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ABSTRACT

ON THE BREAKDOWN OF STABILITY FOR THE MUSKAT PROBLEM

AND THE EPITAXIAL GROWTH EQUATION

Esteban Andres Paduro Williamson

Robert Strain

In this work we investigate the question of the well-posedness of the Muskat
problem when low regularity initial data is considered. A natural barrier for well-
posedness are the spaces that are critical under the scaling, and therefore an in-
teresting question is if the well-posedness can be established for critical spaces and
super-critical spaces. For Navier-Stokes this question was answered negatively in [2],
[8], [23] and many other works since then for some other fluid equations, by showing
that for some critical spaces the solution map is discontinuous at the origin.

The first part of this work introduces the technical tools, approximations and
explain the strategy that is used to prove the ill-posedness result for the Muskat
equation.

The next two chapters are dedicated to fill some gaps in the well-posedness
theory for the Muskat problem by establishing global existence results for the 2D
problem in a periodic domain. In Chapter 2 we prove global existence in a periodic

domain for small initial data in the critical space F'!, the analogous result was

il



previously known for the non-periodic case in [10], [9]. In Chapter 3 we prove
the global existence for H? initial data with small slope in a periodic domain by
extending a result previously known for the non-periodic case [11].

The last part of the work is devoted to study the question of Ill-posedness for
the Muskat equation and the Epitaxial Growth problem. We consider a family of
approximations of the equation for which we prove the discontinuity of the solution
map at the origin in some supercritical spaces. The sequence of spaces approaches
a critical one as we consider higher order approximations which suggest that well-

posedness in critical spaces is really the best we should hope for.
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List of symbols

o (&) =F(f)(&) = [pue ¥ f(x)da : Fourier transform of f.

o 0sf = 0sf(x) = f(x) — f(x =)

o (1), = HQW : Positive part of x

e A+B={a+beX:a€ Abe B}, where A, B C X,

e pdfx: Probability density function of the random variable X
o B(g)(t,z) = [i e =l (r, &) dr.

o f** = fx...x f ktimes, f* = f.

e Rz: Real part of z.

e §z: Imaginary part of z.

o Af = (—A)Y2f : Square root of the Laplacian of f.
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Chapter 1

The Muskat Problem

1.1 The Model

In fluid mechanics, the Muskat equation describes the evolution of a multi-phase
fluid in a porous medium. This situation was first observed in the petroleum in-
dustry when studying the oil extraction, in which was of particular interest to
understand the interaction of oil and water in sand. In this model the velocity of

the fluid is given by the Darcy’s law

U= —(Vp+ pgéy), (1.1)

3=

where U is the velocity, p is the pressure, u the viscosity, x the permeability, p >
0 is the density, g is the gravity acceleration constant and €, is a vector in the
vertical direction pointing up. When coupled with the conservation of mass and

the incompressibility condition for the velocity field, then we can formulate the



Muskat problem, given a initial density pg, to find ¥, p, p, such that

(

==

6:_(vp_p§) ) QX[()?TL

div(7) = 0 . Qx[0,7], (1.2)

\ Op + div(pt) =0 , Qx[0,T].
When 2 C R" is bounded, boundary conditions need to be imposed, typical choices
are no penetration or no slip at the boundary. In this work we focus in the infinitely
deep case and no boundary. When we have a multi-phase fluid, the density is
discontinuous and so Darcy’s law must be understood in the weak sense. Also,
in this case we lose the continuity of the velocity, but it is still continuous in the
normal direction to the interface due to the incompressibility. We assume that the

fluids have the same viscosity and the permeability is uniform in the domain, and

therefore by changing variables we can assume that pu/k =g = 1.

1.2 The Hilbert Transform

In 1D the Hilbert transform in is defined by

1 1

Hf = —p.v./ f(a)da, (1.3)
s RYT —

the importance of the Hilbert transform is that up to more regular terms it is the

only singular operator in 1D. The Hilbert transform play a central role in the theory

of singular integral operators and the key property that we will use from it are the

mapping properties in LP space



Lemma 1.2.1 (Properties of the Hilbert transform). The Hilbert transform as

defined by (L.3) satisfy the following
o H is self-adjoint,
e bounded in LP(R) for 1 < p < oo,

e translation invariant and has a Fourier multiplier given by
/ Hf(x)e ™ dy = —isgn(k) f (k). (1.4)
R

Proof. This are classical results that can be found for instance in [24]. ]

1.2.1 Hilbert transform for periodic function

In the case of a periodic function, there is a different representation of the Hilbert
transform that will be useful for us later. Let f : R — C a 27 periodic function,

then we can have the following

Hf = %p.v./R ! fla)da

p— _— 2
p.v Z/_Wx - 27ka(oz+ mk)do
keZ
1 T 1
B ;pv/_ﬁ< x—a—27rk> J(a)da,
keZ
now we use that for any z € C\ {27k : j € Z}
1 1 2z 1
= -+ = ) (16)
kGZZ 2421k 2 kzzl 22 — (27k)?  2tan(z/2)



then the Hilbert transform can be written as

Hf@) = —po / ) (1.7)

2 _x tan ( 20‘)

Remark 1.2.2. Because we are working with periodic functions, integrating over
any interval of length 27 give us the same result. Because of this we will write the

integral over T = R/(277Z) to denote the integral over any of such intervals.

Using that p.v. | ——=da = 0, we can add a zero term to obtain

f'ﬂ‘ tan( a/2)

uiw) = goro ([ el ®)

_ i " fla) — f(z) o 1.8
P tmm~®€f e
flz—a)— f(z
a tan(a/2) day

the advantage of this representation is that it is less singular because of the extra
cancellation that we have introduced in the numerator. Another fact that will be
useful for us later is the Fourier transform of the Hilbert transform, or in the case

of a periodic domain, a multiplier for the Fourier coefficients

%Aﬂmm“%w>%@®ﬂw (1.9)

where f fT —ikz f(z)dz. As in the case of the real line, using Calderén-
Zygmund theory it can be shown that the Hilbert transform in bounded in L?(T)
for 1 < p < oo (see [27] Section 6.17).

One of the main properties of the Hilbert transform that we will use is its relation

with the fractional laplacian.



Definition 1.2.3. Let f € &', for 0 < o < 1 the fractional laplacian of order « of

f, denoted by (—A)“f is defined by the Fourier multiplier

1

7 ’I[‘(_A)af e = [k[** f (k). (1.10)

In the o = 1/2 we can also write Af = (—A)Y/2f.

For the case a = 1/2, a property that we will use later, is that the fractional

laplacian can be written in terms of the Hilbert transform as:
Lemma 1.2.4. Let f € S'(T) then O, Hf = Af.

Proof. For f € S(T) we have the following

F(OHf) = ikF(Hf)

= (ik)(—isgn(k))F(f)

(1.11)
= [klF(f)
= F(Af),
and by duality the same is true for f € S'(T). O

One more formula for the fractional laplacian that will be useful later is the

following

- pv flz —a)— ) D-v f(B) = (=)
Af = Hf=0: / tan a/2 =0 2m Jp tan((z — )/Q)dﬁ

_ po. —f’ B _ ) 3 “((xz = p)/2)
_ 2W/Tm(( >/2>5 W/T(f(ﬁ) F@) i a8

o tan’((z — £)/2)
p.v. sec” (/2
— E T(f(x)—f(fﬂ_a))m

(1.12)



1.2.2 The Riesz Transform

Let n > 2, then for each 7 € {1,--- ,n} the Riesz tranform R; in R™ is defined by

Rif@) = ——po [ 28 s, (1.13)

MWt re [T —y|"
where w,,_1 is the volume of (n — 1) ball. The Riesz transform can be seen as a
generalization of the Hilbert transform to higher dimensions. The Riesz transform
shares many of the same properties as the Hilbert transform as can be seen in the

following Lemma.

Lemma 1.2.5 (Properties of the Riesz transform). Let R; be the Riesz transform
as defined by (1.13)) then

o R; is a self adjoint operator,
o R; is bounded in LP for 1 < p < oo,

e R; is translation invariant and has the Fourier multiplier representation

i &
F (R ) 1.14
(RAPE) = 3o O (1.14)
o R, =0;(—A)!
Proof. These are classical results that can be found for instance in [24]. O

1.3 Derivation of the Equation

In this section we will derive some equations for the interface between two fluids of
constant densities for the Muskat problem in the case when it can be represented by

6



a graph. Additionally we assume that both fluids have the same viscosity and we
ignore the surface tension. In this section the density function is discontinuous and
therefore Darcy’s law will be understood in the weak sense and all the derivatives
will be taken in the sense of distributions. Note that in the derivation we will not
use the equation for the conservation of mass, but it can be shown that the velocity

and density function obtained form this derivation satisfy in fact that last condition.

1.3.1 Muskat equation in 3D

In the 3D case the density function can be written as

p(I,y,Z,t) =p1+ (p2 - p1)192(t)(x7y72)7 (l’,y, Z7t) S R? x [OvT]7 (1'15)

where 25(t) denotes the bottom region occupied by the fluid of density p,. Taking

curl on the Darcy’s law (1.1)) we get
curld = — (9,p, 0,p,0), (1.16)

taking curl again we get curl curly = vdiv(v) — Av then by the incompressibility
of U we get

taking (—A)~! we obtain
U= (Rlaz,o, Rg(?zp, —le)xp — Rg@yp) s (118)

where Ry = 0,(—A)™!, Ry = 9,(—A)~! denote the 3D Riesz transform. Now if we
assume that the interface between the two fluids is given by a graph, then we can

7



compute the distributional derivatives of the density in the following way, if the
point is not at the interface then the gradient is just zero, at a point in the interface

G(z,y) = (z,y,9(x,y)) then we consider the frame given by

Vi = 0,G(x,y) = (1,0,0:9(x,)),
Vo = 9,Glz,y) = (0,1,9,9(z,y)), (1.19)
N = VixVy=(=0u9(x,y), —0y9(z,y), 1),
Vi, and V5 are tangent to the interface and therefore the gradient of p is zero in
that direction at the interface. In the normal direction the function behaves like a

negative heaviside function so we get
Vp = _(pZ - pl)dzfg(x,y) <_axga _ayg7 1) ) (120)

substituting ([1.20)) in ((1.18) we obtain

R10:—g(ay)
U= —(p2—p1) R0 y(a) : (1.21)
Ry (0:-g(0.)0:9) + Rz (02— g(2)0y9)
Because we are interested in the evolution of the interface we take a point on the
interface and observe its flow with the velocity field, now because we are only
interested in the shape of the graph and not the particular parameterization, we

can always change our flow at the interface by a tangent vector and that will only



affect the parameterization of our surface

z R10:—g(ay)
O Y = —(p2—p1) R20.—g(ay) +ur, (1.22)
9(z,y) Ry (02 g(2.)29) + Ra (0 g(2)Dy9)

where vp is a vector field that is tangent to the interface. We choose vy in such a
way that the first two coordinates do not move, i.e. 0;x = 0, d,y = 0, to do this we

write vr using the same frame as before to get

vr = aVi + Vs = a(1,0,0;9(2,y)) + b(0, 1,9,9(x, y)), (1.23)
then we choose a and b such that 9,z = 0 and 0,y = 0, we get

a = (p2 = p1)R10:gay) and b= (p2 = p1) Ra0:—g(ay), (1.24)

substituting in ((1.22)) we get
Og(x,y) = —(p2— p1)R10:—g(2,)0:9 — (P2 — p1)R20.—g(2,)0y9
(1.25)
+(p2 - pl)angl(sz—g(:c,y) + (p2 - p1>ang25z—g(x,y)'

Now we compute the Riesz transform

1

r— (51: z1,x axgl',l'
i (5Z—g(x,y)aacg) - Ep.v./R ( 1) 3=9(21,22) ( 1 2)

s (2 —21)? + (y — 22)2 + (9(2, y) — 23)?)%/2

_ b v (2 — 1)0pg(21, 22)dady
" '/]R@ (= 21)? + (y — 22)? + (g(x,y) — g1, 72))?)%/*’

analogously

1
Ry <5Z*g(z7y)ay9) ~ ir

X p.v (y = 22)9,9(1, %5) N
R I = T e i e




1
8a:g<x7y)Rl (dz—g(:c,y)) - Eamg(x7y)

(x — x1)dzdy
e / (x—21)2 + (y — 22)% + (g(x, 9) — g(@r, 2))2)52’

1
ayg(x7y)R2 (5z—g(x,y)) = ang(xa 3/)

. (y — x5)dwdy
e / (z— 1) + (y — 22)% + (9(x, y) — glar, 22))2)¥2

substituting in (|1.25)) we obtain the interface problem for the Muskat equation in

3D

g = / (z — xl)axg(xbl"z) — (z — 21)0:9(z,y) ddy
RQ

x—fl +(y — 22)% + (9(2,y) — g(21, 22))?)%/2

/ — 952)8y9(9€1,$2) — (y — x2)0yg9(x,y)
r (T —21)* + (y — 22)2 + (9(2,y) — ( , T2)

_ pz—mpv / (x — 21,y —22) - (Vg(z,y) — Vg(l‘hwz))
dr T Jge (2 —20)2 4+ (y — 22)2 + (9(2, y) — g(21, 22))?)3/?

dxdy

D
dxdy.
(1.26)

1.3.2 Muskat equation in 2D

The 2D Muskat problem can be seen as taking a slice of a 3D solution of the
problem when we have symmetry along the y axis. The derivation is very similar to
the 3D, but this time the density only depend on two variables and can be written

as p(x,z) = pa + (pa — p1)lq. Taking the curl of the Darcy’s Law ((1.1)) we get
curld = — (0, ,p, 0) (1.27)
taking curl again we get curl curly = vdiv(v) — Av and because div(7) = 0 we get

— AT = (0,0.p,0,—02p) . (1.28)

10



Note that this is a 2D laplacian of u in the plane x — z. Taking (—A)~! we obtain
U= (Rlﬁzp, O, —Rlamp) 3 (129)

where Ry = 9,(—A)~! is the 2D Riesz transform. As before we can compute the
distributional derivative of the density function at a point G(z,y) = (z,y, g(z)) by

consider the frame

Vo = 0,G(x,y) =(0,1,0), (1.30)
N = Vi xVy=(=0.9(x),0,1),

we obtain that

vp = —(PZ - pl)(szfg(x) (_g/(l’), 07 1) ) (131)
substituting (1.31)) in ((1.29) we obtain

Ry (6:—g(w))

= —(ps—p1) 0 . (1.32)

<y

Ry (0:—g(2)0z9)
Because we are interested in the evolution of the interface, we look at the evolution
of (z,y,g(x)) by the flow of velocity field. Note we only care about the shape of
the graph and not its particular parameterization, therefore we change the vector

field in the direction that is tangent to the interface that will only change the

11



parameterization of the surface and not its shape

x Ry (0. g(ew))
Il y | =—(p2—p1) 0 +vr, (1.33)
g(x) Ry (02 g(2)029)

where v is a vector field that is tangent at the interface. We choose vy in such a
way that the first two coordinates do not move, i.e. we impose the conditions that
Oix = 0 and O,y = 0, to achieve this we consider a smooth extension of the vector
fields V; and V5 and write vy in that frame to get that for a point at the interface

we can write

vr = aVy + bVe = a(1,0,0,9(x)) 4+ b(0,1,0), (1.34)
then we choose a and b such that d,x = 0 and 9,y = 0, we obtain
a=(p2—p1)R ((52_9(33)) and b =0, (1.35)

substituting in (|1.33]) we get for the last component

dg(x) = —(p2 — p1) R (62mg(2)0g) + (p2 — p1)0ug(x) R16. g0 (1.36)

Now we compute the 2D Riesz transform

. 1 (l’ - x1>5:v3:9($1)
R Bonts) = gop [ o (o

_ i v (# — 21)0,9(21)dxy
T '/R (x — 1)+ (9(z) — g(x1))?’

(1.37)

analogously

1 oo (x — z1)dzdy
27T6x9( )P '/R(ZB—$1)2+(9(£B)—9(351))2'

12

0ug() R (0:=9(x)) =



Substituting in ((1.36)) we obtain the equation for the interface of the 2D Muskat

equation
) — P2 — pP1 v —($ — xl)(?zg(:cl) + ([L‘ — le)axg(x*) .
3159( ) o D- /R ( (x _)(121)2(_’_) (g(g) zg)()m))Q dz,
= 2P, | ET0N%RIT) Z %I b 1.38
2T Top P /R (x —ax:;) ; )(g(x) g(x ))2d ( )
P2 — M v o wg(T N
- B |

where d,9(z) = g(x) — g(z — ).

1.3.3 The 2D Muskat equation in the periodic domain

If we look for periodic solutions of ([1.38)) it is possible to derive another formulation
for the Muskat equation. Let f be a 2m-periodic solution of ((1.38)), then we can

write

_ p=p a(0z9(x) — Ox9(x — a)) o
ag = P P [ 40 T (9(a) — gz — )"

_ P2 — Pl T (27k 4+ @) (09(x) — Opg(x — a — 27k))
N Z/ a+271k)? + (g(z) — g(x_oé_gﬂk))zda (1.39)
_ /32—/)1 / o+ 27k)(0,9(x) — Opg(x — >)da

_ )2

o+ 2wk (9(x) — g(z — a))?

(
x
(
(

T keZ

13



We focus in the sum in k, for this we notice that this sum can be factorized over

the complex numbers as

(o + 27k)
2 7 (4 2mk)? + (9(z) — g(z — @))?

ke

S:

o+ 21k

;((Wr?ﬂk)ﬂ( () = g(z — a))((a + 2rk) —i(g(z) — g(z — a))

1 1
- 522 (a+27k) +i(g(x) — g(x — a)

1
"t 27k) — ilg(x) — gla — a)))) '

(1.40)

Now we use that for any z € C\ {27k : j € Z}

1 1 2z 1
kGZZ z+2rk 2z * ; 22 — (27k)? - 2tan(z/2)’ (1.41)
using this we get
1 1 1

4 <tan<<a Filg(w) — glz—a)/2)  tan((a —i(g(x) — g(z — ) /2>) (142)

Now we use that

1 1 1
tan(a + ib) * tan(a —ib) tan(a + ib)

(

(
cos(a) cos(zb) — sin(a) sin(zb)
in( (

+ cos(a) sin(ib)
= 2R

b)
cos(a) cosh(b) — isin(a) sinh(b)
sin(a) cosh(b) + i cos(a) sinh(b)
1 — itan(a)tanh(b)
tan(a) + itanh(b)
1 —itan(a)tanh(b))(tan(a) — itanh(b))
tan?(a) + tanh?(b)
tan(a) — tan(a)tanh?(b)
tan?(a) + tanh®(b)

= 2§R(

Y

(1.43)

14



therefore we conclude

of = da, (1.44)

 tanh?(%ef@)
01 [ 5,5,y 2R/ )

tan?(a/2) + tanh2(5°‘];(r))

where d,f(z) = f(z) — f(x — s). Another useful representation is to separate the

term corresponding to the linear part

1 ~ tan(a/2)(1 - tanh%iﬁ)) 1
T = tan(/2)  tan2(a/2) + tanh?( %Ly ~ tan(a/2)
1

— ey (te/2) — tana2) + vl 5, 2)

(1.45)
— tan2(er/2) — tanh®(d. f /2))

1 %(a/2)tanh?
- WSGC( /2)tanh”(6,.f)

00 f ()

tan(a/2) da = A we obtain

and using that —5- [,

(p2=p1), _ p2—pm 0.0 f () SeCQ(S/Q)tanhQ (dsf(2)/2)
%hf(w) + A= v /T tan(s/2) tan(s/2)2 + tanh? (55f(x)/2)d8.

2 47
(1.46)

This formulation will be used in Chapter [2} Lastly we will prove the equivalence of

one additional formulation that will be used in Chapter

Cmem tan(a/2)(1 — tanh?(=L2)))

af = B2 [adusw tan?(a2) + tanh?(LE)

e p tan(a/Z)sechz(‘S“f(x)))
[ outta

tan?(a/2) + tanhZ(‘s‘“;(w))
sech? (8q (@/2)) (1.47)
_ ,01/8 5 f tan(a/2) dov

t h2(5af(z))

tan? (a/2)

tonhy( L@ z=a)
_ PN /2@; arctan anh( 2 ) da,
Cdr Jp tan(a/2)

15



and using the change of variable a — x — a we get

_ tanhy(fE-I (@)
of = u/?&,; arctan | —— (=) do
At Jp tan((z — «)/2)

_ p—, tan((z — a) /2)sech? (125 ))
4 /8 f(x)tarﬁ((:v —)/2) + tanhQ(f(x);f(o‘))
ey sec?((x — 0)/2)tanh(12=10))
Ar  Jp tan?((z — @)/2) + tanh?(LE2 f( fa) ()

do (1.48)

finally we can write

P2 — p1 tanh(d,f/2) sec®(s/2) _
O f +vo.f + = p.v.Atan2(S/2) thanhQ((Sijm)ols =0, (1.49)

where
1 tan(s/2)sech®(8,f/2)
VT Tl /T tan?(s/2) + tanh®(d,f/2) i

(1.50)

1.4 Besov-type Spaces

Given f € S(R") its Littlewood-Paley decomposition is constructed in the following
way. First we consider a smooth function supported in the annulus {§ € R" : 3/4 <

€| < 8/3} such that V& € R\ {0},

D 27 =1. (1.51)

JEZL

By defining h = F ' we can consider the homogeneous dyadic blocks defined by

Aif =2 [ W - )y (1.52)

then we have formally that > jeZA = Id modulo distributions supported at the
origin on the Fourier side. By using the homogeneous dyadic blocks it is possible

16



to define the homogeneous Besov semi norm B;}r forseR,p>1,r>1as

1/r
By, = (Z 2J‘STIIAfHZp) : (1.53)

JEL.

/]

and the corresponding Besov space B;yr(]R”) as the closure of C'2°(R") with respect

to this semi norm.

Remark 1.4.1. For general tempered distribution g € &’ the quantity ||g|

B, is only
a semi norm because it vanishes at every tempered distribution supported at the
origin on the Fourier side, i.e. the Besov semi norm take the value for polynomials.
This is not an issue to define the space B;,r because the difference of two functions

in C2°(R") is never a nonzero polynomial.

Inspired on this norm, we can define a family of Besov-type norms better suited
to the analysis of the Muskat equation. For k € Z, we consider the annulus Cj =
{x e R": 2" < |z] <281} and for s € R, p > 1, ¢ > 1 we consider the norm

a/p\ V4
1l = (Z ( / |£rmp|frpd£) ) . fECE®Y),  (154)
kez N Ck
where f(£) = Jgn €72 f(x)dz. In the periodic case we consider the annulus

Cp={jez:2"<|j| <2"1} and define

1/q

a/p
Iz = D (Z Ijlm”lf(j)l”> , e, (1.55)

keZ™ \jeCj
where f(k) = # Jn € ® 7 f(x)dz. Finally we define the spaces F;?(Q) as the
closure of C2°(2) with respect to the F;(€2) norm. For simplicity sometimes we
will use the shorthand F*? for F,"*.
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1.4.1 Scaling and criticality on the Muskat equation

The Muskat equation ([1.38]) satisfy the following scaling property that: For any
A > 0if f is a solution of (1.38)), then f\ = %f()\zf7 A\z) is also a solution of (1.38).
We say that a norm X is critical if for all A > 0 || fa]|x = || f]|x. We call spaces that
are more regular than critical spaces subcritical, and the ones that are less regular
are called supercritical. In particular for the families of spaces F;F and WkhP we

have the following

a/p\ V4
IAllze = 2%(/(1 SRR df)
1 a/p\ V4
- |z ( L, |§IS”|A1+df(£/A>|pd£>
1 a/p\ (1.56)
_ sp|_ P pyd .
- j%(/cjunr !AZf(n)IAdn>
a/p\
= /\(3_1_”)"‘”/17 sp| £ Pq
Z(/C ol 5 o) n>

= ) )

f(?»?,

for A power of 2. We obtain that for s =1+ n (’%) the norm is invariant under

Ln(250), . .
the scaling, so we conclude that the spaces F, n(555)w are critical under the scaling

of the Muskat equation. For the case of the W*? spaces, fora € R we define

18



A® = (=A)*/2, then we have

[ llvirse = [[AAAllze

_ (/ \As—lASf(Mﬂpdl") " (1.57)

= (e [ esr )

Rn
= N7 fll s

we conclude that for s = 14n/p the space W*? is invariant under the scaling. This
allows to conclude in particular that for the 2D Muskat problem the spaces f;’l(R)
q>1, H3¥?(R) = W3/22(R) and W*(R) are critical under the scaling. Note that
boundedness in some of the critical spaces for the equation are closely related with

the boundedness of the slope, to see this we note that

19llyiroc = esssup |g'(z)], (1.58)
e

and

lg'(x)] =

/R <27r5>e—2m59<§>d5\
< (2n) / €113 lde (1.59)

< @0)llgl .

For the periodic case we use the the same critical spaces by analogy with the non-

periodic case.

1.5 Iterative solutions for the Muskat problem

In the study on non-linear partial differential equations finding explicit solutions is
usually a very difficult task, that is why having iterative methods to approximate
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solutions from practical and theoretical points of views. In this section we introduce
two of such methods that can be used to study the Muskat problem.

We have two goals in this section, The goal of this section is to study the
convergence of an iterative solution for the Muskat problem. For this purpose we
consider a family of solutions of the Muskat equation that depend on a parameter

e >0, then f = 2421 e’ f, and the initial condition fy = e¢p.

1.5.1 The Picard iteration

Consider the equation for the interface in the Muskat problem given by

af =G(f) , Qx0T
(1.60)

f(0O)=¢p , on €.
Up to linear level the G(f) behaves like G(f) ~ —Af = —(=A)Y2f, then we can

write

Of +Af=T(f) , inQx]0,T],
(1.61)

F0) =g . on Q.

Now by setting fy = 0, and for £ > 1 we define the Picard’s iteration of the Muskat

equation as

8tfk + Afk = T(fk—l) s in € x [O,T],
(1.62)

fe(0) = ¢ . on (),

by using the Duhamel’s principle the iteration can be written as a fixed point

problem
t
fe=e"p+ / e UIMND(fu)dr, (1.63)
0
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by doing this we can see that by the Banach’s Fixed point theorem the convergence
of the Picard’s iteration can be studied by looking at the mapping properties of the

operator

L<f>=;[fe@”A7%f> (1.64)

1.5.2 A Small Parameter Iterative Solution to the Muskat
Equation

This time we will consider an iterative solutions that can be seen as a Taylor ex-
pansion of the equation depending on a small parameter on the initial condition,
for this purpose, given ¢ > 0 and some initial data ¢, we consider the equation for

the interface in the 2D Muskat problem as

Of +Af=Tf , inQx(0,T)
(1.65)

f(0) =¢€gp , onR.
In order to find an expansion we look for solutions of the form f = anl e fn
and we try to find what are the equations that each one of the f, satisfy. For this

purpose we use the Taylor expansion of the nonlinear term to obtain
1 00 Oa 2
RN 2 [ 1
mJe a o+ (daf(x))

_ Z (_1> 1/Rax (Aaf(x))%ﬂda,

ﬂ2k+1§

(1.66)
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where d,f = f(z) — f(x — ) and A,g = d.9/c. To obtain an equation for f, we

write f =Y ., €"f, and consider the following expansion

af 2k+1 Z 5] Z (Aafh) e (Aafi2k+1)7 (167)

J=2k+1  d1tdiopy1=]

using this on (|1.66|) we obtain

/ Z 2]{,‘ —|— j Z ax(Aafh)(Aafig) e (Aafi%ﬂ)doz

j= 2k+1 i1+t Fiogr1=]
00 LJQIJ
Y %(Bafi)(Dafi) (Do fi,)da,

114 Hiog1=]

(1.68)
by matching the coefficients of the terms with the same power of € we get an the

equation for f,

Ofn+ A =

M

/ Z ax(Aafil) (AafiQ) o (Aafizkﬂ) do

i1+ +12k+1

3 R‘
>~ ,_.

Q(k / Z 896(Aafi1) (Aozfzj) tee (Aafi%ﬂ) da,

i1+ +12k+1

2=
=
[
—

(1.69)
and for the initial condition we get f(0) = 3, €"fi(0) = ep, therefore f1(0) = ¢

and f(0) =0, k > 2. Therefore we obtain

(

atfn * Afn - % aw(Aafil) (Aafiz) e (Aafi2k+1> do
'Zi‘lz—;k+1 =n
= Gu(fi, s fr1)
H0)=¢ , fi(0)=0k>2.

(1.70)
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Note that by symmetry of the Muskat equation, we can see that if f is a solution
with initial condition f(0) = fy, then g(x,t) = —f(z,t) is also a solution of the
Muskat equation with initial condition g(0) = — fo condition. For our one parameter
family of solutions this is equivalent to substitute € — —e, and therefore we get

glz,t) => (=e)" i, (1.71)
k>1
is a solution of the Muskat equation with initial condition g(0) = — fo, consequently
> f=flat) = —g(z,t) = =) (—e) i (1.72)
k>1 k>1
we conclude that 2221 2 foy = 0 for all € such that the expansion is valid, which
implies that fop = 0 for all £ > 1.

Note that the equation of each f, in (1.70) is linear in the previous terms,
so under mild assumptions in the initial data we expect that each one of those
equations has a solution, for the convergence of this iterative process we need to

know something about the size of f,, as n — oo.

Theorem 1.5.1 (Iterative solution of the Muskat equation).  Consider the 2D
Muskat equation in the real line and consider the iterative solution obtained by
expanding f(0) = ep, f = > 15 e¥fi. as in (1.70). Then there exists cg > 0
such that if ||p|| 711 < co, for every k € N and T > 0 there exists a unique solution
fr € L=([0,T), F1') of (L70). Moreover the sequence gy = 3 py €* fi converge in

FLT) to a solution f € FX(T) of Muskat problem with initial condition f(0) = e¢p.
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Proof of Theorem (|1.5.1)). The existence of the solutions for (1.70]) can be obtained

in the following way, consider the problem

og+Ag=h , (z,t) eRx(0,7T)
(1.73)
9(z,0)=0 , z€eR,
uniqueness in C([0,T], F') N LY([0, T]F>!) is obtained by taking taking Fourier

transform and integrating. For the existence we suppose that h € L>°([0, T], F"!)

then by the Duhamel principle we can write an explicit solution of (1.73]) as

t
g:/ e~ (7 dr, (1.74)
0

by taking Fourier transform we get

t
g= / e~ 2=l (g ) dr, (1.75)
0
taking absolute value, multiplying by |£| and integrating we get

t
lglsis = / € / 2l (¢, ) dr
R 0

< /Rlél/ot

< [ [ialfpten)|dsr (1.76)
= [ 1lrsar

dg

hE, ) ‘ drde

< tsup [|hf|F,
te(0,7)

by taking supremum we obtain that sup,ci 7 l|9/l711 < T'supep |7l 711 which
implies that g € L>([0,T], F"!'). To prove that the right hand side of the equation
of each f,, (1.70) belong to L>°([0, T], F"!) we need the following Lemma.
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Lemma 1.5.2. Consider the family of solutions to the Muskat problem obtained
considering the initial condition f(0) = ep and varying € > 0 and considering the
expansion of the solution as f = 3, e f, with the initial condition f(0) = ep,

then the terms in the expansion satisfy

sup || fullFia < AB™ @11, (1.77)
te[0,T]
and
T
77/ | full F2adt < AB™|| |11, (1.78)
0

where B > By and A = A(B) > 0 is large enough.

Remark 1.5.3. The size of the parameter is given by By = 1/ where

2(1—5z% —2z%)
Y = sup

R (1.79)
z€|0,

and therefore By ~ 6.60118.

Proof of Lemma[1.5.9. By taking Fourier transform of (1.70) we get for £ € R

125

0f,+ 2mlélfu = = DY (1)

/ 27Ti§)(mafio) * (mafil) Kook (mafizj)daa (180)
Ra 10+ t+igj=n
where F(Aqf)(€) = ma(&)f(€) = 2magf(f). Then by taking
1 fu fa
— 1 (1.80 de, 1.81
z( e T =
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we obtain

125+

1
]:s+1 S -
m

Ol full 7 + 2m)|1 £l

> < e

j=1 io+-Fizj=n

/ (26) (M fig) * (M fi) % - % (o fon s

@

X (1.82)

By the computations in [I0], section 3 we get that

>k

ig+-+iog=n kEZ

dg

/R (2E) (s fog) * (M fi) % - % (1 fon s

<ar@k+10 Y |l

10t +igp=n

Forvall fi[lsn o || fige |l 7o, (1.83)

applying this inequality we obtain the estimate

O ful

Fo + 27| £l

125+

<dm Yy (k1) ) il
k=1

= i0+t-Fiog=n

].‘s+1,1

Frevallfillzn o | fig . (1.84)

Integrating the estimate in time and taking supremum between [0, 7] we get
125]

T 2
max{ sup [ fills, (27) / e} <2 3 @+ 1)
te[0,T 0 k=1

T
X2 (27T)/ ||fi0||5+1dtts[%%]||fi1||1"' SUp || figy [l + 1 fn(0)[[s- (1.85)
0 €10,

i0+--~+i2k:n tE[O,T]

Notice that f,,(0) =0 for n > 1. For n = 1 we have that d;f; + Af; =0, f1(0) = ¢

and so

T
max{ sup ||f1||s,(27r)/0 [1llssa} < llells, (1.86)

te[0,T

and for n = 2 we have that 0;fo + Afo =0, f2(0) =0 and so fo(z,t) =0

T
max{ sup |[falls, 27) [ |[falls42} =0 (1.87)
0

te€[0,T]
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Using ((1.85) we will prove by induction for s = 1 that

T
maX{ sup anlha(?ﬂ)/ anHz} < CullellY- (1.88)
] 0

tel0,T
from ([1.86]) and ([1.87) we know that this is true for n = 1 and n = 2 with C; = 1
and Cy = 0. Now suppose that (1.88) is true for all j < n we want to show that it

is also true for j =n

T
max{ sup an||1,(27T)/ ||fn|\2dt}
t€[0,T] 0

25 T
<2 2k +1 27 / fiollserdt sup || fi,ll1-.. sup || f;
;( ) Y. (@2n) i | fiolls+1 S, 1 fir 12 S | fizs |11

i0+...Figp=n
Ln71
2

J
<2 @2k+1) D CilellPCullelt - Codliel = Cullellt (1.89)
k=1

0+...+Figp=n

where
|25t
Co=2) (2k+1) > CyCi..Cy,. (1.90)

k=1 io+...+Hiop=n

We conclude that (1.88) is valid for all n. Now we focus our attention to estimate

the growth rate of the coefficients C,,.

Lemma 1.5.4. Consider the sequence {C,,},>1 as defined by (1.90)) then for B > By

there exists A(B) > 0 such that for alln > 1

C, < AB"™, (1.91)

t(1-5t2—2t%)
(14¢2)2

where By = % and 7y = SuP;¢o 1]
Proof of Lemma|1.5.4. To estimate the growth of this sequence we can use the

inverse function theorem, to do this we we consider the formal power series given
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F=Y Cpat (1.92)

then we have that

F2k+1 = Z " Z ClOCuCng (193)

Using this we get that the recurrence (1.90]) can be written as

F =2 (2k+ 1)F* 4 20y (1.94)

k>1

Notice that the series can be rewritten as

> @k+DF* = FY (2k+1)F*

k>1 k>1

o 8 2k+1
— Fa—F Z F

k>1
0
— F_FS F2k
oF kzzo (1.95)
0 5 1
arl T
(3F2(1 — F2) + 2F4)
(1— F2)2
(3F2 — F4)
(1— F2)2

= F

= F

and therefore we get

G(F)=F (1 - %) = 1. (1.96)

Now we observe that G(z) is holomorphic near z = 0 and F(0) = 0, G'(0) = 1
therefore by the inverse function theorem we get that there exists some neighbor-
hood from zero U such that G : U — G(U) is biholomorphic and so we get that
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there exists some holomorphic function F': G(U) — U, which has a nonzero radius
of convergence around zero, which implies that the growth of the coefficients in the
power series expansion of [’ have an at most exponential growth and so there exists
A, B such that

C, < AB™. (1.97)

Therefore we conclude that

T
max{ sup IIfnlll,/ ||fn||2dt} < AB"[|ell}- (1.98)
tel0,7 0

We can make an explicit estimate for B by using the Rouche’s theorem and the

following lemma

Lemma 1.5.5. Let U be an open set of C and f be a univalent function on U.

Then f"#0 on U and f : U — f(U) is biholomorphic.

We will estimate the size of the region U with the help of the Rouche’s theorem.

