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ABSTRACT

TOPICS IN MIRROR SYMMETRY FOR FANO VARIETIES AND

MEROMOPRHIC DDP CORRESPONDENCE.

Sukjoo Lee

Ron Donagi

Tony Pantev

This thesis consists of two parts, each of which can be read independently.

The first part is about mirror symmetry of Fano varieties and related topics.

We introduce the notion of a hybrid Landau-Ginzburg (LG) model, which is a

mirror partner of a Fano variety with a chosen anti-canonical divisor. We formulate

Kontsevich’s homological mirror symmetry conjecture [Kon95] of such mirror pairs

and show that it implies the mirror P=W conjecture, a refined Hodge number

relation between associated mirror log Calabi-Yau varieties [HKP18]. Next, we

discuss the deformation theory of hybrid LG models and related Hodge numbers.

The second part is based on a joint work with Jia-choon Lee [LL20]. We study

the relation between Hitchin system and Calabi-Yau integrable system in the mero-

morphic setting of type A, motivated by the work of Diaconescu-Donagi-Pantev

[DDP07]. We consider a symplectization of the meromorphic Hitchin integrable

system, which is a semi-polarized integrable system in the sense of Kontsevich and

iv



Soibelman [KS14]. On the Hitchin side, we show that the moduli space of unordered

diagonally framed Higgs bundles forms an integrable system in this sense and re-

covers the meromorphic Hitchin system as the fiberwise compact quotient. Then

we construct a new family of quasi-projective Calabi-Yau threefolds and show that

its relative intermediate Jacobian fibration, as a semi-polarized integrable system,

is isomorphic to the moduli space of unordered diagonally framed Higgs bundles.
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Chapter 1

Topics in Mirror Symmtery for

Fano Varieties

1.1 Introduction

Mirror Symmetry relates two compact n-dimensional Calabi-Yau manifolds X and

X∨: the complex (algebraic) geometry of X (B-side) is equivalent to the symplectic

geometry of X∨ (A-side) and vice versa [Hor+03][Asp+09]. The most general for-

mulation of mirror symmetry known as the homological mirror symmetry conjecture

was proposed by M. Kontsevich [Kon95]. The derived category of coherent sheaves

on X, DbCoh(X), is equivalent to the (derived) Fukaya category of X∨, Fuk(X∨)

[Sei12][Fuk+09]. On the other hand, the most basic form of mirror symmetry is

the symmetry of Hodge numbers: hp,q(X) = hd−p,q(X∨) for all p, q. This simple
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relation becomes more involved when we attempt to extend mirror symmetry to

non-compact Calabi-Yau’s U and U∨. In this case, Hodge data are refined by two

filtrations: the weight filtration W• and the perverse Leray filtration P• associated

to the canonical affinization map. Incorporating these refinements, we define a

perverse-mixed Hodge polynomial of U as

PWU(u, t, w, p) := ∑
a,b,r,s(dimGraFGrWs+bGrPs+r(Hs(U,C))uatswbpr.

where F • is the Hodge filtration (Definition 1.2.13).

Conjecture 1.1.1. (Mirror P=W Conjecture) Assume that two n-dimensional log

Calabi-Yau varieties U and U∨ are mirror to each other. Then, we have the follow-

ing polynomial identity.

PWU(u−1t−2, t, p, w)untn = PWU∨(u, t, w, p) (1.1.1)

We only focus on the w = 1 specialization of the mirror P=W conjecture in the

equation (1.1.1). This specialization gives the simpler relation between the weight

filtration on H•(U) (B-side) and the perverse Leray filtration on H•(U∨) (A-side).

More precisely, we have

dimGrqFGrWp+q+rHp+q(U) = dimGrn−qF GrPn+p−q+rH
n+p−q(U∨) (1.1.2)

for p, q, r.

To get a good control on non-compact spaces, we first assume U admits com-

pactification (X,Dsm) where X is a smooth n-dimensional Fano manifold and
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Dsm = X−U is a smooth anti-canonical divisor. Note that mirror symmetry of such

Fano pairs has been studied extensively under Fano/Landau-Ginzburg (Fano/LG)

correspondence [KKP08][KKP17] which we will review in Section 1.3. The mirror

dual of (X,Dsm) is a Landau-Ginzburg (LG) model, a pair (Y,w : Y → C) where

Y is a n-dimensional Calabi-Yau and w is a proper map called Landau-Ginzburg

potential. The Fano/LG correspondence also incorporates the mirror symmetry be-

tween two compact Calabi-Yau varieties Dsm and Ysm, a generic fiber of w : Y → C.

The category assoicated to X(resp. Dsm) are the bounded derived category of co-

herent sheaves DbCoh(X) (resp. DbCoh(Dsm)). On the A-side, we consider the

Fukaya-Seidel category FS(Y,w) and Fukaya category Fuk(Ysm), which we will re-

view in Section 2.1.4.

A various aspects of the mirror symmetry between the Fano pair (X,Dsm) and

the LG model (Y,w : Y → C) is summarized in Table 1.

Geometry Hodge numbers Category

B-side (X,Dsm) (hp,q(X), hp,q(Dsm)) (DbCoh(X),DbCoh(Dsm))

A-side (w : Y → C, Ysm) (hd−p,q(Y, Ysm), hd−1−p,q(Ysm)) (FS(Y,w),Fuk(Ysm))

(Table 1. Fano/LG correspondence)

Conjecture 1.1.2. (Relative HMS for the Fano pair (X,Dsm)). Let (X,Dsm) be a

Fano pair and (Y,w : Y → C) be a mirror LG model. Then, there is a commutative
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diagram of categories

DbCoh(Dsm) DbCoh(X)

Fuk(Ysm) FS(Y,w)

i∗

∼=HMS

i∗

∼=HMS
∪

∩

(1.1.3)

where (i∗, i∗) are induced functors from the inclusion i : Dsm ↪→ X and (∪,∩)

are restriction functor and Orlov’s functor. Moreover, the diagram is expected to

commute with the action of Serre functors.

Taking Hochschild homology HHa in the upper horizontal sequence of diagram

(1.1.3) yields a part of the spectral sequence associated to the weight filtration on

H•(U). Interestingly, the corresponding bottom sequence is the E1-page of the

spectral sequence associated to the perverse Leray filtration [CM10] on H•(Y ).

Theorem 1.1.3. Given a Fano mirror pair {(X,D ∈ |−KX |), ((Y, ω),w : Y → C)},

the conjectural relative HMS (1.1.3) gives rise to the following homological (Hodge

theoretic, topological) correspondence

⊕p−q=a GrqFGrWp+q+iHp+q(U) ∼= GrPn+a+iH
n+a(Y ) for all i = 0, 1 (1.1.4)

Moreover, one can recover direct summands by taking associated graded pieces of

monodromy weight filtration associated to the Serre functors. Then we have

GrqFGrWp+q+iHp+q(U) ∼= GrW2(n−q)GrPn+p−q+iH
n+p−q(Y ) for all i = 0, 1

In particular, if the canonical mixed Hodge structure on Hk(Y ) is Hodge-Tate for

all k, then we have the mirror P=W conjecture;

GrqFGrWp+q+iHp+q(U) ∼= GrF(n−q)GrPn+p−q+iH
n+p−q(Y ) for all i = 0, 1
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The Hodge-Tate condition on the canonical mixed Hodge structure on the coho-

mology groups of Y essentially comes from the conjecture of Kontsevich-Katzarkov-

Pantev [KKP17]. In loc.cit., the authors studied flat deformations of ordinary

Landau-Ginzburg models w : Y → C. The idea is to tamely compactify the LG

model to f : Z → P1 with boundary divisor D∞ := f−1(∞) and study the defor-

mation of f anchored at ∞ ∈ P1. It is controlled by the L∞-algebra associated

to the f -adapted logarithmic deRham complex (Ω•Z(logD∞, f), d), the subcom-

plex of logarithmic deRham complex preserved by wedge product with df . More-

over, it gives rise to new Hodge numbers, the so-called f -adapted Hodge num-

bers fp,q(Y,w) := dimHq(Z,Ωp
Z(logD∞, f)), which are conjectured to be equal to

monodromy weight numbers hp,q(Y,w) := dimGrW (N)
p Hp+q(Y,w) associated to the

monodromy N around infinity of w : Y → C.

Conjecture 1.1.4. (KKP Conjecture [KKP17]) Let ((Y, ωY ),w : Y → C) be a LG

model mirror to a Fano variety X 1. There is the identity of two Hodge numbers;

fp,q(Y,w) = hp,q(Y,w)

for all p, q ≥ 0.

In [Sha18], it is shown that Conjecture 1.1.4 is equivalent to the Hodge-Tate con-

dition on the canonical mixed Hodge structures on the cohomology groups H•(Y ).

In the thesis, we will study the analogue of the various aspects of the Fano/LG

correspondence introduced above in case where D is not smooth, but a simple
1A choice of a anti-canonical divisor is not assumed

5



normal crossing with a certain positivity assumption. In particular, we will give

answers to the following questions.

Question 1.1.5. 1. How can we extend the Fano/LG correspondence to pairs

(X,D) where D is a simple normal crossing divisor? In this case, can we

still deduce the mirror P=W conjecture (Conjecture 1.1.1) from the relative

homological mirror symmetry?

