Z/2)3-covers, if we know a classification of Klein-four Hurwitz trees

with higher conductors.

Proposition 5.1.6. For almost all b ∈ k and u2, u3 ∈ k∗, the characteristic 2 (Z/2)3-cover C of

type (4, 4, 4) given by

C1 : y
2
1 − y1 =

1 + bt2

t3

C2 : y
2
2 − y2 =

u2
t3

C3 : y
2
3 − y3 =

u3
t3

can be lifted to characteristic 0.

Proof. After enlarging R, we can assume that 21/3 ∈ R. First we lift C1 to C̃1 : Y
2
1 −(1+24/3C1T

−2+

22/3C2T
−1)Y1 = T−3 + BT−1 + o(1), where C1, C2 ∈ R, B̄ = b and o(1) denotes a polynomial in

R[T−1] with Gaussian valuation strictly greater than 0. After the change of variables X = 22/3T−1,

C̃1 is given by

Y 2
1 − (1 + C1X

2 + C2X)Y1 = 2−2X3 + 2−2/3BX + o(1).

Multiplying both sides by 4, and defining Y ′
1 = 2Y1 − (1 + C1X

2 + C2X), we have

Y ′2
1 = X3 + 24/3BX + (1 + C1X

2 + C2X)2 + o(4) =: F (X).

Then factoring F (X), we can write

(Y ′
1)

2 = (1−X1X)(1−X2X)(1−X3X)(1−X4X),
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with Xi ∈ R for 1 ≤ i ≤ 4, such that Xi ̸= Xj mod π for i ̸= j, Xi ̸= 0 mod π, and X3 ̸= X1 +X2

mod π. Note that these are open conditions, so they do not decrease the dimension of possible lifts,

which is 2 with parameters C1, C2.

Let a1, a2, a3 ∈ R, after possibly enlarging R, be such that X1 = (a1 + a3)
2, X2 = (a2 + a3)

2 and

X3 = (a1 + a2 + a3)
2. Then

C̃1 : Y
2
1 = (1− (a1 + a2)

2X)(1− (a2 + a3)
2X)(1− (a1 + a2 + a3)

2X)(1−X4X),

and we construct covers

C̃2 : Y
2
2 = (1− a21X)(1− (a1 + a2)

2X)(1− (a1 + a3)
2X)(1− (a1 + a2 + a3)

2X)

C̃3 : Y
2
3 = (1− a22X)(1− (a1 + a2)

2X)(1− (a2 + a3)
2X)(1− (a1 + a2 + a3)

2X).

We can check that a1, a2, a3 satisfy condition (*) in [Mat99] for most a ∈ k, since (*) is an open

condition. Then by Proposition 2 in section 2.1 of [Mat99], C̃2, C̃3 have good reduction with respect

to T = 2−2/3X−1, and the reductions are given by

C2 : y
2
2 − y2 =

u2
t3

C3 : y
2
3 − y3 =

u3
t3

,

where u2 = a2a3(a2 + a3)
1/2

, u3 = a1a3(a1 + a3)
1/2

. Now since the space of possible lifts is dimen-

sion 2, we can find a triple (a1, a2, a3) satisfying this relation for most u2, u3 ∈ k∗.

Therefore, C̃1, C̃2, C̃3 have simultaneously good reduction. Moreover, they have one common branch

point 1/(a1+ a2)
2, and pairwise share one other branch point, satisfying the branch locus criterion.

We conclude that the normalization of C̃1 × C̃2 × C̃3 is a lift of C.
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5.2 Lifting (Z/2)3-Covers of Type (4, 4, 2r), r ≥ 3

In this section, I will construct lifts of any (Z/2)3-cover of type (4, 4, 2r) for r ≥ 3, using meth-

ods in Mitchell’s thesis [Mit] and results in Pagot’s thesis [Pag]. The lifts have Hurwitz tree

(3, 3, 3, 2, . . . , 2), with r − 3 branches of size 2. Define ρ = 2
1

2r−1 ∈ πR.

Lemma 5.2.1. Let α ∈ k∗, β ∈ k,A ∈ R∗, and suppose that U ∈ R∗ is any element such that

−AU2 ≡ α mod π and U − A ∈ R∗. Then there exists V ∈ R∗ such that the following property

holds: Let

T1 = 0, T2 = ρ4r−4A, T3 = ρU, T4 = ρU + ρ4r−4V.

Then the cover Y 2 = F (T−1) =
∏4

i=1(1− TiT
−1) of P1

R has good reduction, namely with reduction

z2 − z = α
t3
+ β

t .

Proof. This proof is similar to the proof of Lemma 4.2.2 in [Mit], but with different and more general

distances between branch points.

Let V = −ρ2B − A + (−ρ3(ρ2B + A)U)1/2, for some B ∈ R with B ≡ β mod π. Then V is a

solution to the polynomial equation

V 2 + 2(ρ2B +A)V + ρ3(ρ2B +A)U + (ρ2B +A)2 = 0;

or equivalently,ρ4r−5UV + U2 − (ρ2r−2B + ρ2r−4A+ U + ρ2r−4V )2 = 0.