The equation ((1.96) for F' can be written as
F(1—5F*+2F") = 2(1 — F?)? (1.99)

When x = 0 it is easy to see that there is only one there is only one solution for F
in the disk {|z| < 8} where /5 is given by

dE V2548

1-532—-28'=0= = 1 (1.100)
and so
33-5
B = \/_T ~ 0.43144 (1.101)
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Now we want to use Rouche’s theorem to find a region V' C C of values of x for

which the equation only has one solution. To apply Rouche’s theorem use that
|[F(1—5F%+2F%)| > |F|(1 —5|F]” —2|F|")

and
[z(1— F?)?] < Ja|(1+ |F[*)? (1.102)

and therefore it is enough to find a circle where

2](1+ |FP)? < |FI(1 = 5|F — 2|}, (1.103)
IF|(1—5|F]2—2[F|Y) _ #(1 — 52 — 2¢1)

| < <75 = sup 1.104

= 0+ F]P7 T T A ey (1.104)

We can compute the maximum of the right hand side and we get |F| = # ~ 0.233893
and |z| < 7 ~ 0.151488, therefore we can apply Rouche’s theorem for |F| = ¢ to
get that for |z| < 4 the equation has a single solution and so G(F') is univalent
there and by the lemma F(z) is holomorphic for |z| < 4 and therefore it radius of

convergence around 0 is at least R > 7. Using this we obtain that

1/n 1

1
limsup |C,, = =< —. 1.105
msup |G, 17 = & < 2 (1105
So we get that for any 6 > 0 exists N large enough such that for n > N
e <t is oo < (Las) (1.106)
R —\R
and so for any B > % we can take by taking A > 0 large enough we get that
|C,| < A-B™. (1.107)
This concludes the proof of Lemma [1.5.4] O]

30



Continuation of proof of Lemma [1.5.2] By applying Lemma to ((1.88) we

get that for n € N

T
max{ sup [[ful 0. (27) [ ||fn||f2,1dt} < AB"|g|3, (1.108)
te[0,7 0
which concludes the proof of Lemma (|1.5.2)). O

Continuation of Proof of Theorem [1.5.1} To prove the existence of solutions for
the entire family { f,,} we proceed by induction, the base case we use that f; = e ¢

and therefore sup, 7 || f1[| 711 < [[¢[|F11. For the induction step, we assume that we

have

T
maX{ e an||f171,27r/ anH]-'Q’ldt} < AB"[lellt, (1.109)
0

te(0,T

forn=1,---,k then by we know that the right hand side of belongs
to L([0, T], F*') and therefore by our previous computation we obtain that we can
solve for f, and f,, € L*([0,T], F"!). Finally by applying Lemma we get the
existence for all f,, and the growth estimate for the norms. Finally by taking ¢y > 0
such that ¢oB < 1 where B > 0 is the value obtained from Lemma[1.5.2] we get that
the sequence g, = >";_, f is convergent in L'([0, 7], F*') and each term f,, satisfy
the estimates given by Lemma . This concludes the proof of the Theorem

51 O

Note that the solution constructed by the Theorem [1.5.1] is not necessarily a
solution of ([1.38) because it was constructed under the a priori assumption that

the Taylor expansion (|1.66)) converges, to show that the solutions that we just
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constructed is in fact a solution of ([1.38) we notice that

[Aaf(2)| < Sliplf'(l‘)| < [ f |, (1.110)

consequently we get that the function given by the theorem will be in fact a solution

of (1.38) if || f||71: < 1, to get this we use that

sup [|fllra < Y sup | fillF

t€[0,T] k>1 t€[0,T
< Y ABH )
k>1 (1.111)
A
< -
1= B¢l
< 1,

and therefore by taking ||| 711 small enough such that

A

S 1.112
= Blolr (112

we get that the solution given by Theorem is in fact a solution of ([1.38)).

1.6 Strategy for Ill-posedness

When studying a differential equation, the usual approach is to understand under
which assumptions the problem is well posed in the Hadamard’s sense. This analysis
is usually done by taking a space that is very regular and study the well posedness
there and then try to weaken the assumptions to study obtain well posedness in a

less regular space.
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The natural barrier to study well posedness are the so called critical spaces.
As a general rule it is expected that when you are in a space that is more regular
than the critical one, also known as the subcritical case, the problem should be
well posed, at least to suitable small data. For spaces that are less regular than
the critical ones, also known as supercritical, the analysis is usually harder and less
tools are available to study the problem in this regime, but it is expected that bad
behaving solutions could exists in this context. The critical situation is typically
very delicate and must be studied case to case.

We say that a problem is Hadamard’s well posed in a certain space X if the we

have the following

(i) There exits a solution in X,

(ii) the solution is unique,

(iii) the solution depends continuously on the data.

This means that in order to study the ill-Posedness we need to study the failure
of at least one of those conditions. From now on we focus on the last one. For
initial value problems, there are a few properties of the equations that we can look

for to obtain an ill-posedness result in a given space X.

(i) Discontinuity of the solution map at the origin: to find a sequence of times

and initial conditions {(tx, ¥x)}reny with ¢ — 0 and ||pk|lx — 0 as k — oo
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such that if f; is a solution of the equation with initial data ¢; then

limsup || fx(tx)|| x # O. (1.113)

k—o0

(ii) Norm inflation: this is a stronger notion of discontinuity at the origin in which
we show that solutions with arbitrarily small norm can become arbitrarily
large in a arbitrarily short time, i.e. for any R > 0 and 7" > 0 there exists
a initial condition ¢ € X with [j¢[x < & and 0 < i < T such that if f is a

solution of the equation with initial data ¢ then || f(#)||x > R.

(iii) Strong norm inflation: Given any ¢ € X, e > 0 and T > 0 there exists . € X
and 0 < t < T such that ||¢ — ¢.||x < e and if f is a solution of the initial

value problem with initial data (. then
- 1
1F () = eellx > - (1.114)

All three of this notions have been used to study the ill posedness of fluid
equations. In the case of Muskat we want to study the norm inflation phenomenon
in some supercritical spaces. The strategy that we will use is based on studying the
an expansion of the solution in terms of the Picard’s iteration. First we consider the
Taylor expansion of the nonlinearity as in and then the equation obtained by

truncating the expansion the the first ¢ terms

l
Of +Af=> Tie™p | (,t)€Qx[0,T],
k=1 (1.115)

f(,0) = p(z) , TEQ,
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where in the case 2 = R, T} is given by

ka:(—l)k%p.v./RaxéaJ(@ (5““’;(“')) da, (1.116)
and for Q =T,
Thf = (—1)]6%4?;3?5;2; (tanilaégzg/(;)/z)) sec?(a/2)da. (1.117)

next we consider the Picard’s iteration of the equation ([1.115)), by setting fy = 0,

and for k > 1

¢
Ocfe + Afi = ZTn(fk—l) , in Q% [0,T],
n=1

(1.118)
fe(0) = , on Q,
by using the Duhamel’s principle fj can be written as
t
fr=e"o+ /0 e UTAD () )dr, (1.119)

then assuming that the sequence converges we can write f = >, o, (fx — fi—1)

¢ ¢
f=eo+ / e~ (=mA ZTn(e_TAap) + R(z,1). (1.120)
0

n=1
To get an inflation result the idea is to look at this expansion and identify a large
term. The first term regular in general because is the evolution of a heat flow with
with A instead of the Laplacian. The second will be studied carefully on Chapter
to study its inflation properties on the space ]:q%%’p, for p > 1and g > 20+ 1.
For the last term R(x.t) = > ,_5(fk — fe—1) we need some kind of bound in some
supercritical space for the kind of initial data that we are using.
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In many situations the Picard’s iteration is expected to converge to a solution
the problem, but in the case of supercritical spaces this is a hard question in general,

especially because we are using highly oscillatory initial data.

1.7 Summary of the known results

For the Muskat problem, in the Rayleigh-Taylor unstable case p; > p, the problem
is known for to be ill-posed in the Sobolev spaces H® for s > 3/2 and d = 2,3 in
[15],[16], this is done by scaling a fixed solution and showing that for arbitrarily
small initial data the solution blow up after an arbitrarily shot time.

When p; < py short time existence [15], [14] in 2D for H* s > 3, and in 3D for
H?® s > 4 in the case of a graph interface. [I3] in 2D for the non graph case H*,
k > 3 under the chord-arc condition. [6] in 2D for H?*(R) initial data with small
H?3?% norm. [32] in 2D local existence and uniqueness for H* s € (3/2,2) data
for the case without surface tension and for H*®, s € (2, 3) for the 2D Muskat with
surface tension.

For global in time existence in the Muskat problem, in 2D [I1] for W??(R) data
with small slope. [34] for fo € H® ¢ > 3 initial data with small || fo||z11 < ko large
time decay in the F*! norms. [6] in 2D global existence in the periodic case for data
with small H2 norm and in the real line for H? initial data with small H3/2¢ norm.
[9] for d = 2,3, global existence for H* s > 4 initial data with ||V fol|r~ < 1/3,

in 3D global existence for L* initial data and small slope. [10], [9] in 2D and 3D
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global in time weak solutions for initial data fo € L? with || fo|| 711 < ko and classical
solutions if additionally the initial data belongs to H* for £ > 2 in 2D and ¢ > 3
in 3D. [31] in 2D proves global existence for small H3/2*¢ data. [20] for d = 2,3
the viscosity jump case for L? data with small 7! norm. [I9] for Muskat Bubbles
with appropriate small FY!(T) data in the appropriate parameterization for the
problem. [4] in 3D, global existence for unbounded initial data with medium size
slope and slow growth at infinity.

For global existence without small slope assumption. In [I§] global solutions
with monotone initial data with finite limits at infinity. [3] in 2D, [4] in 3D C!
global solutions when (sup f})(sup —f}) < 1. [17] in 2D for initial data in H>/?(R)N
H3/?(R) with small H*?(R) norm, where the required size depend on the maximum
size of the slope. [2I] in 3D with W N H? initial data with small H? where the
required size depend on the maximum size of the slope.

For other fluid problems there have been several results on the Ill-posedness in
the last few years. In [2] for the 3D Navier-Stokes the norm inflation in the critical
space BO_OLOO and [35] for the Bq_ Lo case. Both results are obtained by studying
the mapping properties of the second Picard’s iteration of the problem as described
in Section In [23] discontinuity at the origin for the second Picard’s iterate
in B Lee for ¢ > 2 and d > 2. [8] discontinuity of the solution map in a periodic
domain for Euler and d > 2 in Bo%o_l’r. [7 for discontinuity of the solution map

for the Navier-Stokes equation with fractional diffusion. [I] for Euler and d > 2
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show that a small perturbation of a H*c initial data shows norm inflation where
se = d/2 + 1 is the critical exponent for the equation. [26] for a Drift Diffusion
system in 2D show inflation by analyzing the second iterate and using modulation
spaces to study the higher iterations. [33] for 2D Euler the discontinuity of the

solution map in C*(R) and B}"*°(R) is obtained.

1.8 Main Results

The first two results concern the stability of the 2D periodic Muskat equation .
The objective is to close some gaps in the well posedness theory for the 2D Muskat
equation in a periodic domain.

The first result deal with the question of global existence on a periodic domain
in a critical space. Short time existence was known from [I5] and the well posedness
in critical space F1! was proven for the case of the real line in [I0]. The next result

extend the global existence result in [I0] to a periodic domain.

Theorem 1.8.1 (Global existence for small initial data critical space).

Let fo € H3(T) N FYY(T) such that || follm1 < co. Consider the Muskat prob-
lem with initial data fo and 252 = 1. Then there exists a unique f €
C([0,00), F11) N L>=([0, 00), F-1) N L([0, 00), F21) solution of (1.44). Also f sat-
i1sfies the estimate

T
£l 4o [ 1t < Mol (1.121)
0
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for some o = o(|| fol| 71.1) < 1.

The proof of Theorem can be found on Chapter 2] Theorem and its
proof are useful for us for two reasons, first the result itself extend a well posed-
ness result known for the case of the real line to the periodic case, and second, it
illustrates some of the principles used in [I5] on how to apply techniques from R?
to obtain a result in T¢. In [I5] they use a expansion of the kernel of the Riesz
transform in T¢ in terms of the kernel in R? up to some terms that needs to be
estimated, in the proof we use a more explicit approach that give a more precise
estimate on the size of the constant ¢y that tell us how big the data can be for the
result to be valid.

Under stronger regularity assumptions and using different techniques it is pos-

sible to extend the results from [11], to the periodic setting.

Theorem 1.8.2 (Global existence in H? for data with small slope). Suppose that

the initial data fo € L*(T) satisfy [; fo =0 and
1follze < ko, (1.122)

for a small constant kq. If we additionally have that f§ € L*(T), then there exists a
unique global in time solution of (1.44)) with initial data fo. Moreover the solution

satisfy

LF" ()2 < max{]| £5]12, (2)'7°}, (1.123)

for all t > 0.
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The proof of Theorem can be found in Chapter [3]in Theorem[3.1.3] The last
result that we prove with respect to the Muskat problem has to do with the question
of the Ill-posedness. This result is a intermediate step on proving the existence of
norm inflation for the Muskat problem. By following the strategy presented in
Section [1.6| we consider the expansion obtain by taking Taylor expansion of the
nonlinear term, truncate it to finitely many terms and use the Picard’s iteration to

obtain the decomposition ([1.120)).

Theorem 1.8.3 (Norm inflation for truncated system). Let ¢ € N and consider the
second Picard’s iteration of truncation of the Muskat problem of order ¢ given by

(L.115) for @ = R or T. Then given T > 0, R > 0, there exists some 0 <t < T,

20—-1

and an initial condition f, € ]L"q”j’p(Q), p>1,q>20+1 such that

20-1 > R. (1124)

]'_—q2£+1

Vfoll sy, <1/R and |I£(D)
]:q

This result is proven in Chapter [d] In order to understand the purpose of this

result, we can consider the map

20—1 20—-1

L:F = oo, T); F ), (1.125)

201
that takes a function ¢ € F2™ " and return the solution f of the second Picard’s

iteration of the truncated Muskat problem of order ¢ with initial condition ¢ given
by

l
Of +Af=> Tie™p | (,t)€Qx[0,T],
k=1 (1.126)

f(z,0) = ¢(x) , T €.
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Now from Theorem [1.8.3| we can conclude that for arbitrarily small time T > 0 it
is possible to find a sequence of times and initial data {(tx, pn)}%—; such that if

fn = Loy satisfy

1
ol gt < 37 and AN g, > N (1127

20—1 201

This implies that the solution map L : F27 7 — C([0,T]; F27 ) is discontinuous

at the origin.
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Chapter 2

Global existence for 2D Muskat

problem in a periodic domain

Abstract
In this chapter we establish global existence for solutions of the periodic 2D
Muskat problem for small data in the critical space F!. This is done by
obtaining a priori estimates for the 71! norm and adapting the general strategy
established in [10], [9] for the non periodic case. A key ingredient required for the
a priori estimate is a bound in the F%! norm for the nonlinear term. The main
contribution is a new estimate for the Fourier transform of the nonlinear term
obtained by careful analysis of the size of the coefficients of its Taylor series
expansion, which allow us to establish an estimate on the F*! norm required for

global existence result.
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2.1 Introduction

2.1.1 Description of the model

The Muskat problem describe the evolution of an interface between two immersible
fluids of different constant densities in a porous media with velocity given by the
Darcy’s law. We consider the case in which we have two fluid one on top of the
other, the fluids are infinitely deep so we can ignore the boundary effects, we neglect
surface tension, and assume that the fluids have the same viscosity and therefore

no shear effects. The density function is given by

pr in Ql<t>:{y>f('rvt>}

P2 n Qg(t) = R2 \ Ql(t)
Under these assumptions it is known that a necessary condition for stability is the
Rayleigh-Taylor condition p; < pe [15], [16] otherwise the problem is known to be

ill posed. In what follows we only deal with the case in which ps > p;. When the

interface can be described as a graph f(z,t), its evolution can be described by using

the equation (see Section [1.3.2)),

P2 — p1 v 0,03 f () .
or '/RBQ + (5ﬁf(w))2dﬁ - (o) € 0T xR, (2.2)

f(z,0) = fo(x) , xeR,

Oif(x) =

where 0, f = f(x) — f(x — s).
If we look for periodic solutions of the problem, say f(x,t) = f(x + 2m,t), we

can study the integral in the principal value sense, as in Section the equation
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may be rewritten as

_ P2—p1 0,05 f ()
Of(z) = ir P /tan(s/2)d$

P / 0.0, f(x) sec?(s/2)tanh® (0,f(z)/2)
ar U tan(s/2) tan(s/2)2 + tanh® (5, f(x)/2)

= _u/\f
2 , (2.3)
o, ) s 0
4 77 Jp tan(s/2) tan(s/2)? + tanh® (0, f(z)/2)

_ _P2;P1Af+P2;P1T(f>

flxz,0) = folx), =zeT=R/(27Z),
by noticing that we can always add a constant to the solution and still have a

solution, we can assume that [ fodz = 0, and because

o f = P2 plp.v. /T 0, arctan (tanh(ésf(x)/Q)) ds (2.4)

27 tan(s/2)

we get that the quantity fT fdx is preserved over time. Here A = (—A)Y2, or in

terms of Fourier series

zkx £ . 1 —ikx
=S AR fE) = 5- [ e (2.5

kEZ

We say that a function f € L? is a weak solution of ([2.3) if for every g €

C=([0,T]; C*=(T))

/OT / O,f (,t)g(x, t)ddt

L P pl/ //arctan (tan?aié”%;/ ))dsazg(x,t)da:dt:O. (2.6)

The goal of this chapter is to extend the results of [9] and [20] for the 2D Muskat

equation for a periodic domain.
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Definition 2.1.1. Let s € R and f € C*°(T), we define || - |1 by

Il = SIREIFEL where f(k) = FNE) = 5- [ ) de. 1)

kEZ

We also define the spaces F*!(T) as the closure of C*(T) with respect to || - |

]_‘5,1.

2.1.2 Main Results

Theorem 2.1.2 (Global existence for small initial data). Let fo € H*(T)NF4(T)
such that || follFrr < co. Consider the Muskat problem ({2.3) with initial data fo
and 252 = 1. Then there exists a unique f € C([0,00), F41) N L®([0,00), F:1) N

LY([0, 00), F21) weak solution of ([2.3). Also f satisfies the estimate

T
|umm+a/|vwmwswmm% (2.8)
0
for some o = o(|| fol|71.1) < 1.

Remark 2.1.3. The hypothesis of H3(T) initial data ensure that solutions given by
Theorem [2.1.2]are in fact classical solution, this hypothesis can be relaxed by follow-
ing a regularization strategy similar to the one used in [9] for the 3D Muskat prob-
lem, to obtain the existence of weak solutions for the problem under the assumption

that the initial data belongs to L*(T) and is small in F"!.

2.2 Proof of Theorem 2.1.2

The goal of this section is to prove the following estimate
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Theorem 2.2.1. Let fo € FYY(T) N H3(T) and consider the initial value problem
for the 2D Muskat equation in a periodic domain (2.3)) with initial condition fy,

then there exists t(|| fol|1) € R such that there is a unique solution f € C([0,t], F')

of (2.3)) that satisfy

| T ()70 < N fllzza Ma([[ fll720), (2.9)
and
[T ()| 7200 < (S || poron Ma([| fl[ 720), (2.10)

for monotone increasing functions 0 < My(x) < My(x) that satisfy M;(0) =

Theorem 2.2.2. Let fo € FHY(T) N H3(T) such that || fo|| 711 < co. Let f be the

unique solution of (2.3) with initial data f(0) = fy then

t
s+ [ 17lrsdt < ol @.11)
0
for some o = o(]| fol|711) € (0,1).
Remark 2.2.3. The size of the constant c¢g is chosen such that for some 6 > 0

Hg(C()) + H4(Co) < ]., (212)

1 T 1 /7 2k+1
H = — 2k + 1)2+° _——— + — | = 2k 2.1
() 27 Z( 1 <6 * 1— (m/4)**! i 2k <2> ) T (2.13)
and

Hy(x) =4) i >0+ 1) (2x) (2.14)

k>1 0>2k+1
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First we will prove Theorem by assuming that Theorem [2.2.1]

Proof Theorem [2.2.3. Let f be the solution of equation (2.3) given by Theorem

2.2.1} Let Lf = 0,f + Af and consider

~>

Yl (F(Lf) L F@h

) = Ol fllznr + ([l 7r+2a
neL ’f

/]

A~

1 f
= - n|" | F(T ~ F(T — .
2;||(<f>|f+ <f>m>

sl

IN

171l
(2.15)

By applying Theorem withn = land n =244, 0 € (0,1/2), we can
find ¢y small enough such that M;(x) < 1 and My(x) < 1 for |z| < ¢o. By the
short time existence result in [I5] we know that because fy € H?(T) there is a time

t = t(]| fol|zr3) such that the solution exist in [0, #]. For such solution we have that
Ol fllzrs + 1 fllren < Tl < Ma(lfll 70l f |7 (2.16)

AUl f e+ (1= M1 ) L2 < 0. (2.17)

Let 0 = 1 — M(co) and take cg small enough so that o < 1. Let || fol|z11 < co, by
Gronwall inequality we know from (2.16)) that if initially || f(0)||711 < ¢ then the
solution still continues to satisfy that condition for a shot time, then we can use
that (2.17)) to conclude that in fact the || f|| 1.1 do not increase, and consequently we
can bootstrap the same argument for the entire interval of existence of the solution
to conclude that

d

I fllza(®) <0, ¢ €0,4]. (2.18)
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By an analogous argument we get that for || fo|| 711 < ¢
d
Sl fllFraa(t) <0, ¢ € [0,1]. (2.19)

Now from [I5] we know that if || f||c2.s remains bounded then we can extend the
solution to belong to C([0,T]; H3(T)) for any T" > 0. The boundedness of the

C%*°(T) norm is obtained from [10] by using that

[flle2s < C (I fllzoe + [1fllrrn + [ fllz2es1) (2.20)

therefore the solution can be continued for all time if || fo||z11 < ¢ and initially

|| foll 72,5 is finite, which is the case by Sobolev embedding. O
Now we proceed to prove the main estimate of the chapter.

Proof of Theorem[2.2.1. Consider the Muskat equation in a periodic domain (2.3|)
with 252 =1

Of +Af =T(f), (2.21)

by expanding the geometric series we get

T(f) = %Z(—l)k[raxésf(x) (tanh (58f(x>/2)) (5/2) 4 (2.92)

= tan(s/2) tan(s/2)

In order to estimate this quantity, we want to find an expansion in terms of &, f(z),
for this purpose we need information about the size of the coefficients in the Taylor

expansion of tanh*” (y). For this purpose we use the the following Lemma.

48



Lemma 2.2.4 (Taylor expansion of tanh(x)). Let z € C s.t. |z| < 7/2 then the
Taylor expansion of tanh™(z) can be written as
tanh™(z) = 2™ + Z al™ 2", (2.23)

k>m

where the coefficients al({m) satisfy

al™ < (f) k . (2.24)

Proof of Lemma (2.2.4). The first part of the Lemma is obtained by using the exact
values of the first two coefficients of the Taylor expansion tanh(0) = 0, -Ltanh(0) =
1, then we can write

tanh(x) =z + Z apr”® = (1 + Z akxk1> : (2.25)

k>2 k>2

and by taking the m-th power we obtain

tanh™(z) = 2™ <1 + Z bkxk> . (2.26)

To estimate the size of the coefficients we will estimate the size of the derivatives

at the origin using the Cauchy integral formula, let f(z) = tanh(z) then

DH(F™)(0) = ﬁ/(ﬂﬂdw, (2.27)

270 ), (w—0)*
where v = {z : |z| = ¢}. To estimate this integral we need to estimate the size of
the hyperbolic tangent in a circle, to do this we look for the radius of the circle in

which the hyperbolic tangent can be bounded by 1

2

tanh(2)]? = |——<—| <1 (2.28)

e*+e z
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0 < ‘ez + 6_2‘2 — }ez — 6_2‘2

— (ez _i_efz)(eé_'_efz) _ (ez _ efz)(ez _ efz)
= (ezeg +eFe Ffefe 4 e_zeg) — (ezez +e e —efeF — €_Z€2)

— 626—2 + 6—262

= R(e77) = R (¥F)) = cos(232),
(2.29)

we conclude that [tanh(z)| < 1 for |23z| < 7/2 = |Sz| < 7/4. By taking the curve

v to be a circle of radius ¢ = 7/4 centered at the origin we get

Dy < KL
DO < 5 [ e
< 2 sup | pym2n(e/a)— (2:30)
A P |
ANF
= k! —
T Y
this concludes the proof of Lemma [2.2.4 O

Continuation of proof of Theorem [2.2.1] By applying Lemma to ([2.22)) we

get
T(f) = Ji+ Ja, (2.31)
where
_ 0sf(x) \* sec®(s/2)
= k>1 / 005 (@ <2tan( /2 )) tan(s/2) %
b=—ZZ ai™ (2.32)
k>1 0>2k

< Joaso (05 (P50) e
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Now we take the F%! norm of .J; to obtain

— n im _ms() g - n sec’(s/2) s
[ Ji]| 710 < ;%; | / s ) (Qtan(s/Z)f) ( )tan(s/Z)d
(2.33)

Y

where m,(n) = 1—e ", To estimate the integral in s we need the following Lemma.

Lemma 2.2.5. Let my(n) =1 —e " and n,ky, -+ k¢ € Z, and £ > m then,
sec?(s/2)
Com = /Tms(n — ki)mg(ky — ko) - - - mg(k—1 — kz)ms(k’z)mdé‘

< k1 — kol -+ k| Boom  (2.34)

where
s 2 1 /m\m+l
Bom| <4+—-| —— =+ 4 — (= 2.
Bunl <44 5 (g + 0 + () 23)
and for £ >m
16 +1
<= (= .
Bim< = (3) (2:36)

Proof of Lemma |2.2.5. For s € R and n € Z we consider
K(s) = mg(n—Fky)mg(ky — ko) -mg(kp_1 — kn)ms(km)
= (=)™ (k1 — ka) (ko — k3) -+ (km—1 — km)Em
1 1
X (1 _ efis(nfkl)) / e*is(kqfkg)(lftl)dtl .. / efiskm(lftm)dtm
0 0
== ( Z)m m(kl ) kg kg) (km 1 — km>l{?

/ / exp(—isA) — exp(—isB)) dty -« - dt,
(2.37)

where
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B=mn—k)+ (ks — k)1 —t1) + (ks — k3)(1 —t2) + - - + k(1 — t,n), (2.39)

then Cy,, can be written as

s sec?(s/2)
Con = | K)o (2.40)

= (—i)"(k1 — ka)(ky — k3) -+ (ke—1 — ko)keBpm,

where

/ / / (exp(—isA) —exp( isB)) s Sk SeCZ(S/z)dtl---dtgds

tan™1(s/2)
(2.41)

to estimate By, we separate the computation in two cases, { = m and ¢ > m.
Case { =m

We estimate B,, ,,, by using that

7r/2 —QzuA —2iuB m+1 2
B = / / / ) see ) gt - dt,
w/2

tan(u)m+!

7r/4 szuA —2iuB m-+1 2
e,
/4 tan™ " (u)

—2iuA —2iuB
/// (e —e ) (2.42)
0 /A<]u|<m/2 u

u™ 1 sec?(u)
O Y gudty - - - dt
tan™ ! (u) un ‘

Now for x € [—7/4,7/4] we can write ﬂ%ﬁfgf) = 1+ hy(z), and to estimate

hm(z) we use that - @y is even and decreasing in [0, 7/4], so we can bound

‘(taf(z))mﬂ—l < gkl

(2.43)
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and also sec?(x) =1 +x2tar;2 and 22 (x) < (4 ) for z € [—7m/4,7/4], we conclude

i e W
g Wl .

1 1
= (e 000 g )

using this estimate we get that

7r/4 721uA —2iuB m—+1 2
B, = o[ [ P e gy

’ /4 tan™ " (u)

7r/4 —21uA —2iuB)
- / // du dt, - -~ dty
F/;rl/4 721uA e*Zi“B) (2'45)
+2/ // hon(uw)du dty - - - dt,

w/4 u

- [1 +127

A ()] <

for the first term we use that

w/4 —2iuA w4 24
o [ ‘ | iz,

—7/4 U —7/4 Uu
7/(44) ;
< / sin(2Au) du (2.46)
—m/(4A) u

< 2

and therefore |I;| < 4. For the second term we use that |e=?4 — ¢=2B| < 2 then

7r/4 721uA 672zuB)

|| =

T /4
< /
0

(

B (w)dudty - - - dt,

(2.47)
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To estimate Bih,, we use that le=2iud _ e=2uB| < 2 to get

B, - s [,

ja tan™(u)

m+1 /2
) [,
2 x4 tan™ i (u)
m+1 /2 2
< <Z> / _sec(w) (2.48)
2 4 tan™(u)
™/
1 mymtt -1 |2
U
m \2 tan™ (u) |,/
1 T m—+1
= .G
we conclude that
s 2 1 sm\mt+l
Bl €4+ 2 (—— = +(4/m) ) +—(5) 2.49
Bl <44 5 (g + 1) + 2 (2.49

Case { >m

In the case £ > m the integral is less singular and therefore the bound |e~24 —

e~2uB| < 2 is enough for the oscillatory terms, then we obtain for 2 < m < ¢

/2 _ 41
By - / / / (exp(—2iuA) exp( 2iuB)) u**t sec?(u )du

w/2 tan( )erl
uf sec?(u)

w/2
= 4
/ﬂ/z tan (u)m+

_ g /”/4 ugsei(u) du+/7r/2 uzseci(u) i)
o tan™"(u) o/ tan™ ! (u)

(2.50)
Because of the powers, is easy to see that the integral is indeed finite, so now we

proceed to bound it. First because x/tan(z) < 1 for 0 < x < w/2 we get

/4 0 2 m/4
/ Mdu < / w1 sec? (u)du
0 0

tan™ ! (u)

IN

)‘ml an(w)|* (2.51)



the second part can be estimated in the same way as (2.48).Putting this together

we obtain
e (6267
SO (G e
< LG

therefore we conclude

sec?(s/2)

e e g
tan™ 1 (s/2)

[ et = b = ) iy~ )
T

< (ky — ko) (ko — k3) -+ (ky—1 — k) kmBem, (2.53)
where By, is given by (2.49)) or (2.52)). This concludes the proof of Lemma|2.2.5]

Continuation of proof of Theorem [2.2.1] By applying Lemma to equation

Weget
N\ *2k
il < 5 S0 (Sl 17D = (1-171) ™ () ) Bt (2.54)

k>1 ne”

using that |n| < |n— k| + |k1 — k2| + - - - + |kmn| we can apply the Hausdorff-Young

inequality to obtain

o0

1
IillFe < o D @k DI fllzea | 1750 Bk (2.55)

k=1

Analogously for J, we get

bl < 550 3 |af’f>|(Z|n|<|-\|f|>*(|-||f|)*€<n>) Bro  (2.56)

k>1 6>2k+1 nez

and by applying the Hausdorff-Young inequality we get

\|er|fn<—z ST a0+ D fllrea | i Core (2.57)

k>1 £>2k+1
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Finally using the estimates for By,, in Lemma (2.2.5) we conclude for .J;

1 T 1 T\ 2k+1
< - 1 - 4+ (Z 1l FI12K
il < 5> 2k >(6+1_(W/4)%H+2k(2) )ufnfmnfup,l
= Il Hy (Ul
(2.58)
where
1 T 1 26+l
H = — 2k +1 —— = = 2k 2.59
() 2”;( * )<6+1—(7r/4)2k+1+2k (2) )x ’ (2.59)

and for J, we get

1 AN 16 pm\e
el < el X 3 ) (2) 32 (5) W1

k>1 £>2k+1

I S SRR TS

k>1 £>2k+1

= L Az @l )
= Al 3 (e S )

k>1

=l Ha([[ fll720),

(2.60)
where
1 (21‘)2k+1 (2x)2k+2
H =4 — | (2 2 2.61
2(2) ;2k((k+)1—2a:+(1—2x)2 (2.61)
and therefore we obtain estimate (2.9)) with M;(z) given by
My (z) = Hy (z) + Hy(x). (2.62)

Estimate in the (2 4 §)-norm

For the second part of the theorem we need to estimate ||.J;|| z2+61, ||J2]|z2+51 as

defined in (2.32)). In the case of J; the main change is in equation (2.54]), because
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this time we have

\|J1|rfzm<—2(2|n|2+6 AE (|'||f|>*2k(n)> Boox,  (263)

k>1 \n€zZ

using that

|n‘2+6 (m + 1)1+5(|n _ k1‘2+6 4k — k2‘2+5

e Vo = o ), (264)

we can apply the Haussdorf-Young inequality to obtain

o0

1
1l 2o < 5~ D @k + 12 Fllall FI17* Bok, (2.65)
k=1
Analogously for J, we get
ol resss < 5= 57 37 1a1+ 1 fll s | B (2.66)

k>1 0>2k+1

therefore we obtain estimate (2.10)) with Ms(z) given by

M;(x) = Hs(x) + Hy(x), (2.67)

Hy(z) = ;ﬂ S (2k 4 1)2 <6 + W + i (g)Qk“) 2 (2.68)

k>1
and
_ 1 246 ¢
) = 42% > (L+1)* (2x) (2.69)
k>1 7 r>2k4+1
This concludes the proof of Theorem [2.2.1] O
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Chapter 3

Global existence for the 2D
periodic Muskat in H? for initial

data with small slope

Abstract:

We consider the periodic 2D Muskat equation for the interface between two media
of different densities, with velocity given by the Darcy’s law. In this section we
study the global existence for H? initial data with small slope. We extend some of
the results know for the non periodic case to the periodic case by following the
strategy in [I1]. The main contribution are new estimates for the second
derivative and pointwise lower bounds for nonlocal operators by using the

compactness of the domain.
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3.1 Introduction

3.1.1 Description of the model

The Muskat problem in 2D describe the evolution of an interface between two
immiscible fluids of different constant densities in a porous media, one in top of the
other. In the case that we are studying it is also assumed that the fluids are infinitely
deep, which means that the effects of the boundary where the fluids are contained
are neglected. When the interface can be described as a graph, the equation for the
interface f(z,t), v € R, ¢t € (0,T) can be written as (see Section

_ P2 P v Oudaf(2)a Q
Wf(w) = =5 —p '/Ra2+(f(:v,t)—f(x—0@t))2d (3.1)

f(J:’O) = fO(ZE),l’GR,

where p; > 0 is the density of the top fluid and py > 0 the density of the bottom
fluid. In this configuration a necessary condition for stability is the Rayleigh-Taylor
condition, which in our case says that the heavier fluid must be at the bottom, i.e.
p2 > p1 [5]. If we look for periodic solutions of the problem, say f(x,t) = f(z+2m,1t),

the equation may be rewritten as

;

P2 — p1 0,05 f (x) tan(s/2)
fl@) = i DY /T tan?(s/2) 4 tanh? (6, f(2)/2) i
02 Pl tan(s/2)tanh® (4, f (x)/2)
/“f tan(s/2)? + tanh® (0, (z)/2) "
f(x,0) = folx), z€T=R/{27Z}.

\

(3.2)

Because for p; > ps the problem is known to be ill posed in H* for s > 0 [16], [20],
in this chapter we only deal with the case in which py > p;, therefore after a time
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reparameterization, we can assume that 255 = 1.

3.1.2 Main results

The strategy used in this work is based in [I1] where the global existence for H*(R)
initial data with small slope is studied. The key difference with that work is that
in this case we do not have decay at infinity and therefore estimates have to be

adapter to use compactness instead. Our first result give short time existence for

H?(T) initial data.

Theorem 3.1.1 (Local existence in H?). Let fo € W**(T) with [ fo = 0. Then
there exists T' = T'(|| fol|w22(1)) > 0 such that the problem (3.2) with datum f(x,0) =

fo has a unique solution
feL>(0,T),W>*(T)) N C([0,T); L*(T) N WH(T)). (3.3)

The next result give us more information about the shape of the interface by
showing that if the slope is small enough initially then it satisfies a maximum

principle.

Lemma 3.1.2 (Maximum principle for the slope). Let f € L>((0,T); H*(T)),
s > 2 be a solution of (3.2)) with initial data fy € H*(T) such that || f§||r~ < \/lg,
then fort € (0,7T)

1 (Ol < [1f5ll e (3-4)
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The next Theorem is the main result in this chapter and give us the global

existence for H?(T) initial data with small slope.

Theorem 3.1.3 (Global existence for data with small slope).  Consider the pro-

blem (B.2) with initial data fo € H*(T) satisfying [, fo =0 and

1follzee < Ko, (3.5)

for a small constant kg > 1. Then the local in time solution of (3.2)) given by

Theorem is in fact global, and f"(t) satisfy

1)z < max{]| fy |2, (2m) '/}, (3.6)
for all t > 0.

The proof of the global existence uses energy method, for this purpose we con-
sider the energy

E(t) =1+ [fllze + /" ll2, (3.7)

then we study the evolution of this quantity by studying the evolution of the equa-
tion of the second derivative of the equation to obtain that if the slope stay small,

then the energy cannot blow up.

Theorem 3.1.4 (Uniqueness of C'(T) solutions).  Let f1, fo € C°([0,T],CY(T))
two solutions of (3.2)) that are Lipschitz continuous in time with the same initial

data, then the fi = fo for allt € [0,T].
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If additionally we assume that f1, fo € C°([0,T], H*(T)) and there exists B, M >

0 such that supepo 1y || il < B fori=1,2, sup,ejoqy | f{'|22 < M then

sup | f1(t) = f2(t) [l < [[f1(0) — f2(0)|| L exp(T" C(B, M)) (3.8)
for some constant C(B, M) > 0.

Remark 3.1.5. By comparing the result of Theorem with [11], we notice that
by Sobolev embedding we know that [, fo = 0 and fy € H*(T) imply that fy has
finite energy and finite slope, that is fo € L*(T) N WH=(T). Also we note that
the condition fT f(t) = 0 is preserved in time, to see this it is enough to write the

equation as

. tanh <f(w);f(8)>
of = o xp.v./Tarctan ds, (3.9)

and conclude by integrating. Also because the equation is invariant when adding
constants to f, we are not losing generality when assuming that [ f, = 0 and
therefore the result is a direct extension of the global existence result in [11] for the

case of the real line.

Remark 3.1.6. The result obtained in Theorem can be also be compared with
the global existence result in [6] for small initial data in H2. By Sobolev embedding,
small H? norm imply small C* norm and because T is compact, it also imply that
it has small W1 norm, and consequently under a small H? initial data condition
we can still apply Theorem [3.1.3] To see that this result is strictly more general we

will construct a function that has small slope but has large, but finite, H? norm.
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Consider g € C*(T) defined by

tan?(z/2) \* . 1
= —_— —_— . 3.10
g(z) =& (1 + tan?(x/2) i (tan?(x/2))b (3.10)
Note that for a > 0, g(z) is bounded. Its the first derivative satisfy

2a—2b—1 )2b—1

g (x)~x at 0 and ¢'(z) ~ (x — 7 at

and those are the only point in which we may have singularities, we get that ¢'(x) is
bounded if 2b—1 > 0, and 2a—2b—1 > 0. And so we want b > 1/2 and a—b > 1/2.
For the second derivative we have want it to be unbounded, integrable, but with

large norm. For this we use that
g”(l‘) ~ x2(a—2b—1) at 0 and g//(x) N (I . 7T)2b_2 at

And so for 2b — 2 > 0 it is bounded at w. Also, at 0 because we want it to be

unbounded but p-integrable. we want that
—1<2p(a—2b—1)<0

1
1—-—<a—-2b<1
2p

Now if we choose a = 3, b =1+ fp(l — 1) we have that the g(z) and ¢'(z) we
get uniform bounds in k, and by choosing € small enough we can get an arbitrarily
small W norm but as k — oo we have that ||g”||z» — oo, and so by choosing k

we can get an arbitrarily large WP norm, and so taking p = 2, we get the example.