2. How do we control the deformation theory of the relevant LG models? What

is the generalization of the KKP conjecture?

For simplicity, we mainly consider the case where a smooth Fano manifold X

has a simple normal crossing anti-canonical divisor D = D1 ∪ D2 with the inter-

section D12 where (D1, D12) and (D2, D12) are again smooth Fano pairs. In this

case, Strominger-Yau-Zaslow (SYZ) mirror construction yields a pair of potentials

h = (h1, h2) : Y → C2 associated to counting disks touching each irreducible com-

ponent Di [SYZ96][Aur07]. It induces the mirror of the Fano pair (D1, D12) (resp.

(D2, D12)) which is an ordinary LG model (Y1, h2|Y1) (resp. Y2, h1|Y2) where Yi is

a generic fiber of hi for i = 1, 2. One can also obtain an ordinary LG potential

w := h1 +h2 : Y → C, which is now non-proper, by composing with the summation

map Σ : C2 → C since it corresponds to adding up two different counting. These

mirror relations are summarized in Table 2.

B-side (X,D) (D1, D12) (D2, D12) D12

A-side (w : Y → C, Ysm) (Y1, h2|Y1 : Y1 → C) (Y2, h1|Y2 : Y2 → C) Y12

6



(Table 2. Extended Fano/LG correspondence)

Similar to the case where D is smooth, the relative version of homological mirror

symmetry is given as an equivalence of categories associated to the pairs (X,D) and

(Y,w : Y → C). However, we will refine this diagram by integrating all four mirror

symmetry relations in the extended Fano/LG correspondence. This is motivated by

the mirror P=W conjecture which suggests that the diagram of categories in both B

and A sides be categorical shadows of the weight and perverse filtration associated

to the hybrid LG model, respectively.

Conjecture 1.1.6. (Relative HMS for Fano pair (X,D = D1 ∪ D2)) There is an

equivalence of diagrams of categories

DbCoh(D12)

DbCoh(D1) DbCoh(D2)

DbCoh(X)

i1∗

i2∗

i1,X∗

i∗1

i2,X∗

i∗2

i∗1,X

i∗2,X

Fuk(Y12)

FS(Y1, h2|Y1) FS(Y2, h1|Y2)

FSwr(Y,w)

∪1

∪2

∪1,Y

∩1

∪2,Y

∩2

∩1,Y

∩2,Y

(1.1.5)

One needs to verify that all the functors, especially in the A-side diagram, are

well-defined. This is achieved by verifying a gluing property of a generic fibration

h|Ysm : Ysm → C. In other words, the mirror of the anti-canonical D is expected

to be glued from mirror LG models associated to the Fano pairs (D1, D12) and

(D2, D12).
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Lemma 1.1.7. Let (Y, h : Y → C2) be a hybrid LG model which is mirror to

a Fano complete intersection X with simple normal crossing anti-canonical divisor

D = D1∪D2. Then a generic fibration h|Ysm : Ysm → C is glued from h2|Y1 : Y1 → C

and h1|Y2 : Y → C.

The proof of Lemma 1.1.7 relies on the construction of mirror hybrid LG models.

We use the Hori-Vafa construction and take a suitable compactification of the (open)

hybrid LG model. The key idea is to study the singular locus of the hybrid LG

model.

Lemma 1.1.7 implies that the Fukaya-Siedel category FS(Ysm, h|Ysm) has semi-

orthogonal decomposition < FS(Y1,w2), FS(Y2,w1) >, which enables one to con-

struct relevant functors on the A-side diagram in (1.1.5). In addition, the equiv-

alence of two diagrams is compatible with relevant Serre functors so that we have

the following main theorem.

Theorem 1.1.8. Given a Fano mirror pair (X,D = D1 ∪ D2), (Y, h : Y → C2),

the conjectural relative HMS (Conjecture 1.4.8) and Proposition (1.4.5) gives rise

to the following homological (Hodge theoretic, topological) correspondence.

⊕p−q=aGrpFGrWp+q+iHp+q(U) ∼= GrPn+a+iH
n+a(Y ) for all i = 0, 1, 2

Moreover, one can recover direct summands by taking associated graded pieces of

monodromy weight filtration from the Serre functors. Then we have

GrqFGrWp+q+iHp+q(U) ∼= GrW2(n−q)GrPn+a+iH
n+a(Y ) for all i = 0, 1, 2

8



In particular, if the canonical mixed Hodge structure on Hk(Y ) is Hodge-Tate for

all k, then we have the mirror P=W conjecture;

GrqFGrWp+q+iHp+q(U) ∼= GrF(n−q)GrPn+p−q+iH
n+p−q(Y ) for all i = 0, 1, 2.

Next, we study the deformation theory of hybrid LG models and extend the KKP

conjecture (Conjecture 1.1.4) in the hybrid setting. The Hodge-Tate condition on

the canonical mixed Hodge structure on Hk(Y ) for all k turns out to be equivalent

to the extend version of the KKP conjecture (Conjecture 1.1.10).

Regarding the deformation theory of the hybrid LG model (Y, h : Y → C2),

one can extend the previous story by taking an appropriate tame compactification

f = (f1, f2) : Z → P1 × P1 with DZ := f−1(L) where L := {∞} × P1 ∪ P1 × {∞} is

the complement of C2 in P1 × P1.

Theorem 1.1.9. Let f = (f1, f2) : Z → P1 × P1 be a tame compactification of the

hybrid LG model h : Y → C2. Then the deformation theory of f anchored at the

boundary L is unobstructed.

We introduce a f -adapted complex (Ω•Z(logDZ , f), d), the subcomplex of

(Ω•Z(logDZ), d) preserved by either df1∧ or df2∧. It admits a stupid filtration,

called Hodge filtration, whose spectral sequence degenerates at E1-page (Propo-

sition 1.4.17). Therefore, one can define f -adapted Hodge number in the hybrid

setting, which turns out to be independent of the choice of the tame compactifi-

cation. On the other hand, associated to the hybrid LG model, there are three

9



different monodromy weight filtrations N1, N2, and c1N1 + c2N2 for c1, c2 > 0 where

N1 and N2 correspond to monodromies around each irreducible component of Γ. It

allows to define three monodromy weight numbers of the cohomology Ha(Y, Y12).

This cohomology group is recovered from the hypercohomology of f -adapted de

Rham complex. Now we can make conjectural relations between the associated

Hodge numbers of Ha(Ω•Z(logDΓ, f1 ∪ f2), d) and monodromy weight numbers of

Ha(Y, Y12). It is expected that three monodromy filtrations give rise to the same

monodromy weight number. In summary, we have the following conjecture;

Conjecture 1.1.10. (Extended KKP Conjecture) Let f = (f1, f2) : Z → P1×P1 be

a tame compactification of the hybrid LG model h : Y → C2. For any p, q, c1, c2 ≥ 0,

we have the identification of Hodge numbers

dimHq(Z, (Ωp
Z(logDΓ, f, d)) = dimGrW (c1N1+c2N2)

2(n−p) Hp+q(Y, Y12)

In general, when D has more than two components, one can obtain the similar

results under the assumption that each irreducible component of the anti-canonicl

divisor is Fano itself. This is necessary condition for the relative HMS hold. We

state relevant theorems and conjectures in Section 2.4.

10



1.2 Preliminaries

1.2.1 Weight filtration

We review the Deligne’s construction of the weight filtration and mixed Hodge struc-

ture on the cohomology of a quasi-projective variety by following logistics in [PS08].

Let U be a quasi-projective variety over C and assume that we have a good com-

pactification 2 (X,D). Recall that a pair (X,D) where X is a smooth and compact

variety with a simple normal crossing divisor D is called a good compactification of

U if U = X \D.

Let j : U → X be a natural inclusion. Consider a logarithmic de Rham complex

Ω•X(logD) ⊂ j∗Ω•U

Locally at p ∈ D with an open neighborhood V ⊂ X with coordinates (z1, · · · , zn)

in which D is given by z1 · · · zk = 0, one can see

Ω1
X(logD)p = OX,p

dz1

z1
⊕ · · · ⊕OX,p

dzk
zk
⊕OX,pdzk+1 ⊕ · · · ⊕OX,pdzn

Ωr
X(logD)p =

r∧
Ω1
X(logD)p

There are two natural filtrations on Ω•X(logD).

Definition 1.2.1. 1. The decreasing filtration F • on Ω•X(logD) is defined by

F pΩr
X(logD) := Ω≥pX (logD)

2Assumption on the compactification (X, D) is not essential. For example, it is allowed to have

mild singularities(quotient, canonical, etc).
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2. The increasing filtration W• on Ω•X(logD) is defined by

WmΩr
X(logD) :=



0 m < 0

Ωr
X(logD) m ≥ r

Ωr−m
X ∧ Ωm

X(logD) 0 ≤ m ≤ r

Theorem 1.2.2. 1. The logarithmic de Rham complex Ω•X(logD) is quasi-isomorphic

to j∗Ω•U . i.e.

Hk(U ;C) = Hk(X,Ω•X(logD))

2. The decreasing filtration F • on Ω•X(logD) induces the filtration in cohomology

F pHk(U ;C) = Im(Hk(X,F pΩ•X(logD))→ Hk(U ;C))

which is called the Hodge filtration on H•(U).