Thus

(ρ4r−5UV + U2)1/2 = −ρ2r−2B − ρ2r−4A− U − ρ2r−4V, (5.1)

where (ρ4r−5UV + U2)1/2 denotes the appropriate square root of ρ4r−5UV + U2. After possibly

enlarging R, we can assume this element is in R, along with V .
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Substituting the values of Ti into F and using the definition of ρ, we have that

F (T−1) = (1− ρ4r−4AT−1)(1− ρUT−1)(1− (ρU + ρ4r−4V )T−1)

= 1− (ρ4r−4A+ 2ρU + ρ4r−4V )T−1 + (ρ4r−3UV + ρ2U2)T−2 − 4AU2T−3 + o(4),

where o(4) denotes a polynomial with Gauss valuation strictly greater than v(4).

Again after enlarging R, let

q = (ρ4r−3UV + ρ2U2)1/2 = ρ(ρ4r−5UV + U2)1/2πR,

and define Q(T−1) = 1 + qT−1 ∈ R[T−1].

Then by equation (5.1) and the definitions of ρ and q,

Q(T−1)2 + 4BT−1 − 4AU2T−3

=Q(T−1)2 − 2ρ((ρ4r−5UV + U2)1/2 + ρ2r−4A+ U + ρ2r−4V )T−1 − 4AU2T−3

=1 + 2qT−1 + q2T−2 − 2qT−1 − ρ2r(ρ2r−4A+ U + ρ2r−4V )T−1 − 4AU2T−3

=1− (ρ4r−4A+ 2ρU + ρ4r−4V )T−1 + (ρ4r−3UV + ρ2U2)T−2 − 4AU2T−3

=F (T−1) + o(4).

After the change of variables Y = −2Z +Q(T−1), and plugging in values of U and V , the equation

Y 2 = F (T−1) gives

4Z2 − 4ZQ(T−1) +Q(T−1)2 = Q(T−1)2 + 4BT−1 − 4AU2T−3 + o(4).

Equivalently,Z2 − ZQ(T−1) = BT−1 −AU2T−3 + o(1).

Finally, since Q(T−1) ≡ 1 mod π, this reduces to z2 − z = α
t3
+ β

t .

Proposition 5.2.2. For all (Z/2)3-covers defined by a ring extension k[[z]]/k[[t]] of type (4, 4, 2r), r ≥
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Figure 5.3: Hurwitz tree with branch partition (3, 3, 3, 2, . . . , 2)

3, there exists a lift to characteristic 0 with branch locus geometry (3, 3, 3, 2, . . . , 2︸ ︷︷ ︸
r−3

). I.e. its Hurwitz

tree has 3 branches of size 3 and r− 3 branches of size 2 (see Figure 5.3). In particular, the branch

points of a lift here can never be equidistant.

Proof. We can assume that k[[z]]/k[[t]] is defined as the composition of subcovers of the form

C1 : y
2
1 − y1 =

a1
t3

+
b1
t
,

C2 : y
2
2 − y2 =

a2
t3

+
b2
t
,

C3 : y
2
3 − y3 =

1

t2r−1
,

where a1, a2 ̸= 0 are distinct. Fix A ∈ R∗ and U1, U2 ∈ R∗ such that −AU2
i ≡ ai mod π and

Ui −A ∈ R∗. Then by 5.2.1, there exist V1, V2 ∈ R∗, such that

Ci : Y 2
i = (1− ρ4r−4AT−1)(1− ρUiT

−1)(1− (ρUi + ρ4r−4Vi)T
−1)

is a lift of Ci for i = 1, 2. Note that since a1 ̸= a2 and A is a unit, v(U1 − U2) = 0.

Now let T1 = 0, T2 = U1, T3 = U2, and choose Ti, 4 ≤ i ≤ r, such that v(Ti − Tj) = 0 for all

i ̸= j. Then by Lemma 5.1.2 of [Pag](see also Proposition 3.3 of [MatNotes]), we can define some
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F (X) =
∏r

i=1(X − Ti)(X − T̃i) such that v(Ti − T̃i) = v(2), and Y 2 = F (X) has good reduction

relative to the coordinate T = ρX, with reduction C3. Then T̃i = Ti + 2Wi for some Wi ∈ R∗, and

this lift C3 is defined by

Y 2
3 := ((ρ/T )rY )2 =

r∏
i=1

(1− ρTiT
−1)(1− (ρTi + ρ2rWi)T

−1),

Observe that 0 is the common branch point for all three lifts, while ρ4r−4A is a branch point that

is shared by C1, C2; ρU1 is shared by C1, C3; and ρU2 is shared by C2, C3. Thus the lifts satisfy the

branch cycle criterion (Theorem 3.4.1), and the normalization of the product of C1, C2, C3 is a lift of

k[[z]]/k[[t]]. It is straightforward to check that this configuration of branch points is as indicated in

the picture above.
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