Remark 3.1.7. As a subproduct of our estimates, using the equation for the second
derivative and the estimates in Lemma and Lemma [3.2.6 It is possible to
obtain the following result by following the same proof as in [11] Section 5.
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Lemma 3.1.8 (Blow-up criteria for the curvature). Let f € H*(T) for k > 3 be a

solution of (3.2)) such that [’ is bounded in [0,T], i.e.

sup ||f'(t)]lr= < B < o0 (3.11)
tel0,7

Assume that f" is uniformly continuous in T x [0, T, that is, there exists a function
p :[0,00) — [0,00), that is non-decreasing, bounded, with p(0) = 0 such that f’

obeys the modulus of continuity p, i.e. that

10:f"(z, 1) < p(Is]), (3.12)

foranyx € T, s€ R andt € [0,T]. Then

sup |[f*(t)llzoe < C([15 ]| oc, B; p)- (3.13)

te(0,7

3.1.3 Outline of the work

In Section [3.2] we derive equations for the first and second derivatives and prove
some estimates of some of the terms that appear in the equations.

In Section we prove Theorem by using the equations for the first and
second derivative to get an estimate for the evolution of E(t) = 1 + || f/(t)||2« +
|/ (¢)]|3, of the form %E(t) < p(E(t)) for a polynomial p(x) which implies that
the E(t) is finite for short time and then we conclude by a standard approximation
procedure.

In Section |3.4] we prove a maximum principle for the first derivative given by
Lemma by using the structure of the equation to conclude that is || f}||Le is

64



small, then it is small for all times.

In Section [3.5 we prove Theorem [3.1.3] For that we use that if || f;|| 1 is small,
then by a maximum principle it is small for all times. Then we study the evolution
of L? norm the second derivative and we conclude that for large values, it must
decay and so we conclude that it must be bounded for all times. Finally by the
local existence criteria we get that the solution must be global.

In Section [3.6] we prove Theorem by studying the evolution of the L when

we assume uniform continuity.

3.2 Preliminaries

Consider the equivalent formulation of the Muskat problem given by (|1.49))

fi+vo.f+ %p.v./ tanh(9, f/2) sec*(s/2) ds =0, (3.14)

T tan?(s/2) + tanh®(5, f/2)

where 0, f(z) = f(z) — f(x — s), T =R/(27Z) and

1 tan(s/2)sech?(8,f/2)
Tl /T tan’(s/2) + tanh2(6sf/2)ds' (3.15)

v =

From formulation ({3.14]), now we can derive equations for the first of the second

derivatives and use those to obtain a priori estimates for the solutions.

3.2.1 Equation for the first derivative

Taking derivative in = to equation (3.14]) we get

, , 1 sech?(0,f/2)0,f' 9 B
fi+v0 f + P / an?(s/2) + tanl2(5.772) sec”(s/2)ds = RHS
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_ 1 ) Do —tanh(dsf/2) tan(s/2) coch2(s
RIS 27rf( )P / (tan2(5/2) —i—tanh2(5sf/2))2 b (0.1/2)
x (1 — tanh®(0,f/2)) 65 f'ds
1, —tanh(d,f/2) tan(s/2)
T/ @ P / tan2(s/2) + tanh(d, f/2)
L v —tanh®(3,//2) sech? sec?(s 'ds
ot / (tan2(3/2) —i—tanh2(55f/2))2 b0 f/2) (s/2)01d
ip ; / sech®(8,f/2)tanh(d, f /2)ds f'
2 (tan®(s/2) +tanh2(6sf/2))2

sech?(8,f/2)0,f'ds

[tanh(d,f/2)(1 + tan®(s/2))

—tan(s/2)(1 — tanh?®(8,f/2)) f'(z)

— tan(s/2)(tan?(s/2) + tanh®(6,f/2)) f'(z)] ds

L, / sech?(0,f/2)tanh(d.f /2)d.
2 (tanQ(s/Q)+tanh2(6sf/2))2

[tanh(d,f/2) — tan(s/2) f'(x)

+tanh(d, f/2) tan®(s/2) — tan®(s/2) f'(z)] ds

B ip y / sech2(5sf/2)tanh(5sf/2)5sf/
2 (tan?(s/2) + tanh2(5sf/2))2

[tanh(dsf/2) — tan(s/2) f'(z)

+ tan®(s/2) [tanh(d, f/2) — tan(s/2) f'(z)]] ds

i v / SeCh2(5sf/2)tanh(5sf/2) Sec2(3/2)58f/
(tan2(s/2) + tanh?®(6,f/2))’

50
X [tanh(d,f/2) — tan(s/2) f'(x)] ds.

Multiplying the equation by f’(z,t) we can write
(0 + 08, + LA + Dylf'] = To, (3.16)

where

9 f(y 1 ” sech?(8,f/2)tanh (0, f /2) sec?(s/2)6, f’
To=27n.05 » ./11‘ (tan?(s/2) + 1;zabr1h2((55f/2))2

27

X [tanh(dsf/2) — tan(s/2) f'(x)] ds, (3.17)

66



and
s 1 sech®(8,f/2)0.9 sec?(s/2)ds
Lrg = 4 ) tan?(s/2) + tanh®(5,f/2) ki (3.18)
ST RE U B 0% 70 () G
Dylg] = 47T/tan2(s/2) + tanh?(0,f/2) (2/2)

3.2.2 Equation for the second derivative

Now for the second derivative we obtain

" " 1 Sec2(8/2)6f” =
fi + 00 f7+ At / tan2(s/2) 4+ tanh?(d,f/2) e

=T+ T+ T3+T,+T5+Ts+T7, (3.19)

where

Ty — o [ D625 o)) (]

2 (tanz(s/Q) + tanh2(5sf/2))2

X [tanh(ds f/2) — tan(s/2)0f] ds

L1 el O
o= o '271'/ (tan2(3/2)+tanh2(5sf/2))2 tanh(0.1/2) = tan(s/2)0f1 d

i / sech®(8, f/2)tanh(d, f /2) sec?(s/2)0, f"
27 (tan?(s/2) + tanh2(5sf/2))2

x [tanh(dsf/2) — tan(s/2)0f]ds

T3 = pw

| i / sech? (8, f /2)tanh? (8, f /2) sec®(s/2) (6, f')°
2m (tan?(s/2) + tanh2(5sf/2))3

x [tanh(dsf/2) — tan(s/2)0f] ds

. i / sech®(8, f/2)tanh(d, f /2) sec?(s/2) (6, f")
o (tan2(s/2) + tanh?(d,f/2))’

X {sechQ((sz/2)582f/ — tan(s/2)0f | ds
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Ty = pu 1 /Sech2(5sf/2)tanh((55f/2)(5sf/

21 ) (tan?(s/2) + tanh?(s, £ /2))’
X [—=f"(2) tan(s/2)(1 — tanh®(d, f /2))
—1"(a) tan(s/2) (tan’(s/2) + tanh>(6, £/2))
5 (8 (14 tan?(s/2)) (b (5/2) + tank?(5.1/2))
g O s (5,121 + i (s/2) s
1

_ ._/sech2((55f/2)tanh(5sf/2)(5sf’
21 J (tan2(s/2) + tanh?(6,f/2))”

X {f”(a:) tan(s/2) + (6, f") tanh?(8,f/2) — % (05 f") (1 — tanQ(s/Z))] ds

T — / sech?(9, f/2)tanh(9, f/2) sec?(s/2)3,
(tan®(s/2) + tanh?(6,£/2))’

27
(5. ") tanh?(8, £ /2) — % (6.f) (1 — tan2(s/2)| ds,

(14 tan?(s/2))

[f"(«) tan(s/2)

1 tanh®(8, f/2) sec?(s/2)8 f"
~ 4m ) tan®(s/2) + tanh®(0,f/2)

Multiplying (3.19) by f”(z,t) we get

ds. (3.20)

7

(0 +v0p + L) | f"(,1)]* + Ds[ "]

=2f"(x) (T + T+ T3+ Ty + Ts + Ts + T7), (3.21)

where
1 1 sec?(s/2)0sg
L = =DP.UV.—
rlgl(x) 2P or / tan?(s/2) + tanh®(d, f/2) (3.22)
PR W = 20 YO0 |
€T = =pP.U.— '
rg 2p 2 tan2(8/2) + tanh2(55f/2)
In particular when f is constant we get
! 1 [ sec®(s/2)dsg
Lelgl(z) = gpv.o- “tan®(s/2) (3.23)

Dlg)i= Dilal(a) = ooy [ 50 as
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Alternatively we can write the equation with the transport term in divergence form

as

(0 + L) 1" (2, )] + 0u (0] f']°) + Dy [f"]

=2f" (@) Ty + T+ T + Ty + Ts + To + To) + | /" Ts, (3.24)

where
tanh(ds f/2)
1 tan(s/2) sec?(s/2)
Ty = 0pv = — h?(0,f/2 Osf)—5—d 3.25
o= 0= 5 [ sed.f/2 e e 6
+ tan?(s/2)

3.2.3 Estimates for Approximate Derivatives

In this subsection we obtain explicit estimates for the error of approximating a

difference by a derivative like the ones that appear in the right hand side of equation

(3.21)). With this in mind we consider the following

Ry[f")(w,5) = 6:f'(x) = sf"(2),
Ry[f'|(z,s) := tanh(d,f/2) — tan(s/2)f'(z),

from the Taylor expansion we expect this quantities to be small, but for our esti-

(3.26)

mates we want to give more precise control on how big they are depending on s.

then we have the following estimate:

Lemma 3.2.1 (First order estimate). Let f € W1(T) N W?2P(T) a Lipschitz
continuous function with Lipschitz constant B andp > 1. Let x € T, s € (—m,m),

then

‘ ~

(a) |Ri[f")] < —= (D) |52,

™

2
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(b) |Bi[f]] < 2B] tan(s/2)],
() |RfNl < CA+ B)If"|zoem|s|®~ V77  tan(s/2)[ (1 + [ tan(s/2)]), p > 1.

Next we want to take a look to higher order approximation of derivatives, and in
this case because we have more terms we expect to get higher powers of s that cor-
respond with the better approximations. For this pupose we consider the following

second order approximation of the derivative

Ralfl) =t (%) 21 ) 4 (o)), .
Ralf'le) = tanh (%)~ tan(o/2170) + 10 f0),
where h(s) = hi(s) — ha(s) + hs(s),
hi(s) = %/08 /Oz sech?(8, f/2)dwdz,
ho(s) = %/OS /OZ sech?(6,f/2) sec?(s/2)dwdz, (3.28)
hs(s) = %/0 sec2(z/2)/0 sech? (0, f/2) dwdz.
Using that sech(z) < 1 it is easy to see that hy(s) and h(s) satisfy
Ihi(s)] < SZ Ih(s)] < 3s tan(s/2). (3.29)

Then we have the following estimate:

Lemma 3.2.2 (Second order estimate). Let f € WL(T) N W?2P(T) a Lipschitz
continuous function with Lipschitz constant B andp > 1. Let x € T, s € (—m,m),

then

(a) [Ro[f"]] < C(L+ B*)s*> ((D[f")Y? + |f"(2)]) and [h(s)] < 1,
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(b) |Raol )] < C(1 + B?)stan®?(s/2) (D[f")Y2 + |f"(x)]) and

|h(s)] < 3stan(s/2).
Now we finally proceed to prove the estimates.

Proof of Lemma |3.2.1. The main idea of the proof is to find a integral formula for
the difference that allow us to compare it with the quantities we are interested in.

Part (a):

RS = 6.f(x) - sf'(x) = / (" — 2) — f"(z)) d=

" [0:/"[| sec(2/2)] | tan(z/2)]
Bl = / |tan z/2)| \sec(z/2)|d2

- </os tan {;}2) sec (2/2)dz> y (/O: %dz> 1/2
< (f agtere) ([ Fe

(DU s,

<

V3
here used that 2572 < 2.
Part (b):
[Rif]] = [tanh(d,f/2) — tan(s/2) f'(x)]
< [tanh(d,f/2)] + |tan(s/2)|| f'()]
< [6.f(x)/2| + | tan(s/2)| B (3.30)
< Bls| + |tan(s/2)|B
< B|tan(s/2)|.
Part (c):
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We can write

Ri[f'] = tanh(d,f/2) — tan(s/2) f'(x)
= %/08 sech?(6,.f/2)f (x — 2)dz — %/OS f'(z)d=

—l—% /08 f(x)dz — %/OS sech®(8. f/2) sec?(2/2) f'(x — 2)dz

+% /OS sech?(0,f/2) sec?(z/2) f' (v — z) — %/OS sec?(z/2) f'(x)dz.
Now the key observation is that we can group the integrals in pairs by noting that
they can be seen as the integral of the same function up to a translation, for the
first one the function is g;(z) = sech?(0,f/2)f'(z — z), for the second one, go(2) =
sech®(8,f/2)sec?(z/2) f'(x—=z), and the last one we factor the term sec?(z/2) and we

look at the difference between two points of the function gs(z) = sech?(8, f/2) f'(z —

z), then we get

Ri[f] = —%/0 /0 sech®(d,, f/2)tanh(0,, f /2)| f'(x — w)|*dwd>
—% /O /0 z sech? (8, f/2) " (x — w)dwdz
+% /0 /0 sech? (8, f/2)tanh(6, f /2) sec? (w/2)| f/(z — w)[2dwdz
3 / / sech? (3, f /2) sec? (w/2) tan(w/2) ' (z — w)dwdz
% /0 /0 sech? (0, f/2) sec®(w/2) f"(z — w)dwdz
_% /0 sec”(2/2) /0 " sech?(3uf /2)tanh(Guf /D1 f (- w)Pdudz
—% /0 8 sec”(2/2) /0 ) sech?(6, f/2) " (x — w)dwdz.

Now because T is compact, there exists a € T s.t. f'(a) = 0 and therefore we can
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write

Fla-2) = |fe-2)-Fa)
[ - w))dw\

p—1

([ o) TR

-1
< 7o

IN

Finally by using that [sech(z)| < 1, |tanh(z)| < 1, the previous estimate, and

integrating we get

RF) < CO+B)|f s tan(s/2)(1 + tan(s/2)). (3.31)
[
Proof of Lemma|[3.2.2,
Ralp') = tani (%) < tan(s/2) o) + "0
° 2 52 / ’ 2 / "
= %/0 sech <Tf> fllx—2z)— %/0 sec*(z/2)dzf"(x) + h(s)f"(x)
= A+ Ay + As,
(3.32)
where

) st =g [ @)+ e

= [ scterzseat (5 7o - s = nalo) o)

s
0

N | —
O\
w
)
@
()
=
no
VR
=g
N
S

»

2
)

+
IS H
N
bl
‘]

N~ NI~ N~

sec?(z/2)sech? (%) f'(x—2)dz

w0

sec’(z/2)dzf'(z) + hs(s)f" ()

——

(3.33)
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Notice that A; = }?2[ f"] so the estimate for A; also proves part a) of the lemma.

For the first term we have:

A = %/5 (sech2 (%) Opf(x—2) — @j(m)) dz + hy(s)f"(z)
0
= _71 /S /Z sech? (%) tanh (%ﬂ) 10, f (x — w)Pdwdz
o Jo
1 s prz 5wf
—= sech? (—) O2f(x — w)dwdz + hi(s) f"(z)
?/0 /0 52f 5 1 (3.34)
= —5/ / sech? (WT) tanh (%) 0, f(x — w)|*dwdz
0o Jo
—% Ds /OZ sech? (%Tf) (f"(x —w) — f"(x)) dwdz
- [1 + IQ.
To estimate I; we use the following Lemma:
Lemma 3.2.3. Let f as before and z € [0, 7), then
/ (@ — w)[2h(w)dw < 27 / " h(w)dwD[f") + 27 / " h(w)dw| ()2, (3.35)
0 0

and

([ 17 - wPhw)an) "

. 1/2
< ([ twyw) (VIO 4 VRl @) 330

Proof of Lemma|5.2.5. Because T is compact, then f reaches its maximum at some

point a € T, and so f’'(a) = 0, then we can write

flle—w) = filz—w)—fa)

/ D)t
- / (6" () — f"(x)) dt
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et < [ s [

0 ban?(t/2) N2 (1 ) sec(t/2) )\
Vi (/a sec?(t/2) dt) <47T /a tan?(t/2) dt)

+m|f" ()]

IN

Here we are using that the distance between any two points in T is at most .

Taking squares and integrating we get:

/OZ 'z —w)Ph(w)dw < 27 /OZ h(w)dw/T (5t£/2n28(i32(;/2)dt

w2 [ hw)dul o)
= 2n [ hw)tud|f) + 207 [ w7 o)

For the second inequality we just complete the square in the right hand side and

take square root. O

Continuation of proof of Lemma By Applying Lemma |3.2.3 and because

|f'| < B then |tanh(dsf/2)| < |s|B/2, then we get
) < / [ R0t o - )Pt

//w|0fx— V| dwds
8 (/ |0 f(x —w |dw) 2dz

W/ 23/2 \/%21/2D[f”]1/2+\/§zl/27r|f”(x)|) d
Bf 2dz (VIRDIf"V? + Vanl (2)))

3 1111/2
—12\/§\/ﬁs D[f"]"= +

IN

IN

IN

IN

IN

2 VB0,
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for the second term we get

_ s rz 2 (O f\ |0wf”(x)|sec(w/2) tan(w/2)
| = 5[5 Jy sech® (%51) ) sec(wyz) QWdZ

tan(w/2 sec(

" 2 /L a 1/2
S \/Efo (4Tr fO (6w f")2 sec?(w/2) dw) ( tan?( /2)dw> dz

tan?(w/2) 0 sec?(w/2)

< VRO S (fr ) a

< %(D[f//])l/ZSS/Q

And therefore we obtain
Al < (DU (o Varsd + 225002) + £ Vst £ (o)

< C(L+B%)s2 ((DIf)Y2 +1f"(2)]).

(3.37)

This finishes the proof of part (a). Now we proceed to estimate A,
Ay = %/08 dzf'(x) — %/05 sec?(z/2)sech? (%) f'(x — 2)dz — ha(s) f" ()
- _71 /08 /02 sec?(w/2) tan(w/2)sech? <%> f(z—w)dz
+% /S /Z sec?(w/2)sech? (%) tanh (%) |f'(x — w)Pdwdz
o Jo
-I—% /S /z sec?(w/2)sech? (%) (f"(x —w) — f"(x))dz
o Jo

= K+ Ky+ K3
(3.38)

For K by Lemma 323 we get
ml = |5 [ ] et entzsear (%) o - wa:
([ wcwmire—wpa)
« ( /0 " tan2(w/2) sec?(w /2)dw> "
C [ tan(e/2) [VERDL) " + Vel (o)

IN

IN

IA

Cistan®(s/2) ((D[f"])l/2 +|f"(x)])
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We can also find a different estimate using

< O [ DY 417 @] tan 2 2) s (220
< s tan?(s/2) (D[ + [ f"(2)])
< Cos'tan2(s/2) (D[f"])Y? + | f"(2)]) .
here we used that
s tan?(w/2) sec*(w/2)dw =[] tan®(w/2)(1 + tan®(w/2)) sec?(w/2)dw

= Z2tan®(s/2) + 2 tan®(s/2)

IA

2 tan®(s/2) sec?(s/2)
< 2tan(s/2)sec*(s/2)
Now we can combine this two estimates to get
|Ki| < min{Cistan®(s/2), Cos'/? tan®?(s/2)} ((D[f")Y? + | f"(x)])
= s'/2tan*?(s/2) min{C;s'/? tan'/?(s/2), Cy} ((D[f”])1/2 + |f”(x)|) ,
and because s < 7 , min{C;s'/? tan'/?(s/2), C,} < C3s and therefore

Kl £ (s maxtChy 2, 02} (D) + 1)

— Gy tan®’?(s/2) (D) + |1 (2)])

(3.39)
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For Ky we get

| Ko

<

<

<

<

<

1 sec w S(EC2 wf an 5f 2’UJZ
2 et (57 o (557 7te P

%/s sec? w/2 |ta11h (5 f/2)||f( )’ dwdz
0

0

g/ / w sec? M|f’(x—w)|dwdis
1/2
/0 (/ w? sec? w/2dw)
x ((tan'2 (/2D + tan' (/2] " (x) )z
CB* [ stan(=/2) (DLF'1 +117())

CB?s* tan(s/2) (D[f"]'? + |f"()]) ,

N

and finally for K3

| K3

:‘//mwmm%”y%ﬂmwwd

< o[ (& [ st Tr)

x ( /0 sec?(w/2) tan?(w /2)dw) v dz (3.40)

< o) [ a2

0

< C(D[f")"? stan*?(s/2)

Therefore we get that A; can be bounded by

| As|

IA

IN

Cs*? tan?(s/2) (D[f")'? + | f"()])
+COB?s” tan(s/2) (D[f"]'/* + | f"(x)])
+C (D[f")"? s tan**(s/2)

(3.41)
C(D[f")*/? (83/2 tan®2(s/2) + B%s? tan(s/2) + stan3/2(s/2))
+C|f"(z)] (s** tan®?(s/2) + B?s* tan(s/2))
C(1+ B?)stan®?(s/2) (D[f")"* + [ f"(x)])
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Now we proceed to estimate As

As

| As|

IN

IA

%/OS sec?(z/2)sech® (5';f> f(x—2)dz

- / sec?(2/2)dzf () + ha(s) ()

_71 /s sec?(z/2) /z sech? (%) tanh (%) |f'(z — w)|*dwdz
0 0

s i 9 5w " "
vy [ secter) [sear (2D) (77 - 0 = ) o

C’/ssec2 (2/2) /z [tanh(d, f/2)||f/(z — w)|*dwdz

0

e [l (5 [ o)

(] )
OB/O soc? /M 1 ( — w)|dwdz
+C/0 secX(z/2) (D[f"])** (/Ozw;dw)l/z
032/ sec? 2/2)/0 wlf (x — w)|dwd>
+O(D[f) 2 / 12 gec?(2/2)dx

0

+

(3.42)

And by applying Lemma

| As|

< C’B2/D sec?(2/2)2%2 (ZM2(D[f")? + 22| ' (x)]) d=

+C(D[f") 232 /OS sec?(z/2)dz (3.3

< CB%*s*tan(s/2)(D[f"))"* + CB*s*tan(s/2)|f" (z)|

+C(D[f")Y2s32 tan(s/2)
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< CO(1+ B? <D[f”]1/283/2 tan(s/2)
(D) 25 tan(s/2) + | (@) tan(s/2))  (344)
< C(1+ BY)stan®(s/2) (D[f"])"2 + | f"(x)])

Finally putting all together we conclude

|sRa[f"]] < A1+ A+ As
(3.45)
< C(1+ BY)stan®?(s/2) (D[f'NY? + |f"(2)])

which is the estimate in part (b) we were looking for and concludes the proof of

Lemma [3.2.2 O

3.2.4 Non linear lower bound

The main goal of this section is to obtain pointwise lower bound of the nonlinear
terms appearing in the equation for the second derivative of the equation. The
Lemmas in this section are analogous to the ones in Section 3 in [I1] but the proofs

must be redone for our situation.

Lemma 3.2.4. Let f € W1°°(T) N W2P(T) a Lipschitz continuous function with

Lipschitz constant B. Then for any x € T either

7)< 222, (3.46)
or
D2 gpr g @ (3.47
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Lemma 3.2.5. Let f € WH(T) N W?2P(T) a Lipschitz continuous with Lipschitz

constant B > 0 then for any x € T either

(@) 1 2\
1Pl = o <%) (3.48)

or

1C, |f(a)p
D " > P
W= e e,

=D/ P
where C), = (8 ((1 - WMZT}) )

(3.49)

Lemma 3.2.6. Let f € WH(T) N W?2P(T) a Lipschitz continuous with Lipschitz
constant B. Assume also that f' obeys a modulus of continuity p. Then there exist

a continuous function Lg : [0,00) — [0,00) such that for any x € T we have that

either
240B
/" ()] < (3.50)
T
or
Dyslf"] 2 Ly(1f"(2)]), (3.51)
where
L

lim Bgy) = o0, (3.52)

Y—00 y
at a rate that depends on how fast lim,_o+ p(r) = 0.
Proof of Lemma|3.2.4). First notice that because f is Lipschitz, then

2 2 2

tan?(s/2) ~ tan?(s/2) ~ tan?(s/2) —
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and so we get the estimate

wo_ 11 (0, f")" sec®(s/2)
Dglf"] = gpvg- tanh2(s, f/2) + tan®(s/2)

2

1 1 (6. ") sec?(s/2)
= 2(L+<BQ)§%@/) tan?(s2)

(3.54)

Our goal is to bound the term D¢[f”] following a strategy similar to the one used
in [12] for a lower bound for the fractional Laplacian in a the periodic domain. For

this purpose we use the following identity for the cotangent, which can be obtained

by using use that csc?(z) = —%‘%%&(;) and the formula for the infinite product of
sin(z)
sec?(s/2)
— = 2) :
tan?(s/2) = ese’(s/2) ZZ (s/2 — k7r (3:55)

using this expansion on (3.54) we get

" YO 1 (6,./")"
D[f]_47r1+32 Z/ (s/2 — km)? ds 2 (1+Bz)/7r 52 ds. (3:56)

The idea of taking the term with & = 0 for the lower bound is that because is

the only singular term in the expansion, we expect that the main contribution
in the integral to come from that term. Here n(z) is a smooth cutoff such that
0<n(x) <1,n(x)=1for |z] > 1and n(xz) =0 for |z| < 1/2, |X'| < 4, then we can

bound using this bound we obtain

Df[f”]ds Z 1 / ( f//) 8

(11 B?) 5
1 (6:") n(s/r) .
z (14 B?) /_7T 52
1 T (@)]P = 2" (@) f (x = s)
> / - n(s/r)ds
|

= iy M @F - af@).
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To estimate M; we use that for r < 7,

M, = / 77(Sgr)ds > / igds =2 (1 — l) > 1, (3.57)
S r<s|<m S rm "

for M, we get

MQ—Q‘/ f"w = $)nls/r), ‘_2‘/ 0,6,1'(x)=1(s/r)ds

integrating by parts we get

My = ]/ 5.1z s/r)ds+1/_af<> i (s/r)ds

4 1
< 2 / 6. f ()] 2ds + / 6. f" ()]~ ds
r/2<|s|]<m 53 T Jrj2<|s|<r 52

1
< SB/ —dw+83/ —3d3
/2<|s|<m |s]3 /2<|s|<r ||
T 4 1 4B
= 168 (— — —) < 6—
2

2 2
r/ r ™

1
< 16B( 2)
s

Now we want to choose r such that

|f"(x)] 64B 128B

— = = 3.58
> T TP 355
and this can be done if },2,%3” < 3, 80 we get the condition that either
2563 L@
"
D )
|/ ()] < cor Dilf'] 2 T s (3.59)
O

Proof of Lemma |5.2.5. From equation |3.56

o 1 (5.4
DI g | s
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This time we use Holder inequality instead of integrating by parts, so we get

" 1 (5.1
Dylf"] > (1 B /s>r 3 d

N 1 / (@) = 2f"(@) " (@ = 5) + |f"(x = ),
s
N W(l + BQ) |s|>r s?
1 1
> - 2 // - =
— w(l+ B?) ( (e ( 7r>
(»-1)/p
5" @I s ( | =)
L @I [y 1
> (A @) (- -
7(1+ B?) T
1)/p) e
p—1 1\ ¥~ 1 P
— 4 £ e pE5) -
+ 1 ﬂ'p—l
Now notice that for r < 7 /2, % - % > zi
1 1 B 1—«o 1 1
FEo-D T peo-D e/ T e /eeD | a1
1—a 2(p+1)/(p—1) 1
r+1)/(p—1) + aﬁ(pﬂ)/(pfl)  (+D)/ (1)
l—«

re+1)/(p-1)’

for a = Wl/(p_l), applying this to our estimate for D¢[f”] we get

D> @) (\f”(m)\

(14 B?) r

L o\
1!
— 4l e ((1 ~ ) )T 1) o | (3:60)

Now we want to choose r < 7/2 so that

@1 " 1 p— 1\ 1
T AL ) e | | 1= 2o D ) p i1 TSy (3.61)

multiplying by 2r/||f||z» we get

|f"(2)] —s((1=- 1 p—1 o L (3.62)
Hf'/HLp 2(p+1)/(p—1) p+1 ri/p’ ’
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finally by taking the p power we obtain

/" (@)[”
=Ch———
g

This choice or r can be done if

/" (@)I”
C > =
N T

Therefore we get the condition that either “’}l,l,% <

Dys[f"] >

Y0

N\ @D/ 7P
where Cp = (8 ((1 — Wl/(p—l)) iTi) ) .

Proof of Lemma|3.2.6. From equation (3.56) we know

Df[f//] 2 ;) /_\77:- <6Sf”>

(1 + B2 52

m(1+B%) " L

ds.

(3.63)

(3.64)

(3.65)

(3.66)

Let 1 a cutoff function, such that x(x) = 0 for |z[ < %, x(2) = 1 for [t| > 1 and

n'(t) =2forte (1/2,1).

” 5f” 8/7’)
D¢[f"] = 1+BQ/

> —ds
- om(l+ 32 ('f relsl<m S

—2|f"(z)]
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integrating by parts we get

> (If”(rc)l2 (2-2)

_2|f”<$) 5sf,<_2§X(S/T)dS‘
|s|>r/2 S
2 65 f'X'(s/1)
_;’f <x> r/2<|s|<r s? ds‘)

> g (08 (2-2) -4l T B

05 f’
Al (a) | Q'ds) |

r/2<|s|<r |S|

Now notice that for r < 7/2 we have that % - % > % and therefore

,, L (@ [T 0ls)
o7 = s (2 ol [ )

— % (|f”(m)| — 167 /:2 gd% ;

where p(s) is the modulus of continuity of f’. Notice that we can assume that

limg o+ p(s)/s = oo by taking if necessary a function p(s) that is larger than the

original one and decay slower at 0. We want to choose r < 7/2 such that

@)l _ r/ﬂ &j)ds, (3.67)

32 rj2 S
this can be done if |f )l > 153 . To see this we use the intermediate value theorem
and that
li_r)rér /T;; %ds = 00, (3.68)

this is obtained by applying the L’Hospital rule and that lim, o+ p(s)/s = co. At

r — m/2 we get for the limit

lim T/W@ds:sz 25 45 < pr /Wlds—@. (3.69)

r—7/2 r/2 s3 2 /4 s3 /4 s3 N 27
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Which implies that (3.67) can always be satisfied as long as |f”(z)| > 2228, So far

we have that for almost every x € T we have that either

@)l < 22 (3.10)
m
or
Dy[f"] = Le(lf" (=)]), (3.71)
where Lg(t) = W;)r(t) and r(t) satisfies
o [ s (3.72)

It is easy to see that r(¢) can be chosen to depend continuously on ¢, To prove that

lim = 00, (3.73)

Yy—00 y3
we notice that this can be written as

Ly(t)? 1
t 2r(1+ BY)tr(t) (3.74)

and therefore it is enough to show that the following quantity go to 0 as y — oo

trt) o [T pls)
2 = r(t) /T(t)/2$—3ds. (3.75)

Notice that from (3.68) we know that as ¢ — oo, () — 0. To show that the
limit as ¢t — oo of (3.75)) is zero first we split the integral between [r(t), \/r(t)] and

[v/7(t), ] and notice that

s T 1
r(t)? / &f)ds < 2Br(t)? / —ds < Br(t) = 0, (3.76)
\rt) S r(t) S
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as t — oo, next we look at

2 " p(s) Ooi M
r(t) /\/% 3 “lds < p(Vt)r(t)? /(t)Sd =3 — 0, (3.77)

which proves (3.52)) and complete the proof of Lemma m H

3.2.5 Bounds of the Right hand side

In this section we want to find upper bounds for the terms in the right hand side
of the equation for the second derivative defined in Subsection [3.2.2] From now on,
we will assume that all the integrals are taken in the principal value sense if needed.
Also in this section C'is a constant that can change on each line that do not depend
of B.

Note that is only necessary to estimate |T;| when f”(x) # 0 because those terms
are multiplied by f”(z) in equation (3.21). The goal of this section is to prove the

following estimate.

Lemma 3.2.7. Let T;, i € {1,---,8} as defined in Subsection with f €
Wt N W22 and Lipschitz constant B. Let 0 < € < 1 then for x € T such that

f"(z) # 0 we have

(a) [T+ |To| + [T +|T3] + T3]+ |Te| + T < CB(+B) (721" ()2 + e 2, ),
() ITs| < CB(L+ B! (=711 (@)| + eppulsls + [Hf"1).

Proof of Lemma|3.2.77. The key for the proof is a careful application of the Lemma

3.2.4] In what follows R;[f”] and Ry[f"] are defined as in Lemma and Lemma
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3.2.

nt.

An important ingredient in the proof is to split the integrals in region where we

\)

. Here {|s| < n} ?i;f{s € T:d0,s) <n},and {|s| > n} :=T\{s € T:d(0,s) <

can apply different estimates, because our estimates are pointwise in x, our choice
of such splitting will depend on the point, more specifically given x s.t. f"(z) #0

and ¢ € (0,1), we can choose n(z) € (0,7) such that

Ui eB
tan (—) - . 3.78
2) = 1P 1)
Now we proceed to estimate T; for i € {1,--- ,8}.

Bound for T1

T — 1 / sech?(8,f /2)tanh?(8,f/2) sec®(s/2) (6. f')°
2 (tan2(s/2) + tanh?(6,f/2))’

x [tanh(dsf/2) — tan(s/2)0f] ds (3.79)

sech? (5Sf/2)w

Let A(s) = ( +tanh22<5:;i)(s>/22) , we can estimate A(s) by using the following easy

facts |sech(z)| < 1,7235;/}21)(x)| < 1, [tanh(0,f/2)| < |0sf/2| < 27 and % <
B. Then we get

|A(s)] < min{1, B, B*}, |A(s)tan(s/2)| < min{l,B,Bzg}, (3.80)

and |A(s) tan(s/2)| < min{1, Bg, 32%2}. (3.81)
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Consider the following splitting of T}

1 sec?(s/2) 2
Ty = - A(S)tan2(5/2) (05f")" [tanh(dsf/2) — tan(s/2)0f] ds
_ i s secz(s/Q) "2 M _ his) f"(x s
- 2T sl<n A( )tan2(3/2) ((sz) (RQ[f ] h( )f ( ))d
vl [ 4D (5 2 (Rl — h(s) £ (a)) s

27 J 51> tan?(s/2)
1 R 2(s/2)
- 2n /|S§n Al )tan 2(s/2) (%

Iz
) /| MA(s) sec (s j ) (sf7() + Ralf"))? h(s)ds

21 J i, tan?(s/2)

(3uf")" (Ra[f"] = h(s) f"(x)) ds

) (sf" () + Balf"]) Ro[ f")ds

1 Als) sec?(s/2)

+—
2T |s|>n tan ( / )

= Iin,l + ]in,Q + Iouta

where h(s) is defined by (3.28). Now we estimate I;,, 1 by using the following splitting

Ling = f”<$>% /| e >f§§2<<iﬁ)> (85.f") s(s Ro[ f"])ds
1 o 5€¢ 2(s/2) )
2 JgenPranogy ) GRS DRl
= J1+J2,

we can estimate J; and Jy by using Lemma and Lemma [3.2.2] in the following
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way

|1

IN

IN

<

CB+ B [ (A a2 e s

OB+ B0 [ RS
R ST
cB(+ B @Ol [,

S

s*|tan(s/2)|*%ds

s%ds

CBY2(1+ B)|f"(@)* + CB(1+ BY)|f"(x)| (D) tan'/(3)
)

1\1/2
e+ B (17 + 17wl )

CB+ B (st + 0P

Here we used that [ sec”(s/ szds < oo and the definition of our choice of 7 given

tan?(s/2)

by (3.78)). For the estimate of Jo we use

| J2|

<

IN

IN

IN

IN

2 1N\N1/2| g1 T s SeCQ(S/Q) 83/28 an3/2 s
OB+ YD) [ A T s s
2 1" s sec’(s/2) 325 tan/2(s
FOBU BIDI) [ A s st s2)

sec?(s/2)

3/2 2 111\1/2 ”[E
CB**(1+ BY)(D[f"))/*| " (x)] iy Tan2(s/2)

+CB(1+ BY)D[f"] / sec?(s/2)ds

s]<n

CB(1+ B2 (B'2D[f"]"?|f"(x)| tan'/*(]) + DIf"|tan(]))
D[f”] + ’f”(ﬂ?)’z)

(@)
T |f"<x>|2) .

CB*(1+ B? (a

DIf"]
|/ ()]

CB(1 + B)* (s
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For I;;, 2 we have

hr = ~Pg [ A0S 6+ R s

;1 sec?(s/2) ,
Py \s\gnA S tan2(s/2)s h(s)ds
2@y [ A s L s

2

= —(/"(=))

("))~ /| § A(s) sec”(s/ 2)h(s)(R1[f”])2ds

o tan?(s/2)
= K+ Ky + Ks.
We recall that by Lemma we know that h(s) < 3stan(s/2), then

1

Kl < W@y [ A

s*h(s) .
tan2(3/2)d

< Ol /| _ secs/2)ds

= C|f"(x)* tan(n/2) = CBe|f"(z) ],

1

S S 83/2
Kl < CB@ROUYL [ 1A se(o/2 ils)

tan’(s/2) §

2

1

< OB ()DL / s/ a5/

= CBIf"(2)P(D[f")"? tan®?(n/2)

_ CBS/2E|f”(:E)|€3/2 (D[f”])l/2

|7 (@) ['/?