Similarly, the increasing filtration W• on Ω•X(logD) induces the filtration in

cohomology

WmH
k(U ;C) = Im(Hk(X,Wm−kΩ•X(logD))→ Hk(U ;C))

which is called the weight filtration on H•(U). In particular, the weight

filtration can be defined over the field of rational numbers Q and we denote it

by WQ
• .

3. The package (Ω•X(logD),WQ
• , F

•) gives a rational mixed Hodge structure on

Hk(U ;C).

12



The key properties of these two filtrations are the degeneration of the associated

spectral sequences. More precisely, we have

Proposition 1.2.3. 1. The spectral sequence for (H(X,Ω•X(logD), F •) whose

E1-page is given by

Ep,q
1 = Hp+q(X,GrpFΩ•X(logD))

degenerates at E1-page. Thus,

GrpFHp+q(X,Ω•X(logD)) = Hp+q(X,GrpFΩ•X(logD))

2. The spectral sequence for (H(X,Ω•X(logD),W•) whose E1-page is given by

E−m,k+m
1 = Hk(X,GrWmΩ•X(logD))

degenerates at E2-page and the differential d1 : E−m,k+m
1 → E−m+1,k+m

1 is

strictly compatible with the filtration F•. In other words,

E−m,k+m
2 = E−m,k+m

∞ = GrWm+kHk(X,Ω•X(logD))

In order to compute a mixed Hodge structure, we should describe the spectral

sequences more explicitly. For a given normal crossing divisor D, let’s denote Di an

irreducible component of D. We set D(k) to be a disjoint union of k-th intersection.

D(0) := X

D(1) := D1 ∪ · · · ∪Dn

D(k) :
∏
I

DI , |I| = k

13



Also, for I = (i1, · · · , im) and J = (i1, · · · , îj, · · · , im), there are inclusion maps

ρIJ : DI ↪→ DJ

ρmj = ⊕|I|=mρIJ : D(m) ↪→ D(m− 1)

which induces a canonical Gysin map on the level of cohomology. Therefore, we

have

γm = ⊕mj=1(−1)j−1(ρmj )! : Hk−m(D(m))(−m)→ Hk−m+2(D(m− 1))(−m+ 1)

where (−)! is a Gysin map. Under the residue map, this gives a geometric descrip-

tion of the differential d1 : E−m,k+m
1 → E−m+1,k+m

1 as follows;

Proposition 1.2.4. The following diagram is commutative.

E−m,k+m
1 Hk−m(D(m);C)(−m)

E−m+1,k+m
1 Hk−m+2(D(m− 1);C)(−m− 1)

resm

d1 −rm

resm

(1.2.1)

where resm is the residue map.

Note that all morphisms in the diagram (1.2.1) are compatible with Hodge

filtration F •. This description provides several functorial properties of mixed Hodge

structures under geometric morphisms, which provides computational tools. We

refer more details to [PS08]. We introduce one more terminology, which will be

used later.

Definition 1.2.5. Let U be a quasi-projective variety. A mixed Hodge structure

on Hk(U) is called Hodge-Tate if the weight 2l-Hodge structure on the associated

graded pieces Gr2lH
k(U) is concentrated at (l, l) for l ≥ 0.
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Example 1.2.6. Let U be a n-dimension torus (C∗)n. It admits a good compactifica-

tion (CPn, D) where D is a toric anti-canonical divisor. From the spectral sequence

argument, it is easy to see that a mixed Hodge structure on Hk(U) is given by both

long exact sequence of the pair (Xn, E) and Poincaré duality;

· · · ⊂ 0 = WQ
2k−1 ⊂ WQ

2k = Hk(U ;Q)

· · · ⊂ 0 = F k+1 ⊂ F k = Hk(U ;C)

In other words, the only non-trivial associated graded piece is GrFkGr2k
WH

k(U ;C) =

C(nk) for all k. Using the notion of Tate twist, one can write down the mixed Hodge

structure as follows;

Hk(U ;Q) ∼= Q(−k)(
n
k)

and it is clearly of Hodge-Tate type.

Example 1.2.7. Let Xn be a Delpezzo surface of degree 9 − n which is a blow up

of CP2 at generic n(≤ 8) points. Note that Xn is Fano so that there is a smooth

anti-cacnonical divisor E ⊂ Xn. By adjunction the complement Un = Xn \ E is

Calabi-Yau. The mixed Hodge structure on Hk(U) is given by

1. H0(U ;Q) ∼= Q(0)

2. H2(U ;Q) sits in a short exact sequence

0→ Q(−1)n−1 → H2(U ;Q)→ H1(E;Q)(−1)→ 0

3. Otherwise, H i(U ;Q) = 0.
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It implies that the mixed Hodge structure on H2(U ;Q) is of Hodge-Tate type with

non-trivial associated graded pieces of the weight filtration GrW2 and GrW4 .

1.2.2 Perverse filtration

In algebraic geometry, the notion of perversity was invented by Mark Goresky and

Robert MacPherson [GM80] [GM83] to capture the singular behavior of an algebraic

variety or sheaves via cohomology theories. This can be used to understand topology

of algebraic maps. Let X be an algebraic variety or scheme. In case X is singular,

a sheaf F on X behaves unexpectedly over singular locus which makes it difficult to

undestand the cohomology ring structure. To resolve this issue, instead of studying

sheaves on X, one can introduce the notion of constructible sheaves which becomes

locally constant over each singular strata. It forms a well-defined triangulated

category, Db
c(X), called the (bounded) derived category of constructible sheaves.

Definition 1.2.8. Let X be an algebraic variety (or scheme) with Db
c(X) a derived

category of constructible sheaves on X. An objectK• ∈ Db
c(X) is called a perverse

sheaf if it satisfies following two dual conditions.

• (Support Condition) dim supp(Hi(K•)) ≤ −i

• (Cosupport Condition) dim supp(Hi(DK•)) ≤ −i where D : Db
c(X)→ Db

c(X)

is a dualizing functor.

Recall that the dualizing functor D = HomOX (−, p!(Cpt)) where p : X → pt

is a trivial map. We call p!(Cpt) a dualizing complex of X, and denoted by ωX .
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In particular, if X is non-singular of (complex) dimension n, ωX = CX [2n]. Note

that the subcategory of perverse sheaves on X, P(X) forms an abelian category.

Also, the support and cosupport condition induces a so-called a perverse t-structure

(pDb,≥0
c (X),pDb,≤0

c (X)) on Db
c(X) whose heart is P(X). Explicitly, it is given by

• K• ∈p Db,≤0
c (X) if and only if K satisfies the support condition. Also,

pDb,≤n
c (X) :=p Db,≤0

c (X)[−n]

• K• ∈p Db,≥0
c (X) if and only if K satisfies the cosupport condition. Also,

pDb,≥n
c (X) :=p Db,≥0

c (X)[−n]

We denote pτ≤n : Db(X) →p Db,≤n
c (X) (resp. pτ≥n : Db(X) →p Db,≥n

c (X)) a

canonical truncation functor. Now we can define perverse filtration associated to

the algebraic map.

Definition 1.2.9. Let f : X → Y be a map between algebraic varieties. For a

complex of sheaves K•, the perverse (Leray) filtration on H∗(X;K•) is given by

PbH
∗(X,K•) := Im(H∗(Y,p τ≤bRf∗K•)→ H∗(Y,Rf∗K•) = H∗(X,K•))

where pτ is a perverse truncation on Db
c(Y ).

Due to the Decomposition Theorem [BBD82], the spectral sequence associated

to the perverse filtration, (special case of Grothendieck’s spectral sequence) degen-

erates at E2 page. Thus,

GrPp H
p+q(X,K•) = Eq,p

∞ = Eq,p
2 = Hq(Y,pHp(Rf∗K•)) (1.2.2)

17



The following theorem provides a geometric description of the perverse Leray

filtration.

Theorem 1.2.10. Let f : X → Y be a map of varieties with Y being affine. For

each K• ∈ Db(X), there is a generic flag Y• ⊂ Y , with pre-image flag X• ⊂ X,

such that

PbH
∗(X,K•) = Ker{(H∗(X,K•)→ H∗(Xb−∗+1, K

•|Xb−∗+1)}

where Yk ⊂ Y has codimension k.

Note that the length of filtration depends on dimension of Y . One can show

that the length is dim(Y ) + 1

0 = Pk−1 ⊂ Pk ⊂ · · · ⊂ Pdim(Y )+k−1 ⊂ Pdim(Y )+k = Hk(X,K)

The affinity condition in Theorem 1.2.10 is not very restrictive because for any

quasi-projective variety U , there is a canonical affinization map

Aff : U → SpecH0(U,OU)

so that one can define the canonical perverse filtration associated to the variety

itself.

Example 1.2.11. Let U be a n-dimensional affine torus (C∗)n, then the affinization

map is given by the natural inclusion : U → Cn. By interatively applying Lefshcetz

hyperplane theorem, one can see that the only non-trivial associated graded pieces

of the canonical perverse Leray filtration is Grn−kHk(U ;C) = Hk(U ;C).
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Example 1.2.12. Let X be a smooth projective variety with smooth ample divisor

D. Then the complement U := X \ D is always affine. Then we can iteratively

apply Lefschetz hyperplane theorem to argue that GrPi Hk(U ;C) is non-trival only

when i = dim(U)− k.