3/2 2 " 2 D[f//]
S CB(1+B> (5 |f ( )| +6|f”(£€)|)7
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| K]

1

< clf@iplss | 1A sec(e/2 is)s

tan?(s/2) ds

2
1

C|f"(x)|D[f"— sec?(s/2) tan(s/2)ds
< @D, [ s (s tans2)
= Olf"@)|Dl"] tan(n/2)

Df"]
/" ()]

CB(1+ B)e?

< (CB?%?

Df"]
(@)

IN

Lastly we estimate [I,,; using

[out

|Iout|

IN

IN

VAN

IN

i S M 72 s "o s 17 T s
2T K?E??A( >tan2(s/2) <5sf> [ RQ[f] h( )f ( )]d
sec’(s/2)

tan?(s/2)
sec?(s/2)
tan?(s/2)

" 2(s SGCQ(S/Q) h(s)
+2B|f"(x) |S|>n|A(S)|ta ( /2>tan2(s/2) tan2(s/2)
1
tan'/2(n/2)

CB(L+B)|f"(@)] [ |A(s)]s tan?(s/2)

|s|>n

+2BD[f"]? / |A(s)]s tan®/2(s /2)

[s|>n

tan'/2(s/2)ds

ds

B*(1+ B2)C\f”(x)|—tan(1n/2) + B¥2CD[f"]**

B2 ()| —

( | tan(n/2)
B(1+ B»C, ., .. BC,
S @R+ 1w

D[f”]l/2
€ [ ()]

, . ) ol 9 D[f//]
B(1+ B*)C (e |7 (@) |7 47| f" ()] +€’f”(x)])

B(1+ B)*C (5_2]f”(x)|2 +e |?/[{;)]|) ;

putting all together we obtain

3 —2 HZL’ 2 D[f”]
Ty < CB(1+ B) (e |/ ()] +6|f"(x)|)‘
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Bound for T2

1 [ sech®(8,f/2)sec?(s/2) (6, f")° . . S
4”/ (tan2(s/2) + tanh*(d.f/2))” 7 [tanh(0.f/2) —tan(s/2)0f] ds,  (3.83)

we can split 75 as

1 sech4(5sf/2)se02(8/2)(5sf/)2
T = E/

(can/2) + tant (3, /2))7 /B A0

= i SeCh4<5 f/2) sec <8/2> 7\2 M _his)f"(x S
N 4w/(1+mm+2/)a>)mn (52) 0oL el ST = ls) () d
1 sech®(6,f/2)  sec?(s/2)

T dn lsl<n (1 + %)2 tan*(s/2) (O f)(RL[f"] + sf"(2))(Ra[f"])ds
i L sech’(0,f/2)  sec?(s/2)
) AK’](

220 Sz (1-+ =efye tan'(s/2)

(Ri[f"] + sf"(x))*h(s)ds

1 Sech4<5 f/2) 8802(8/2) - ) )
4mr 58 2 — h(s x)) ds
AT Jisisn (14 %)2 tant(s/2) (0sf")" (Ra[f"] (s)f"(x))

= in,l + Iin,2 + Iout-
For I;,1 we have:

il € Gn [ s LD (Rl s

227w
1 / sec?(s/2)
|

B "
+E|f ($)|_ e —tan4(s/2)

2m
" sec?(s/2)
— ]/<n tan’(s/2)

+CB(D[f") 2| 1" (x /
Is|<n

// 1/2 SeC2 2 3/2
+CB|f"(x <, tan? (5/2 | tan(s/2)|*/*ds
n

s(Ra[f"])

|51/ tan(s/2)|**ds

IN

sec2(s/2

g2 3/2
t 2 d
ani(e2)° | tan(s/2) " ds

+CB|f"(x)]? /< 5224((88//?)52|tan(s/2)|3/2ds

CBD[f"|tan(n/2) + BC|f"(x)|(D[f"])"/* tan'?(n/2)

IN

+CB|f"(@)|(DIf")"? tan'/?(n/2) + CB| f"(x)[?

e+ B) (1P +epl L)

IN
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Here we used that foﬂ

|Iin72|

And for I,

|Iout|

<

IN

IN

A

IN

<

s2sec?(s/2)
tan5/2(s/2)

< oo. For I;;, » we have

ENMEOIE

ooty [ 2

Is|<n tan*(s/2)
sec?(s/2)
tant(s/2)

+C|f”(x)|2(D[f”])1/2/ |51/ h(s)|ds

Is|<n
+O|f”(1§)|3/ sec (5/2)

Is|<n tant(s/2)
C|f"(x)|D[f"] tan*(n/2) + C|f(x)*(Df"])"/* tan®?(n/2)

+C|f" ()] tan(y/2)

I 2 e D[f//]
CBU+ B @)l + e o))

s%|h(s)|ds

2 " 1/2i 5602(5/2) sl tan(s 3/2 S
G oy P e ORI

ORIl [ el 2) s
! (5/2)

2
2 1N L sec
+CBf <I)|27T /5>,] tant(s/2)

|(s)lds

1
tan'/2(n/2)
1

tan(n/2)

1/2 -1 "( 1/2D[f”]1/2 -1 am
CB(1+ B) ( (@)l 'f(ﬁ)'lf+6 |f<>|)
1/2 e 21 £ (2)]2 ng”
OB+ 37 (7 + )

CBA(DIf"))"”

+CB?|f"(x)|

Putting all together we get

|T5| < CB(1+ B) (52]f"(:c)]2 + 5%) : (3.84)
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Bound for T3

T, — 1 / sech?(8, f/2)tanh(d, f /2) sec?(s/2)0, f"
2 (tan?(s/2) + tanhQ(ésf/Z))2

X [tanh(dsf/2) — tan(s/2)0, f(x)] ds, (3.85)

we can split T3 as

Lo see® O/ R seck(s/2) 1 o
T3 - % 2 2 tans 9 (5sf )(RQ[f ])dS
ls|<n (1 4 tanh®(8.f/2) an’(s/2)

tan?(s/2)
tanh(ds f/2)

i/ sech?(J f/Q)W sec?(s/2)
Isl<n

o1 tanh2(5,£/2)\ 2 tan3(s/2
(]‘+ tan?(s/2) ) ( / )

1 / sech?(d, f/2)tanh(8, f /2) sec?(s/2)0s f"
2 Jun (an®(s/2) + tan(5,f/2))’

x [tanh(dsf/2) — tan(s/2)0, f(x)] ds

—f"(x)

(") (s)

_|_

= Il + IZ +]out-

tanh(6sf/2)
Let A(s) = %, then in a similar way to the estimates for 7} we get that
14 tanh?(9s1/2)
tan<(s/2)

|A(s)| < min{1, B}, |A(s) tan(s/2)| < min{l, B }.

LS CO+BFE] [ (A 5,0/2)
- |s||tan(s/2)|3/2 sec(s/2)]0sf"|
X(Sec(s/” tan(s2) )( [tan(s/2)| )ds
1O+ BY)(D[f")V? / (A lsea’(0.4/2)
s[tan(s/2)|¥2\ [sec(s/2)|0,f"]
X<sec<3/2> tan(s/2) ) ( [tan(s/2)| )ds‘
s (s/2)[3/2

< 7 and for the second one

tan?(s/2)

s|| tan(s/2)|3/2
tan?(s/2)

< 2| tan(s/2)|'/2, then we can apply Cauchy-Schwarz and the defini-
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tion of D[f”] given by (3.23) to get

1/2
Ll < CO+ B @) (D) ( / sec2<s/2>ds)

I<n

+C (1 + B*)D[f"] (/ | tan(s/2)| secQ(s/Z)dS) "

s|<n
< OO+ BRI (@) (DL tan'2(n/2) + DIf"]tan(n/2) )

< 031/2(1+B)5/2 (|f/l(l,)|2+€|?/[if;)]|) '

For I, we get

/" ()] sech? sec(s n(s)
L] < 257 /| _ AW h(ésf/2>( </2>tan2<s/z>)

y sec(s/2)]0sf" (x)] s
()
(s)?

< Clf'(x)] <L|Snse(:2(s/2)md5> (D[f")V?

< Clf"(@)|(DIf"DY? tan'?(5/2)

< CBY (|f”<x>|2 +|f[—(’;)],) ,

and finally for I,

o / sech®(d,f/2)tanh (0, f/2) sec?(s/2)0, /"
27 Jisp=n (tan2(3/2) + tanh2(5sf/2))2

x [tanh(dsf/2) — tan(s/2)0, f(x)] ds

|Iout| -

1 Ssech? sec(s/2)
27 AIM As)sech <5Sf/2)tan(s/2)

(amterm ) (Gt )

) 1/2
2 111\1/2 L S
< OB (D[f ]) (ANI tan2(8/2)d )
1

OB (P + o)
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Ri[f']
tan(s/2)

here we used that by Lemma [3.2.1

’ < 2B. Finally putting all together we

conclude

T3] < CB(1 + B) (g—2| F(@)]? + 5@/[{:;’)]') . (3.86)

Bound for T4

T, — _l/sech4(5sf/2)tanh2(6sf/2)8602(3/2) (8,1
m (tan2(s/2) + tanh®(6,f/2))°
x [tanh(dsf/2) — tan(s/2)0, f(x)] ds
1 [sech O /2) R sec?(5/2) s )
T T ) KOS
Let A(s) = s“i“if.ffi::?h;ffi/?f)7 then |A(s)| < min{1, B, B}, |A(s)tan(s/2)| <
22y
min{1, B, B2}, |A(s) tan®(s/2)| < min{1, BT, B?Z"}. We can split T} as
_ _l 8602( / ) "o s ”l‘
T A O RS s
1 sec(s/2) i
W/mfu e G PRl = h(s) (@)
_ _l sec2( / ) " st (x "N ds
= A  ORLS 5 w) Rel

(
1 l S Sec2(8/2) / " S " €T S s
@ [ A S R+ s ()
(

1 Ssec2 s/2) o e
W/WA()tan(/)(éf)[ 2[f"] = h(s) f"())d

= D+ Loin + Lo,
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|Il,z’n|

IN

IN

IN

VAN

2 AN SR+ s IRl

T Jis tant(s/2)
2 1 S se02(3/2)
CB+ D [ G

+CB(1+ B*)(D[f")"?| f"(»)]

|s[>/2| tan(s/2)|*/%ds

s secQ(s/ ) s15/2| tan(s 3/2 1
X/|s|<n'A”' Ll (s 2)

tant(s/2)

+CB(1+ B*)(D[f")"?[f"(x)]

s Se(:Q( /2) 2l tan(s 312,
x/|5|§n|A( )|tan4( / ) |t ( /2)| d
+CB(1 + B2)|f//($)]2/ |A(S)|:Zz4<<ss//2)> s2| tan(s/2)|*/ds

[s|<n

CB(1+ B*D[f"] / sec’(s/2)ds

[s|<n

2 MYL/2) £ e M S
+CB(1+ B)(D[f"]) /= f" ()] e |tan(s/2)|1/2d
2 MYL/2) £ o M S
+CB(1+ B%)(D[f"]) " f" ()] < |tan(s/2)]1/2d

sec?(s/2)

2
— ' 7 _s°d
ey [tan(s/2)p2° @

+CB(1+ B?)|f"(x)[?

CB(1+ B) (D" tan(n/2) + (D[f") V21" (2)] tan'2(5/2)

ﬁ
Kﬁ
3

HI@PR).

99



here we used that fqr ‘SGCACZS < 00. To estimate I5;, we use the following

|f2,m|

IN

IN

IN

<

<

tan(s/2)|3/2

()]

1 sec’(s/2) Y V)
?AKUA(S)tan T(s o) Tl 1+ /" (@) h(s)ds

U @lgs [ AT ) s

1 2 S Sec (8/2) 1" s S s
@ [ 1AG) o e LDl k()
e’

" 3 S < 8/2)
@I | A e (5/2)

U@y [ (a2

+C‘f”($)|2D[f”] / sec (8/2)

Is]<n tant(s/2)
ol [ (5/2) | 5] tan(s/2)|ds

s|<n tan4(s/2)

C (17" @)IDLf" tan*(n/2) + | (@) (D)2 tan®2(n/2)
/(@) tan(n/2))
" 1\1/2
ot e L @)+ el @

CB(1+ B) ((a oy P (+6)|f”(:r:)|)
%

s*[h(s)lds

|s|7/2| tan(s/2)|ds

CB(1 + B) (

@)
n |f"<:c>|) .

CB<“B>( If”[( />|

Now we proceed to estimate [,,;

‘[out’ =

. o >f§§4(éﬁ>>< 5. VIRlf") — h(s)f" (x))ds

1 2(3/2) o ,
_A|>n|A(S>|tan (s /2)(6 )| R2[f"]|ds

AP [ A 6 s

tan

IN
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Ll < CBU+ B [ (/2) | tam(s/2)2ds

s|>n tan4(s/2)

+CB(+ B [l (a2
" sec?(s/2)
+CB|f"(x) . tan(3/2) |s|| tan(s/2)|ds
< CB(1+BY (D[f"]lﬁanl/i(n @l /2))
m1/2
< C(l + B)5/2 <€1/2’lf)//[(fx)]|1/2€—1|f//<x)| +€_1’f//($)|2)
D[f//]

5/2 -2 ae 2 )
< cppr ()

Putting all together we conclude

3 D[f//] -2 ”Qj 2
ITy| < CB(1 + B) (e—‘f”(x)‘ + e ()] ) (3.87)

Bound for T5

T — 1 / sech®(8,f/2)tanh(d, f /2) sec?(s/2) (6 f")
2 (tan2(s/2) + tanh?(6,f/2))”

Osf’
2

X {sechQ(ésf/Q) — tan(s/Q)f”(:z:)] ds (3.88)

To bound this term we first focus on the term

ST an(s/2)"(a)

_ %sechQ(és £/2) /0 P — w)dw — %sechZ(és £/2) /0 Cdwf"(z) (3.89)

Rs[f"] = sech?(d,f/2)

+ <sech2(5s f/2)§ - tan(s/2)> (),

R < g [ s (P (SR ) as

tanh? (8, f/2) 2 S

+ ‘g — tan(s/2) — — 2 %3

(3.90)
£ ()]
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To bound the first term we use Cauchy-Schwartz and that 2222((5@ < ZZ For the
second one we use the following
1 [® 1 [®
% - tan(s/?)‘ = ‘5/0 dt — 5/0 secQ(t/Q)dt’
1 S
< - (1-— seCQ(t/Q))dt‘
21Jo
1 S
< 3 / tan?(t/2)dt (3.91)
0
1 5 [°
< —|tan(s/2)] dt
2 0
<

5 tan?(s/2).
2
Applying this to R3[f"] we get

rir) < oy ([ )"

s >|+BZ 3’f"( )

2
< i@DWWﬂwﬂ+mwn0*mmwm L) B9
< OIS+ O+ B £ (w)s] tan(s/2)
< O+ B2 (DIF)252 + 11" @) o] tan*(s2)).
Now define
A(s) = zech’ (B fm%, (3.93)

tanh? (85 f/2)
<1+ a‘cam2(s/2) >

then is easy to check that A(s) satisfy

|A(s)| < min{1, B}, |A(s)tan(s/2)| < min{l, Br}. (3.94)
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We consider the splitting of T as

o R
- % sl A<s>f§§3(<i//?> (Ralf"] + sf" () (Rs[f"])ds
1 sec?(s/2)

+% § tan3(s/2)

T5:

(Balf"] + s1"(2)) (Bs[f"])ds

(0 (Rs[f"])ds

|s|>n

= Im + [out-

First we estimate [, using

) Z 1/2i s 8662(8/2) 83/2 "M\ ds
il < OO [ A s R

APl [ O Tl

C(1+ B*)D[f"] / - | A(s) |i2;((§//22>)|3

2 VL2 11 ( s sec?(s/2)
+C+ B @ [ A
sec?(s/2)
| tan(s/2) |3

O+ B [ (Al n(s/2) S

C(1 + B2)D[f"] / sec(s/2)ds

s|<n

IN

|s|>ds

|s[>/2ds

+C(1+Bz)(D[f”])1/2\f”(x)\l [A(s)]

s|<n

IA

sec?(s/2)
jsj<n | tan(s/2)[1/2

sec?(s/2)
1s]<n | tan(s/2)[1/2

2
2
sec?(s/2) 5

+C(1+ B*)(D[f")"2|f" (x) ds

+C(1+ B*)(DIf") 2 |f"(x) ds

o +Bz)!f"<x)’2/< tan?(s/2)

IN

DIf"]
()]

IN

C(1+ B)? (g + !f”(:r)]Q) .
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|s|?| tan(s/2)|*ds

C(1+ B) (D[f" tan(n/2) + (D[f")"2|f" ()| tan'/?(5/2) + | f"(2)[?)



Now for I, we get

sec2s
Lol = 3 [, JA()| S/ 15 )| Ry ) ds

C(1+ B DN [ oy |AG) 52

IN

tan3

FO(L+ B)L(0)] f oy (A tan(s/2)) ESE ]| tan(s/2)Pds

tan?(

IN

CB(1+ BY)(D[f"NY2 [, o 2 ds

s|>n |tan(s/2)|3/2

sec? 3/2
+CB(L+B)|f" (@)l [,

tan?( 3/2

52 (D2 11 w)
1+ B5)” (tanl/z(n/m + tan(n/2>>

IN

_ // 1/2 _
= O+ By (=7 ()l PBEDS 4 e () )

< O+ B2 (el + 7217 () ).

and therefore we obtain

5/2 D[f”] =2\ g1 T 2
< c B (el v o). (3.95)

Bound for T6

. /sech2(5 of/2)tanh(5, f/2) sec?(s/2)0, f'
Cor (tan®(s/2) + tanh2(5sf/2))

X [f”(x) tan(s/2) + (6, f") tanh®(8,f/2) — % (6sf") (1 —tan®(s/2))|ds (3.96)
Similar to the estimate for R3[f”] in the bound for T5 we can bound
K(s) = f'(x) /) + P8, /2) — 3 (6.)(1 ~ tan®(5/2))
= (@3- 500 + 1w (tantsr2) - 3)
+0s f (tanh2(55f/2) + %tan2(5/2)>
= Ki(s)+ f"(x)Ka(s) + s f K3(s),
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where we can bound K;(s) i = 1,2,3 by using

[Ki(s)| < ClsP(DIf)Y,

[Ka(s)] < Cls]| tan(s/2)]%,

B 1
|K5(s)| < Z82+§tan2(s/2)

< C(1+4 B)*(s* + tan®(s/2)) .

2 tanh(6sf/2)
sech”(dsf/2) tan(s/2)

tanh2 (85 f/2) \ 2
(1+ tan2(s/2) )

Define A(s) = , then it is easy to see that

|A(s)| < min{1, B}, |A(s) tan(s/2)| < min{1, Br}.

Now we consider the following splitting of T§

1 sec?(s/2) . .,
Is = —5- (3)m(5sf)f((3)d3
_ L 2/ (5 K (s)ds
= 7o fe, ey RO
1 sec?(s/2) .
o S a5 2) O VK )
]in+]out~

First we estimate [;,, using

= o 5 sec (s/2) sf(x s)ds
e 27 Jysl<n tan3(3/2)(R1+ [ (@) K (s)d
_% |s|<n (®) tszlcl?’iéz)) (Ry + sf"(x)) Ka(s) " (x)ds
_i Secz(S/ ) sf" ()2 s)ds
o7 ey tani (s 0 TS @) a5
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< ool [ A s

@I [ A

wer I ians/2)F
HOL@IDU [ 1A s/ Pas

[s|<n

" 2 M
B P T

+C(1+ B)*Df’ ]/|< |A(8)l%

+C(1+ B>*(D[f") 2| f" ()]

S M 85/2 82 anQ s s
[ o A et plel (6 + s/ 2

+C(1+ B)*|f" () / [A(s) tan(s/2)| = <<S//22)> (s + tan®(s/2))ds

[s|<n

|s|>/2ds

|s)?| tan(s/2)|*ds

|5|?(s* + tan®(s/2))ds

< C(1+ B)* (Df"tan(n/2) + " (@)|(DLf")? tan2(1/2) + | f"(x)|?)

D[f”] " 2
) T ) |

Finally we estimate [,,; using

< C(1+B)? (5

B 1 sec?(s/2)
low = o s[> Als )tan3(s/2)
1 sec?(s/2)

S 0

27 Jisn tan3(s/2)
1 (s )se02(5/2)
21 J s> tan3(s/2)
(s/2)
(s/2)

(0sf ) K (s)ds

(6:f") K1 (s)ds

(0sf") " () K2(s)ds
1 sec?(s/2

Als) ——755

270 51> tan3(s/2

O ) (sBa[f"] + 5" (2)) Ks(s)ds
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Now using the bounds (3.97) we obtain

mi/ sec (S/2> / /
|| < CD[f") 2/|S|>17 ]A(s)|tan (s /2)]5 of||s*2ds
2(s/2
RO [ A tane2) S sl s/ 2) s
s|>n
1 2 2 !
+C(1+ B*)D[f"]"/? /5|>n \A(s)tan(s/2)|%]§sf IBRE
x (% + tan?(s/2))ds
2 // sec ( / )
FOO+ B [ 1A /2| )
x (% + tan?(s/2))ds
oy (((DUFD? 1f" ()]
< 0045 (5 i)
/ D[f//] =2\ g1 )
< e ppr (s ),
and therefore
ITs| < C(1+ B)? (e @fg)]’ + 5_2|f”(x)|2) . (3.99)
Bound for T7
1 tanh22(5sf2/2)
Tr= Hﬁ% sec?(s/2) (5, f")ds. (3.100)
tan?(s/2)
Consider the splitting of 17 given by
1 tanh®(8,f/2) sec?(s/2) . .,
T7 - %/ 1+ tanhQ(ésf/Q) tan (8/2) (6sf )dS

n?(s/2)
1 tanh2(6 f/2) sec?(s/2)
")

- (05f")ds
tanh®(dsf/2)
27T S‘S"] ]. + tan2( /2) tan (8/2) (3101)

+i/| tanh®(d,f/2) sec?(s/2) (6. F")ds

an. 2
27 Jisj>n 1 + % tan?(s/2)

= [zn + Ioutu
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for I;, we can write

h(d,f/2 / I "
T = o [ O (b5 /2) - 3 ) + ) (0)) 6.5

sl<n 1+ =7

1 tanh(d, f/2 sec?(s/2) . .,
g [ S )2 D s
™ Jsl<n 1+ S an?(s/2)

1 tanh(d,f/2) s sec?(s "
+2_/ tar(lh2<];/f/)2>§f< ) tan 2( /2> Ouf ds
T Jlsl<n 1+ Ttan(s/2) ( / )

S

S

1 tanh(d,f/2) sec?(s/2
=

27 J\s1<n 1+%tan (s/2)2
1 tanh(d,f/2) sec?(s/2
+f//($)—/ an (h é/ )2 sec?(s/ )—(5 s
27 Jyan 1+ B 0S/2) tan?(s/2) 2

tan?(s/2)
Using Lemma we can bound Ry[f"] = tanh(d,f/2) — 5f (@) + hi(s) f"(x) and

obtain

Il < CO+B)((DIfNY?+ [ f"(2)])

] ()
W
o, g
e [ [ 27; 1| e Séizaf"
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using Cauchy-Schwarz and Lemma |3.2.3| we get

IN

<

o+ ol ol (SR

+C|f"(x)| D[] (/ Mds) 12

o<y tan®(s/2)

+CD[f"M? (/ le’(r B S)|2ds) 1/2

d<n tan’(s/2)

reoie ([ ﬁd) 2

sy tan?(s/2)

+C|f" ()| D[f")/? (/ M@) 1/2

sp<n tan®(s/2)

C(1+ B*)D[f"] tan(n/2)
+C(1+ B*)D[f"]V?| f" ()| tan'/?(1/2)
+COD[f"2]f" (x)| tan' (1) /2)

11/2 s? sec2(5/2) s 2 m1/2 "
eeplpp (| Sesla) ol @)
+CD{f") tan(n/2)

+CD[f”]l/2‘f”(aj)| tan1/2(77/2)
DIf"] 1, o
b5l P)

CB(1 + B?) <s|f”(x)|

For o, we get

-0 /. tanh®(0,f/2) |sec(s/2)] (‘Sec(s/ ?'||5sf”|) ds

|Iout|

tanh?(dsf/2)
sl>n 1+ e | tan(s/2)|

< o[ mee)

Y ey
N Ctanl/z(n/Q)D[f]

|f”($)| y D[f//]l/Q
C - . 51 2 |f”(m)|1/2

DI} a2
< ¢ (eipg - o)
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And therefore we get

D 1
|T7| < CB(1+ B) (&? ”[f ] +£_2\f”(x)\2) (3.102)
| f" ()]
Bound for T8
tanh(ds f/2)
1 tan(s/2) 2 sec?(s/2)
Ty = — sech“(d,f/2)(d —ds 3.103
*T o o <1+tanh2(5sf/2>2 (0772 f) n*(s/2) ( )
tan(s/2)

To bound T3 we want to add and subtract a few terms in order to use the bound

that we already know. Define

B f'(x) 1 socl? sec?(s/2) .
Tory = T TS / K261 /2)(0.F ) (3.104)
Now using that
A B  (A-B)(A’B+ A’B*+ AB® +2AB — 1)
(1+A2)2 (14 B2)?2 (A24+1)* (B2 +1)° (3.105)

— (A— B)G(A, B)

(ASB+A2B2+ABS+2AB—1)

And that |G(A, B)’ = (A2+1)2(BZ+1)2

<2 forall A, B € R. Using this we

can estimate the difference of this two terms as

Ts—Tapy = [ K(s)(Spml2 — f/(a ))(5]3)8662 ds (3.106)

tan(s/2) tan?
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with |K(s)| = |G <tanh B:1/2) p1( g )) | < 2. Then we can bound this using

tan(s/2)

Ts —Ispv = %/TK(S)(tanh(ésf/z)_tan(s/z) @) f)seCQ( /Q)ds

) tan3(s/2)
= [ K@)

27 J)s1<n tan

ol [ R
27 Jis1<n tan®(s/2)

_|f//(x)|2%/< K(S)h<S)SSGC3(3/2) ds

b [ EORINGTES ds

270 Jisp>n

using this decomposition we can estimate

Ts = Tspvl < O+ B)(D[f] + (DL f"(2)])

s|°/?| tan(s 3/2M
<Pt
FOQ+ BY((DIP)MI (@) + 1))

2l tan(s/2)[3/2 sec?(s/2) s
/|| [tants /2 s ) P

1MN1/2 g1 5/2 an(s Sec (5/2)
HCOU PP @ | sl tanls/ o oo

2/ tan(s sec?(s/2)
el
sec?(s/2)

OB / ltants/2) o s

ds

+C|f"(2)[? |

s|<n
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< C(L+ B*)(DIf" tan’(n/2) + (DIf"))'2|f" ()|l tan(n/2)[*?)
+C 1+ B*)((DIf) 2 " (@)l] tan(s/2) "/ + | " () tan(n/2))
+C (D" ()] tan®?(5/2)

+C|f" ()] tan(n/2)
1

tan(n/2)

< CB*(1+ B)? (5

+OB?

and therefore we get

DIf"]
/" ()]

Ty — Ty py| < CB(1 + B)? <g +e]] f”(:c)|> . (3.107)

Now notice that the term T py is almost a fractional laplacian A = (—A)Y2, which

from equation (|1.12)) can be written as

ONf = % /T (5 f’)%d& (3.108)

therefore the only difference inside the integral is the extra sech?(d, f/2) inside Tk py,

then we can consider the difference between this two operators to get

O N VS Ny SO  5ec?(s/2)
T — Gl = g [l /26 ) e

= L+ 1L+ I3+ L,
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where

I

Iy

I3

I out

_ _|_f”(x)%/||< tanh(dsf/2)h1(s)(0s f)
= L ann26./2)0.8)

= L tannags2)

2 [s|<n

x (tanh(df/2) = sf'(x) + ha(s) f"(x))

<O oy

2 [s|<n tan’ (

sec?(s/2)

————ds
27 Jis>n tan?(s/2)

To estimate I; we use the following

|11]

sec?(s/2)

%[Ftanh(ésf/2)(éz)(5sf)t ) S/Q)ds
CB(1 +BQ)((D[J””D1/2 /|S|<n‘ tan2(s/2
)

ae 5/2 sec (5/2 s
HE@L ] )

‘5/2 sec

IN

)

2)
sec?(s/2

n*(s/2)

= L anh(s.f/2)sf () (0. 1) 2 (Z//Q ds

)d

\
(s/2 ))ds

< CB(1+ B?) ((D[f"])*tan'(n/2) + | " (x)))

171\1/2
_ CB(1—|—B)5/2( 1/2( [f ]) |f//( )|1/2+|f”(1’)|)

Now we proceed to estimate I

| 15|

<

<

IN

IN

0B [ IR gy + OB @)

7o)
= on+ P2 (sl s )

1

— anh(0,f/2)sf () (05 f — sf’(x) + sf”

s L 2)5 @08 = 5f() 8" (0)

sec?(s/2)

[s]<n

oo [ g s omip)

Is|<n n?(s/2)

CB ((DLf")Y? tan'2(5/2) + |f"(x)])

on+8)" (2L ).

|/ ()]
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tan?(s/2)
5 Sec (s/2)d

° tan?(s/2)
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Next we estimate I3 with

sec2(5/2)
1] < CB|f"(z)| [shi(s)|—= 757
e a2 2)
sec?(s/2)
< OB|f"(2)] |s] —5 7 ds
sj<y tan’(s/2)
< CB|f"(z)|.
And finally for I,
Toal = [ [, tand?(5F /206 ) 252 as
sec?(s/2)
< OB [oy it s
_ 1
- CBtan(n)
ol @l

By putting all together we get

f'(@)
1+ (f'())%)?

Af| < CB(1+ B2 <5 DI, §|f”(:p)|)  (3.100)

Ty = 7P

Now notice that

2/ ()

’ T @

< CB|Af| = CB|H["|, (3.110)

where H denotes the Hilbert transform and we use that Af = 0,4 f. Finally using

(3.107)), (3.109), (3.110)) we conclude that

i< cp P Pt (ol @l m). e

114



3.3 Proof of Theorem [3.1.1: Local existence

Proof of Theorem |5.1.1. The proof of the local existence will be done using classic

energy method, in particular we will show that the energy given by
E(t) =1+ f'O)ll7~ + 1/ (3.112)

For this purpose we will study the equations of the first and second derivative of
the equation, equations and , to establish appropriate energy estimates
that allow us to obtain that there exists 7= T'(£(0)) > 0 such that E(t) is finite
in [0,7).

Most of the proof will be written depending on p, even though we have only
proved the required lemmas for p = 2, this part of proof still work in the general
case of W?2? instead of W22,

Evolution of the Maximal Slope

The goal of this section is to study the evolution of the equation for the first

derivative and use it to get information about the evolution of the maximum of the

slope. For this purpose we consider equation (13.16))
(0, + 00 + L) J'[* + Dylf'] = To,

where

T, = 2f'(z, t)i / tanh(d, f/2)sech®(d, f/2) sec?(s/2) (85 f")

27 (tan(s/2) 4 tanh?(8,f/2))?

X (tanh(dsf/2) — tan(s/2) f'(x)) ds.
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Let B(t) = maxuer | f'(x,t)| be the Lipschitz constant of f at time ¢ and let Z(t) be
a point s.t |f'(z(t),t)| = B(t). Then by the Radamacher theorem (See Appendix

in [11]) we can describe the evolution of B(t) by

S B =017/ @, 0 = To — Dylf] — £l 0l (3113)

To estimate the right hand side we consider the following identity

(0:9)" + 0lgl* = g(2)* = 2g(2)g(z — 5) + g(z — 5)* + g(2)* — g(z — 5)°
= 29(2)* — 29(2)g(z — s)
= 29(2)(g(x) — g(z = s)),
we can use this to write the following splitting of T

1 sech?(8,f/2) sec®(s/2) o
Ty = o e A(S)taHQ(S/Q) I tanh2(55f) (0sf7)
1 sech®(d, f/2) sec?(s/2) "2
o Is|<e Als tan?(s/2) + tanh2(6sf)5s|f | tan(s/2) ds
R[]

, 1 sech’(8,f/2) sec’(s/2) .,
+2f (2, 1) 5= /s>€ A(s tan2(s/2) + tanh>(d, f) (0 )tan(s/Q)

2 Balf']
tan(s/2)

Ry[f']

+

ds

2

= D+ Loin + Lo,

tanh(ds f/2)
where A(s) = %, then |A(s)] < 1. By using Lemma [3.2.1| parts (b)
tan2(s/2)

and (c), and noting that because Z(t) is a point where the maximum of |f'(x)]| is

attained, then d4] f'|*(z(t)) > 0, then we get that

Inl < C(L4B)||f"|lwe’7 (1+ tan(e/2)) Dy [f]

bl < COL+ B |ve™™ (1+ tan(e/2) Lyl f'?

32B3 1

Iou < — -
Houl < 21 tan(e/2)
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We get that the Ty can be bounded by

To] < 20(1 + B[l V/2(1 + tan(e/2)) (Dylr') (@) + Lol )

32B3 1

or tan(y) o114

Now because |z| < |tan(z)| for |z| < 7/2 we can bound

2@r=V/P tanP=1/P(¢/2) if tan(e/2) <1
eP=D/P(1 4 tan(e/2)) < , (3.115)
2P =D/P tan@-D/P(c/2) if tan(e/2) > 1

Not that the right hand side is a continuous monotone function in . Now, if we

call g(¢€) such upper bound, we want is to choose ¢ such that
9201+ B)| 'l = 9()A =1, (3.116)

and we can do that by taking

9—(2p—1)/(p—1) 1

- S 22p71
tan(e/2) = Azi/(p—l) il (3.117)
- 2p—1
2 Apr/(2p—1) C A :
we get that
. . 3283 1
T _ < D 1/ = £ 1(=)]2 _—_— 3118
To(@)] < (Dglf &) + L4\ @) + 5 s (8.118)
Now using that
t (1 5 < 9~@=D/(=D) gP/(e=1) | 9=1 gp/(2p=1) (3.119)
an(e
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we conclude that

d 32 2
2Bt < 2—2—1—5B(t)3(02<3p—1>/1’(1 + B )P D
m
16
+%B(t)3(02<3p—1>/p(1 + BOA)||f"| 1)/ @D

CB(t)3(1 + B(t))P/ V(1 + B(t)? + M,(t)*)P/ (%2

IN

(3.120)
+CB)*(1 + B(t)*)?/=D(1 + B(t)* + M, (t)?)?/*»=2

_3p_
C(1 + B* 4 M,(t)*)* ==

IN

5p—2

= CO(1+ B*>+ M,(t)*) >,

where M,(t) = || f"| e
Evolution of the norm of the second derivative

Consider the equation for the evolution of | f”|? in divergence form given by equa-

tion (3.24)), apply the upper bound given by Lemma for the terms Ty, --- , Ty
on the right hand side of (3.24]), and the lower bound given by equation (3.54) to

get that the following equation is valid for p = 2

(O + L)L (2, O + Oz (v(x, )| f" (2, 1))

1

mquizD[fﬂ](% t) + %’f//‘p2Df[f//] (:l?, t)

_l’_
< B+ BOP(If (@0 HS| + sl )

201" (@, O 2D (@,1)). (3.121)
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Now choose e(t) = i 1} to get

min{ 7z 57 )(1+B

O+ L) (2, ) + Oz (v(z, )| f" (2, 1))

+ g P ) + 51D ) - L)

<GB+ B (1 (e, )P IH "

+16C2B(4)2(1 + B(t)2)6|f”(a:,t)|p+1>, (3.122)

I le = \7Cp

Il /" (t)||», we obtain by integrating (3.122)

1! 1/
where A = {x @ <L> p}. Applying Lemma [3.2.5| and defining M, (t) =

d 1
a )"+ 4(1 + B(t)?

i |f" P2 DL (x, 1)
Cy
2

1+B /\f”xt!2pdaﬁ

< B+ B0 / 7 OP|H ) da

+

F16C2B(1)2(1 + B(t)Q)GMpH(t)p“), (3.123)

here we used that

() de = sec®(s/2)(|f"(@)[F — |f"(z — s)[7) _
/ﬁf[lfl z)dr = p.v. // tan2(s/2) + tanl’ (6.7 2) dsdz =0, (3.124)

to see this is is enough to make the change of variables (z,s) — (y —t,—t). Now

in T\ A we know that

@] 1 (2>1/p (3.125)

17— cp/P \

and therefore

Jooa [ f7 (2, )%
T\AH I < CM,(t)? < CoMyyy (1) (3.126)
Lp



now we can add inequalities (3.123)) and (3.126)) to get

d 2C, Moy, (t)*
— M..(£)P p P
dt p(0 L+ B(t)2 M,(t)r

+16CTB(t)*(1 4+ B(t)?)* M, 1 ()

¢, 4
————=C5 M, (t)P.
2 Ty B @M

< OB+ B(t)?) / " P H ) de

(3.127)

Now using Holder inequality and that the boundedness of the Hilbert transform in

LP(T) we get that

/ FPIH e < Ol 75 = CMy (87,
T

and so we can bound the right hand side of (3.127) as

d P 2Cp M2p(t)2p 3 218 p+1
EMp(zf) + T4 BE? M) < CB(t)°(1+ B(t)*)"My+1(t)

C p

BEECTOER A

Now since p > 1 we have that p + 1 < 2p and so we may interpolate

M,

() < Mp(t)(p_l)/(p+1)M2p(t)2/(p+1)7

then we get
= B0P (14 B0?) M0 < gm0 (S0,

Now by the Young’s Inequality we get know that

-1 1 1
w<?=L L w0y Ly
p € /(p—1) p
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using this we get

I, < p—1 g(B)p/(pil) M(t)pz/(p—l)_i_ Cp (M2p(t)2>p

! (—”%)”(p_” p L+ B2\ My(1)
1+B
_ p—1 39/ (p-1) 2(8p+1)/(p—1) 2/(p-1) (3.133)
- pp/<p-1>o;/<p—1>3p (L BT (1

o ()

Analogously for I,

1 2 (1) Mo, (t)? p/(p+1)
Iy = —— M, 1(t)" < h(B)M,(t)" ¥t <p—) , (3.134)
1+B2 7" P M,(t)
as before we apply the Young’s Inequality
ab < Lia(zﬂrl)/p + Lgb(zﬂrl) (3.135)
T ptlel/r p+1 ’
to conclude
(p+1)/p 2\ P
]2 S p h’(B) - Mp t p + Cp 5 (MQP({;) )
p+1 ((pmcp) /p 1+ B>\ M,y(t)
1+B? (3.136)
1 C Mo, ()"
= p - Mp(t)p—}— P 2p( ) ‘
(p+ 1)@+D/pCYP 1 + B2 1+ B2\ My(t)

Replacing this (3.133]) and (3.136]) in (3.129) we get

d 2
aMp(t)p < CB3p/(p71)<1 + 32)(8p+1)/(p71)Mp(t)p /(p—1) + C’Mp(t)p.