Moreover, since the canonical perverse Leray filtration is compatible with the

canonical mixed Hodge structure, we can define perverse-mixed Hodge poly-

nomial which encodes refined Hodge numbers.

Definition 1.2.13. For any (non-singular) quasi-projective variety U , we define a

perverse-mixed Hodge polynomial as follows

PWU(u, v, w, p) =
∑
a,b,r,s

(dimGraFGrWs+bGrPs+r(Hs(U,C))uavswbpr

Example 1.2.14. Combining previous examples, we get

1. PW(C∗)d(u, v, w, p) = (uvw + p)d

2. Xn Delpezzo surface of degree 9 − n, and E ∈ |K−1
Xn| smooth anti-canonical

divisor. Yn := Xn \ E

PWYn(u, v, w, p) = p+ uw2p2 + uv2w2 + (9− n)uw2

This is one of the main topics we will discuss further.

1.2.3 Categories on B-side

Let X be a quasi-projective algebraic variety. We consider two categories which

encodes essential geometric information of X;
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• A derived category of perfect complexes on X, Perf(X), whose objects are

bounded complexes of vector bundles of finite rank.

• A bounded derived category of coherent sheaves on X, DbCoh(X) whose

objects are bounded complexes of coherent sheaves

A natural transformation I : Perf(X) ↪→ DbCoh(X) becomes an isomorphism

when X is smooth. Therefore, the categorical localization of the natural trans-

formation I detects singularities of X so is called bounded derived category of

singularities, Db
sg(X).

Now assume that X is a smooth Fano variety of dimension n and choose a

non-trivial anti-canonical divisor D = {s = 0} where s ∈ H0(X,K−1
X ). By the

adjunction formula, D is Calabi-Yau hypersurface i : D ↪→ X. The complement

j : U := X \D ↪→ X is also Calabi-Yau since the inverse of the section s induces a

nowhere-vanishing holomorphic n-form. Note that both inclusions i and j induces

natural transformation which allows to compare three (bounded) derived categories

of coherent sheavesDbCoh forX,D and U . In particular, the composition of natural

transformations

DbCoh(D) i∗−→ DbCoh(X) j∗−→ DbCoh(U)

is trivial. Moreover, we claim that the above sequence is a categorical localization

[KS06] [Sei08]. To see this, we consider the following triangle of natural transfor-
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mations;
idX i∗i

∗

SX [−n+ 1]

where SX is the Serre functor of DbCoh(X) which is given by −⊗KX [n] and

• SX [−n+1]→ id is given by the choice of s : OX → K−1
X and the shift functor

[1];

• idX → i∗i
∗ is the unit map of the adjunction i∗ a i∗;

• i∗i
∗ → SX is determined by the composition

HomDb(D)(i∗E, i∗F [n− 1])→ HomDb(D)(i∗F, i∗E)∨

→ HomDb(X)(F,E)∨ → HomDb(X)(E, SX(F ))

where the first and the last map come from Serre duality.

Since morphisms between coherent sheaves on U can be calculated by considering

morphisms on X which may have poles along D. In other words, we have

HomDb(U)(j∗E, j∗F ) ∼= lim
p

HomDb(X)(E,F ⊗ (K−1
X )⊗p)

This shows that the category DbCoh(U) is equivalent to the categorical localization

of DbCoh(X) at the natural transformation SX → id determined by s. Finally, the

above triangle implies that the localizing subcategory is isomorphic to DbCoh(D).

DbCoh(D) DbCoh(X) DbCoh(U)
i∗

SX |D

i∗

SX

(1.2.3)
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Finally, note that the bounded derived categories has a natural enhancement to

differential-graded (dg) categories and the categorical localization in (1.2.3) can be

understood as that of dg categories as well.

1.2.4 Categories on A-side

Next, we introduce the A-side analogue of diagram. Let (Y, ω) be a (possibly non-

compact) symplectic manifold with a symplectic form ω ∈ Ω2(Y ). If (Y, ω) is

non-compact, we assume that it is Liouville manifold with contact boundary ∂∞Y .

We associate two A∞-categories which encodes geometric information Y .

• A Fukaya category of Y , Fuk(Y ), whose objects are compact Lagrangian

branes and morphisms are Floer chain complexes.

• A wrapped Fukaya category of Y , Fukwr(Y ), whose objects are Lagrangians

with conical at ∞ and morsphims are wrapped Floer complex.

Remark 1. To define Fukaya categories properly, one needs to add more decorations

on geometric structures on Y and specify brane structures. As this is not the main

topic we will study, we simplify the definition and deliver the smallest amount of

technicality. We refer to [Fuk+09][Aur13] for more details.

Moreover, we introduce another category, called Fukaya-Seidel category FS(Y,w),

associated to a Lefschetz fibration w : Y → C. Recall that away from a compact

region Kcpt ⊂ C, w|C\Kcpt : Y \ w−1(Kcpt)→ C is a genuine fibration whose fiber is

a Lefschetz submanifold.
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Definition 1.2.15. An admissible Lagrangian associated to the Lefschetz fibration

w : (Y, ω) → C is a (possibly non-compact) Lagrangian L in Y such that w(L) is

contained in a union of a compact subset and (possibly multiple) radical rays away

from negative real axis.

To an admissible Lagrangian L, one can associate a subset DL ⊂ (−π, π) of

direction of L near∞. In order to define Floer theory of admissible Lagrangians, we

allow non-compact Hamiltonian perturbations as well as choose "counterclockwise"

direction near ∞. Then for admissible Lagrangians K and L, we say K > L if

θk > θL for any θk ∈ DK and θL ∈ DL.

Consider A be a directed A∞ category whose

• Objects are admissible Lagrangian branes of ((Y, ω),w);

• Morphism spaces are

HomA(K,L) =



CF •(K,L) K > L

C < e+
L > K = L

0 o.w

with A∞ relations defined by counting J-holomorphic discs and e+
L being a

strict unit.

This is directed in the sense that obA is a poset with hom(K,L) = 0 unless k > L.

Moreover, in this category, L is not quasi-isomorphic to its perturbation φεL because

HomA(φεL,L) 6= L while homA(L, φεL) = 0. One achieve the quasi-isomorphism
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between L and φε(L) by inverting all quasi-units in the cohomology of morphism

spaces. Let Z ⊂ H0(A) be a collection of all quasi-units.

Definition 1.2.16 (Abouzaid-Seidel). The Fukaya-Seidel category FS(Y,w) is de-

fined to be a categorical localization of A at Z.

Remark 2. There is another equivalent definition of Fukaya-Seidel category whose

objects are Lagrangian thimbles, coming from vanishing cycles of a generic fiber.

This is more intuitive, but rather difficult to handle technical issues.

We first construct relevant functors between the Fukaya-Seidel category FS(Y,w)

and Fukaya category Fuk(Ysm) where Ysm is a general fiber of w : Y → C;

Fuk(Ysm) FS(Y,w)
∪

µ
∩

φ2π

where

• ∩ : FS(Y,w) → Fuk(Ysm) is called a cap functor, given by intersection of an

admissible Lagrangian with the general fiber Ysm.

• ∪ : Fuk(Ysm)→ FS(Y,w) is called Orlov’s functor or cup functor, given by the

trajectory of a parallel transport along a U-shaped curve bounding all critical

values.

• µ is the global monodromy induced by the parallel transport along a large

enough loop and φ2π is defined to be counter-clockwise wrapping once.
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Remark 3. The image of the cap functor lands in twisted Fukaya cateogry of

TwFuk(Ysm). There is another version of construction of Fukaya category which

fits into this discussion done by Abouzaid. The idea is to consider directed category

to allow collection of Lagrangians and localize it at the collection of "quasi-units".

It turns out to be quasi-equivalent to the ordinary construction of Fukaya category.

It is easy to see that φ−2π = φ−1
2π is a Serre functor (up to shift) of FS(Y,w). For

any admissible Lagrangian L, a choice of an element in HomFS(Y,w)(φ2πL,L) induces

a natural transformation id→ φ2π which fits into the following exact triangle

id φ2π

∪∩

Now consider the localization of the Fukaya-Seidel category FS(Y,w) with re-

spects to the natural transformation id → φ2π, denoted by W (Y ). By theorem

of Abouzaid and Seidel, W (Y ) is isomorphic to the subcategory of the wrapped

Fukaya category with objects in FS(Y,w). Indeed, it is expected thatW (Y ) is A∞-

equivalent to Fukwr(Y ). Now, we have the following diagram of A∞ categorical

localization [Sei08].

Fuk(Ysm) FS(Y,w) Fukwr(Y )
∪

µ

∩

φ2π
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1.2.5 Hochschild (Co)Homology

Hochschild homology (and cohomology) is a homology theory for associative alge-

bras over rings. This notion can be generalized to homology theory for categories

whose morphism spaces admit associative algebra structures up to homotopies. In

this subsection, we review Hochschild homology and cohomology of algebras and

categories.