Now using that 4 M, (¢)P = EM,(t)P"2L M, (t)* we get

%Mp(t)Z < CB¥/=D(1 4 BQ)(Serl)/(pfl)(Mp(t)Z)(3pf2)/(2p72) + C M,,(t)>.

Finally by bounding B < (1+ B* 4 M}), M? < (14 B> + M}) we get

%Mp(t)2 <C(1+B(t)?*+ Mp(t)2)11p/(pfl)
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which together with (3.120)

d

a(B(zt)2 + M,(t)%) < C(1 4 B(t)? + M,(t)*)'r/?=1, (3.137)

for some positive constant C'. Integrating, we obtain that there exists

T =T f5llzees | fl|zr) > 0 for which the energy
E(t) =1+ B(t) + M,(t)? (3.138)

stays finite and therefire by energy methods it can be show that a solution for
(3.14) with finite W2P(T) N WH*°(T) norm. This concludes the proof of Theorem

B.1T O

3.4 A Maximum principle for first derivative:

Proof of Lemma [3.1.2

The goal of this section is to prove one of the key ingredients in the proof of global
existence result, which is a bound that is uniform in time for the slope of the
solution. In the proof of the global existence result, we need to show that under
appropriate conditions the energy of the equation remain bounded for all time, and
therefore the solution can be extended for all time, and a key ingredient for that
estimate is that if the initial maximum slope is small enough, then that condition

is preserved for all time.

Proof of Lemma([3.1.7 The strategy to prove that the maximum slope is decreasing
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will be the following. For fixed ¢t € [0, 7] we consider a point Z(¢) at which the first
derivative achieves a maximum or minimum, by the Radamacher’s theorem if M (t)

is the value of the maximum at time ¢, then M (t) satisfy

d -
M) = 0, (2(0), 1) (3.139)

Because of this our goal is to show that in the time direction that value can only
decrease (respectively increase) if the size of the initial slope was small enough
initially. For this purpose consider equation (3.2)) and the change of variables s —

r — s in equation ([3.14))

ftzip-v-Af/( x) tan (432

2

( ) tanh( (z)— (5)) sec? (452)

ds.
tan2 (’” S) + tanh? (—f(x);f(5)>

(3.140)
Taking the spatial derivative of the equation and returning to the original variables

in the integral

>ds

, /f”( x) tan (s/2) sech2(
2r ) tan? s/2)—{—tanh2 (%)

—f'(z)? tan (s/2) tanh( )Sech2 ( )
27?/ tan®(s/2) + tan? (‘5 L) s
—tanh ( ) tan (s/2) sec? (s/2)
+27r / tan?(s/2) + tan? (5 f) s (3.141)

/ (f/( ) tan (s/2) sech” (6 f) tanh (5Sf) sec? (5/2))
2 (tan?(s/2) + tan? (° f))

e (a2 2+ o (31 ) s (40 o)

Because at a maximum or a minimum of the first derivative f”(z) = 0, the second

term has an appropriate sign, so we only need to show that the last two terms are
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non positive (respectively. non negative) when f’(x) is small. We write

I

'(2) tan (s/2) sech? (582f ) — tanh (%) sec? (s/2)
s f

(oot (1) ot (3 e (5
+—(ta h,(é‘f) ech? (éif> ——tanh,(agf) ax?(s/Q)) (3.142)

anh (%f
tan (s/2) sech? ( 8f> (f (z) — %

(et (550 ) see (%58 = tani (%5 Y st (512

Now because [ is periodic, we know that [ f'(¢)dt = 0 which imply that maxy f* >

0, and mint f* < 0. Now by the mean value theorem we can write

tanh (5‘;f> = gsech2 (%) f(xz=¢), (3.143)

for some £ € [z, s]. Now if % > (0 we can bound

tanh (05 f/2) < tanh (d5f/2)
tan(s/2) — s/2

= sech? (%) (&) < max f. (3.144)

Analogously when tanhg# <0 we get

tanh (0:£/2) (3.145)

min f’ < 5/2 <

Putting this two fact together we get that

o f(x)— Bh0I/D) 5 gt the maximum of f’ and

o fix)—

tan(s/2)

tanh(ds f/2)

tan(s3) < 0 at the minimum of f".

Now we can write equation (3.141]) as

fl = N1+ Ny + N, (3.146)
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where

f"(z) tan (s/2) sech? (Jsf) s
5of

M= 2r ) tan? (s/2) + tanh? (%)
tan? (s/2) sech® ( ) f(z)— ti:(:s?
N, = L ( 572) )ds
2 (tan?(s/2) Z; 3an (‘w))
9 tanh (=5 5 (0sf\ .,
X (Sec (s/2) + Msech < 5 >f (m)) ds
B —f'(z)*tan (s/2) tanh( ch2( )
Ns = 27 / tan(s/2) + tanh? (2 ) s
tanh (%) tan (s/2) sec? (s )
27T tan? (8/2) + tanh? (%1)
1 (tanh ( ) sech? ( ) tanh ( ) sec? (s/2))
2 (tan?(s/2) + tanh?® (%L ))

Os f

X (tan (s/2)sec?(s/2) + tanh (%) sech? (

(3.147)

1Y o)

(3.148)

We know that at the point where the first derivative reaches its maximum or mini-

mum N; = 0. Now we want to show that for ||f’||z~ small enough, then Ny + Nj

we can tell its sign. To do this first notice that

sech? (%) —sec? (s/2) = —tanh® (%) — tan?(s/2),
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using this identity we get that N3 can be written as
N, — / f'(z)?tan (s/2) tanh (6 f) sech? (
2m tan?(s/2) + tan? (5 f)
/tanh ( ) tan (s/2) sec (S/Z)ds
or tan? (s/2)—|—tan (%)
1 tanh( 5 )
Tor tan?(s/2) + tanh® (%1)

X (tan (s/2)sec*(s/2) + tanh (%) sech? (ﬂ) I

)ds

&
N——
&

) tanh (6;f) tan (s/2) sech® (%) f'(x) (—f’(m) %)
T oom tan?(s/2) + tanh® (%) s
(3.150)
using this we obtain that Ny + N3 can be written as
2 2 (85 / tanh(s/2)
Ny + N3 = - / e ) <f S ﬁ) A<S)ds, (3.151)
(tan? (s/2) + tanh? (‘%Tf))
where
tanh (% 5 [ Os ,
A(s) = sec®(s/2) + Wg/z))sech (7f> f(x)
(00 (%) 2 (0.
+1(@) tan (s/2) (tahn< <S/)2>  tanh ( )) (3.152)
— 2 / tan 52 ! 5sf
= sec” (s/2)+ f (m)m + f'(z) tan (s/2) tanh ( 5
> sec” (s/2) — ||f'(@)l7 — Lf'(@)]| L~ tan (s/2),
then by writing
sec?(s/2) —y? —ytan(s/2) = 1+ tan*(s/2) —y* — ytan(s/2)
(3.153)

= (tan(s/2) —y/2)* = 2y*+1>0.
We see that this quantity is positive for all s € (—m, ) if || f/||p~ < %5 Therefore

we obtain that at the maximum x = Z(t)

fi(@(t),t) = No + N3 <0, (3.154)
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analogously at the minimum Z(t) we obtain

fi(z(t),t) > 0, (3.155)

and therefore
1 (Ol < [1fgllze- (3.156)
This concludes the proof of Lemma [3.1.2] O]

3.5 Proof of Theorem [3.1.3: Global existence

The basic idea of this proof is very similar to the proof of the local existence in
Section [3.3] The idea is to show that the energy give by is bounded for all
time. For this purpose we use the maximum principle for the derivative to conclude
that || f'|| L will be bounded for all time. Then we use the equation for the second
derivative to get that if the slope is small enough, then the equation cannot blow

up and conclude using energy methods.

Proof of Theorem|3.1.5. First by the maximum principle Lemma [3.1.2] we know

that if || f5]| e < 2£° then

B(t) = lf"®)ll e < (1ol oo (3.157)

for all ¢ > 0, and therefore if the slope is small initially then we can control the slope
for all time. Consider set A = {x : |f”(x)| > 256B/7}. Then from the equation

for the second derivative in divergence form equation (3.24)), the bounds in Lemma
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3.2.7, and the nonlinear lower bound in Lemma [3.2.4] we get

1 1

O+ Lg) 1f" (2, )P 4 0u (0] f71?) + 5 D[f"] + 64(1—4—B2)|fﬂ(x)|3 ~1a(x)

(1+ B?)

< COB(1+ B*)* 72| f"(z)|> + CB(1+ B*?cD[f"]

+ CB(1+ B»?|f"(2))|Hf"|. (3.158)

Now we choose ¢ = min{m, 1}, then we have

(O + Lg) [ (2, )" + O (0l f%)

1 1

Yo an ey

2(1+ B?) ‘f//($)|3 1a(z)

< 16C°B3*(1+ B*?|f"(2)|> + CB(1 + BH?|Hf"||f"(x)?, (3.159)
where 14 is the characteristic function of the set A. Now because in A¢ we have
that | f”(x)| < 2222, then we can bound

1
1+ B2

2565

@) < P (3.160)
(%)

Adding equations (3.159) and (3.160|) we get

1 1

@+ L) 170 + 0:01"P) + gy DU+ gy

(1+ B?)

< 16C°B (14 B*)*|f"(x)] + CB(1+ B*)*|H || f"(x)[*

™

n (2563)a (@), (3.161)

For the integral of L;|f”|* we use (3.124). Now we integrate and use the bounded-
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ness of the Hilbert transform in L” to get

2 1 " 1 3
M A(1 + B?) /T A 64(1 + B2)M3(t)

2568
7r

< C(B*(1+ B*)®+ B(1 + B*)*)Ms(t)* + < >a Ms_o(t)>™, (3.162)

where M, (t) = || f"(t)||L». We choose B small enough such that

1
B*(1+ B+ B(1+ B*)?) < ———— 3.163
and so we get
d , 1 1
— t —— [ D[f'+ ———M;(t)?
a2 +4(1+BQ)/T I sy M)
256 B\ *
< ( 20 ) Ms_o(t)>7*. (3.164)
T
By taking a = 1, and using that M;(t) > WMg(t) we get
d 2 3 2
where Cp = W and ep = 28 From this we get that if M (0) = 0, then

%M (0) < 0 and therefore M(t) is constant equal to zero, which imply that f is
constant, and because f has zero mean, we conclude that f = 0. Because of this
in what follows we can assume that M(¢) > 0. Equation is a differential
inequality that looks like the Riccati equation. Because we know that Ms(t) > 0,

we can consider the change of variable N(t) = ML@, replacing this we get

d 1 1 1
at (W) O Nme N =



1 d 1 1

_N(t)2 %N(t) + OBN(t)2 — EN(t) <0
ﬁ (—%N(t) +Cp - eN(t)> <0

d
Cp < %N(t) +epN(t)
Cp < e’EBtieEBtN(t)
- dt
CpeB! < ieeBtN(t)
— dt )

integrating we obtain

iC’B (e —1) < e”N(t) — N(0).

€B

Returning to M (t)

C’B Bt t 1
— (€° 1)+ ——= Bt 3.166
o )+ MO) = M) (8-166)
M(t) < M(0 e 3.167
t) < .
To understand the right hand side we compute the derivative to get
d ept ept _ C M 0
dt V(0155 — __ ep = CpM(0) _ (3.168)
M(O);(GB —1)+1 <M(O)S_§(€€Bt_1)+1>

Therefore the right hand side is increasing when Cp M (0) < ep decreasing otherwise

and the limit value as t — oo is C—EB, therefore we can conclude that
M(t) < max{M(0), Oi}. (3.169)
B

Finally we obtain that if the slope satisfies (3.163)) then the energy FE(t) = 1 +
| f'I30 + ||f"]|32 is finite for all time which implies that the local solution given
by Theorem |3.1.1| can be extended for all time, which concludes the proof of the
Theorem B.1.3 O
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3.6 Uniqueness for C! solutions: Proof of Theo-

rem [3.1.4

Proof of Theorem [3.1.7} We want to show that if fi, fo € C°([0,T]; C*(T)) are two
solutions of such that 0, f;, i = 1,2 exists for all (z,¢) € [0,T] x T and || f/||z~ < B,
1 = 1,2 such that if they agree initially, then they must agree for all time. From

equation (3.14)) we know that f;, ¢« = 1, 2 satisfy

1 tanh(d, f;/2) sec?(s/2) B
Oufi + 0O fi + o /11‘ tan?(s/2) + tanb2(3. ./2) ds =0, (3.170)
where
1 tan(s/2)sech?(8,fi/2)
VT Tl /T tan?(s/2) + tanhQ(dsfi/Z)dS' (8.171)

We get an equation for g = f; — fo by subtracting the equations for f; and f,

dsgsec?(s/2)
s/2) + tanh®(8,f1/2)

Lg = 0+ v10:9+ ﬁ/qytarﬁ(
= _(Ul - UQ)a:chQ
_i/ tanh(d, f2/2) sec?(s/2) (tanh?(0s f1/2) — tanh*(5, f2/2)) s
2r Jr (tan?(s/2) 4 tanh?(0,f1/2)) (tan?(s/2) + tanh?(0, f2/2))

_i/ (tanh(d, f1/2) — tanh(d, fo/2) — tanh(dsg/2)) secz(s/Q)dS

27 Jr tan?(s/2) + tanh?(d, f1/2)
1 [ (tanh(dyg/2) — 29 sec?(s/2)

21 Jp  tan?(s/2) + tanh*(0, f1/2)

(3.172)
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1 sec?(s/2)(tanh? (8, fo/2) — tanh?(0,f1/2))
21 Jr (tan?(s/2) 4 tanh?(0,f1/2))(tan?(s/2) + tanh?(d, f2/2))
X (tanh(ds f2/2) — tan(s/2)0, f2)ds
1 [ sec’(s/2)(tanh(d,f1/2) — tanh(d,f2/2) — tanh(d,g/2))

i d 3.173
27 Jp tan®(s/2) + tanh?(d, f1/2) s )
1 (tanh(dsg/2) — 5“"79) sec?(s/2)
2 Jr tan?(s/2) + tanh®(5,f,/2)
= Il + 12 + I3.
Multiplying by g(x) we get
(at + 010, + ‘c_fl) ’9’2 + Dfl [g] = 2g($)([1 + I+ IS)> (3'174)
where L¢[g] and Dy[g] are defined by (3.22)). Fix § > 0 such that
1
[tanh(ds fa(x)/2) — tan(s/2)0, fa(x)| < 30+ BY | tan(s/2)| (3.175)

for all z € T and |s| < ¢, which can be done because f is uniformly continuous.

Now we write Iy = Iy jn, + Iy out, Where

Liin = 1 sec?(s/2)(tanh? (8, f2/2) — tanh?(d, f,/2))
o 27 J\s<s (tan?(s/2) + tanh®(0s f1/2))(tan?(s/2) + tanh® (8, f2/2))
X (tanh(ds f2/2) — tan(s/2)0, f2)ds
1 sec?(s/2)tanh(d,9/2) K (s) s
27 [sléé tan?(s/2) d
(3.176)
and

Lo - 1 sec?(s/2)(tanh? (8, fo/2) — tanh?(0,f1/2))

T o sj>6 (tan?(s/2) + tanh®(8, f1/2)) (tan?(s/2) + tanh®(d, f2/2))

X (tanh(ds f2/2) — tan(s/2)0, f2)ds.
(3.177)
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Now we focus on estimating K (s)

K(s) =

(1 — tanh(d,f1/2)tanh(ds f2/2)) (tanh(ésfl/Z) N tanh(5sf2/2)>
)

tanh? (8 f1/2) tanh? (85 f2/2)
(1+ S {0eftf2))(1 4 a0y | tan(s/2) tan(s/2)

> (tanh(55f2/2) - tan(S/Q)a:cfQ)

s/ (3.178)

then from (3.175) we know that K(s) < 1= for |s| < §, and K(s) < 4B for all s.

1+ B2

Now using that that

tanh(6,9/2)g — i(53| o2 + (6.9)%) + (tanh(dsg/2) — 6.9/2)g, (3.179)

we get for [y j,g(x)

2 2
Lmg(z) = L/ (091 )sch (s/2)K1s
| 87 Jsi<s tan?(s/2)
2 2
: Oog) secls/2Mra (3.180)

87 Jyyj<s tan®(s/2)

g(x) (tanh(ds9/2) — 8sg/2) sec?(s/2) K1 o )
+ 27 /s|<5 tan?(s/2) ds.

By the mean value theorem we know that [tanh(dsg9/2) — d,9/2| < (d,9/2)3, and so

2
S
tanh(d,9/2) — 059/2| < (659/2)* < |5sg|§||g’llioo7 (3.181)
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Now for a fixed ¢ let Z(t) be a point where we reach the maximum of |g(z,t)]| is

attained, then we get that d,|g|?(z) > 0 and therefore we can bound

N 1 1
[Lan(2)g(2)] < SLalgl* + 5Ds o] +

For [1

‘Il,outg(xﬂ S

167(1 + B?)

1 1
< chl |g|2 + §Df1 [g]

4z

4

@l (1 [ s'sec’(s/2)  \? 12
+ () ) (Dsla)

<6 tan?(s/2)

1 1
L |g|*+ =D
9 fl’g’ + 9 fl[g]

IN

1
+=Dy, [g] + |g(2)|? T

8 <6 tan®(s/2)

out We get

| g

IN

A7 J) s tan®(s/2)
8B(1 + B?)!/? o,
\/7_Ttan1/2(5/2) ’g(m)‘(Dfl [9]) /

1 128B°(1 4+ BY) o

ngl g1+ 7 tan(d/2)

IN

IN

Therefore

where

IL@9(@)] < 2Dl + 5L lgl + lg(@)Ph(B.),

/(14
h(B,(S) — ”g HL"O

/ st sec2(s/2)d 128B%(1 + B?)
321 |

ges tan®(s/2) T rtan(5/2)

To estimate I, we need the following trigonometric identity

tanh(a) — tanh(b) — tanh(a — b) = —tanh(a — b)tanh(a)tanh(b),

134

Wl 1 [ stwtely,
|s

ol [ gl o),
|s|<6 tan2(3/2)

(3.182)

sec?(s 1/2
8B<1+BQ>1/2|g<oc>|(1 /| Mds) (Dl

(3.183)

(3.184)

(3.185)

(3.186)



then by using a = d,f1, b = dsfo we get for I

1 / sec?(s/2)(tanh(d, f1/2) — tanh(d, fo/2) — tanh(5sg/2))ds
27 | Jr tan?(s/2) + tanh®(d, f1/2)
i/sec2(s/2)]tanh(ésg/Q)tanh(5sf1/Q)tanh(5sf2/2)’
21 Jr tan?(s/2) + tanh?(d, f1/2)

B[ wctsale

27 Jp tan2(52/2) 42— tanh2(5sjf}2/2)

2B (i /T Mds) (Dplg)"?,

A7 tan?(s/2)

] =

IN

ds

IN

IN

(3.187)

and therefore we get

L(2)g(z)| < %Dﬁ 9]+ |g(m)|2% ( /T iig—é%?)ds) | (3.188)

To estimate I3, we use the mean value theorem to show that given z € (—m, ),

there exists ¢ € [0, z] such that
tanh(z) — | < [tanh®(¢)||z| < [tanh?®(z)||z] < |=[>. (3.189)

Using this we can estimate I3 in the following way

b / (tanh(d,9/2) — d.9/2) 8602(8/2)'
2r | Jr  tan?(s/2) + tanh®(8, f1/2)

1 105913 sec?(s/2)
= 167 /]1‘ tanQ(s/Q) + tanh2(55f1/2) ds (3190)

g”ﬂﬂ(l/fm%@@fﬂmea

4 4 Jp tan?(s/2)

3] =

and therefore we get

@)ool < gDalo + P50 (25 ERa) . ey

Finally using (3.184)), (3.188) and (3.191)) we get from equation (3.174) at a maxi-

mum Z(t) of |g|

7 1 _
(0 +0i0a + £4) 9P + Dy lg] < £Dplo] + 5019 + o(2) Pha(B,6),  (3.192)
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A 1g(z)]> < |g(z)]*ha(B, 0),
where

hQ(B,(S)

Hg'H4Loo/s4sec2(s/2) . 128B%(1 + B?)
32r  Jp tan?(s/2) 7tan(d/2)

2B? [ s?sec?(s/2)
+ 5 ds +
m Jp tan®(s/2) 32

tan?(s/2)

< CB(1+ B (1 * m) |

Finally by the Radamacher theorem we get
illgllz~ < llg(@)|[1h2(B, 6),
and by integrating we get

lg(®) Iz < llg(0)l[70 exp(tha(B, 0)),

ol [ stsdto)2),
T

(3.193)

(3.194)

(3.195)

(3.196)

which concludes the proof of the uniqueness of C! solutions. If we additionally

assume that f;(t) € H*(T) then using Lemma we can estimate the required

size of ¢ in (3.175)) in terms of the H? norm and so we get the existence of a constant

C (B, M) that depend only in an upper bound for the slope B for all (¢,z) and the

bound M for the L? norm of the second derivative, such that

lg() Iz < llg(0)[[ 70 exp(tC(B, M)),

this concludes the proof of Lemma [3.1.4
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Chapter 4

Norm Inflation for a truncated 2D
Muskat problem in supercritical

spaces

Abstract
In this chapter we study the question of the continuity of the solution map if the
Muskat problem in supercritical spaces, for this purpose we consider a sequence of
approximations of the Muskat problem obtained by a Taylor expansion and then
considering the second Picard iteration. For such systems the same stability
results as for Muskat apply, in particular the stability in the critical space }—11 1,
The main result of this chapter is that for such approximate problems, we prove

the existence of a sequence of solutions in some supercritical space ;"7 with
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m < 1 such that for arbitrarily small time ¢* there exists an initial condition
arbitrarily small such that the solution of the approximate problem with such
initial data become arbitrarily large, before time ¢t* which implies that the solution

map is not continuous at the origin.

4.1 Introduction

4.1.1 Description of the model

The Muskat equation describes the interface between two immersible fluids with
different densities in a porous media, ignoring the effect of surface tension the

evolution of the fluids can be described by the system

i~

+u-Vp=0 , v €Qx(0,T)

P

(4.1)
ﬁ:_vp_pggn ) I‘GQX(O,T),

s

K

where Q C R?, i the viscosity, x the permeability of the media, p is the density, @

the velocity, p is the pressure and ¢ is the gravity acceleration constant. The first

equation corresponds to the conservation of mass and the second one describes the

evolution of velocity of the fluid, which in the case of a porous media, is given by
the Darcy’s law.

In this chapter we focus our attention in the situation in which we have two

immiscible fluids with same viscosity and the denser fluid is at the bottom and we

ignore the surface tension. By changing variables we can assume for simplicity that
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pu/k =1and g =1. In what follows we assume that we are in the regime where the
interface between the two fluids can be described by a graph =, = f(x1, -+, 2,_1)

and consequently the density can be written as

Pt v ent)={reQ:xg> flar, + ,2p 1)}
p(l’,t) — . (42)
0t e Q(t) =0\ Q)

Here we consider € to be either R"™ or T"~!. In 2D (with a 1D interface) when

2 = R the initial value problem for the evolution of the interface is given by

of+Af= —%p’l} /R aﬁﬂéa@'f(x) o? (—ia(.];ixf)()x))QdCY ) (Q?,t) € R x (O,T)7

f(0) = fo , T €R,
(4.3)

where f(€) = [, e 2™ f(x)dx, F(Af) = 27[¢|f and 6o f(2) = f(z) — f(x —a). In

the periodic case we can use the compactness to get rid of principal value to obtain

(see [16])
_ 1 D020af(z) sec?(a/2)tanh? (0, f(x)/2)
Of +A] = 21 /T tan(a/2) tan?(a/2) + tanh? (5,.f(x)/2) » Tx(0.1),
f(2,0) = fo(z) , v€T,
(4.4)

where T = R/(27Z), F(Af)(k) = |k|f(k) and f(k) = [, e f(x)dz.

4.1.2 Main results

Suppose that f is a Lipschitz continuous solution of the Muskat equation (4.3)

or (4.4) with Lipschitz constant less than 1, then it is possible to use the Taylor
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expansion to expand the nonlinear term as,

Of +Af=Tf=> Tif, (4.5)

k>1

where in the case 2 = R, T} is given by

Ty.f = (—1)k%p.v.4815“j<x) (‘5"‘2(‘”)) da, (4.6)
and for 2 =T,
Tif = (—1)16%4?;2?2:%; (tanltlaé%o{/(g))/zv sec?(a/2)da. (4.7)

The main result in this chapter considers a finite truncation of equation (4.5|)
for which we can find initial data that illustrate a norm inflation phenomenon. We

say that f is the solution of the truncation of the Muskat problem of order ¢ if

)4
Of+Af=> Tuf , (x,t)€Qx[0,T]
P (4.8)

f(O) = fo , T €
where Ty is given by (4.6) or (4.7) depending on the domain of the problem. Now

we consider the Picard’s iteration of the problem. Define f(®) = 0 and consider the

sequence
Of + AF Zka ", (4.9)

with this definition we obtain that the first two Picard’s iterations are given by
OfV+NfD =0, OO fo= U=, (4.10)

O f® + Af@ ZTke i zeq. (4.11)
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In many situations the Picard’s iteration it is expected to converge to a solution the
problem, but in the case of supercritical spaces this is a hard question in general. In
this chapter we focus our attention to the evolution of the second Picard’s iteration

for some highly oscillatory initial data. For this purpose we study the following

problem, given ¢ € Fy e consider the solution f € C([0,T]; ]—“2“1 P ) of

0
Of +Af=> Tie™p | (x,t)€Qx[0,T],
k=1 (4.12)

f(2,0) = () , TE
By linearity we get the uniqueness and by global existence comes from the fact that
we have a explicit solution for the problem. The result that we are interested in

can be stated as follows.

Theorem 4.1.1 (Norm inflation for truncated system). Let £ € N and consider the
second Picard’s iteration of truncation of the Muskat problem of order ¢ given by
[@12) for Q=R or T. Then given T > 0, R > 0, there exists some 0 <t < T, and

201

an initial condition fy € .732Z+17P(Q), p>1,q>20+1 such that
[foll 21, <1/R and |f(t )H , >R (4.13)
‘Fq
Remark 4.1.2. If we can consider the map

20—1 20—

L:FX" = oo, T); P“l”’), (4.14)

that takes a function ¢ € F; air1 P and return the solution f of the second Picard’s

iteration of the truncated Muskat problem of order ¢ with initial condition ¢ given
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for

l
Of +Af =) Te™™p | (2,t) € Qx[0,T],
k=1 (4.15)

f(z,0) = ¢(x) , x el

Now from Theorem we can conclune that for arbitrarily small time 7" > 0
to conclude it is possible to find a sequence of times and initial data {(ty, on)}3-;

such that if fy = Lyy satisfy

> N, (4.16)

1
HSONHE%;},I, <  and HfN(tN)H].__qgf;—;{,p

20 20—1

L 201
which implies that the solution map L : F27" — ([0, T); FZ") is discontinous

at the origin.

Outline of the chapter: In Section we discuss the choice of initial that
produces the inflation.

K344

4.2 Norm inflation for ¢/ =1

4.2.1 On the choice of initial Data

The initial data considered in this work is inspired by the works of Bourgain-Pavlovic
[2] and Iwabuchi-Ogawa [26]. Given N € N and ¢ € N, we consider ¢ : R — R of

the form

6 =6y Y 1(P(©) + Pasnr(9)), (4.17)

JES(N)
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where for A € R define Ps(§) = x(& — A) + x(§ + A) and x(&) denotes the
characteristic function of the interval [—1,1]. {ks}s>0 is a sequence of positive
integers that grow very fast, M > 2/ is fixed and {v;}, a sequence of positive
numbers to be chosen later. N is a parameter that will be large in general,
S(N) ={j: N <j<(1+d)N}, and [y is a scaling factor that also depend
on the parameter .

An important property of the initial data that we will consider is that they can

be made small in appropriate norms with bounds that can be made uniform in N.

Lemma 4.2.1 (Size of the Initial data). Consider ¢ defined by (4.17) then

1/q

lellmo < CBy | D AWK ] (4.18)
JES(N)

Remark 4.2.2. From Lemma we see that the properties of the right hand side
as we change N, depend on the summability of the sequence {£7*v;}; in £?(N). In

particular if we take 7, = £;™, and ¢ = oo we get that

ol e < CBw, (4.19)

therefore Sy can be chosen in such a way that the right hand side tend to 0 as
N — oo. If we want to work with finite values of ¢, we use that for 1 < g < oo by

taking v; = k; ™ for m > m we get

1/q
1
lellzme < CBn Z L : (4.20)
JES(N) i
then if the sequence {k;} ez grow fast enough so that the series ) jeN —k(mfm)q con-
J

verges we get that the right hand side go to 0 as N — oo.
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Proof of Lemma[{.2.1. Because the sequence {k} is growing fast, at most one of
them belong to each C} annulus. Also, because the C} are dyadic we can ensure
that k; and 2k; + M belong to different annulus. With this observation in mind we

get that if k; € C} then
/C €7 [P dE < (Bays)? 27 ks ™. (4.21)
k

Similarly if 2k; + M € Cj,

LY 5)7 28t s (4.22
it < (Bv73) k5™, (4.22)

€™ 11" d€ < (Byz)" 27 2

Cy,

taking the ¢/p power and summing over k we get

mp| Alp a/p q q g(mp+1) p+) mq
S ([ emier) < oot X (2 1m)
C JES(N)
= 2( <3m5+1)> > ke,
JES(N)
(4.23)
taking the ¢-th root we obtain
1/q
ol me < CBn | D K™ (4.24)
JES(N)

This completes the proof of Lemma [4.2.1]

L]
4.2.2 Preliminary Estimates case ( =1
The main idea of the inflation results to understand the behaviour of
t
G = / DA (e ), (4.25)
0
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where T3 is given by (4.6) a key ingredient to understand the behaviour of this
operator is to study its Fourier transform

1

t
G = §/ e~ (=TIl /(27ri§)(ma67|'|¢) s (Mae”™13) % (mae @) dadr.  (4.26)
0 R

In order to study its behaviour we want to analize its effect on characteristic func-

tions,
‘[(XAa XB; XC')
1 t
= g/ e~ /(27ri§)(mae_7|'x,4) s (mae ™ xg) * (mae M xe)dadr, (4.27)
0 R

when A, B, C' are large in magnitude so that a characteristic function centered
at them is supported away from zero a reasonable approximation is g(z)xa ~
g(A)xa, another observation is that a convolution of characteristic functions can be
compared with another characteristic function centered at the sum of the center,
XA *XB ~ Xa+p (we will make this notion precise later), with this in mind we get

that

1 t
I(xa.XB:XC) R~ ge—t<A+B+C“/ ¢~ (AIHBIHOI=|A+B+0)
0

X /R(ng)(maXA) * (Mo xB) * (Moo )dadr

2mi (A + B+ O)e tIA+B+CD
3 |A|+|B|+1|C|—|A+ B+C)|

x (1 — e—t(IA\+IBI+IC\—\A+B+C\))

(4.28)

Q

X /(maXA) x (MmaxB) * (MaXxc)da.
R
By our previous remark we know that the integral term is supported near the

frequency A+ B+ C and therefore in the size of this term there are two competing

145



factors. On one hand we have the exponential term e *4+5F+Cl that tell us that
high frequency terms decay faster, on the other hand we need to understand the
size of fR(max 4) * (maxB) * (Maxc)da. Our choice of initial condition is made so
that we can control precisely the size of [, (maxa)* (Maxs)* (Maxc)do for the low
frequency terms which in appropriate norms we expect to be the largest. With this
in mind the goal of this subsection is to provide precise estimates for I(xa, x5, X¢)-

The idea of Lemma is to illustrate the basic techniques that we will later
use in the inflation estimate. On one hand it provides a precise estimate of the
integral in o and provide estimates on the decay that depend on the region where

the convolution is supported.

Lemma 4.2.3. Let A,B,C e R, M > 4, |A|,|B|,|C| > M,t<1,|A+ B+C|>

2M then
S _ / 27T,L~§(ma€—27rt‘-|XA) * (mae—Qﬂ’tHXB) % (mae—QﬂtHXC’)da
R

~ (A+ B+ C)e > AFIBFCNT (A, B,C) + O(|A] + | Bl +[C)))g(€),
(4.29)

where my(§) = loetof [(x,y, 2) is defined by

(67

1— —2mra 1— —2mya 1 — —2mza
Y i [ P
R

(07 (07 (0%

F(%y,Z’) -
= 27T3<5U’37‘ Fylyl+ 2zl - @+l t+yl— @+ 2)|e+2  (430)
—(y+z)|y+z]+(J:+y+z)|x+y+z|>,

and g(&) satisfy

(4.31)

X(S—A—B—C)Sg(€)§4x<€_A;B_C)-
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Proof of Lemma[{.2.3. Consider

S = / 27ri§(mae_2”|"x,4) * (mae_%tl"XB) * (mae_gﬂﬂ'lXo)da
R

— ///27T§€27rt|§z|e27rtzy|€27rt|y
RJRJR
1

Xg(l . e—27ria(§—z))<l . 6—27Tia(z—y))(1 . 6—27riay)da

xxa(€ = 2)xs(z —y)xz(y)dzdy

= [ [ w6 — 2z = )€y

(4.32)
For the innermost integral we have «a
I = F(S—Z,Z—’y,y)
= po. / %(1 . 6727”'04(&72))(1 . efQﬂia(zfy))(l . 6727rio¢y)doé
R &
i d* (1 , . ,
— 0. R 1 — —2mia(E—2) 1— —2mia(z—y) 1 — —2miay d
po [ g () (1= e ey e
= po. Ld_2 [(1 . G—Qﬂia(g—z))(l . 6—27ria(z—y))(1 . e—?m’ay) do
r 200 da?
; 2
_ Z(27T> p’U/ (l) |:_ (5 . Z)26—27ria(£—z) _ (Z _ y)26—27ria(z—y)
2 R \&
_y26—27riay + (g . y)26—27ria(§—y) + <§ — 4 y)2€—27ria(§—z+y)
+Z2€—2wio¢z o 526—27ria§:| dov
= 2 ((€ -2 —2l+ (= plz—yl+ylyl — (€ - e~y
—(€— 24yl — 2 +yl - 212l + €l¢))
In the last step we used that
1 — —2miaw in(2
p.v./ L ip.v. / Mda =1 sgn(w) (4.33)
R « R «

Substituing the computation for (¢, y, z) in (4.32)) and applying Lemma we
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get

5 = ant [ [eermmese e (¢ e — ol 4 (2 - gz -y
ylyl — (€~ pIE — ¥l — (€ — 2+ y)IE — 2+ ] — 2l2] + €le])

xxa(§ — 2)xB(z — y)xc(y)dzdy

~ Arige 2 AFIBIHCN (A1 Al + B|B| + C|C| — (A + B)|A + B

—(A+C)JA+C| - (B+C)|B+C]

(4.34)
+(A+B+C)A+ B+ C|+O(JA| + |B|+ 1C|))g(&)
= Arige AHIBHICD (D(A4, B, C) + O(JA| + | B| +|C1)) 9(&),
where
g(&) = //}A@—znﬂz—wmﬂwm@L (4.35)

Next, using that |A + B + C| > M we can estimate

|A+ B+C|
2——3——w@% (436)
€9 < (JA+B+Cl+ M)g(§) <2[A+ B+ Clg().

€9 = (|A+ B+ Cl = M)g(¢)

Because of your assumption in the size of A+ B + C' we also know that the sign of

£g(€) is the same as the sign of A+ B + C, then we conclude

S ~ (A+ B+ C)e 2mAIBHOD

(4.37)
x(T(4, B,C) + O(1A] + |B] +1C1) ) (€).
The estimate (4.31)) is obtained by applying Lemma to g(&). O

To complete the proof we proceed to prove the following Lemma used in (4.34)).

Lemma 4.2.4. Lett >0, A, B,C € R, and I'(x,y, z) defined by (4.30)) then
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i) T(€ = 2,2 —y,y)h(y,z) = (T(A, B,C) + O(|A| + |B| + |C])) My, 2)
”) 6—27Tt|€—z\6—27rt\z—y|h(y’ Z) ~ G_Zﬂt(|A‘+|B|+|C|)h(y, Z)

where h(y, z) = xa(§ — 2)xB(z — ¥)xc(v).

Proof of Lemmal[{.2.4 For part i) we consider I'(x1, z2, 23) as defined in equation

(630,

(1, 29, 73) = 27° ($1|x1|  Zo|@s| + a|ms| — (214 x0) 21 + o] — (1 + @) 21 + 5]

— (.1’2 +l’3)|£l?2 + LU3’ —+ (%1 -+ T +$3)|Z‘1 + i) +.Z'3‘>,

notice that in the range of values that we are interested x1, x5 and x3 do not change

signs, and so we can estimate directly the derivative of I'(xy, 25, x3) by
|8xi1—‘($1,$2,$3)’ S 167T3(|$1| + |£L’2‘ + |£E3|)

To prove the Lemma we need to estimate ['(§{ — 2z, z — y, y) in the support of h(z,y).
In such set, each entry only takes values on a interval, { — 2z € [A — 1, A + 1],
z—ye€[B—1,B+1]and y € [C —1,C + 1] therefore we can apply the mean value

theorem to obtain
3

|F(£ —Z,z Y, y) - F(Aa B> C)| < Z sup |awbr($1a $2,$3)|
i=1 (#1,82,73) (4.38)

< 487 (|Al + |B| +|C| + 3).
For part ii) we use that 0 < ¢ < 1 and therefore on the support of h(y, 2)

6—27rt|f—z|e—27rt\z—y|e—27rt|y\ < e—27rt(\A|—1)—27rt(\B\—1)—27rt(|C’\—1)

(4.39)

_ 667rt6727rt(|A\+\B|+|C|)’
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in a similar way

—27rt|§—z|6—27rt\z—y|e—27rt|y\ > e—27rt(\A|+1)—27rt(\B\+1)—27rt(|C\+1)

‘ (4.40)

_ e—GTrte—27rt(\A|+|B|+\C|).

Which concludes the proof of Lemma |4.2.4] O

The next Lemma provides a precise notion on how a convolution of characteristic

functions can be compared with a single characteristic function.

Lemma 4.2.5. [Convolutions of characteristic functions] Let ci,--- , ¢, € R and

xa as defied in Subsection[{.2.1], then

XE= (bt ) S v e+ < 28 (SO gy

Proof of Lemmal[{.2.5. For the lower bound the key fact is the following

(Xa*xB)(§) = (2 - (6 —A—B))+ = xar5(8). (4.42)

By iterating this inequality we obtain the lower bound. For the upper bound we
need two observations, the first one is about the size of the support of a convolution.

More specifically
suppxa*xp CA+B={a+b:a€ Abe B} (4.43)

the second observation has to do with the maximum value, to do this we notice that
—A -—B E—y—A y— B
X X\ ) = [ x|/ )x|{—5— )
a b a b
— B
< /x <?J b )dy (4.44)

= 2b
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And by symmetry X(%) * X(%) < 2min{a, b}, iterating this result we get that

(4.45)

5—@n+-~+cg)

XC1*X02*"'*XCk§2kX< L

]

Lemma 4.2.6. (Properties of I') Let I'(x,y, z) as defined by equation (4.30)), A, B,

C, k, NeR, N >0 then we have the following
i) T(kA, kB, kC) = k|k|T(A, B,C),
ii) T(N,N,N) =0,
iii) T(N,N,—N) = —2(21%) N2,
i) The values of T'(A, B,C) do not change if we permute the inputs,
v) [T(A, B,C)| <2(27)?min {|AB|, |BC|, |AC|},
vi) |T'(A, B,C)| < 2(2m)?|ABC|*/3,
vii) T'(0, B,C) =0,
vitgi) If A, B,C >0 then T'(A, B,C) = 0.

Proof of Lemma[{.2.6. Part i) follows directly from the definition of I'(x,y, z). Us-

ing i) to prove ii) it is enough to compute I'(1,1, 1),

I(1,1,1) =2 (1414+1-2-2>-2°+3%) =0. (4.46)
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In the same way for i) it is enough to compute I'(1, 1, —1),
I, =2r(141-1-2>-0>-0>+1%) = -2. (4.47)

Part iv) comes directly from the symmetry of I'(x,y, 2).

To prove part v) we need to use the integral formula that define I'(z,y, 2),

1 — —2miax 1— —2Tiay 1 — —2Tiaz
C(r,y.2) — i / ¢ ¢ N (4.48)
« o «
Here we observe that
1 — ¢ 2miaz 1 )
¢ = 2m’x/ e 2miza(l=t) g, (4.49)
« 0

Applying this to (4.48) we get

1 1
1 , ,
P(z,y.2) = i(QWi)2?/Z// / — (1 — e 2miow) g 2mioy(l=t)
R a

—2miaz(1—t3) dtzdtgd()é

= i(2m) yz/ / / e 2mialy(1=t2)+2(1-t3)) _ 1) dodtdts
_1(271-7;) yz/ / /_ 1 o e—27ria3:—27ria(y(1—t2)+z(1—t3))) dadtldtQ
o Jo JRO

(4.50)
Now using that [ #da = imsgn(z) we get that
D(z,y,2)] < y(1 —t2) + 2(1 — t3))
< 2(27)?|yz|.

Part vi) is obtained from v) by taking the geometric average Part vii) This is
direct consequence of v). Part viii) can be obtained from (4.51)) by noticing that
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y(1—t3)+2(1—t3) > 0 and z+y(1 —t2) +2(1 —t3) > 0 and therefore the integrand

vanishes.
O
4.2.3 Norm inflation for the First Order Truncation
A useful notation that we will use in the rest of the chapter is the following.
Definition 4.2.7. Given ¢ : [0,7] x R — C we define E(g) : R — C by
—_— t
E(g)(t.) = [ T g(r, ) (152
0

We consider the Taylor expansion of the Muskat equation (4.8)), truncated up

to the first non-zero non-linear term,

Of +Af =T0f,  f(0) = fo, (4.53)

where T} is defined by (4.7)). We look at its second Picard iteration

Of +Af =Tie™fo,  f(0) = fo. (4.54)

Then using the Duhamel formula we can write the solution as

t
f(t) — etASD_'_/ e*(th)ATl (etAfO) dT — eftASO_'_gg. (455)
0

Our goal is to show that for certain spaces F;", given T > 0 there exists some
time 0 < ¢ < T and some initial condition such that the term g3(f) becomes large
and is the dominant term in the expansion . More precisely we will prove the
following:
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Theorem 4.2.8. Consider the truncation of the Muskat problem given by
of +Af=Tie ™y, f(0) =0, (4.56)

where @ is given by (4.17), and t > 0 is a time such that t(M +1) < 1 and tky > 1.

Then the solution f of (4.56|) satisfies

1/q

C
1l = 8% 37 A3k = B | D2 (3K7)°

JES(N) JES(N)
C
3 3
_ @N% Z i (4.57)
Where the constants C1, Cy and C3 only depend on M ,m,q,p.

Corollary 4.2.9. For any T > 0, R > 0 consider the problem (4.56)). Then there

exists some 0 < T < T and some initial pr such that for p > 1

1
lerll 150 < 3 (4.58)
and
1F(R)ll f150 > R (4.59)

Proof of Corollary[{.2.9. First by Remark [4.2.2/ for m = 3, ¢ = oo define v; = =
J

then we have 7;£}" = 1, and then we get that
Q
lell prysr < O3 (4.60)

Notice that this expression tends to zero as r — oo for any @ > 0. Now using

Theorem and the linearity, we can bound the solution of (4.56) with initial
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condition ¢ using (4.55))
£l e > Nlgsll s = lle™ ol g (4.61)

By taking t < % so that t(M + 1) < 1 and tko > 1 then

C C
los@llzpe 2 Bl Y 1= 0= BReom—| Do

2(/-th]{/)lrninj .
SES(N) JES(N) 5 (462)

Cy Cs
= aBY@#SW) - FB - B— | D v
I\ GeS(N)
Now because t is fixed, and because 7y, decay very fast, it is easy to see that the last

two terms are bounded in N, and the first one is going to grow if 83 (#S(N)) is

increasing in NV, then given R > 0 there exists some Ny such that for any N > N,
lgs(@)ll zmr > 2R (4.63)
Finally because e~27¢l|5| < |5| we get that
el zr < oz (464)
therefore we get from that
11l zya0 = 2R = [lll 120 = B = B (4.65)

by taking Ny even larger if needed to ensure that |||l ;1/5, < R. This can always
be done because ||¢|| 175, < By — 0 as 7 — oo. Therefore Sy = N=3%¢ m =1/3,
q=00,p>1 N > Ny, k; large (j = ming(y) j) so that tk; > 1 we conclude the

inflation result of Corollary 4.2.9|
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The idea of the construction is to get initial data that can concentrate after a
short time near frequency M, and then use that the smoothing effect allow us to
estimate the decay of the high frequency part to conclude that for a special small

time it is possible to observe the norm inflation phenomenon.

Proof of Theorem[{.2.8 Before proceeding to estimate g3 we look at the following

integral

[(¢) = F(Tie ™)

= %/27?2’5 (mae_2”|'|g5) * (mae_%""'@) * (mae_%ﬂ"@) da

(4.66)

To evaluate I(€) we will expand (4.66)) by substituting the initial condition (4.17))
and use Lemma [4.2.3. We focus on what happen near frequency £ = M, because

the low frequency terms decay slower

1¢) = B >, WH+ R+ H+J)+HF, (4.67)
JES(N)

3
J) = —/27rz'§(mae_2”'|ij) * (mae_%THij) * (m 6_2WT"|P2kj+M)dOé,
R
5= = [ 2rigmae R ¢ (e Py ) (e P )
R
—1
5= S [ omietmae P ) ¢ (e P )
R

(4.68)
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and HF correspond to the off-diagonal terms

F = _%613\/ Z Z Vs1Vs2 Vs

(51,52,83)€S (a,b,c)€A(s1,52,53)

X / omi&(mae 2" P,) % (mae 1 P) % (mee 7 P)dar, (4.69)
R

where

S = {(s1,52,53) € S(N)?: 51, 59, 83 not all equal },
(4.70)

A(s1,82,83) = {(a1,a2,a3): a; € {xk,,, £(2ks, + M)},i=1,2,3}.
Lemma 4.2.10 (Lower bound for Jy). Let t > 0 such that tky > 1, t(M + 1) < 1.

Then term Jo satisfies

|E J2|_6N Z/ _27rtT|§|J]d7'>

JjES(N

c
185 Z PYJSI{:J'PM - t_jﬁ?\f Z ’7? (P2kj+M + P4kj+M) (4.71)
JES(N) JES(N)

and consequently

1/q
> 3By Y ik — Z—ﬁﬁ?v (Z (v?kjm)q> (4.72)
J

J

5 S BSE

-1, P
]:11

Proof of Lemma |4.2.10,

Ja — o Z //56‘2”'5 il p—2m7l61=E2 2WT\£2IGABC(§ £1,6)dérdEs, (4.73)

A,B,CeQ(y

where Q(j) ={(4,B,C) : A= +xk;, B=*+k;,C = £(2k; + M)} and

Gapc(§,61,&) = /maf §1)ma (&1 — &2)ma(§a)da
x xal& —&)x(& —&)xe(&e). (4.74)
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We already computed Gapc(§,&1,&2) in Lemma and for this particular case

we can compute some specific values of I'(A, B, C') directly
F(kjv kj? _(2kj + M)) = —(271'3)4/{7]2, F(kj> k]'a (2k] + M)) =0
F(k] —kj, (2/{7] + M)) = —(27’(’3)2]{3]2, F(kj —kj, —(Qk'j + M)) == (27T3)2]€J2

Applying Lemma {4.2.3| we can estimate .J; using

K= ow Y / / 2T -GG IHED G (€ € 6)dErdE
A,B,C (4.75)

> Gj(£7 T) + Hj(£7 7-)7

where G(&¢,7) and H;(&,7) are given by

Gy(€,7) = dm'ge M (2 (¢ — M)(4+ O(1/k))
— KX(€ + M)(4+ O(1/ky)))  (4.76)

Yy —4k; — M
Hy(6,m) = 'l (4 (SR =20 o)

+ 4k (MTJ_M) (24 O(1/k;))

#siy (SR (4 o)

rsi (SN @4 oqm)

(4.77)

Notice supp G; C [-M —1,—M + 1] U [M — 1, M + 1] and supp H; C (—k;, k;)°.

Now we define

t
L(t,&) = B Z %3/ ewi(tfr)lfljng
) 0

jES(N (4.78)

> Li1+ Lo
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Where

Ly = B Z %/ el T)K‘G (& 7)dT
JESN (4.79)

Ly = B Z 73/ el T)IﬂH(f T)dT

jES(N

For L;; we have

L171 = BN Z ’Yj/ —2m(t— T|§‘G (5 7—)

JjES(N

> OBy Z o / =il T kA MR o7 |2 (4 + O(1/kj) )dr Puy

JES(N

t
> CﬂN Z 3 —27rt M+1) /; 6—2#7(4kj+2)k32(4+O<1/kj))d7_PM

S(N
p (M+1) ( ) K
3 3 —2mt(M+1 —27t(4k;+2 J .
> O ‘Z e (1—e )4kj 5 (44 O(1/k;)) Pay
JES(N)
(4.80)
By choosing t such that tk; > 1 and ¢(M + 1) < 1 we get
Liy > CBY > +lkiPur. (4.81)
JES(N)
The next term that we need to estimate is L 5
Lip == By Z 73 / el gy (& T)dr
jES(N
|L172| S OBN Z / ,y e —27(t— T)|§\ —2n7(4k;+M—3) (4]{7 +M)
JES(N)
xk3 (14 1/k;)h;(€)dr
(4.82)
< CBN Z / ”y] —2m(t=7)k; 277 (4k;+M— 3)k3h (f)d
JES(N
k k? 27t (3k;+M—3)
< 727‘(‘1‘, i 1 — e T i -
< Chy Z 3/<;j+M—3< ‘ )
JES(N
< OB Z Yikje b €),
JES(N)
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where h;(§) = Por;4am + Pagyenr. To complete the estimate of Li, we need the

following observation.

Lemma 4.2.11. Lett,x > 0, n € N then

etx/?
e < 2" m (4.83)
Proof of Lemma |4.2.11].
—tr n _tx tha™ 2™ . nl on |67tx/2 (4 84)
e " = n .
2n.n! tr T (Al
m

Remark 4.2.12. The purpose of Lemma [4.2.11] is to make precise the notion that
the exponential dominates over powers and it shows the dependence on ¢ of this

estimate, which will be important for us as we want to take t to be small.

Using Lemma 4.2.11] we get that k2e=*™% < Se=2m%i/2 and therefore

1 otk
[Lial SC5BY D e ™™y (). (4.85)
JES(N)

A similar analysis we can be used to estimate .J;, J3 and .J; more precisely

Lemma 4.2.13 (Estimate for Jy, Js and J;). Under the same conditions of

Lemma

N ! —27T j C 7 .
B = 6% ) v?/o e dr < 8% D hi(€), =134 (486)
)

jES(N JES(N)
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where supph;(€) C [k;/2,7k;] and H}Nlj”f;"vp < CkJ" where C is independent of j.

And by taking the ].-";”’p norm, we get

1/q
B Dl5pe < 5% (Z <v;-”k;“>q) (4.87)

Proof of Lemma[{.2.15 To estimate the terms Ji, Js, J; we use the same idea as

for the estimate for the high frequency part of J,. Consider

Jij:ci Z //56—27r7’|£—£1|6—27r7'|§1—§2|€—27r7§2|Gabc(§,51’52)d§1d§27 (4.88)
)

a,b,ceQ;(j

y —27
for i =1, 3,4 and where ¢ = ¢4 = =", c3 = —2m,

Ql(]) = {(CL?va):a:ikﬁb:ikjaczikj}
Qs(7) = {(a,b,c):a=xk;,b==x(2k; + M),c=+(2k; + M)}

V() = {(abc):a= %2k + M),b=£(2k; + M),c = £(2k; + M)}
(4.89)

The key part of the estimate is to notice that in all the cases G . given by

Gape(§,61,6) = %/Rma(f —&1) xma(§1 — &2) * ma(&2)da

X Xa(€ = &)xpé1 — &2)xe(&2). (4.90)

can be estimated using Lemma obtaining
|Gavel < C ((2k; + M)? + O(k;)) hy(€) (4.91)

where supp h;(§) C [k;/2, Tk;] and ||h;]| zme < CkT* and therefore we get that
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E(J) = By Z ”YJ/ ~2m(e- T|£|de7'

JES(N
|E(<]z)| < CBN Z / 3 —2n(t—7)k;/2 —27r7—(3k 3)(7kj)3hj(§)d7_
JESW) (4.92)
| 1 st
< 06]3\/ Z ’)/?8_27rtkj/2hj(§)5 2k 3]{:;3( 27t (5/2k; 3))
jeS(N) / B

< DB YD Afe (e

JES(N)

We conclude by the proof of Lemma 4.2.13| taking the P norm and using the

triangle inequality.

Lemma 4.2.14 (Estimate High frequency part). Let t > 0 such that tky > 1,

t(M +1) <1. Let HF given by (4.69) Then

|E(HF)| =

I orila —(a+b+c
Chix D D A (5 ( ; )) (4.93)

(s1,82,83)€S a€A(s1),bEA(s2)
ceA(s3)

t
/6_27T(t_T)|§HFdT <
0

and
3

C(M,m,p,q)
IE(HE)|| zrv < B%T E Vi (4.94)
B FES(N)

Proof of Lemmal[{.2.14 From equation (4.69) we know that the high frequency part

is given by
1
HF = —26y > > VeV
(s1,82,83)€S aEA(csell)\,(bsil)X(sz) (495>

X / 2mié (mae 2 P,) % (mae™ 7 P) % (mae P do
R
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where

S = {(s1,52,53) € S(N)*: 51, 5,53 not all equal },
(4.96)

A(s;)) = {a:ae{tks, £(2k,, + M)}},i=1,2,3.

then the general term that we have to estimate is

1 -7 . —2mT|- —27T|- 27|
Ripc = §/€2W(t )|§|27rzx(mae 2 HXA) * (mee 2 HXB) * (mee 2 HXc)dT

(4.97)

Where A € A(sy), B € A(s2), C € A(s3). We split the terms in two groups
i) Q; = {(s1,52,53) € S(N)?: one s; is strictly larger than the other two},
ii) Qy = {(s1,52,83) € S(N)?: two s; are equal and the third one is smaller}.

Notice that S = € U Q. Using this we can split (4.69))

HF =HF, + HFE, (4.98)
Where
HF; = Z Z Y273 RaBC, 1 =1,2. (4.99)
Q. AB,C

Esimate for HF;

To estimate Ry in HF; first we notice that by symmetry we can assume that
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la| > |b] > |c|. For the terms in ©; we can estimate (4.97)) by using (4.82))

—

t
’E(Rab0)| = /6_2W(t_T)|§IRabcd7—

0

t
S O/ 6—27r(t—’r)(|a+b+c|—3)(|a+b+c| +3)€—27r7'(\a|+|b|+\c\—3)
0
E—(a+b+c
< (0(ab,0) + Offal + 1+ 1)) x (=525
t
< Ce27rt(a+b+c|3)/ 627TT(|a+b+C|*3)(|a/+b+c| +3)€f27r7(\a|+|b|+\c\73)
0
E—(a+b+c
< (Dlab.e)+ Offal + 1l + ey (125D

(4.100)
Here we use that |a|/2 > [b+¢|, then |a +b+c| —3 > |a|/2, |a| + |[b] + |¢| > |a| and
la| + [b] + |¢| = |a + b+ ¢| > |a|/2. Now by Lemma [4.30] we know that |T'(a, b, c)| <
C|abc|*3 therefore

—

|E(Rape)| < C(la+ b+ c| + 3)e2mtlatbrel=3)
t p—
% / 6—27r7'|a|/2|abc|2/3x (f (a + b —+ C)) dr
0

3
< ¢ 72wt(\a+b+c|73)/2—|abc|2/3 (1 — e~2mtlal/2yy §—(at+b+c)
L |al/2 3
< %|abc|1/3e_2”t|a|/4x (5 —(a ; b+ C)) .

(4.101)

Now to estimate H F; we need to sum over all terms that satisfy this condition,

to do so we need to count how many terms satisfy this estimate. In 2, up to per-
mutations, we can assume that s; > s, and s; > s3 and therefore all corresponding

Ry are supported in the same annulus Cj, as a belongs to (we might need a slightly
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wider annulus Cj , but that is not important).

||E(HF1)|]-‘;’”’ = ‘5?\[ Z 2781782'783Rabc
51,582,583 a,b,c Fmp
q
< Oﬁ]%] Z 781782783“]3”&176”]-';”’1’
51,82,53
C m —zTt|a
< By D Yo vss(fallblle) 2 (ja + b+ cf + 3)me el
51,82,53
C (lallbl]e) ™
< Wminjﬁ]\r > Yor Yoo Vos ™ T
51,82,53
3
C
< 0 Z Vi
t kminj

JES(N)
(4.102)

Notice that the dependence on p and ¢ is included in the constant and comes from

Ix (W) | zmr < Cpqlla+b+c|+ 3)™. Therefore we obtain

3

C Mam> )
|E(HE) || #r SﬁrL——ﬁﬁz > (4.103)

Estimate for HF5
For HF, we proceed in a similar way. Again assuming that (a, b, c) are decreasing
in modulus, and so we have that a and b are of comparable sizes so we need to be
more careful. In the counting step we get that when we fix the maximum we have

(s1 — 1) options for the third value. Now we consider two cases and we split
HF,=HF" + HF{?. (4.104)

Case 1: If |[a+b| > a/2 or |a+b| > b/2 everything works exactly the same and all
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the estimates for HFi are valid, thus
3

IBEHE | < gy COLMPD (50 w0y
Case 2: If we are not in the situation of case 1, then necessarily we have that
a4+ b = 0, and lots of terms simplify. Now we proceed to estimate H FQ(Q). In
equation (4.100) we get instead

—

t
[E(Rac)l < C / ¢~2m =1 =3) (|| 4 3)e 2l 1ot Hel—9)
0

< (T(a,b, ) + Olla] + o] + [c])) x (

t
< CeZﬂt(c3)(‘C|+3)/ e~ 2m7(lal+b])
0

E—c
< (T(a,b, ) + O(la] + o] + [c])) x (
By Lemma we know that

IT(a,b,c)| < Clabe|*? (4.107)

then

—

t J—
|E(Rape)| < C/ e~ 2mt=mlel2g=mlal| g || dry (£ 3 C) (4.108)
0

Then we get

o —

C t B
|E(Rape)| < ?e—wtld/ 1ol b2/ dry (53 C)
0

—t|e |abc|2/3 —277|a 6_ c
tle] 2lal (1— e 2lal)y T (4.109)

2/3
< C efm\c|/2|abc| / N §—c
7 |al 3

Now we need to sum over all the triples that satisfy the estimate,

< C(Ce

[EHE) = B3> e Yos Yoy | E(Rae)|
2 abe (4.110)
C  |abc)?? E—c
3 —7t|c|/2
S BN Z 2781782783 t3/{7 inj |CLHC‘ € X 3
Qo a,b,c min
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taking the f;”’p norm of E(HF5,) we obtain

IE(HE)||zms < Cﬁthk DD A vesse T2

(%)

min j Qo a,b,c j'—;n’p

1
S OBN 22781782/783 mtld/QC |C|m

tkmm] Q2 a,b,c
3

1
< OB —| 2w

min j

(4.111)

This concludes the proof of Lemma [4.2.14] The idea of this estimate is that by the
smoothing effect of the equation we can cancel as many powers of k; as needed and

we only need to powers with powers of ¢. O

(Continuation of the proof of Theorem 4.2.8])

We can apply Lemma [4.2.10] and 4.2.13| and [4.2.14] to obtain the lower bound for

the norm of the evolution of Equation to obtain

g3l zme = HB?VE(I)”]'-‘;”@
> B wEWGL)| - ‘ B3 B (T})
S ]_'-m,p S j‘maP
— 8> " wE| - ‘ BY Y B ()
s Fyr s FyP (4.112)
| B(HE)|| g0
r 1 r 1/q
> CBY D ke = Cog By ( (v;‘;”kz”>q)
s=0 s=0
3 L onth, s 3 1
—CaBy e 7T = Caby
This concludes the proof of Theorem [4.2.8| O]
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4.3 Norm Inflation for ¢ > 2

In this section we want to construct initial data such that the truncation of the
expansion of the Muskat problem (4.5) at some order ¢ produces norm inflation.

For this purpose we consider the initial data ¢ : R — R, ¢ € C*°(R) defined by

p=0Bx > (P, + Paryinr): (4.113)
N<j<(1+6)N

First we need some preliminary estimates about the size of this initial data

Lemma 4.3.1. [Size of the Initial data/Let ¢ given by (4.113)), then
1/q

el ~ BuL| D Atk (4.114)

N<G<(148)N

Proof of Lemma [£.173. By definition of the F™? norm

qa/p
[l e ~ /BN( > 7?( </ €] Py, |pd§>

N<GL(1+6)N
q/p 1/q
+ </‘£’mp’P2£k:j+M|pdf) >> , (4.115)

here we used that each term is supported in a different annulus CY%, then we get
1/q
Il ~ B | D0 (ks + 1™+ (20 + M+ 1)™)
N<j<(+ON g (4.116)

~ |3

N<j<(1+8)N

O

Remark 4.3.2. Note that this estimate can be made independent of p. By using
that Py, + Paek,+n are supported in only two annulus Cy, and they are disjoint for
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different j, and the easy observation that
1
5(al +1bl) < (Jal” + BIP)!7 < |a| + 0] (4.117)

Consider the Taylor expansion of the Muskat problem (4.5]) but truncated up to

the first ¢ non-zero non-linear

a4
O+ Af =) _Tuf, f(0)=fo (4.118)
k=1

As before we consider the expansion f =", e fy, f(0) = i, we get

;

Ofi+Af1=0 , fi(0) =9

O for1 + Aforia

’“ (-1
224 Z %T/Rax(Ao‘f“)m(Aafi2j+1)da , fara(0) =

| S =0 L k>1
(4.119)

To study this equation we consider a second approximation of this problem,
which is obtained by considering the its second Picard iteration, the idea is that
if we have good convergence properties for the Picard iteration, then the first few
iterations should give a good approximation of the real behaviour of the solution.

By doing this we obtain.

4
Of +AF =3 The ™ fo,  f(0) = fo (4.120)
k=1
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In terms of the system (4.119)) we obtain

p

Ofi +Afi=0 , fi(0) =9
-1 k—1
O fory1 + A fory1 = 1) /ax(Aaf1>(2k+1)da , Jor1(0) =01 <k </
Jke=0 . kevenor k> 20+ 2.
\
(4.121)

The main result that we will prove in this Section is the following.

Theorem 4.3.3 (Norm inflation for higher order truncations). Given ¢ € N, R > 0,
T >0 and ¢ > 0 there exists T < T and some initial data @ of the form (4.113])
such that the unique solution f € C(0,T; F;"P(R)) of the second Picard’s iteration

(4.118)) of order ¢ with initial data ¢ satisfy

1fl7+(T) > R and |lpl|zpe < 1R, (4.122)

form:%—l} ’ C]>(2€+1)(1+€) ,and any p > 1, Vi = .11+576N:1-

Lemma 4.3.4 (Estimate for k < (). Let for41 as defined by (4.121)), t such that

tM <1 and tkxy > 1 then

O 2k+ 2k+1 2k—2+m
||f2k+1||]:;nm < 7 J\f 1 ( E 7;1( )k]( )a

Where the constant C' depend on m, p, q, k, L.

Lemma 4.3.5 (Estimate for k = ¢). Let fory1 as defined by (4.121)), ¢ such that
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tM < 1 and tkxy > 1 then

2+17.20-1 _ 520+1 2k+17.2k—1
| foesrll e > C Z v ki = By t2k Z k;

N<j<(148)N
2k+1
20+1 ?}2-&-}
2 t% Z k; (4.124)

Where the constant C' depend on m, p, q, L.

Proof of Theorem[{.3.5. We prove theorem [4.3.3] using Lemmas [{.3.4] and [£.3.5

First, by definition of the .73;”’7’ norm, it is easy to see that
e _tASOHI’“’ < ”SOHI’”P (4.125)

Now we fix some small time 7" < T such that TM < 1, then for N > N such that

Tky > 1 Lemmas [4.3.4] and {4.3.5| are valid. Now we take consider f = 3", ¥ f;, for

e = 1, then from Lemma |4.3.4] and 4.3.5| we get that

IFllgee = Waeralligee = D I fsmsillzger — lle™ 0l 2mr
q q q q

k<t

C
20+1 2: 204+17.20—-1  p2e+1 2 204+17.20—1
ClﬁN+ ,yj + ]{? N—‘r tQk 7 + k?
N<j<(1+6)N

20+1
20+1 Cs by
6 t2]€ nyjkj
J
-1 C ( : 1/q
4 22k+1 q(2k+1) 7 (2k—2+m)q
_th/q N (Z%’ k; ) - (4.126)

k:— j

2k+1
C5ﬂ2k+1 3’“_}
_Z t?kyn Z %kﬁr

1/q

—CsBn Z 7? k’;nq

N<j<(148)N

v

= Il+I2+[3+I4+[5+[6
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Next by taking m = 2=, ¢ > (20 +1)(1 +¢) , and any p > 1, 7; = —=,
K]

By = 1. Then we get the following estimates for each of the terms

1
2041201
L = Z V; + ki~ Z —Tioaan 00 88 N — oo
N<G<(146)N N<<(Q+oN ] 1
¢ 041,20~
So take N such that C; 8% ™! Z 7? “k;? LS AR
N<G<(A+6)N

ii) The coefficient next to the first term is clearly larger than the one next to the

second cone, so more precisely we can take N large such that

C. 1
=2 <-
T2ky — 2

I

iii)

20—1

Iy = Z ’Yj]fj%T ~ Z 2@%1-&-5

N<j<(1+6)N N<j<+s)N JHH

Because this sum diverges in order to bound that term, we make use that we

have a factor of ky in the denominator, so we can add the assumption that

1 1
20+1
.20=1 14e < NkN
N<j<(1+8)N J 2

S| =

So we take N so that

C
]2\f+1 . 2 Z fy?“lkff_l <1
?kn
N<GL(A+6)N

iv)

. q(2k+1) 7.(2k—24+m)q -~ 1 1
Iy = ZVJ kj Z a(2k+1) 3571 —(2k—2+m)q j(2k—2+m)(1+e)
J N<j<(1+8)N kj
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vi)

vi)

Notice that because m < 1

20

q(2k:+1)—_1 —(2k—2+m)g=q(2k+1) (

20+1

Take N so that

[5 =
Take N so that
-1

k=1

= )

N<i<(148)N

Take N so that

20—1 (2k—2+m)

2W+1

20+1

20—1

C!
]2\f+1 3 Z 'Yj k,jzu-l <1

2
Phy N<<(1+6)N

%k + 1 ><0

Z 7q(2k+1)k§2k72+m)q v0as N — oo

J
N<j<(1+6)N

N<j<(1+8)N

2k—1 1

1/q

Cy 2k+1 q(2k+1) 1 (2k—2+m)q
> >, WUR

1

’)/0 . ~
7% E : 20—1 _ 2k—1 2k—1 1+4¢

k2é+172k+1 j2k+1 q
J

N<j<(148)N

/-1

SO >
2k 7

k=1 N<j<(1+6)N

<1

—0as N — o

1
E q1.mq E
’y]kf] ~ F—)O&SN%OO

N<j<(14+8)N N<j<(14+6)N

Take N so that

Cofn | Y. Ik

N<j<(1446)N
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and consequently we can take | ¢l #mo arbitrarily small say take N large

enough so that

1
lellzpr < &

Then taking N that satisfy all this requirements we conclude that
||f2z+1||7;w >2R—-4>R.

For N large enough, and because this can be done for any 7" > 0 and R > 0 which
completes the proof of Theorem

]

For the proof of Lemma an important technical tool is an estimate of the

integral in « analogous to Lemma [4.2.6] Define

Popr1(Ar, -+, Aggr) = @ Ma(AD)Ma(A2)...ma(Aop)ma (Ao i1 )da (4.127)

Ra

Then we have the following Lemma

Lemma 4.3.6 (Properties of I'oxy1). Let k > 1, then the function T'ayyq defined by

(4.127)) satisfy

i) T'(Ay, ..., Agksr) is given explicitly,

(2m)%k 7
(2k)!

Ay AP AL+ Ay — -

D(Ar, . Aggyr) = (AT A+ AF T Ag| + -+ 4+ A Agken |

+(A1 4+ -4 A2k+1)2k‘—1|A1 4+ -4 A2k+1|>
(4.128)
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ZZ) F2k+1<CA1, ey CA2k+1) = C2kSgn(C>F2k+1(A1, ey A2k+1),
’I,ZZ) F2k+1(A1, R A2k+1) =0 ’Lf Ag >0 fOT’ all f,
iv) Topy1 is symmetric in all variables,

v) Topa1(Ar, ...y Aopyr) < 2(21)%|Ay||Asl...|Agk| . Notice that there are only 2k

terms in the right hand side and not 2k + 1.
’UZ) |F<A1, ceey A25+1)| S 2(27T)2k mlnj |A1AQ...Aj,lfijAj+1....A2k+1’.
vii) Let x; € [A; — 1, A —i+ 1] then

D(z1, - woks1) — T(AL -+ Agggr)| < C'(|A1|%71 + -+ |A2k+1’2k71>

(4.129)

Proof of Lemmal[{.3.6. 1) is obtained by integration by parts.
ii) is direct consequence of the explicit formula in part i). iii) is obtained from
the integral representation by using that

1— 6727riaA 22'677%&14

ma(A) = = sin(raA), (4.130)

o (0%

then you get

T(Ar, - Agpyr) = i(20)° /em(AlJ“"'JFA?’““) (4151)

" sin(mad;)  sin(madays) o

(07 (07

Now the integral can be seen as the Fourier transform at the point A; + --- +

As11. And from computations in Section we conclude that his integral is equal
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to zero.
For part iv) is direct from the definition. Part vi) is obtained from v) and the
observation that because of iv) the variable that we omit in the estimate can be any

variable. For part v) the proof is analogous to the proof in Lemma for k = 1.

To prove vii) we use that I'(xy, - - - , x9y1) is differentiable and therefore it is enough
to estimate the partial derivatives around the point (Ay, -+, Aggr1).
d

D zw) €@ D@0+ o)
; (4.132)

< OR)(Jor* 71 o a7

Then we get that

J < |D(zy,- - wopp1) — D(Ag, -+ Aggr)|

d
< Z ‘dxir(yh"' s Y2k+1)

(4.133)
< 2k +DOE) (A + 12 o Ay + 1177

< Colk) (| A+ 4 |Aggegr + 1)

Proof of Lemma[}-34) First taking Fourier transform to (£.121)) we get that foiy

can be writen as

_1)k—1

t
P = "5 / e 2RI o 1 (&, 7)dr (4.134)
0

for 1 < k < /¢, where,

Iy (€.7) = (2ri) /R (M) dor (4.135)
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Substituting fi = Sy > vie (P, + Pagynr) in Iopia

L (§,8) = BT ) Y MRy (60 +HF(t),  (4.136)
N<GSA+0N - e (k)
i=1,- ,2k+1

where A(ks) = {xks, £(20ks + M)} and

C2k+1

(€.4) = (2mic) / (2 max) %o (€2 imaxy Yda,  (4.137)

HF = B%ﬁ_l Z Z BZTI 7521@-»-1

N<s;<(148)N CSZGA(kS )
not all equal

X (2mi€) /(e_%t'lmaxcil) % (e mg soern)do (4.138)

2k+1

Here HF represent the off diagonal terms in the sum that we expect to have

high frequency and should decay faster, which should make them easier to estimate.

Lemma 4.3.7 (Estimate diagonal terms in Lemma4.3.4). Let k < ¢ and 0 < t < 1,

then

2k+1 2 : 2 : 2k+1E v
N C1 "C;k+1)

N<G<(HON J eA(k;)

Fqp
o (146)N 1
< % ]2\/{4:-{-1 Z 7§2k+1)qk§2k—2+m)qe—7rtqk]-/2 (4139)
j=N

Lemma 4.3.8 (Estimate off diagonal terms in Lemma [4.3.4). Let HF as defined

by (4.138)), then

_ 2k+1
|E(HF)|| zmr < — (Z k+> (4.140)
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Proof of Lemmal[{.3.7. First we write

= (271-2'5) /(mae%t"Xc{) %% (mae—2nt|.|xcj )da

J....J
€141 2k+1

~ (2n6) / dé, - / Dot (€ — €1,61 = Eaveen o)

(4.141)
X€_2ﬁt|€_§l‘X5{ (€ — 51)6_2“'&_52')(6;‘ (& — &)
X e e—QWt\ﬁzkIXCJQ.kH(&k)
Notice that we only have to integrate in the region
supp{X,s (€ = §xgy (&1 — &) -+ X, (Ex)}, (4.142)

also notice that |¢/| < 2¢k; + M. By Lemma part iii) when all the entries of
[opy1 are positive or negative then this expression is zero. By using parts v) and

vii) of the same Lemma we can estimate

|F2k+1(f - 51751 - 527 T 7f2k)| < |F<C{7 e 7C’§k+1)|
+O(|)* 4+ [y Y
< C(20kj + M)* + O(|k;|** 1)

< CEF + O(|k; )

(4.143)
Multiplying by 7]2'”1 and summing over all ¢; we get
Jun(6t) = Y D TRy (4.144)
N<G<(1+0)N ¢ieh;
where
A; = {¢ € {£kj, £(20k; + M)}** ! : ¢; not all same sign }, (4.145)
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Then by applying (4.143)) we get
[apsa] < C(R) D A7 Y @rlED (kS + Ok ™)

N<G<(148)N CjeA
/ / —2m|§— EI 5 £))(e —2mt[&; éz\ (51
(el (Gr))dn - déa

Ck) D 4 Y rleh(k" + Ok, ™)

N<j<(148)N Fen,

IN

Xe —t(1e] [l |- (2k+1))hc{~-.c§k+1(€)’

where

) ©.

(&) = (Xc;*xc;* XXy

2k+1

C2k+41

The estimate of hcgmcj (&) is a direct application of Lemma [4.2.5]

2k+1

need an estimate about the sums ¢y + - -+ + Cogpi1

£2))

(4.146)

(4.147)

Next we

Lemma 4.3.9. Let ¢1,- - copr1 € A(kj) and suppose that not all ¢; have the same

sign and (2k +1)M < k;/2, then
Z) |Cl 4+ ...+ C2k+1| Z ]Cj/2,

ZZ) |Cl‘ + -+ |02k+1‘ — |Cl + ... +C2k+1| Z ij

Proof of Lemma[£.3.9. To see that |c] + ... +cl | > k;/2, is enough to notice that

it is impossible to write a zero as the sum of 2k 4 1 terms using only {£1, £2¢} for

k < £. Now we write ¢; = a;k; + ¢;, where a; € {£1,£2(} and ¢; € {—M,0, M}.