LetA be an associative algebra over k andAe := A⊗Aop be an enveloping algebra

of A where Aop is an opposite algebra. Consider a free A-bimodule (equivalently Ae-

module) resolution of A, called the bar complex B•A of A such that BnA := A⊗(n+2)

with the differential b : BnA→ Bn−1A given by

b(a0 ⊗ · · · ⊗ an+1) := Σn
i=0(−1)i(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

with the canonical multiplication map µ : A⊗2 → A.

Definition 1.2.17. For any associative algebra A over k and an A-module M , we

define Hochschild homology HH•(A,M) and Hochschild cohomology HH•(A,M)

of (A,M) as follows;

HH•(A,M) := TorA
e

• (A,M)

HH•(A,M) := Ext•Ae(A,M)

In particular, if A = M , then we denote Hochschild homology (resp. cohomology)

of (A,A) by HH•(A) (resp. HH•(A))

We focus on geoemtric interpretation of Hochschild homology and cohomology

by regarding A as the space of global regular functions on X := Spec(A). We denote

26



Ωn(A) := ∧n Ω1(A) the space of algebraic differential n-forms where Ω1(A) is the

space of Kähler differentials on A. There is a natural morpshim of A-modules

πn : HHn(A)→ Ωn(A)

a0 ⊗ · · · ⊗ an 7→ a0da1 ∧ · · · ∧ dan

for all n ≥ 0. The following theorem tells that the morphism πn becomes an

isomorphism when X := Spec(A) is smooth and projective.

Theorem 1.2.18. [HKR62] (Hochschild-Kostant-Rosenberg) Let A be a finitely pre-

sented, smooth, commutative algebra over k. Then there is an isomorphism of

graded k-algebras

HH•(A) ∼= Ω•(A/k)

Dually, the Hochschild cohomology is identified with space of k-derivations of A.

Theorem 1.2.18 can be generalized in various directions. First, let X be a (not-

necessarily affine) smooth and proper scheme over k. The Hochschild homology and

cohomology of X is defined to be that of the ring of global functions O(X). In this

case, the analogue of Theorem 1.2.18 still holds.

More abstractly, one can define Hochschild homology and cohomology for a

category C whose morphism spaces are associative algebras3. Even though the

body of Hoschschild (co)chain complex seems too huge to deal with, there are many

interesting cases one can compute Hochschild invariants explicitly. We introduce
3(∞, 1)− categories
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two main examples which will be used later. Such isomorphisms called the HKR

isomorphism.

Example 1.2.19. Let X be quasi-separated scheme over C. The Hochschild invariant

of the (dg) category perfect complexes Perf(X) on X is isomorphic to that of X

[Kel99]. If X is smooth and proper, combining with the HKR isomorphism, we

have

HHn(DbCoh(X)) = HHn(Perf(X)) ∼= HHn(X) ∼= ⊕p+q=nHq(X,Ωp
X)

for all n.

Example 1.2.20. (1) Let (Y, ω) be a compact (exact) 2n-dimensional symplectic

manifold with a symplectic structure ω ∈ Ω2(Y ). The Hochschild invariant

of Fukaya category Fuk(Y ) is expected to be isomorphic to the quantum coho-

mology of Y under the open-closed maps [Fuk+09]

HH•(Fuk(Y )) ∼= QHn+•(Fuk(Y ))

HH•(Fuk(Y ) ∼= QH•(Fuk(Y ))

More generally, when Y becomes non-compact and a Liouville manifold, the

Hochschild invariant of the wrapped Fukaya category Fukwr(Y ) is expected to

be isomorphic to symplectic cohomologies [Gan13].

(2) Let ((Y, ω),w : Y → C) be a Lefschetz fibration where (Y, ω) is 2n-dimensional

symplectic manifold. To this data, one can associate the Fukaya-Seidel category
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FS(Y,w). The Hochschild homology is given by

HH•(FS(Y,w)) ∼= Hn+•(Y, Y∞)

where H•(Y, Y∞) is the cohomology of vanishing cycles [AS].

1.3 Smooth Case

1.3.1 Fano/LG Correspondence

Let (X,D) be a Fano pair where X is n-dimensional complex Fano manifold and D

is a smooth anti-canonical divisor. Denote the complement by U := X\D. A mirror

of this pair is given by the Landau-Ginzburg (LG) model ((Y, ω),w : Y → C) where

(Y,w) is 2n-dimensional Calabi-Yau symplectic manifold with a symplectic (kähler)

form ω ∈ Ω2(Y ) is a holomorphic volume form. The LG potential w : Y → C is a

Lefschetz fibration. A general fiber of w, denoted by Ysm, is a compact Calabi-Yau

manifold.

Remark 4. In [KKP17], the choice of defining anti-canonical section sX ∈ |K−1
X |

as well as a holmorphic volume form on Y , volY , are considered in the Fano/LG

correspondence. As such choices are not crucial for our discussion, we just abuse

our notation of mirror Fano/LG correspondence.

The conjectural mirror symmetry relations of such pairs (B to A) are given as
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follows;

X ⇐⇒ (w : Y → C)

D ⇐⇒ Ysm

U ⇐⇒ Y

These abstract correspondences can be made explicit once relevant mathematical

objects to each pair are specified. In particular, the homological mirror symmetry

(HMS) conjecture is stated as an equivalence of two categorial localizations (1.2.3)

and (1.2.3).

Conjecture 1.3.1. (Relative HMS for the Fano pair (X,Dsm)) Let (X,Dsm)

be a Fano pair and ((Y, ω),w : Y → C) be a mirror LG model. There is an

equivalence of sequences of C-linear Z-graded idempotent complete A∞ categories

DbCoh(Dsm) DbCoh(X) DbCoh(U)

Fuk(Ysm) FS((Y, ω), w) Fukwr(Y )

i∗

∼=
i∗

∼=

j∗

∼=
∪

∩
ι

(1.3.1)

where

• the upper (resp. lower) horizontal sequence is the categorical localization de-

scribed in (1.2.3) (resp. (1.2.4));

• The vertical isomorphisms are compatible with Serre functors.

Example 1.3.2. Let (X,D) be (CP1, {0} ∪ {∞}). The mirror Landau-Ginzburg

model (Y,w) is given by Laurant polynomial w(z) = z + 1
z
. This is a Lefschetz
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fibration with only one singular locus at 0 ∈ C. A generic fiber is two points which

gives rise to objects (thimbles) ∆0,∆1 in Fukaya-Seidel category FS(Y,w). Note

that by perturbing ∆0, one can see that it intersects with ∆1 at one point. In other

words HF •(∆0,∆1) = C and this implies that both thimbles ∆0 and ∆1 correspond

to OX and OX(1), respectively.

Moreover, a skyscraper sheaf Op for p ∈ X \ {0}∪ {∞} corresponds to compact

circle which is cotangent fiber when we view C∗ as T ∗S1. For p = 0,∞ it corresponds

to U -shaped admissible Lagrangians.

Example 1.3.3. Let X be a Delpezzo surface of degree 0 ≤ d ≤ 9 and D be a

smooth anti-canonical divisor. The Landau-Ginzburg model is an elliptic fibration

f : Z → P1 over P1 with 3 + d singularities near the origin and the wheel of 9 − d

lines at the infinity. By removing the fiber at infinity f−1(∞), we have a genuine

LG model ((Y, ω),w : Y → C). In [AKO06], the authors essentially proves the

relative HMS.

Remark 5. The mirror symmetry of Del-pezzo surfaces with a smooth anti-canonical

fiber is recently generalized to log-Calabi Yau surfaces with toric boundaries by

[Gro+18]. A mirror LG potential w : Y → C becomes non-proper, whose generic

fiber is a complement of some divisors in elliptic curve. There is an interesting

hidden behind the non-properness of the fibration. We will come back to this point

in Section 2.3.

Proposition 1.3.4. By taking Hochschild homology HHa on the diagram in (1.3.1),
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we have an isomorphism of long exact sequences of cohomology groups;

⊕p−q=aHq(D,Ωp
D) ⊕p−q=aHq(X,Ωp

X) ⊕p−q=aHq(U,Ωp
U) · · ·

Ha+n−1(Ysm) Ha+n(Y, Ysm) Ha+n(Y ) · · ·

i∗

∼=

j∗

∼= ∼=

conn ι∗

(1.3.2)

Proof. The top horizontal sequence comes from HKR isomorphism and A1-homotopy

theory. This is a classical Gysin sequence assocated to the pair (X,D). For the

bottom sequence, note that the induced morphism of cap functor HHa(∩) on the

level of Hochschild homology is a canonical map from cohomology of nearby cycles

to that of vanishing cycles. Since a generic fiber of the LG potential w : Y → C is

all diffeomorphic, the morphism HHa(∩) becomes the connecting homomorphism

of the long exact sequence associated to the pair (Y, Ysm).

As two horizontal sequences are a part of spectral sequences associated to weight

filtration on H•(U) and perverse Leray filtration on H•(Y ), we have the following

theorem.