Then
CLA oA Coppr = (a1 4 - -+ agrin)ky + (en + - F apn)-
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By the previous observation we see that |a; + - - - + aggy1| > 1 and therefore

lev 4+ -+ copr| > kj— e+ + €apta]
> kj— (2k+1)M (4.148)
> kj/2.
For part ii) it is enough to notice that because not all of the ¢; have the the

same sign then
ey + -+ copqr| < en] + - A [eang| = 2lgl,
for some 1 < j < 2k + 1, then we get
lcr] 4 - F [earga| = ler + - -+ carga| > 2|¢j| = 2k
This concludes the proof of Lemma 4.3.9. n

Continuation of proof Lemma [£.3.7] Using Lemma part i) we can estimate

the integral,

—_—

t
E(Jo1) = /e%(tﬂ'gc’zkﬂ(fﬂ')dT
0

t
< C Z Z 7j2,k+127r|§|/0 e 2m(t=T)[¢] (k:?k—l—O(k?k_l))

N<SA+ON Gen,

X6—27rr(|c{\+...+\cgk+1\—(2k+1))dTX <f —(q + k + C;k+1))
2

(4.149)
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—

E(w)l < C 0 30 37 a7 emle] (8 + o)

N<SO+O)N Gen,

X e_zﬂt(|c{+'“+c;k+1 |—2k)

t ) ) . .
. / e2rr(lertbey, [ =2k) =277 (e [ tleg 4 [—(2h+1)) 1
0

“x (5 — (4 +2k +C;k+1)> |

(4.150)

now by Lemma m part ii) we get

N<GSH+)N Gien,

X 6_27“(6]1‘ +"'+Cgk+1 —2k)

! (4t
—27r7'(kj—1)d f ( 1 2h+1
X/o ¢ T ( % )

1Y) o2t
< OS2 onle] (K2 4 O(k21)) e 2mtlied e =20

j J
J c

t — (4 + )
727T7(kj71)d § ( 1 2k+1
X/o ‘ T ( ok )

< O AP (k2 4 Ok ) et

L em- E—(cd+ -+ )
" 2 (k; — 1) (1—e )X < o

< O LD TH (X (5 — +2k * C§k+1)> |
i

where Hj(t) = (20 + 2)2k7* ! g ek =20 (1 — =271 Then
J

[E(aren)| < S 42 Hy(8) B, (€) (4.151)

J
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where

— ([t .. +d
B;(€) = > x(g (Ci+2k+ 2“1)). (4.152)

e (k;)
not all same sign

Now we compute the F/™” norm. First we notice that for different values of j
the terms B;(§) have disjoint support. Let R € N such that 21t > (20)%. Because

we can bound the quantity
ki <o+ ey < 2k +1)(20k; + M) < (20+ 1)k

Then the term B;(€) is supported in at most R + 1 dyadic annulus C;,

q

I = Z Z 712k+1RC{"'C%k+1

N§]§(1+5)N C{EA(kj) ]_'—m,p
q

= HE(J%H)HZITJW

a/p
= ([ 1)

rez

Let Rj = [k?j, (26 + 1)2]{7]] then

L= 2% (ermor [ amsr)”

7 TER]'

2O HH ) (R +1) (/c \flmp!Bj!p) :

J

IA
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_ logs kj+R
where C; = |J  C.. Now we can estimate the integral of B; as
r=logak;—1

[t as < (oo arn w2k [ 15y
< ((20+ 17K + 20 (A 2K (HA,)
< (204 1)%k; + 2k)™P (4212421
< (204 1)PmgEPRDE 2L (| + 2k)™P
< C(m,p, l, k)K"
where C'(m, p, ¢, k)l/ P can be bounded independent of p. Using this we get

I < CZ k+1H qk;nq

1
< C Z/y;](Qk-‘rl (2£ + 2>qk§2k+1)q (k - 1)qe—tq(k:j—2k)(1 . 6—27rt(kj—1))qk;nq
1 J
J
< C Z ,Y;J(Zk‘ﬁ‘l)k§2k+m)qe—2ﬂtqkj/2
J
C 2k+1 2k—2+m —rtqk.;
S t2 Z,Yq( + )kj( + )qe tqk]/2
J

Therefore

1/q
C _
2k+1 iy q(2k+1) 1 (2k—24+m)q _—mtqk; /2
Z Z c1 “Coht1 = $2/a (Z T kj € ! >

N<G<(A+0)N ¢ eA(k) Fmop J
q

(4.153)

This complete the proof of Lemma [4.3.7] m

Proof of Lemmal[{.3.8 Now we proceed to estimate the high frequency part. From

equation (4.138)) we know that HF' can be written as

HF /62k+1 Z Z /751 “ e 732k+1Rcll- c 2k+17 (4.154)

2k+1
N<siS(I+6)N clieA(ks;)
not all equal
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where A(s;) = {£ks,, £(2ks, + M)} and

Ry ok = (27T5)/d§1'"/dfzkr%ﬂ(f—fl,fl — &2, Eor)
Xe*2ﬂt|§*51lxcjl. (& — 51>e*2ﬂt\£1*£2\xcg (& — &) (4.155)
xSy ()

The idea is to use an estimate similar to the one used in the proof of Lemma
[4.2.14] An important estimate concerning the proof has to with the size of the sums
R T
Lemma 4.3.10. Suppose that for k < ¢, M > 20+ 2 | kx/2 > (20 + 1)M

(145)N)

e <eof < oo < eapral, e € Uy’ {Eky, £(2k; + M)}, not all with the same

sign and ¢1 + - -+ + Copy1 # £ M then
i) |er 4 -+ copyr] > ki | /2 for some iy
i) |en] + -+ |eorrr| — ler + -+ coprr| > |kiy|/2 for some iy

ii1) At least one among |c1 + -+ + copr1| and |eq| + -+ + |copr1| — |1 + - - Coprn

is at least copi1/2

Proof. For part i) we write ¢; = a;k;, +¢;M, where a; € {£1,£2(}, ¢ € {-1,0,1}.

Then we get

14+ coprr = (arky, + -+ ages1) + (61 + -+ Eopr1) M (4.156)

Because of the difference in the order of magnitude, in order for for the term
(alkil + -+ a%ﬂkm“) to vanish we need that the coefficients a; with the same
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k; factor add up to zero, but this is impossible by parity for k£ < ¢ and for the case
k = ¢ we use that ¢; + - - - + cory1 # =M. We conclude that for at least one k; the

sum of the corresponding coefficients is not zero and therefore

|a1k:i1 + -+ a2k+1ki2k+l| > ]{31’1 (4157)

For some i;. The second summand satisfy |e; + -+ 4 €9x41| < 2k + 1 and then by
the assumption ky/2 > (20 + 1)M we conclude that

1
lcr + o+ copqa| 2> hiy —EN/2 > ki (4.158)

Part ii) come from the assumption that not all the ¢; have the same sign, and
therefore

|01 + -+ C2k+1| < |Cl| + -+ |Czk+1| - 2|Cm| (4159)
For some i, therefore we conclude that

|Cl| —+ .- —I— |Cgk+1| — |Cl —f- s + 62k+1| Z 2|Cm| Z kam (4160)

Part 4ii) come from the observation that

(ler + -+ 4 copsal) + (le] + - -+ + [eonsa| = fer + -+ cora|)
= ’Cl‘ + -4 |02k+1‘ Z ’Cgk+1| (4161)
and because both terms are positive we get the result. O]
Under this assumptions we have the following

Dt il < Cle ey 78, (4162)
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using this we can estimate (4.155]) by

B SOl + - + 8 [+ 2k + 1)
% |Ci?1 . C2ilc+1|2k+16 2mt(|eyt |4+ +|Czilfi1| Qk_l)hcfl ) ;iﬁl (f), (4163)
where
S1 S2k+1
o (&= (et 4 i)
Xt g ei2ht (€) < hcil...cggﬁl(f) < 2%y ( o - (4.164)
Now we look at the evolution of this term
¢
—2(t—T1 S
‘]: <E(Rci1c§i’fﬁf)>‘ < O/O e 2t )lﬂ(lcil +-- 2?<:Tlll + 2k + 1)
X |Ci1 . 682k+1 | 2k+1
s o= 2mt(lelt [+ Hlepr i |*2k*1)h(§)d7
t S
< c / o2t (6] 2 —2k)
0
S1 32k+1 Qk 1 S2k+41 2131}6—1
X([e3' + - e |+ 2k + 1)ett et
s o= 2mt(lelt [+ Hleppi i |- =D p(&)dr
< Qe )
X(e3 o G+ 2k + Dleit e

t
S2k41 1 S2k41
X/ e 27r7'(|cll|+ +|02k+1\ |01 +- +02k+1| 1)d7'
0

(4.165)
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S2k+1

< Cle=2mtller eyl |_2k)h(f)
s s s _2k
XI5 o GGt 2 D)l - et
t
X / e~ 2mr(ki/2) g7 (4.166)
0
|C‘i1 . C;i:k+11 s1 52k+1 (1 - 672“]%2/2)
< L2l p(g)em el e | e
< ER Sksy /2

S1 S2k+1 _2k 1 —7Tt|051—|—~‘~+082k+1|/2
_lcl S Coprt ’2k+1 h(é‘) e 1 ko1

ki, ki,
Now by iii) in Lemma [4.3.10| we know that among k;, and k;, at least one of them

1

can be bounded below by 3

k;, and for the other one we can use the bound ky then

we get

‘f (E(R . —_ )> ‘ < C ‘Cl C2k+1 | k+ h(f)e_ﬂt|cll+“.+62kﬁ:§ |/2 (4167)
citeee =

2k+1 tkyn k;
c .
Now notice that k; > m for all j, then we can bound
2k
i - oyt 7R+ 1 21
< 71| 2kt 4.168
NI 159

Now we can bound

S | (0) ] gy +o T2

C .
1B ower | mr - < ?H|sz

CZ s
%UM

IN

B (e}t G2k

(4.169)

S2k+1
Xe*ﬂt\cilJr---Jrc%ﬁi |/2

C 2k—1
k7p7q7‘€ H |CS7, m

Here we used that because |¢' + - - + ¢ | > ky/2 then we can find a upper

bound for the number of dyadic annulus that the interval

e+ B Dbl e+ B 20 (4.170)
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interesect, say R, then

a/p\ /4
G <Z< i >|pd§) )

k

(Z (/ 1 + -+ -+ copgr + 2Kk
k

><|22kx (f — (1 4+ 02k+1)> |pd§> q/p>1/q

2k

IN

< 2%|cy 4 -+ ey + 2k

(n{ e )

< 2%|cp 4+ copyr + 2k RY(4k)V/P

(4.171)

Now we need to sum over all the tuples (ci',- -+, &3 ), we get

L = Z Z Vs1 '782k+1R 1 9211451

si cGEA(s1, ,S2k41) Fmp
q

< Z Z Vs1 " Vsopin Rcil- ;il_ﬁl Fmap
si GjEA(s1,,82k+41) !
2k—1
DO S I L .

Si C}EA(SL'“ ,82k+1)

o - 2ht1
< 420+ 1 2k+1 /’{:2’“+1
< 2 (Z Ly
o L\ 2k
k,p,q,¢ %=
< S (5o)
This completes the proof of Lemma |4.3.8 O

Continuation of proof of Lemma Using the estimates given by Lemmas
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and we get that

2k:+1

k
Hf2k+1H.7-',;"’p < Qk—l—l ZZ : +1E Cl Czk+1)
FqP
2k+1
+2]{ZN—+1 Z Z Ts1 v '/752k+1E(RCf”'C§k+1)
1,7 3 J2k+1 CEA(Sl 52k+1) FIMP
q
o 1/q
Yokt q(2k+1) 1 (2k—2+m)q _—rtqk;/2
= t2/a" N (Z E i o
J 2k+1
e ()
(4.173)

Where the constant C' depend on m, ¢, ¢,k . (This complete the proof of Lemma

13.4)

]

Proof of Lemma . To estimate the term fy.,; we use the following decompo-

sition
fors1 =+ HF, + HE,,

where

2z+1 Z Z 20+1 / _27r(t_7—)|§‘RCI"'02£+1dT7

Qj = {(Cl, e 7025_;,_1) 1C € {:I:k],j:(ng] + M)} and c1+ -+ Copt1

and

le _ B]QV[+1 Z Z 72£+1/ 7r(t7T)|£|RCr--Cg[+1dT

J o AN\
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(4.175)

= +M,

(4.176)

(4.177)



Aj = {kj, £(20k; + M) P,

t
HF, = B?f“ Z > e Yenns / e UER, L dr, (4.178)
0

*,82041 Q(Sl 82[+1)

Q(s1,-+ ,S9041) = A(s1) X -++ X A(s41). To estimate these terms we use the
following Lemmas
Lemma 4.3.11. Let M > 2(, tM <1, tk; > 1, then
HJIHJ:mP > ﬁ%“CZy%ka-g_l (4.179)
J
Where C' depend on p, q, m, M, .
Lemma 4.3.12. Let HF, and HF, as defined by, then

C
||HF1||]_-mp < /82f+1t2k Z,YQk-i-lk,Qk 1 (4180)
J

and

2k+1
|yHF2\|fmp</32f+1t2k (Z w ) . (4.181)

Continuation of proof Lemma [4.3.5, For now we will just use Lemmas [4.3.11
and 4.3.12, From the decomposition given by equation (4.174) we can bound the

norm of fop 1 by

| faeitllzps = il = VH il oo — | HFall g (1182)

And by Lemmas |4.3.11] and 4.3.12 we can estimate

llspe > O Yz

J

2k+1
C 2k—1
2£+1 2k+1 2k 1 p2041 2k+1
BN tgk E N Rhy (E ikt ) (4.183)
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Now we proceed to prove Lemmas [4.3.11| and 4.3.12]

Proof of Lemma |4.3.11. The key element for this proof is a lower bound of R ;

1 “C§k+1
For this purpose we need to estimate the value of I'ypyy(—kj, - -+, —k;, 20k; + M),
to do this we use the integral formula for I'ypyq
L = F24+1(—l{7j7 R —k’j, 2€k‘3 + M)
1 — 2mikjo\24 1— —2mi(2kl+M) o
:z/< eﬂ)(%e )da
a26+1
' (1 _ 627rikja)2é(1 _ 6—271'1'(2616]-)04)
— / it do (4.184)
' (1 _ 627rikja)2£(672ﬂ'i(2€kj)a _ 6727ri(2€kj+M)a)
—l—z/ T da
= L+ 1
‘ (1 - 627rikjoc>2€(1 - 6—27ri(2k€)oc)
L = 7’/ Q201 dov
. e—iﬂ'k’ja _ ewikja 20 em’(?ﬁkj)a _ e—'n'i(%kj)oa
- Z/ ( ) (2€+1 )da
. (g)% in(205) (4.185)
e sin sin
= z(22)2k+1kj2.k7r2k/ G dg
— (_1)k+1(27T>2k+1k]2k
And for the second term
. (1 _ e27rikja)2€(6727ri(2€kj)a _ 6727ri(2€kj+M)a)
I = Z/ o201 da
. e—27rikja -1 20 1 — e—27riMa
- Z/ : )2e£1 )do‘
o (4.186)

= Toppa(kj,---  kj, M)

= kgzeil‘kj|r2€+1(17 R M/kj)
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And by Lemma we conclude

M

1I,] < |kj|2’f(27r)2’f|k | < |k;|*t2(2m)* M (4.187)
j
Therefore we conclude
Torr(—kj, -+, —kj, 20k + M) = (=1) (27 B2 + O(KF ). (4.188)

Using this we can estimate R _;
1 2041

(_1)£+1ch“ ;

17772041

> C‘€|((2W)2k+lk]2€ + O<k32.£71))6727rt(4£kj+M+2£+1)h(€> (4.189)

Now we define Qj = {(Cl, SR ,Cj) G € {:l:k?j, :l:(2]{?] —+ M)},Cl + - Copp1 = :l:M}
By Lemma the only possibilities for §2; are the tuples such that one of the
elements is equal to £(2¢k; + M) and the rest Fk;. Now by summing over all

elements of {2; we get

Z Z ’Y]%JAEI(RCL-" 762e+1)
J oy

Fop
(1 _ 6727Tt(4£kj+1))

Z C(M . 26)1+m Z(Zlg + 2)7]25+1k]2€e—ﬂt(M+2€)
J
> Z 7324+1k]22716—27rt(M+24) (4'190)
J

For M > 2¢, tM <1, tk; > 1. This concludes the proof of Lemma {4.3.11}

]

Proof of Lemma[{.3.13. For the upper bound of the high frequency we use the same

estimates as in the proof of Lemma 4.3.8|
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HF, =gy Y 0 Y / e R, L dr (4.191)

J A\

Q5 ={(c1, -+ o) - ¢ € {2y, £(20k; + M)} and ¢1 + - - - + copn = £M Y,

t
HEy = 2”1 Z Z Vs1 77" Vs /0 ej%(t#mRcl"'cze+1dT (4.192)

382041 Q(s1,7 ,52041)

From the proof of Lemmal4.3.8, we can apply the estimate [4.169| because Lemma

4.3.10| still apply in this context, then we get

[HF | e < 6%“7% Z A e (4.193)
and for HF5
2%k+1
C 2h1
P (ZW?’““) , (4.194)
J

where the constant depend on m, p, ¢, £. This complete the proof of Lemma

4.5.12 [l

4.4 Norm inflation for the truncated problem in

the periodic domain

The goal of this section is to extend the results that we prove for the real lie for
a periodic domain, the key to extend the result is an estimate of the convolution
of characteristic functions as the one obtained in Lemma in order to do this
we use a series representation of the tangent to identify the most singular part and
compare it with the case of the real line.
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4.4.1 Convolution of characteristic functions in the periodic
domain

The next lemma make a precise error estimate on in a periodic domain instead
of the real line, the main difference between this two situation is that estimates
for the function I'(z,y, z) from Lemma do not apply directly to the periodic
case. The goal of this section is to extend a version of the estimates to a for the
corresponding integral in the periodic case. The rest of the estimates follow directly
from using the corresponding notion of Fourier transform in the periodic domain,
i.e. the map that takes a periodic function f : T = R/(27Z) — C to the function
F(f) = f : Z — C that give the Fourier coefficients of the representation of f as a
Fourier series, and for f regular enough we have:

f=Y_flk)ere. (4.195)

keZ

Lemma 4.4.1 (Integral estimate in the periodic case). Let Ay, Ag, A3 € R,

|A; > 3| then
_ p—iaAr (1 _ p—iaA2) (1 _ p—iaAs
FP(A17A27A3) = 'L/ <1 € )(1 36 )(1 e )dQ{
212 tan®(a/2) (4.196)
= (27T)2F(A1,A2,A3) + O(|A1| + |As| + |As)),

where T'(Ay, As, A3) is defined by (4.30)).
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Proof of Lemmal[{.4.1 Some estimates first
1

1

IR

—(cos(x)
1 /7r cos(x) sin(Bx) + sin(Bx)

sin(Bz)

J cos?(z/2) dx

sin(Bx)
. dx

dx

2/,

T

(4.197)

1/7r
1),

now we need the following Lemma

T

Lemma 4.4.2. Let B € R, |B| > 2, then

[t

Proof of Lemma[{.4.2

™ : B
/ sin(Bx) e
.

san(B) /7r sin(|B|x)

o x

™ sin(|B|x)
i) [ S

|Blm
sgn(B) / wd@/
—|1Bl= Y

sgn(B) (/R Mdy

Y

| B|dx

To estimate the term f|OBO|7r

/OO
|Blm

Y

siny)
Yy

dy

(sin((B + 1)z) + sin((B — 1)x) + 2sin(Bz)

—sgn()r (140 (13

9 /
1Bl

Mdy, we use that it behaves like an alternating series

) dx,

(4.198)

(4.199)

siny)
Yy

')

|B| 0o -
= - / Sm(y)dw / Sm(y)dy (4.200)
LI@IH Y LBl 3/(k+1)
sin(y) - / ™ sin(y)
= - dy + dy
/UBU Y Z km Y

k=1Bl]
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then the sum is a alternating series, and therefore it can be bounded by

1Bl o (UBI+D)7 o
I < / Sln(y)dy +/ Sln(y)dy

usly Y LIB|Jm Yy
(UBI+D7

< 9 / ) 4, (4.201)
LIBl|= Yy
2

<

- |Bl-1

And so by using that fR Sinxﬂdx = m we can finally conclude that if B > 2

/_: Sm(xB:r:) = sgn(B)m (1 +0 (ﬁ)) : (4.202)

]

We will use previous Lemma to estimate the integral (4.196|). For this

purpose we need the following expansion of the tangent

1
3 a2
tan (CY/2) = COS (05/2) Z m, (4203)
kez
using this formula we can write I'(Ay, Az, A3) = >, o, I where
o ™ ) (1 _ e—iOzAl)(l _ e—iOzAQ)(l _ e—iOcA3>
Iy = Z/WCOS (a/2) (/2 —Tor)? da. (4.204)

Because we expect that the largest contribution comes form the singular term with

k = 0, we first estimate

2% [T d* (1
Iy== [ == |(—)cos*(a/2)F 4.2
O3 ) da2 (a) cos“(a/2)F(a)da, (4.205)

where F(a) = (1 —e~41)(1 — e~ie42)(1 — e~%43) . Now we proceed to integrate by

parts, and noticing that cos?(c/2) vanishes up to order 2 at £+, so we do not have
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boundary terms

L — 4 / :d% (é) cos?(a/2) F(a)da

= —ai [T (3] (eosta2)sinfa/2)F + cosla/2) ) da

«

o 1 1 (4.206)
= 2@'/ —cosaFda+4i/—sinaF’da+4i/—cosQ(a/2)F”da
o a

(0%

—T

= Iy + o2+ o3,

again we focus on the most singular term, for this purpose we compute

F// _ _A%G—iaAl - Age—iaAg o Age_mAg + (Al + A2)26—z‘a(A1+A2)
—|—(A1 +A3)2€7ia(A1+A3) + <A2_|_A3>2€fia(A2+A3)efia(A2+A3)

—(Ay + Ay + Ag)2eio(Artdztds)
(4.207)

Using the Lemma we get that

3

(27)?

Ins = [(Ay, Ay, Ag) + O(|A1] + |As| + |As]). (4.208)

For the other two terms, we use that the quotient |(1—e™*4)/a| < V2|A| is

bounded and therefore we can bound
o] < 20V2[Al,  [Too] < C(1AL] + | As] + | As)). (4.209)
Therefore we conclude that
Iy =T(Ay, Ay, As) + O(|As| + |As| + |As]). (4.210)

To conclude we need to estimate the nonsingular terms, to do so we use that the
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numerator is bounded and that |«/2 — kx| > (|k| — 1/2)7 therefore

[ oty Lm0 = A i)
x| = ‘/_Trcos (a/2) (/2 = fn)? da
| otz Az e A ) (4o
[ eostarmati=, e UG
< C’A1|7T
— (k[ —1/2)%

and therefore summing in k£ we obtain

S

k0

1
< ClA| Z R =1/2) < Col A4, (4.212)
k

which means that -, Iy = O(|Ai[), which concludes the proof of Lemma (4.4.1]

]

4.4.2 Norm inflation in the periodic domain for ¢/ =1

The initial condition is essentially the same as for the case of the real line with
two important remarks, first this time instead of using characteristic functions of
intervals we can use Kronecker’s delta dy and because we are working in a periodic
domain all the frequencies must be integers.

Given N € N and ¢ € N, we consider ¢ : Z — R of the form

6 =By . % (Pu(©)+ Parar(9)), (4:213)

JeS(N)
where Py(k) = 0o(k — A) + do(k + A), {ks}s>0 Is a sequence of positive integers

that grow very fast, M > 2( is fixed and {v;}, a sequence of positive numbers to
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be chosen later. N is a parameter that will be large in general, S(NV) = {j : N <

J < (14 0)N}, and By is a scaling factor that also depend on the parameter N.

Lemma 4.4.3 (Size of the Initial data). Consider ¢ defined by (4.213)) then

1/q

ol mr < CBx | D0 AW ] (4.214)

JES(N)

Proof of Lemma[{.2.1. Because the sequence {k;} is growing fast, at most one of
them belong to each C} annulus. Also, because the C} are dyadic we can ensure
that k; and 2k; + M belong to different annulus. With this observation in mind we

get that if k; € C}, then

> ™ lem) < (Byy)’ 27 ks (4.215)

neCy
Similarly if 2k; + M € Cj,

mp

A m M m| m;
> nf" @) < (Byyz)” 22 i+ 5| < (Bny;)" 2570+ | ks (4.216)

neCk

taking the ¢/p power and summing over k we get

qa/p
Z(Zm!% ) < Z%( T gl 2" )

neCy, jES(N
< ( “’”ﬁ“’) S
JES(N)
(4.217)
taking the ¢-th root we obtain
1/q
ol gme < CBx | D AW (4.218)
JES(N)
O
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Because we can to replicate the result for the real line, our first goal would be
to extend the results from Theorem to the periodic case, more precisely we

will prove the following.

Theorem 4.4.4. Consider the truncation of the Muskat problem given by

Of+Af=Tee ™o | (,t)€[0,T] xT
(4.219)

£(0)=0 , z€T

where ¢ is given by (4.213]), and T is defined by (4.7)). Let t > 0 a time such that

t(M +1) <1 and tko > 1. Then the solution f of (4.219) satisfy

1/q
Cy m
1Ol = 8% D7 ks = 8% [ D (k)
jES(N) JES(N)
3
C!
—ﬁz?irwg“ > s (4.220)
min j €5(N)

where the constants Cy, Cy and Cs only depend on M ,m,q,p.

As in the case of the real line this result also imply the inflation result in the

periodic domain

Corollary 4.4.5. Let T' > 0, R > 0 and consider the problem (4.219)) with initial

data . Then there exists some 0 < T < T and some initial ¢ such that for p > 1

1
lerll z150 < 5 (4.221)
and
1F(R)|| /20 > R. (4.222)
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Proof of Corollary[{.4.5. The proof is analogous to Corollary [£.2.9 O

Proof of Theorem[{.4.4] As in the proof of Theorem we need to look at
In) = F (Tle_TAtp) (n)
) (4.223)

- 3 /m (maeffuga) . (mae’f"%) * (mae*THtﬁ) do,

1_671'04

where m, = tan(ara)"

To evaluate I(n) we will expand (4.223) by substituting the initial condition
(4.213) and use Lemma [4.4.1, We focus on what happen at the frequency n = M,

because we exoect the low frequency terms decay slower

1€) = BY > WU+ B+ J+ )+ HF, (4.224)
JES(N)

- —1
J = % Zz’n(mae*THij) * (maefTHij) * (maeiTHij)a

nez
J = - Zm(mae”'"ij) * (mae’THij) * (mae’ﬂ"ngﬁM),
nez
J o= - Zm(mae”'"ij) * (mae’%Tl"P%ﬁM) * (mae’THPijJrM), (4.225)
nez

. —1 . o —|-
Ji = %Zm(mae ”szﬁM)*(ma@ HP%ﬁM)

nez
*(mae_T"IPij_;,_M),

and HF correspond to the off-diagonal terms
1
HF = _gﬁ?\f Z Z Vs1Vs2Vs3
(s1,82,83)€S (a,b,c)EA(s1,52,53)

X Zin(ma6_7|"Pa) s (Mae 1P, % (mae™™P,), (4.226)

ne”L
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where

S = {(s1,82,53) € S(N)*: 51, 52, 83 not all equal },
(4.227)
A(s1,82,83) = {(a1,a92,a3) : a; € {xk,,, £(2ks, + M)}, i =1,2,3}.
For the estimates of the term J;, Js, J, and HF the same proofs still holds, the
only ingredient that we need is the analogous of Lemma which we proceed to

prove now

Lemma 4.4.6. Let A,B,C e R, M > 4, |A|,|B|,|C| > M,t<1,|A+B+C|>

2M then

S = Zin(mae_”"(SA) * (mae_”"(SB) * (mae_t‘"éc)
neZ
~ (A+ B+ C)eMHIBHEN(T(A, B,C) + O(|Al + |B| +|C|))arpro(n),
(4.228)

l—e

where my(§) = tan(;i/f), [(x,y, 2) is defined by (4.196]).

Proof of Lemma[{.2.5 Consider

= /in(maet"xA)*(maet"'xB)*(maet"Xc)dOé
T

- Yy / e —tn—il o—tli—kl ,~tlk]
T

JEL kel
t _—ia(n=j)\(1 _ —ia(i—k)\(1 _ —iak
Xtan3(a/2)(1 e J(1—e (1 —e ") da

x0a(n —j)0p(j — k)oc(k)

= (A+ B+ Qe Ml tIBle=UCT L (A, B, C)dasrc(n).
(4.229)

Finally by applying Lemma to I'p we obtain the conclusion of the Lemma.
O
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Using this lemma we can just follow

Lemma 4.4.7 (Lower bound for Jy). Let t > 0 such that tky > 1, t(M + 1) < 1.

Then term Jo satisfies

— t .
BB =88 Y / e | >
)

jES(N

C
aBy Z VEkJPM - t_;ﬁ?\/ Z '733 (P2kj+M + P4kj+M) (4.230)

FES(N) JES(N)

and consequently

1/q
> sy Y ki — %ﬁ?v (Z (ﬁ’k;”)q) (4.231)
J

J

B S REU)

~m,p
Fq

Proof. The proof is completely analogous to the proof of Lemma by replacing

Lemma by Lemma |4.4.6 O

A similar analysis we can be used to estimate J;, J3 and J; more precisely

Lemma 4.4.8 (Estimate for Jy, J; and Jy). Under the same conditions of Lemma

4.7

— 4 : C -
B = 8% Y. / e Tl drl < S8 D Ahi(€),  i=1,3,4 (4.232)
jesvy 0 JES(N)

~

where supph;(€) C [k;/2,7k;] and Hﬁjﬂfén,p < CK* where C is independent of j.

And by taking the fgﬁ’p norm, we get

1/q
IBUNO e < 5% (Z (V?k?)q) (4.233)

J

Proof. The proof is completely analogous to the proof of Lemma O
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4.4.3 Norm Inflation in the periodic case for ¢ > 2

For the higher order case, it is easy to see that most of the proof can be adapted s
in the previous subsection for the case ¢ = 1, the only thing that we really need to
prove is the analogous of Lemma[4.4.T], which give us the ability to use the estimates

for the non-periodic case in the periodic case.

Lemma 4.4.9 (Integral estimate in the periodic case). Let Ay, -+, A, € R,
|A;| > n —1 then

‘ (1 o e—iozAl) .. (1 o e—iaAn>
Tp(Ar, -, Ay = d
P( 1 ) ) Z/IF tan”(a/Q) «Q

27’L
= ————T(Ay,-, A) + O(JA "2+ -+ + A7),

(27-()1171
(4.234)
where T'(Aq, -+, Ay) is defined by (4.127)).

Proof of Lemmal[{.4.9. To extend the result of Lemma to the case of n terms

the idea is to follow the same proof with minor adjustments. First we need a

expansion for m like the one given by Lemma [4.4.10

1 1 B cos? 4 (a/2)

27 tan™(a/2) (o + 27k)" + LSn (@) (4.235)

keZ

where LS, () is less singular than the first term near 27k for k € Z. This formula
allow us to integrate by parts as in (4.206]) in such a way that the remainder terms
are less singular. Note that we have enough vanishing at +7 that we do not get

boundary terms from the integration by parts. More specifically we can write

Dp(Ar,-+ Ay) =Y L +R, (4.236)

keZ
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where

I, :z'fr s /2)%61@, (4.237)
and
R=i / ' 2"LS, (o) F(a)da, (4.238)

for F(a) = (1 — e A1)... (1 — e~™4n), The most singular term in the expansion
is Iy and so we expect the largest contribution to come from it. By integrating by

parts we get

2™ ™1 —_ dr—1
fo= (n—1)! /,r al® (a/Q)dan—l F(a)dor + Ry, (4.239)

where Ry represent the less singular terms coming from the integration by parts.

To estimate the main term we need to estimate integrals of the form

J = /7r cost(x/Q)Sin(fI)dx

—T

_ /7r 2%(67@/2 i e—ix/Z)QmSin(Bx)dx

_ L :mo (Qm) iw (k= )Sif(TBx)d:v (4.240)
1 W( 27:: QZ (m k) cos(kx)) Sm(gc—Bx)dx
_ i i% im ( ) sin((B + k)z)dz,
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and then by applying Lemma we conclude that for |B| > m + 1

/ ' cos2m(:p/2)Sin(x—Bx)dx _ %ki (mQTk)sgn(B—l—k)

” (1+0(i5%)

T o~ 2m
= & k;n (m - k) sgn(B) (1 +0 (@))
= msgn(B) (1 +0 (ﬁ)) :
(4.241)
we conclude that
2n
Io= Gyl e A) H O b A ) + Re (4242)

Next we can estimate Ry using (4.209)), I for k # 0 using (4.211]), and both together

to estimate R by separating the cases of singularities near zero and away from zero.

This allow us to conclude

[ (1 —eiadr) (1 — emiadn)
Z/T tan™(«/2) da

2n
= —I (A4, A A" 4 AL, (424
(27_(_)”,1 ( 1, ) n)+0(| 1| + +| nl ) ( 3)
This concludes the proof of Lemma [£.4.9] O

Now we proceed to prove the formula for that tangent that we used on the proof

of Lemma [4.4.9]

Lemma 4.4.10. Let n > 3 and o € R\ 27k, k € Z, then

1 1 o cos?Har/2)

Sl E—— L. 4.244
27 tan"(0/2) 2= (a+ 27k)" + Lnla), (4244)

where |0°LS,(a)| < C(n, B) Y okez m.
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Proof of Lemma | First we consider the following formula for -

( /2)
1 1 1 2a
- = — _ 4.245
SteaD) ~ 2 T 2 @ (4.245)
k>
taking derivative in a we get
Isec’(a/2) 1 1 1 1
- i ~ = —_— 4.246
4tan?(a/2)  4tan®(a/2) Ty ; (o + 27k)?’ ( )
then
1 1
- 4.247
4 tan?( a/2 kz: 04+27rk o ( )
taking derivative in a again we get
1 sec? B Z (4.248)
8 tan B — (a+ 27rk; '

now we make two observations about this formula that will help us to establish our

induction, first by writing

1 1

e P Ry (4249

we see that the cos?(a/2) term give enough vanishing at the boundary so we can
integrate by parts in the proof of Lemma [4.4.9| without getting boundary terms. By

taking another derivative we see that

1 sect(a/2) 1 2sec?( 2sec”(a/2) Z
a—|—27rk

— 4.2
24 tan*(ar/2) o “tan?(a/2) (4:250)

ke

which mean that we can write

1
tant(a/2) = cos*(a/2) (ZZ Oz/2—|—7rk +LS4(04)> ; (4.251)
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where cos?(a/2)LS4(v) indicates a term that is less singular than the first one at
each 27k, and consequently also all its derivatives are also less singular than the
ones of the first term. Using this observation we can formulate our induction in the

following way: for any n > 3

1 sec’ 4(a/2)

1
7 ey ; CESITIN LS, () (4.252)

ACES 2rk)n

where LS, (a) satisty |07 cos* *(a/2)LS,(a)| < C(n, 8) Y sez m. We al-
ready proved the case n = 3 with LS3(«) = 0, now we assume that our proposition

is true for some n, we want to show that is also true for n+ 1. Taking the derivative

in « from (4.252)) we get

1 sec2rtD=4(q/2) 1 (2n —4)sec™ *(a/2)
20+ tan"tH(a/2)  p2ntl tan""!(a/2)

1
E — —0,L 4.2
(a+ 27rk (o + 27k)n+L naa Sn(a) (4.253)

EZ

and so we get that the identity has the correct structure for n + 1

1 sec?"tD)=4(q/2) 1 1
-y 25.Ls,
2ntl tan™t(a/2) kEZZ (a+27k)"tt n (@)

N 1 (2n —4)sec™ *(a/2)
n2ntl tan""!(a/2)

1
= 4 LS (s).
kezz (a + 27k)n+ “

(4.254)
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Now it only remains to prove the estimate for LS,

1
P cos? ™4 /2) LS, 1 (a) = —Eﬁg cos?" D =4(0 /2)0, LS, ()

(2n —4) _zcos® ™D (a/2) sec?*(ar/2)
n2ntl ¢ tan""!(a/2)

= Il -+ IQ.
(4.255)

To bound the first term we write

—n[1 = 8ﬁ

e

cos® " (0/2)0, LS, ()

(

= 0 (cos?(ar/2) cos®™ *(/2)0aLS,,)
(cos?*(a/2) [Da(cos®™™ *(a/2)LS,) — LS,0 cos™ *(ar/2)]) (4.256)
(

= 9P (cos*(a/2)0a(cos™ *(a/2)LS,))

—|—%(2n — 4)9” (sin(ar/2) cos(r/2) cos™ *(a/2) LS, () .
Then we get that I; can be written as a sum of terms that are the derivatives of
cos®4(a/2)LS,,, which we can control by the induction hypothesis and terms that

are bounded and therefore only affect the constants.

B+1

L] < Ci(n,B)) 107 cos® *(a/2) LS|
=0
= 1
< Ci(n, C(n, 4.257
1
< C _
< OmB) ) o+ 27k [P
kEZ
To estimate I, we use the following
n2ntt 5eos” 4 (ar/2) sec? 4 (ar/2)
]2 - aa 1
2n — 4 tan"!(a/2)

cos*(a/9) (4.258)
B

“tan" " (a/2)’
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1 ~ _C
an(a/2) a—2rk

because near 27k we have - and because cos(a/2) is bounded we get
that inside the derivative we have term that is only singular at 27k an the order

of the singularity is n — 1, and consequently the those derivatives have the correct

order near 27k for k € 7Z, so we conclude that

1
LI <C(n,B)) P (4.259)
kEZ

finally putting all together we conclude that

_ 1
0l cos ™ (a/2) LS 41 () < C(n, 8) Y | T IR (4.260)
kEZ

Therefore we conclude by induction that for all n > 3

1 sec™ *(a/2) 1
2 tan™(a/2) keZZ (a+ 2mk)™ + LSn() (4.261)

where LS, (a) satisfy |95 cos®™*(a/2)LS,(a)] < C(n,8) Y 1es m and by

defining LS(a) cos®*(a/2) LS, () we concludes the proof of Lemma |4.4.9| O
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Chapter 5

Norm inflation for a PDE

describing epitaxial growth

Abstract:

The goal of this Chapter is to present another application of the techniques
presented in Chapter [4| to study the Ill-posedness for the Muskat problem. The
problem in consideration comes from material sciences and is known as the
epitaxial growth equation. It describes a process for the formation of thin layers of
crystal and is described by a fourth order nonlinear parabolic PDE. To study the
Ill-posedness of the epitaxial growth equation, we consider a sequence of
approximate problems, and then their corresponding Picard’s iterations. We
obtain the discontinuity of map that takes the initial condition and return the

second Picard’s iteration of the approximate problem on some appropriate
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supercritical space. For each approximate problem a different supercritical space
is used and the sequence of such spaces approach the a critical space on the limit.
More precisely we prove the existence of a sequence of initial data with arbitrarily
small supercritical norm such that the second Picard’s iteration of the
approximate problem becomes arbitrarily large in the supercritical norm in a

arbitrarily short time.

5.1 Introduction

5.1.1 Description of the model

In material sciences the Epitaxial Growth equation is a model that describe a
method used to create high quality crystal growth for semiconductors and some
other single layer films. When the surface of the crystal can be described as a
graph, one of the equation that can be use to describe its evolution is the following

(See [25])
O = —v2A%(v?) | in [0,T] x Q,
(5.1)
v(0,z) = vo(x) , in Q,
where 2 = R? or T?. In what follows we focus in the periodic case. By the

maximum principle, if v(x,t) is a solution of (5.1)) and vg(x) > 0 then v(z,t) > 0

for all (z,t) € Q x [0,T]. Then by writing

o, (1) — A2, (5.2)

v
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we obtain that the quantity fQ %d:c is conserved, and therefore by rescaling we can
assume that fQ %dx = 1 for all ¢ > 0. Consider the change of variables % =1+w

and we get

1
duw = AP im0, T] x

w(0,z) = wy , in Q,
where [, wodz = [,wdr = 0. Finally because of the zero average condition, we

can take w(t,z) = Au(3t,z) to obtain the equation

1 1 .
atu = gA <m) , 1 [O,T] x

u(0) = ug , in €.

(5.4)

Another model that is sometimes used to study the Epitaxial growth is given by

of =Ae™® | in[0,T] x Q,
, (5.5)
f(0,2) = fo(z) , in Q,
both models have very similar properties and particular our analysis also applies
to (5.5) with minor changes, because we only use finite truncations of the Taylor

expansion of the nonlinear part, up to changing the coefficients in that expansion,

both models behave in the same way for our purposes.

5.1.2 An approximation of the Epitaxial Growth Equation

To study the Epitaxial growth equation we want to consider a family of approxima-
tions of the equation and study the continuity of the solution map at the origin for

such systems. To construct such approximated systems we consider the following
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Taylor expansion

2 21 e . o
k

k>2
Then for |Au| < 1 we can write (5.4 as

o0

=3 (k+ 2>6(k D A(—Awk (5.7)

Next we consider the family of equations obtained by considering only finitely many
terms in this expansion ([5.7). More precisely given ¢ > 2 we consider the truncated

expansion of the epitaxial growth equation of order ¢ to be

¢
o+ A%u = Z

k=2

(k +2)(k + 1)
6

A(=Au)* u(0) = uy. (5.8)

Next consider the Picard’s itertion of the problem, we set u(®) = 0 and consider the

sequence {u®}, o given by

¢
) + AZy® = 37 WA(_AZMC k>
= (5.9)

u®(0) = .
Under appropriate regularity assumptions a fixed point of the Picard’s iteration is

a solution of (|5.8) and by using the Duhamel’s formula

t ¢ . .
u(k) _ e—tA2u0 +/ 6—(t—T)A2 Z (] + 2)(] + 1)A<_Au(k—1))]d7_
0

= 0 (5.10)

= e_tAQUO + Ty,
we see that the convergence properties of the Picard’s iteration, depend on the

mapping properties of the operator T'. For regular enough spaces the existence of
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solutions of the problem can be studied by applying the Banach fixed point theorem
to . In our case we want to study the equation in a supercritical space,
and therefore the convergence of the Picard’s iteration is expected to be a difficult
problem, but even without know that, valuable information can be obtained by

studying the mapping properties of T'. More specifically we will show that for fixed

20—2

¢ € N then the map T is not continuous at the origin in the space L>°([0, T]; F 2 )
forp>1,q>L(.
Another way of looking at this mapping property, is to look at the second Pi-

card’s iteration of (5.9)) given by

2

duM + A2 =0 =y = A, (5.11)

L
B + A% = 3 (k + 2)6(k + 1)A<_Au(1))k 0.T) % 0
P (5.12)

u?(0) = ¢ , v €
then by the Duhamel’s formula

t J4
E+2)(k+1
u® = €_m2uo+/ e_(t_T)AQZ( +2)(k+ >A(—A6_7A2u0)kd7.
0

6

’ = (5.13)

= €7m2uo+zgka

k=2
where
kE+2)(k+1) [* 4 s

G = _(k+ )6( + )/ e R 12() - Pe M Tug)*dr, for k> 2, (5.14)

0

where f** = fx---x f k times and f*® = 1. Then for the second Picard’s iteration

we can look at the continuity of the map T in a special case. Consider the map
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T:X — L>®([0,T]; X) that takes a function ug € X and return its second Picard’s
iteration u(® then

Tug = e_Mtuo + Te_AQUO, (5.15)

and therefore the continuity of 7" implies the continuity of 7', in this work we will
show that the map 7 is discontinuous at the origin in a supercritical space, which

implies the discontinuity of 1" at the origin.

5.2 Known results

In physics, the study of crystal surfaces has a long history, here we focus in the
developments for the equation in terms of the well posedness, see [29] and references
therein for details.

In [29] the existence of global weak solutions for (5.5) in bounded domains of
RY with W2°°(Q) N W*2(Q) initial data is obtained. In [30] the existence of weak
solutions for in bounded domains of RY for initial data vy € W22(Q) with
(Aug)™ € W22(Q). In [25] the existence global weak solution for ina N
dimensional periodic domain for L*(TV) initial data with small F*!(T") norm. In
[28] the well posedness is established RY for solutions of with L?(RY) initial
data with small F2*(RY) norm. In [22] an iterative strategy and the existence of
strong solutions is established for in bounded domains of R, for vy, € L2
initial data with zero mean and finite energy ¢(vg) = [ e 2% < cc.

For references related to Ill-posedness results for fluid equations on which out
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strategy is based see Section [1.7 Up to our knowledge there are no other works

dealing with the question of norm inflation for the epitaxial growth equation.

5.3 Main Results

The goal of this section is to prove the following theorem

Theorem 5.3.1 (Norm inflation for the truncated problem). Let Q = T. Given
T>0 R>1,q>/0 p>1, there exists some t < T and some initial condition

204
© € F,; = P(Q) such that the solution u of the initial value problem (5.12) satisfy

lu@l 2z, 2 R, (5.16)

q

loll_2cs, < 1/R. (5.17)

Remark 5.3.2. Note that the initial data given by Theorem depend on the
choice of time, and consequently we cannot claim blow up for a specific solution
after a short time, but we can say that there is always a solution with small initial

data that becomes big after a short time.

The strategy for the proof is similar to the one used for the Muskat problem
in Chapter 4l We consider an initial condition with several high frequency terms
that can interact to produce a low frequency component as a result of the nonlinear
interaction. Then we analyze separately what happens at low and high frequencies,
and then use that the high frequency part decay much faster than the low frequency
part, and use this to estimate the size of the solution.
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The proof of Theorem [5.3.1| will be split in two lemmas. For the remainder of

the section we fix ¢ > 2.

Lemma 5.3.3 (Size estimate for the lower order terms). Let2 <k < {, 0 <T < 1,

g > {, p>1 and suppose that we take M > 0 and Ny € N such that TM* < 1

and Tky, > 1 and consider g, as defined by (5.14) with ug = ¢ € Fo, T given by
(5.21) then for any N > Ny, there are constants and constants Cy, k=1,--- {—1

such that

(1+6)N
C (k+2)(k+1 - Z
||gk<T>||]-‘Z]"7P < T3]{34 ( )é )4k£2k 4 ’}/] J s k<. (518)
N

Lemma 5.3.4 (Size estimate for the main term). Consider g, as defined by ({5.14])

then under the same assumptions as Lemma and using the same uy we have
¢

(1+6)N (14+6)N
lge (D)5 > 3 L G Z (5.19)
g@ }‘ZI“”’ - 62 ’YJ 7 T3]€jlv ’yj j . .
j=N

5.3.1 The choice of the initial condition

Let 6 >0, £ € N, N € N, and {k;}52, a sequence of positive integers that grow
very fast. More specifically given ¢ > 0,0 < a < 1, and § > 0, the sequence {k;};

must satisfy: (?k; < k;q and

(146)N ¢

1 1
>+ <Nkj{,. (5.20)

i—a
j=N J ¢

We consider initial data similar to the one used in [26], more specifically we consider

@ of the form
_l’_

Z Pk +Pg 1)k; ) (521)
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where Pa(k) = d4(k) + d_a(k) and d4(k) is the Kronecker’s delta at the point k

and {v;}, is a sequence of positive numbers that depend on {k;},.

Remark 5.3.5. Note that this ¢ as defined by ([5.21]) is real valued in physical space

because ¢(&) = p(—£) = p(§) and consequently

p+p
Rp = = (5.22)

Lemma 5.3.6 (Size of Initial data). Consider ¢ as defined by (5.21)), then

(14+6)N 1/q
[l zz» < C(6,m, q) Z RERIAT : (5.23)
—N
Proof of Lemmal5.3.6,
(14+6)N La
ol e = D Il (k™ + 1€ = D)k + M|™)
=N
(146)N Af ™ L4
= [ X mbter (1 e+ ) (5:24)
j=N J
(1+6)N La
< C(t,m,q) vikT
=N

note that every k; and (¢ — 1)k; belong to a different annulus C}, and therefore the
p norm do not appear in the computation. This concludes the proof of Lemma

12.9.0l [

5.3.2 Estimate Lower order terms: Proof of Lemma [5.3.3

The idea of Lemma [5.3.3| is that when we substitute ¢ in g, we get an expansion
that is a sum of of terms that are supported far away from the origin because of our
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choice of . For the lower order terms the choice of the ~; is enough to establish

the smallness, but for g, a more delicate analysis is required.

Proof of Lemmal5.3.3 First we substitute (5.21)) in (5.14)) to obtain that for n € Z

i) = ~LEIEED ooz oy tar

6
(1+6)N (1+6)N
_ (k+2 J(k+1) Z Z Z Z N (5.25)
J1=N a1€Ay k=N akeA

xj(al, cag)(n),

t
Jlay, - ap)(n) = / eI 2 (e, ) x - (67T, )dr (5.26)
0

_].14 _ 4
Now because | - |2 1'76, = a?e=*" 7§, and

(60 % 3)(€) =D 0a(§ — k)Op(K) = (& — b) = Sass(€), (5.27)
keZ
we obtain that J(ay,--- ,a;) can be written as

t
Ja1, - an)(n) = / e~ (| - 2675, ) o (|- 2e7H T, )dr
0
2

= aj--- ai(al + - an)25a1+~-+ak (n)

t
« / o (=T @1t tar)t - r(adtad) g
0
(5.28)

Note that if a; + -+ + a; = 0 then j(al, -+, ag) = 0, therefore to estimate J we
can assume that ay + - - - + ax # 0. The following lemma is key for the estimates of

smallness of high frequency terms.
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Lemma 5.3.7. Let k < ¢ and consider a; € {£k;,, £((¢ — 1)k;, + M)} such that
ar+ -t a, 0, M >0, Pk < kj11/2, (M < ky/2, and suppose we have one of

the following
a) k< {, and take , k; < kj11/2, (M < kn/2,
b) k=1{, a; € Aj, with not all j; equal,
c) k=0, a1+ - +a,# E£M, a; € \j with the same j for all i.

then

i) ]a1+---+ak\4>% some 1,

i) at least one among |a; + -+ + ax|* and |a] + -+ +a} — |a; + - + axl*|, can

be bounded below by max;|a;|*/2.

Proof of Lemmal[5.3.7. To prove part i) the key is to understand the implications
of the hypothesis a; + --- + a, # 0. To do this lets first assume that for all
ie{l,---,n}a; € Nj={xk;, £(({—1)k; + M)}, then we write a; = b;k; +¢; with
b € {£1,£(¢{ — 1)} and ¢; € {—M, 0, M}. By grouping all the b; € {£1} together

and all the b; € {+(¢ — 1)} together, we can write
b+ +b,=p+qll—1), (5.29)

where |p| < ¢ and |g| < ¢, this means that p is only divisible by (¢ — 1) if p = 0,
and therefore the only solution to p + ¢(¢ — 1) = 0 for |p| < ¢, |q] < Lis p =
g = 0. Now ¢ = 0 means that we have the same number of b, = —(¢ — 1) than
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b; = {—1 and consequently their corresponding ¢; cancel exactly, which implies that
€1+ ---+¢, = 0. By contrapositive a; + - - - 4+ a,, # 0 imply that b; +---+ b, # 0.

By out assumption in ky we also know that
ler + -4 en| <M < M < ky/2, (5.30)

and therefore we can conclude that

k k;
a1 oot an] 2 [yt bulky = e el 2 k-2 5 (531)

This proves part ¢) in the case that for all ¢, a; € A;. For the general case in which
a; € Aj, where the j; could be different, in this case again we can write a; = b;kj, +¢;
where b; and ¢; as before, we group the terms b; whose corresponding a; belong to

the same A, by doing this we get

a;+ -+ a, = (py + (€ = Dgn)kn + (i1 + (€ — Dgyi1)kni

+ -+ (platoyn) + (= Dquaven))k|aon) + (E1+ - -en) (5.32)

where |p;| < £, |gj| < ¢. This is obtained from the number of terms in case a) or

because not all a; belong to the same A; in the case b). Now because (*k; < kj1/2
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we obtain that
|]N2| = |(pN + (E - 1)qN)kN + (pN+1 + (6 - 1)QN+1)]€N+1

44 (pN2 —+ (E — 1)QN2)kN2|

< |py+ ({ = Dgnlkn + |pve1 + (€= D)gna kv

- pv, + (0= D)gns, [k, (5.33)
< =1+ =)0 =D)|ky+ [0 =1+ —1)—1)|kyss
+o (=14 —=1)¢—1)|kn,
N2
< ) (L= 1)k;
j=N

By induction we now prove that » 'y £(¢ — 1)k; < k,41. For r = N this is direct

from out assumption in k;
N
D U= Dky =0 = Dky < Ly < k. (5.34)
j=N

Now assume that > "\ ((¢ —1)k; < k1 we want to show that Z;le 00— 1)k; <

kr+2/2
T‘+1 ™
S U=k = Y LU=k + L€ - 1)k,
j=N =N
< kg H 00— 1)k (5.35)
= Ezkr-i-l
< kpyo/2.
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Now using this we get that

a1+ +an| = |(pra+on) + (€= Dgarsn )k a+on]
[(1+6)N] -1
= D> = Dgglky e+ gl
j=N

> |(platen) + (€= Dgiaen)) k|a+on)|
[(14+6)N] -1

— > i+ (0= Dgilk; —kn
J=N

> |(platen) + (€= Daiaren) ki a+on) — ko)

= (Ipraran) + (€= Dayason)| — 1) kjassn)-
(5.36)

Now because p|1+s)n5] + (£ —1)q|1+s)n| is an integer we conclude that a; +-- -+ ay,
can only be zero if

pla+on) + (€= 1)qa+sn) = 0. (5.37)
By adding this condition we can run the argument again to conclude that a;+- - -+a,

can only be zero if for every j € [N, (1 + §)N]|
p;+ (£ —1)g; = 0. (5.38)

Substituting this in (5.32) we obtain that ; + --- + &, = 0 also must be zero.
Now by the argument of the first part we obtain that p; = 0 and ¢; = 0 for every

Jj €[N,(1+9)N], and also €1 + - - - + ¢, = 0. By the contrapositive we obtain that

if a; +---+a, # 0 for at least one j € [N, (1+0)N] we have that p; + (£ —1)g; # 0.
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Let j the largest of such j. then from (5.32) we can write

s+ anl = |py+ (= Dgylk —Zm + (€= Dgilki = lex + - + en
> |pj+ (0= 1)g;lk; — §kN
1
= §k?]
(5.39)
Case ¢) is a little bit more delicate, in this case we have
ar+-+a=pP+ql—1)kj+e1+--+ey, (5.40)

then we need to show that |[p+q(£—1)| > 1, because p and ¢ are integers we only need
to shot that the quantity is nonzero. Suppose not, then because |p| < ¢, |g| < ¢ there
are only 3 possibilities (p,q) = (0,0), (p,q) = ({—1,—1) and (p,q) = (—¢+1,1). If
(p,q) = (0,0) then there are the same number of b; equal to +(¢ — 1) and —(¢ — 1),
and therefore their corresponding ¢; cancel exactly to give 1 + - - - + &, = 0, which
imply that ay + --- 4+ ay = 0, which is a contradiction with the assumptions. The
other case is that (p,q) = ({—1,—1) (the case (p,q) = (—¢+1, 1) is analogous) then
¢ —1 of the b; are equal to 1 and one of them is equal to —(¢ —1). Consequently the
corresponding ¢; satisfy e;+- - -+&, = —M and therefore ay+- - -+ay, = —M, which

is also a contradiction with our assumptions. We conclude that |p+ (¢ — 1)q| > 1
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and therefore

a1+ Fan] = |lp+ (0 =1)gkj+er+ -+
> |(p+(=1D)q)lkj —ler+ -+ &
) (5.41)
> k- =k
= j 9 N
1
= §]€]

For part ii) we use that
(al+ -+ +ap—|ag + -+ ap|') Hlar+ - +ap|* = af+ - +a), > max|a;|*, (5.42)
J

then we have that the sum of two terms is larger than a positive number, that imply

that at least one of them is at least half that amount in modulus.

Continuation of proof of Lemma [5.3.3, Integrating in time in ([5.28]),

2 2 2
3 ai---aj (a1 + -+ ay) —tlar++ag|*

Ja/’...’a n)=

x (1— e—t(\al|4+..-+|ak|4_|a1+...+ak|4))6a1+m+ak (n) (5.43)

. C 2...42 n2 1
()] < = — Gl ¥t an) Sy iiar(n), (5.44)
t3 lag + -+ a, 12" K
a‘11_|_..._|_a;ll_‘a1+...+an|4 ax y,
and taking the norm F"? we get
C a%...a%|a1+...+ak‘2+m 1
[Tl 7 < BT . a1 + - + ag| 2
‘a1+"'+ak_|a1+"'+ak|4‘ 1 k (545)
< g a]%...a[% 1 :
13 a%+“‘+ai_|a1+‘”+ak|4 |a1+...+ak|8

Note that because J (n) is supported at a single frequency p and ¢ do not affect
the computation of the norm. Now by Lemma m part i7) we know that we can
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bound below at least one among |a; + -+ - +ai|* and |af + - +a} — a1 + - - - + ag|*

by C'max; |a;|* and therefore

C aQ CL2 C 2k—4
J|| zmop 1 k ceeag) R 5.46
|| ”.7: = t3]€4 max; ’&]‘4 tgk;lv ((11 Clk) ( )
Next, summing over all tuples (ay,--- , ax)
(1+6 (146)N
(k+2)(k+1)
bnles = | - U SED SRS Sl SRR
J1=N aleA Jk=N anGA
< J(ar, az)
Fop
(k—|—2 \(k + 1) (146)N (146)N
< Do >0 vl a) e
J1=N aleA Jk=N
(1+5) (140)N
C (k+2)(k+1)
= BEL 6 4" Z Z Yin e Vaelaa -
J1=N Jk=N
(1+9)N k
C (k+2)(k+1) 4ok
= t3ky 6 £t Z 3% 3
(5.47)
This concludes the proof of Lemma [5.3.3| O

5.3.3 Lower bound for the main term: Proof of Lemma
5.3.4

In this section we prove the main estimate of the norm inflation result. After
substituting in g, we split the terms with the objective of isolate the ones that
can generate the inflation. Then we establish a lower bound for the low frequency
terms that do not decay with N. For the upper bound of the high frequency terms,
the idea is similar to the proof of Lemma but with the additional difficulty
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_2-a
that this time we expect that 7; ~ k; ° and therefore this time we are forced to

use the exponential decay to obtain that as N become large, the norm of the high

frequency part is small when compared with the low frequency part.

Proof of Lemmal5.3.4 By substituting (5.21)) in (5.14) we get that g, for n € Z

can be written as

(146N
ge(n) = — (”2 Z ST A(ar, L a)(n) + CT(n),  (5.48)
j=N a1€A; apEA;

where A; = {£k;, £(k; + 1)} and

A

t
Jay, - ag)(n) = / eI 2] 2emH S, ) ke (|- e, )dr, (5.49)
0

CT(n) = L2+ Z S S (e a) (),

6
SJeE a1 €hy ag€Aj,
{N ()N

not all equal

(5.50)
Here C'T is the term that involves all the cross terms, i.e. the terms for which not
all the factors have the same j in the convolution. For this estimate we focus on the
terms where a; + - - - 4 ay is small compared with other quantities in our problem.

In our case, the smallest this sum can be is M. We can split our sum as

:[A/M—F[A/_M—i—ﬁ-i—ﬁ, (5.51)
where
(1+6)N
A (+2) € +1)
Ly = ( Z Z CL1, L ap), (5.52)
(a1, ,ap)

GH(])
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(1+6)N
. C+2)(0+1 5
P =L S ) 6

J=N (a1, ,a0)
eHY),
where H](gj) is the set of tuples (a1, -+ ,as) € (A;)" such that a; + -+ +a, = B, the

term H F represent the high frequency terms.

(14+0)N

j=N a1 EA amEA

Lemma 5.3.8. Consider Ly and L_p; as defined by (5.52) and (5.53|) and let

0 <t <1 such that M and Ny satisfy tM* <1 and tK3% > 1 for N > Ny then

C(1+6)N N
IEar) + Lo Ol = 5 >0 (k) (5.55)
N

Lemma 5.3.9. Let CT, HF as defined by (5.50) and (5.54). Under the same

assumptions as tn Lemma we have that

¢
2( 4
ICT e < (Z% ) , (5.56)
and

L
IHF Oz < e (Z%] ) - (557)

Proof of Lemma[5.3.9. This follows from the proof of Lemma [5.3.3] because un-
der the assumptions of the Lemma, the hypothesis Lemma still applies and

therefore the same proof holds. m

Continuation of proof of Lemma [5.3.4] From Lemmas we get that

lgellger = Ly + Lollsgr — [HF |l go — | CT | o — | MF | s
¢ (5.58)

@ 204
= 6_42(%' - ) 2k (Z%J[ )
J
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which conclude the proof of the Lemma [5.3.4]

Now we proceed to prove the lower bound for the low frequency part.

Proof of Lemma[5.3.8. We need to estimate the term J(ay,-- - ,a,) for (ay, - -

GHJ(\? i.e. whena; +---+a, = M.

A

t
J(ar, -+ a) = / e DRRIEP(| - Pem 00, ) % (|- Pe T, )dr
0

CL2 cee CL2 4 4 4
_ 1 4 efMt(l . eft(a1+~--+ae7M ))

al+---+a} — M*

5M7

because 0 < t < 1 and tk% > 1 we can ensure that

6—M4t (1 _ e—t(a‘ll+...+ai_M4)> > 16_M4,

then we get

j(al’.~~7a£)>c CLl-.-CLE

Ou-
R I VT

Now using the bound af + - - - + aj < (0 — 1)k; + M)* < CLk] we get

- C 102 -a?
—M* ™1 14
J(a'b'” 7a£) Z €_5€ ]{34
J
2 2
g a/l'..a/e 6M
05 Jar - - ag

20—4
Z £_5|a1...a€|7(5M_

oM

>

Summing over (ay,--- ,ap) € H](\Z) and over j we get
(1+6)N (146)N o )
£7 ¢ 204
Z Z ’ij(al,...,ag) Z Z Z 6—5’73-‘&1...@@‘ 2 5M

Jj=N QEJ>EA]' j=N a;EA;

(14+-6)N
C 20—4a\ ¢
> &% (™) o

j=N
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(5.60)

(5.61)

(5.62)

(5.63)



The power on ¢ comes from the symmetry of the sum over a; € A;. We obtain

(140N
A 0+ 2) E +1)
iy = DS S )
N ay (5.64)
o 0HON an t
j=N
Analogously for L_,,
(1+46)N
. (C+2)(f+1)
—L_y = 6 Z Z'.)/]Ej@lla 7a€))
=N ()
C (1+0)N ] ¢ o (5.65)
20—4
> 5 > (k)
j:
then we conclude
(146)N
C 204\ ¢
VEar + Lotllzpr 2 5 > (fyj x ) . (5.66)
j=N
This concludes the proof of Lemma 5.3.8| O

5.3.4 Norm inflation: Proof of Theorem [5.3.1]

In this section we put together our previous estimate to prove the discontinuity of

the solution map at the origin as described on the introduction.

Proof of Theorem [5.3.1 First we choose some M € N, M > { so that TM* < 1.

Take Ny € N such that e=7(kn~/2)" for N > Ny. Consider ¢, gx, k= 1,--- ¢

as given by Lemmas |5.3.3| and |5.3.4|, then u = Eizl g is a solution of (5.13)) with

initial condition ¢ given by (5.21) where the parameters M and N are as stated
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before. By taking the 7P norm of u we get

[u(T)]

A2
Fr > || el Fr = Z ”Uk”]—‘;”’p — [le="2 ‘P”f;"‘p
k

l
C 204
£71.20—-4 l+1
o - i ()

>
g k
-1
Cr pLas _
—D_ T (Zw " ) — el e
= N j
(5.67)
Now we take v; = %%m with this choice we get
KT T
J
(1+8)N (1+6)N

1 1
Z REAE = Z w1 < b (5.68)

2k 4 < 2@ 4 for k < /. Now we can choose N1 > N[) so that Ek ) T3k4 < L.

because

For the second term the situation is more delicate, because in this case we get

(1+8)N (14+8)N ) ] (1+8)N ]
Z vk o= Z 204 _20-4 1-n Z 1-n) (5.69)
]ZN k] L Y ] 4 j:N ] 4
and because 1%’7 < 1 we get that this expression growth with N. Now because

by assumption ky grow very fast, more precisely from our assumption in ([5.20) we

have that
oy \©
> | S ks (5.70)
=N J

Therefore we can take Ny > Np such that for all N > Ny

1%, (1+6)N ¢
{+1
— § j ]f <1 (5.71)

Lastly we take a look at the first term, because of our choice of 7;, this time we

have
(1+6)N (1+86)N 1
07.20—4
S =Y 572
j=N
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We can bound this integral by comparison with the integral

N La+6)N]

> oL [ L
J x

j=N

N+1
[(1+6)N |
= —:L‘n

77 N-+1 (573)

- oflesey

~ N,

1

Therefore this sum grow as N7 as N — oco. Therefore given R > 0, we can take

N3 > N, such that for all N > Nj

(1+8)N
Cy Z Yk > R+ 4. (5.74)

For the term involving the initial condition we first notice that

Fe™ o)) = e ¢(n)] < |p(n)], (5.75)
then we get that from Lemma |5.3.6
(14+5)N 1
— 2 m
le™™* el g < llpllzpme < Co Z vk (5.76)
_ 204
then we get for m = ==
(146)N La (146)N ] 1a
PR e D= (5.77)
=~ J
Because we want this term to be small, we take ¢ such that ~1q > 1, and therefore

because ¢ > ¢, we can always chose n > 0 such that this is satisfied, and if that is

the case, then the sum go to 0 as N — oo, therefore we can take Ny > N3 such
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that for all N > Ny
(1+6)N 1/a

)
Co| Y Ak <1/R. (5.78)
j=N

Finally we can put all together, to obtain that for all N > N, and ¢ > %7 we have
lu(D)| 2ea, > R. (5.79)
Fg b

q

which concludes the proof of Theorem 5.3.1} O
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Chapter 6

Appendix

6.1 Asymptotic Estimate for the convolution in-

tegral in the Muskat problem

The goal of this section is to provide asymptotic estimate for n large to the integral

(A, --- A@z/ﬂ@(%)(#) da. (6.1)

The estimate obtained in this section is not used in any chapter but it is interesting
on its own right so it is included on this appendix. From the Chapter |4 we know

an explicit formula for I and a size estimate of the form

Ay Ayl

|I<A1’ 7An)| SC’ (62)

max; |Az| 7
in this section we want to provide an estimate that takes in consideration the signs
of the A; and if possible a lower bound for its magnitude.
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Lemma 6.1.1. Let Ay,--- A, M € R such that 1 < |A;| < M. Then there exists

Ny € N such that for n > Ny

Ao A _6lA 44 An WE
I(Ay, - Ay) = V12i"V2r n e AR L0 ==, (6.3)
VAZ 4+ A2 nl/3

Remark 6.1.2. The hypothesis of the lemma can also be read as all the |A;| have the

same order of magnitude and therefore after a change of variables we may assume

that 1 < |A;| < M for M not too large.

Proof of Lemma |6.1.1. The first observation is to notice that

(1 _ e—iaAl) _aa, (ei%Al _ e—i%fh)

a 2l (6.4)

o
Applying this to I we get
I(Aq, -+, Ay) = (20)"sgn(Ay - -+ - Ay)
x / eigtartoran S singi Al g
R o a g :
and because of parity of the integrand
[(Al, e 7An) = (27’)nSgH(A1 e ee e An)
in §|A in 2|4,
X /COSQ‘A1+'--+AnI—Sm2‘ d sin 9| |da (6.6)
R 2 [0 o

To compute this integral we consider the independent random variables X; for

1=1,---,n and Y defined by

1 1 .
PlY=4-|A1++A)])== X~ _aL ,
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and its corresponding Fourier transform

sin 2| A4;]

. t ,
E(e™) = cos§|A1 +o Ayl B(e"%) = 2W.

(6.8)

Now we consider the random variable Z =Y + X; +--- + X,,. We know that the

pdf, is given by the convolution of the densities of Y and X;, we get

, t sin L] A | sin £| A,|
E(et2) — 9n 1A e A —— 2 6.9
(") cos2| 1+ A At Al (6.9)
and therefore
pdf,(z) = € e R (") dt
Z o )
1 t sin 1| A, | sin £| A,
df =0) = — | 9" —|A 4+ -+ A, 2 2 dt
p Z(x ) ot COSQ| 1+ + | ’Alyt ‘An‘t ;
(6.10)
and therefore, up to a constant, I(Aj,---, A,) can be seen as the density of Z at 0
I(Ay, -+ A, =1"(2m) Ay - - - A,pdf,(0). (6.11)

Note that because pdf(Z) is a Lipschitz continuous function and therefore makes
sense to consider its pointwise value, also because the integral pdf,(0) integral is

the value of a density function at a point we get that

= pdf,(0) > 0. (6.12)
=0

/ e—ixtE(eitZ)dt

Notice that because of this new interpretation we can get more information
about the integral, in particular for large n we can apply a version of the central limit

theorem to provide a better estimate of the size of the integral pdf,(0). Because
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the variable Y can only take two values, we can write

pdf,(0) = pdfy,x, 4.4x,(0)
1 1
= PY = —§|A1 4+ Anl)pdfy, oy, <§|A1 + o+ An|>
1 1
PO = Gl i, (514t 4]

1 1

pde<O) = §pde1+~~-+Xn <§|A1 + -+ An|>
1 1

+§Pdfxl+~--+xn —§\A1 + Ay

1
= pdix y.4x, (§|A1 +e +An|) ;
(6.13)

in the last step we used the symmetry of X; + -+ X,,. To estimate
1
pdfx, . ix, 5‘141 +o A, (6.14)
we want to use some version of the central limit theorem. Because of variables are
not identically distributed we need to use the Lindenberg-Feller theorem with the

error estimate given by the Berry-Esseen theorem. First some simple observations

that will be useful in our computations.

Lemma 6.1.3. (Moments of uniform distribution)
2 1 2 3 1 3
E(X;) =0, BE(X7) = S |Al°,  E(Xi]") = 5[4l (6.15)
12 32
Proof. This can be obtained by direct integration. O]

Now we check the hypothesis of the Lindenberg-Feller theorem. Let € > 0, and

let s2 =" VarX;, then we need to check that

ZE<X¢2/3311\X1-\/8">5) — 0 as n — oo. (6.16)
i=1
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In our particular case we know that s, > % and | X;| < M for all i and therefore
for n > (12M)/e = N; the sum is identically equal to zero, and so we can apply

the theorem, then we get that because pdf, is Lipschitz continuous,

1 |Ay + -+ Ay
pdf,(0) = ll_r)r(l)2—gp(‘X1+"'+Xn— 5 <e
1 X 4+ 4+ X A +---+ A,
= lim—P ittt X At A <L
e—0 2¢ Sn 25, Sn
1 X+ +X, |A+---+A,
— gim o p (|t X A A (6.17)
e—0 28,€ Sn 25p
1 A +---+ A,
% lim P G—| 1+ Al <e
e—0 25,¢ 25,
1 2

— |Aid 4 A

5 . To obtain a

where (G is a standard Gaussian random variable and £,
estimate of the approximation error we use the Barry-Esseen Theorem, in our case

it tell us that

sup
t

X, ++ X,
’PQ 1+ +

Sn

< t) ~P(G< t)‘ < Cpe 5,° Y pis (6.18)

i=1

for a universal constant Cpr > 0 and p; = E|X;[3. Under our assumptions in the

size of the A; we get that

n u M3n
§2 > 1 > pi< o (6.19)
=1

To apply the Barry-Essen theorem we write out probability in the following way

e Xi+-4+X, [Aj+---+A,
/pdf(x)dx = P(’ 1+s =X | 1+25+ | <5>

X, 4+-.. 4+ X A +---+ A,
_P( 1+ +n<|1+ + |+€)
Sn 25,
X+ +X, A +---+ A,
_P< 1t X At |_€)

—&

(6.20)

Sn 25,
M3
= P(G<Bn+5)—P(G<Bn—6)+O<%).
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To get an error estimate we have to do the transition between pointwise estimates
and averages of integrals over a small balls. For this purpose we consider the Taylor

expansion
fla+1t) = fz) +tf' (@) + O f" || r=t?), (6.21)
integrating we get

xT+€
5 [ 10 = @)+ Ol ) (6.22)

Applying (6.22) to the definition of pdf, we can write

1 A+ -+ A,
pdf,(0) = —P X1+...+Xn—‘ 1t A <e) +O(Ke?)
21E X+ +X : (6.23)
= —P <‘ ! = — B <£>+O(K€2),
26 Sn S?’L
here we can apply (6.20]) to obtain
1 5 M3
df;(0) = =P (|G = Bu| < — | + O | K* + —= 6.24
pit,0) = 5P (Il < S w0 (K24 20) o)
where K = ||Pdfl),(1+.._+xn||,;oo- Note that because pdfy , . x is defined as a con-

volution it gets more regular as n — oo, in this case it is enough to have n > 3 to
ensure that we can take second derivative. Using (6.22)) again we can write the first

term as

2e n n

2
wr(i6-61< )= Loro(S1ons). 29

where ¢(z) = e *"/2 and ||¢"||~ < 1/2. Then we get

V2r
4t,(0) = ~6(8) + O (|l + 21 + ke (6.26)
pdiy _Sn n S;’l L E\/ﬁ 9 s .
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now we choose ¢ such that % = ¢2 to get

1 M?* M*(1+K)
pdf,(0) = ggb(ﬁn) +0 (sinl/i” + 17 > ; (6.27)
the last thing that we need is to estimate the size of K = def')’(lerJan HLOO for this

purpose we write

| e

A2 Ay Ay -4 A - (6:28)

—pdfx ,.ix, (@)
2 PX X -

TR X Ap A

Lee ‘
Now we need a way of estimating of estimating the derivatives of a convolution of

characteristic functions, for this we use the following Lemma

Lemma 6.1.4. Let A, B € R such that A < B then

d
X148 xg=g(x—A)+g(r—B) (6.29)

Using this Lemma we can estimate the derivative in the following way

d? pe
wpdel-i-m-i-Xn(x) = @X[,%7%} Kook X[_ATTL’ATTL]
_d Ay
= %X[_%7%]*..*X[*ATTL,AT"]($+7)
d A,
XAt XA (= )
Ay Ao 6.30
= X[i%’%]*'..*X[_ATn7ATn](x+7+7) ( )
—i—X[_%’%] Koo *X[,L;7A7n]($—|— 5 7)
XA day R XA (T - o )
A Ay
X 4y 0 X 4 (0= 57— ),
Now by the Young’s Inequality for convolution we get that
X[_%,%] koo *X[_ATTL,AT"] oo < HX[—%,%]HLOOHX[_%7%] Ll'“HX[—%,%}HLI
< A4l AR

(6.31)
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Therefore we conclude that

d> 4
dr ——Pdfy . x, (2) < A A ||A4 Ayl
Lee ! (6.32)
4
N ERRE
| A1 A As|
and by symmetry we can conclude that
d> 4
Hd ——pdiy, i x,(7) . < Ay Ao (6.33)
Applying this estimate we get
M? M*(1+ K) M? (1 4 M?
s6nl/3 nl/3 < On1/3 <_ + |Ay - A3/ + 1) < CW' (6.34)
Then form (6.27) we get
M2
Pty (0) = () + 0 (275 ) (6.35)
and consequently
I(Ay, -+ A,) = "(2m)A; - -+ - A,pdf,(0)
. 1 M?
. A, 614y An|22 M4
= 12¢"V2 —+ e (e Aeraf 4 O(n1/3)> )
This concludes the proof of Lemma |6.1.1]
O
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