Theorem 1.3.5. Given a Fano mirror pair {(X,D ∈ |−KX |), ((Y, ω),w : Y → C),

the conjectural relative HMS (1.3.1) gives rise to the following homological (Hodge

theoretic, topological) correspondence

⊕p−q=a GrqFGrWp+q+iHp+q(U) ∼= GrPn+a+iH
n+a(Y ) for all i = 0, 1 (1.3.3)

Moreover, one can recover direct summands by taking associated graded pieces of
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monodromy weight filtration associated to the Serre functors. Then we have

GrqFGrWp+q+iHp+q(U) ∼= GrW2(n−q)GrPn+p−q+iH
n+p−q(Y ) for all i = 0, 1

Proof. Note that the left square of the commutative diagram (1.3.2) involves E1-

page of the spectral sequence of the weight filtration on H•(U) (the top row) and

that of the perverse Leray filtration assocated to w on H•(Y ) (the bottom row).

Moreover, by considering the Serre functors, we have the following commutative

diagram
DbCoh(D) DbCoh(X)

DbCoh(D) DbCoh(X)

i∗

SX |D SX

i∗

where SX(−) = − ⊗ ωX [n] and SX |D(−) = − ⊗ i∗ωX [n]. The logarithm of such

functors (up to sign) on Hochschild homologies is given by cup product of the first

Chern class c1(ωX) and c1(ωX |D). As these actions are both nilpotent, the functor

i∗ : DbCoh(D) → DbCoh(X) induces a morphism of filtered vertor spaces as de-

sired.

Similarly, the logarithm of the Serre functors induces the monodromy weight fil-

tration W (w) on H•(Ysm) and H•(Y, Ysm) associated to w : Y → C and they are

compatible with the connecting homomorphism. Also, it fits into the long exact

sequence of mixed Hodge structure

· · · → Ha−1(Ysm,∞)→ Ha(Y, Ysm,∞)→ Ha(Y )→ Ha(Ysm,∞)→ · · · (1.3.4)

where Ha(Y ) admits a canonical mixed Hodge structure for all a and Ysm,∞ is used

to distinguish a limiting mixed Hodge structure from the canonical one. Therefore,
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the associated graded pieces of such filtration gives isomorphisms

GrqFGrWp+q+iHp+q(U) ∼= GrW2(n−q)GrPn+p−q+iH
n+p−q(Y )

for all i = 0, 1.

In order to complete the one side of the P=W conjecture, we need to understand

the mixed Hodge structure on Hn+p−q(Y ) and see how the associated graded pieces

with respects to weight and Hodge filtrations are related [KPH19].

Corollary 1.3.6. If Hk(Y ) admits a Deligne’s mixed Hodge structure of Hodge-

Tate type for all k, then the conjectural relative HMS (1.3.1) implies the P=W

conjecture[Sha18] ( Conjecture 1.1.1).

Remark 6. The Hodge-Tate condition of the mixed Hodge structure on H•(Y ) is

not an unreasonable assumption and closely related to the conjecture of Katzarkov-

Kontsevich-Pantev we will introduce (See Conjecture 1.1.4)

1.3.2 Deformation Theory and Hodge Numbers

In this subsection, we review the work of Kontsevich-Katzarkov-Pantev about the

deformation theory of Landau-Ginzburg models and relevant Hodge numbers [KKP17].

Let (Y,w : Y → C) be a (proper) Landau-Ginzburg model. A naive geometric

deformation of the pair (Y,w : Y → C) turns out to be non-flat because singular

fibers could run to infinity. To remedy this issue and study flat deformations of the
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LG model, one choose a tame compactification ((Z,DZ), f : Z → P1) of w : Y → C;

Y Z

C P1

w f

such that

• Z is smooth projective variety and the morphism f : Z → P1 is flat;

• The complement of Y in Z is an anti-canonical divisor DZ = Dh ∪Dv where

Dh and Dv are horizontal and vertical divisors, respectively. ( Dv = f−1(∞));

• the critical locus crit(f) does not intersect with the horizontal divisors Dh;

• volZ ∈ H0(Z,K(∗DZ)) has nowhere vanishing meromorphic volume form with

poles at most at DZ .

We call the pair ((Z,DZ), volZ , f : Z → P1) (or simply ((Z,DZ), f : Z → P1) a

compactified Landau-Ginzburg model of (Y,w : Y → C).

We consider the deformation of the pair (Z, f) preserving the boundary divisor

DZ . We denote it by (Z, f)DZ where the subscript indicates the fixed part of the

deformation. This is controlled by the sheaf of differential graded Lie algebras

g• :=
[
TX,DZ

df−→ f ∗TP1,∞

]
(1.3.5)

where TM,N is the relative tangent sheaf of M respects to N for the pair N ⊂M .

Remark 7. Taking account the choice of volume form in the deformation (Z, f)DZ

provides a C∗ bundle over the versal deformation space of (Z, f)DZ . Therefore, from

now on, we focus on the deformation theory of the pair ((Z,DZ), f).
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Theorem 1.3.7. [KKP17] Let (Z,DZ) be the compactified LG model of (Y,w :

Y → C). Then the L∞-algebra

RΓ(Z, g•) = RΓ(Z,
[
TX,DZ

df−→ f ∗TP1,∞

]
) (1.3.6)

is homotopy abelian.

To prove Theorem 1.3.7, we first introduce the notion of f -adpated de Rham

complex. Let (Ω•Z(logDZ), d) be a logarithmic de Rham complex which is quasi-

isomorphic to the de Rham complex of Y , (Ω•Y , d). We define the subcomplex of

(Ω•Z(logDZ), d) which is preserved by ∧df ;

Ωa
Z(logDZ , f) := {u ∈ Ωa

Z(logDZ)|u ∧ df ∈ Ωa+1
Z (logDZ)}

for all a ≥ 0.

Example 1.3.8. Let Z = C2 and f(z1, z2) = 1
z1z2

. Then we have

Ω•Z(logDZ) = OZ ⊕OZ
dz1

z1
⊕OZ

dz1

z1
⊕OZ

dz1dz2

z1z2

Ω•Z(logDZ , f) = (z1z2)OZ ⊕ (z1z2)OZ
dz1

z1
⊕ (z1z2)OZ

dz1

z1
⊕OZ

dz1dz2

z1z2

Lemma 1.3.9. The f -adpated deRham complex Ωa
Z(logDZ , f) is locally free of rank(

n
a

)
for all a ≥ 0. Explicitly,

Ωa
Z(logDZ , f) =

a⊕
p=0

[
1
f
∧pW ⊕ d log f ∧

(
∧p−1W

)]⊗
∧a−pR (1.3.7)

where W is spanned by logarithmic 1-forms of the vertical part of f : Z → P1

and R is spanned by holomorphic 1-forms on Y and logarithmic 1-forms associated

to horizontal part of f : Z → P1.
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Proof. See [KKP17, Lemma 2.12]

The most interesting feature of the f -adapted de Rham complex is that it admits

two compatible differentials d and ∧df . The following proposition is crucial to

Theorem 1.3.7.

Proposition 1.3.10. (Double Degeneration Property) Let ((Z,DZ), f : Z → P1, DZ)

be a tame compactification of the given LG model (Y,w : Y → C). For each a ≥ 0,

the dimension of cohomology groups

dimC Ha(Z, (Ω•Z(logDZ , f), c1d+ c2df∧))

is independent of (c1, c2) ∈ C2.

Proof. (Sketch) We only give a sketch of the proof and refer to [KKP17] for more

details. We will come back to generalization of some of below arguments in the

hybrid setting ( Section 2.3). It is enough to show that the dimension of the

cohomology groups is constant for fixed two lines passing through the origin (0, 0) ∈

C2.

• (c2 = 0) The independency of the dimension of cohomologyHa(Z, (Ω•Z(logDZ), c1d))

follows from the fact that the spectral sequence associated to the stupid fil-

tration on (Ω•Z(logDZ), d) degenerates at E1-page.

• (c1 = c2) Note that the f -adapted de Rham complex with the differential d+

df∧ is quasi-isomorphic to algebraic deRham complex (Ω•Y , d+dw). Moreover,
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we have

dimCH
a(Y, Ysm;C) = dimC Ha(Yzar, (Ω•Y , dw∧)) = dimC Ha(Yzar, (Ω•Y , d+dw∧))

• Finally, we have

dimCH
a(Y, Ysm;C) = dimC Ha(Z, (Ω•Z(logDZ , f), d))

because Lemma 1.3.9 implies that the f -adpated deRham complex (Ω•Z(logDZ , f), d)

is a limit of (Ω•Z(logDZ , relf−1(ρ), d) as ρ → −∞. In particular, the Gauss-

Manin parallel transport along ρ ∈ R<0 identifies Ha(Y, Ysm;C) with

Ha(Z, (Ω•Z(logDZ , f), d)).

Due to Proposition 1.3.10, one can associate two different kinds of Hodge num-

bers to the LG model (Y,w : Y → C) with a tame compactification ((Z,DZ), f :

Z → P1). First, consider the p-th hypercohomology of Ωq
Z(logDZ). Note that the

dimension is independent of the choice of a tame compactification because it is the

same with (p, q)-piece of the relative cohomology of the pair (Y, Ysm). Second, the

monodromy of the general fiber Ysm around the infinity gives rise to monodromy

weight filtration W (w)• on the cohomology Ha(Y, Ysm;C). Note that the mon-

odromy action is expected to be unipotent from the categorical viewpoint ([KKP17,

Remark 2.5])
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Definition 1.3.11. Let (Y,w : Y → C) be a LG model with a tame compactifica-

tion ((Z,DZ), f : Z → P1). We define two Hodge numbers

fp,q(Y,w) := dimC Hp(Z,Ωq
Z(logDZ , f))

hp,q(Y,w) := dimC GrW (w)
2p Hp+q(Y, Ysm;C)

for all p, q ≥ 0.

Conjecture 1.3.12. [KKP17](KKP Conjecture) The two Hodge numbers are the

same for all (p, q).

fp,q(Y,w) = hp,q(Y,w)

Remark 8. There is a geometric interpertation of Conjecture 1.3.12 via rescaling

structures. [Sha18]

1.4 Simple Normal Crossing Case - Two compo-

nents

1.4.1 Extended Fano/LG Correspondence

In case where D becomes singular, especially reducible, a corresponding Landau-

Ginzburg model is expected to be non-proper. One way to see this phenomenon

is the SYZ mirror construction, which gives rise to multi-potentials by counting

holomorphic disks in X close to each irreducible component [SYZ96][Aur07]

We first study the case where an anti-canonical divisor D is a union of two smooth
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irreducible components D1 and D2 whose intersection D12 := D1 ∩ D2 is smooth

and connected. We also assume that the pairs (D1, D12) and (D2, D12) are both

Fano pairs.

Definition 1.4.1. A hybrid Landau-Ginzburg model (mirror to (X,D)) is a

triple (Y, ω, h = (w1,w2) : Y → C2) where

• (Y, ω) is 2n-dimensional complex Kähler Calabi-Yau manifold (orbifold) with

Kähler form ω ∈ Ω2(Y ).

• h := (w1,w2) : Y → C2 is a proper morphism (Lefschetz fibration) such that

(1) A generic fiber of w1 (resp. w2), denoted by Y1 (resp.Y2) with h|Y1 =

w2 : Y1 → C(resp. h|Y2 = w1 : Y2 → C) is mirror to (D1, D12) (resp.

(D2, D12))

(2) A generic fiber of h, denoted by Y12, is mirror to D12.

(3) By composing with the summation map Σ : C2 → C, we get an ordinary

LG model

w := Σ ◦ h : Y → C

which is mirror to X in the sense of the usual Fano/LG correspondence.
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A hybrid LG model encodes four different mirror symmetries

X ⇐⇒ ((Y, ω), w : Y → C)

(D1, D12)⇐⇒ ((Y1, ω),w2 : Y1 → C)

(D2, D12)⇐⇒ ((Y2, ω),w1 : Y2 → C)

D12 ⇐⇒ Y12

Example 1.4.2. Consider a Fano pair with (P2, D) where D = Q ∪ L is the union

of conic and line. By Hori-Vafa construction, one can get a hybrid LG model

((Y, ω), h : Y → C2) such that

• An original LG potential w = Σ ◦ h : Y → C is obtained by removing two

horizontal divisor in the elliptic fibration over P1 which is mirror to (P2, Dsm)

1.3.3

• A hybrid LG model h : Y → C2 is a branched double cover of C2 whose

discriminant locus is

{a2b = 4} ∪ {b = 0} (1.4.1)

• More explicitly,

Y := {x+ y = az, z2 = bxy} ⊂ P2
x,y,z × Ca × Cb

Ca × Cb

whose ordinary LG model is the same with one introduced in [Aur07].
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Example 1.4.3. Consider the Fano pair (P3, D) where D = C ∪ L is the union of

cubic C and linear hypersurface H. By Hori-Vafa construction, a hybrid LG model

(Y, h : Y → C2) is an elliptic fibration over C2 whose discriminant locus is

{a3b = 27} ∪ {b = 0}

and singular fibers are of type A2. Note that over a generic coordinate line, the

restriction of the hybrid LG potential h : Y → C2 induces mirror LG models

associated to Fano surfaces C and H.

Remark 9. If one views a smooth cubic surface as del Pezzo surface of degree 3, a

mirror LG model is expected to be the elliptic fibration f : Y → P1 over P1 with

6 singularities away from ∞ and the wheel of 3 projective lines I3 at ∞. This LG

model could be deformed to the one introduced in Example 1.4.3.

Example 1.4.4. Consider the Fano pair with (P3, D) where D is the union of two

quadric surfaces. By Hori-Vafa construction, one get a hybrid LG model (Y, h :

Y → C2)

• It satisfies the conditions in Definition 1.4.1.

• A singular locus of h : Y → C2 is given by

{a2b2 = 16} ∪ {ab = 0} (1.4.2)

Construction of Hybrid LG models

Here we introduce a general scheme of constructing hybrid LG models for the

pair (Pn, D) where D = D1 ∪ D2 and each irreducible component is smooth with
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deg(Di) = ni and n1 +n2 = n+1. The idea is to decompose the Hori-Vafa potential

with respects to the choice of anti-canonical divisor D. In general, this construction

works for smooth complete intersections as well.

First recall that the Hori-Vafa mirror for Pn with a smooth anti-canonical divisor

is given by

w : (C∗)n → C

(x1, . . . , xn) 7→ x1 + x2 + · · ·+ xn + 1
x1 · · · xn

(1.4.3)

Depending on the choice of the divisor D = D1 ∪D2, it will be modified to

h = (h1, h2) : (C∗)n → C2

(x1, . . . , xn) 7→
(
x1 + x2 + · · ·+ xn1 , xn1+1 + · · ·xn + 1

x1 · · ·xn

) (1.4.4)

Remark 10. The choice of decomposing the Hori-Vafa potential amounts to choosing

nef partition of polytope associated to Pn. We do not cover a general scheme for

smooth toric Fano variety here [KPH19].

Now, the task is to find a suitable fiberwise compactification of h to satisfy

the conditions in Definition 1.4.1. We take a naive compactification rather than

using machinery of toric geometry which is done in [KPH19]. The advantage of our

approach allows us to compute singular locus of hybrid LG models explicitly.

1. (Compactification) We compactify (C∗)n to Pn1
x1,...,xn1 ,t

× Pn2−1
xn1+1,...,xn,s. Con-

sider u0 := h1(resp. v0 := h2) as a section of O(1, 0) (resp. O(n1, n2))). By

choosing sections at infinity u∞ := t (resp. v∞ := sx1 · · ·xn)), we have two
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pencils of hypersurfaces;

φu := Pn1 × Pn2−1 99K P1[u0 : u∞]

φv := Pn1 × Pn2−1 99K P1[v0 : v∞]
(1.4.5)

with base locus of φu and φv given by

B(φu) = {x1 + · · ·+ xn1 = 0} ∩ {t = 0} ∼= Pn1−2 × Pn2−1

B(φv) = {(xn1+1 + · · ·+ xn)x1 · · ·xn + tn1sn2 = 0} ∩ {sx1 · · ·xn = 0}

∼= {s = 0, xi = 0} ∪ {s = 0, xn1+1 + · · ·xn = 0}

∪ {t = 0, xi = 0} ∪ {t = 0, xn1+1 + · · ·xn = 0}

To obtain compactification of open hybrid LG model h : (C∗)n → C2, we

consider two pencils together by forming a rational map

φ := (φu, φv) : Pn1 × Pn2−1 99K P1 × P1 (1.4.6)

The base locus of φ, denoted by B(φ), is the union of base loci of φu and φv.

Then we can extend φ to be a morphism by blowing up B(φ). Note that it is

equivalent to blowing up B(φu) first and successively blow up total transfor-

mation of B(φv) and vice versa. Therefore we have a genuine morphism

φ : BlB(φ) Pn1 × Pn2−1 → P1 × P1 (1.4.7)

By removing the boundary L := {∞} × P1 ∪ P1 × {∞} ⊂ P1 × P1, we have a
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family of intersections

Y := {∑n1
i=1 xi = at, (∑n

j=n1+1 xj)x1 · · ·xn + tn1sn2 = bsx1 · · ·xn}

⊂ Pn1 × Pn2−1 × Ca × Cb

Ca × Cb

φ

(1.4.8)

Remark 11. Note that the boundary L is the base locus of rational map, a

compactification of the summation map,

Σ :P1 × P1 99K P1

[u0, u∞], [v0, v∞] 7→ [u0v∞ + v0u∞, u∞v∞]

By removing the boundary Γ, it induces an ordinary LG model

w := Σ ◦ φ : Y → C

One can think that φ−1(Γ) is a vertical divisor of compactification of w.

2. (Crepant Resolution) Let’s assume that n1, n2 > 1. The idea is to take

crepant resolution of Y to make a generic fiber to be smooth. We first describe

a singular locus of generic fiber by Jacobi criterion.

• (A singular locus of generic fiber of π) We compute a singular locus of

generic fiber of φ.

(a) If s = 0, then ∏n
i=1 xi = 0. Moreover, we have ∏n

i=1 xi(
∑n2
j=n1+1 xj) =

0 which vanishes further.

(b) If t = 0, again ∏n
i=1 xi = 0 same as above.
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(c) Therefore, we have the following singular locus for generic fiber is

S := Sing({(
n∑

j=n1+1
xj)x1 · · ·xn = 0}) ∩ {st = 0} ∩ Y (1.4.9)

.

(d) If st 6= 0, then over (a, b) satisfying an1bn2 = (n1)n1(n2)n2 , a fiber

has singularity at [1 : 1 : · · · : 1 : n1
a

]× 1 : 1 : · · · : 1 : n2
b

].

(e) In case n1 = 1(resp. n2 = 1), we have additional singular locus over

a = 0(resp. b = 0).

• We blow up the locus S in Y , by following the algorithm in [PS15]. It

guarantees that we have LG models which are mirror to the irreducible

components D1 and D2 as Fano manifolds. Moreover, since BlS Y is still

singular whose local equation is given by zk = ab. One can also take the

crepant resolution to get non-singular body of hybrid LG model and we

still denote it by BlS Y . (Todo: Verify this this...)

• By composing with summation map Σ : C2 → C, we obtain an ordinary

LG model w : BlS Y → C whose generic fiber is smooth and non-proper.

As blow-up locus S sits in horiznotal divisor of Σ ◦ φ : Y → C, we still

have same Hodge data.

Gluing Structure

The advantage of the above construction is that we can describe a singular locus

of the hybrid LG potential h : Y → C2 explicitly. In particular, It allows us to
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examine a fibration structure of Ysm given by the restriction of the hybrid potential,

h|Ysm : Ysm → C. Denote wk : Yk → C be a restriction of h over Yk for k = 1, 2.

Proposition 1.4.5. A fibration on Ysm, h|Ysm : Ysm → C is topologically glued by

two fibrations w1 := h|Y1 : Y1 → C and w2 := h|Y2 : Y2 → C.

Proof. The locus of singular fiber of h is

∆(h) :=



{an1bn2 = nn1
1 n

n2
2 } ∪ {ab = 0} if(n1, n2 > 1)

{abn2 = nn2
2 } ∪ {a = 0} if(n1 = 1, n2 > 1)

{an1b = nn1
1 } ∪ {b = 0} if(n1 > 1, n2 = 1)

(1.4.10)

It intersects with a generic anti-diagonal line L in C2 with n1 + n2 distinct points

where h|Ysm has singular fibers. We ignore the intersection with coordinate lines for

simplicity. Note that generic coordinate lines Ha = {b = const}, Hb = {a = const}

intersect with ∆(h) at n1 and n2 distinct points, respectively.

One can take open subsets U1, U2 of the line L, each contains n1 and n2 points,

respectively. Then, the restriction of h|Y sm over U1 (resp. U2) isomorphic to w1

(resp. w2). The idea is to find a (linear) degeneration of the anti-diagonal line L

to Ha such that h−1(U1) is diffeomorphic to Y1. First note that as the line L is

deformed to Ha, only n1 singular points go to Y1 while the rest n2 points go to

infinity. In order to show that h−1(U1) and Y1 are diffeomorphic, we need to choice

a nice degeneration such that there exists one parameter family involving these two

manifolds without collapse of n1 singular points. The existence of such degeneration
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comes from the equation of singular loci. Let b = ka+ l be such an one parameter

family starting from (k, l) = (−1, l0) and (k, 1) = (0, l1). Then we can show that for

any −1 < k < 0, there are finitely many l where collapses occur. Then by genericity

arguments, we can find a path from l0 to l1 without touching the loci of collision.

More invariantly, one can make more canonical choice of n1 and n2 points de-

pending on the choice of generic coordinate hyperplanes Ha and Hb and (linear)

deformation of L to them. In other word, by fixing Ha, Hb and L, L can be (lin-

early) deformed to Ha and Hb keeping the number of intersection points in L ∩Ha

and L∩Hb. Then any point in L∩∆(h) goes to either Ha or Hb, not both of them.

Lemma 1.4.6. Consider a pair of topological spaces (Y, S) where Y = Y1 ∪Y2 with

simply connected intersection and S = S1 ∪ S2 where Si ⊂ Yi for i = 1, 2. Then we

have a Mayer-Vietoris sequence of relative cohomology groups

· · · → H i(Y, S)→ H i(Y1, S1)⊕H i(Y2, S2)→ H i(Y1 ∩ Y2, S1 ∩ S2)→ · · ·

Applying Lemma 1.4.6 to our case, we have the following corollary.

Corollary 1.4.7. Let ((Y, ω), h : Y → C2) be a hybrid LG model. Then we have

an isomorphism of cohomology groups

H i(Y1, Y12)⊕H i(Y2, Y12) ∼= H i(Ysm, Y12)

for all i ≥ 0.
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1.4.2 Relative HMS and the Mirror P=W Conjecture

In the hybrid setting, we also expects that the relative homological mirror symmetry

conjecture is a categorical shadow of the mirror P=W conjecture ( Theorem 1.1.3).

To see this, we first look at the relative HMS of boundary Fano pairs (D1, D12) and

(D2, D12). By Proposition 1.3.4 and the gluing structure of Ysm (Proposition 1.4.5),

we have the following commutative diagrams of cohomology groups

⊕p−q=aHq(D12,Ωp
D12) ⊕p−q=aHq(D1,Ωp

D1)⊕⊕p−q=aHq(D1,Ωp
D1)

Ha+n−2(Y12) Ha+n−1(Y1, Y12)⊕Ha+n−1(Y1, Y12)

Ha+n−2(Y12) Ha+n−1(Ysm, Y12)

(i1∗,−i2∗)

∼= ∼=

(conn1,−conn2)

id (r1,−r2)

ρ1=conn

(1.4.11)

This diagram gives the P=W statement between D and Ysm. In order to extend it

to the P=W statement between U and Y , one needs to introduce the relative HMS

of the Fano pair (X,D = D1 ∪D2).

Conjecture 1.4.8. (Relative HMS for the Fano pair (X,D = D1 ∪D2) For

k = 1, 2, there is an equivalence of diagrams of categories;

DbCoh(Dk) DbCoh(X)

FS(Yk,wk) FSwr(Y,w)

ik,X∗

∼=,HMS ∼=,HMS

Φk

(1.4.12)

where vertical funtors comes from HMS and the bottom functor Φk : FS(Yk,wk) →

FSwr(Y,w) is given by composition;

FS(Yk, )
ιk−→ FS(Ysm, hYsm) ι−→ Fukwr(Ysm) ∪−→ FSwr(Y,w) (1.4.13)
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where ιk comes from the semi-orthogonal decomposition of FS(Ysm, hYsm);

FS(Ysm, hYsm) =< [FS(Y1,w1)], [FS(Y2,w2)] >

Combining the relative HMS of the boundary data, we have an equivalence of dia-

grams of categories and we call it relative HMS for the Fano pair (X,D).

DbCoh(D12)

DbCoh(D1) DbCoh(D2)

DbCoh(X)

i1∗

i2∗

i1,X∗

i∗1

i2,X∗

i∗2

i∗1,X

i∗2,X

Fuk(Y12)

FS(Y1,w1) FS(Y2,w2)

FSwr(Y,w)

∪1

∪2

∪1,Y

∩1

∪2,Y

∩2

∩1,Y

∩2,Y

(1.4.14)

Remark 12. One can consider the categories DbCoh(D) and Perf(D) and state the

relative HMS conjecture similar to the smooth case (Theorem 1.3.1). However, there

are some technical difficulties to handle especially when D has a dimension greater

than 1. For example, it’s hard to compute Hochschild invariants and understand

semi-orthogoanl decomposition. This is why we avoid mentioning categories directly

associated to D and only look at the mirror symmetry of irreducible components

of D.

By taking Hochschild homology HHa, we get the following diagram of cohomol-

ogy groups; For k = 1, 2,

⊕p−q=aHq(Dk,Ωp
Dk

) ⊕p−q=aHq(X,Ωp
X)

Ha+n−1(Yk, Y12) Ha+n(Y, Ysm)

ik,X∗

∼= ∼=

φk

(1.4.15)
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Combining with the upper part of the diagram we have

⊕p−q=aHq(D12,Ωp
D12) ⊕

i⊕p−q=aHq(Di,Ωp
Di

) ⊕p−q=aHq(X,Ωp
X)

Ha+n−2(Y12) ⊕
iH

a+n−1(Yi, Y12) Ha+n(Y, Ysm)

(i1∗,−i2∗)

∼=

i1,X∗+i2,X∗

∼= ∼=

(conn1,−conn2) φ1+φ2

(1.4.16)

Also, the E1 term of the spectral sequence of the perverse Leray filtration associated

to the hybrid potential h : Y → C2 on Ha+n(Y ) should be identified with the

following;

Ha+n−2(Y12) Ha+n−1(Y1, Y12)⊕Ha+n−1(Y1, Y12) Ha+n(Y, Ysm)

Ha+n−2(Y12) Ha+n−1(Ysm, Y12) Ha+n(Y, Ysm)

(conn1,−conn2)

id

φ1−φ2

(r1,−r2) id

ρ1 ρ2

(1.4.17)

Unfortunately, due to the alternating term, we cannot simply combine these two

diagrams of categories and extend the lower part of the diagram (1.4.11). This can

be resolved by the following lemma.

Lemma 1.4.9. Let A,B1, B2 and C be finite dimensional vector spaces over C.

Assume that we have two complexes of vector spaces

A
d0=(f1,f2)−−−−−−→ B1 ⊕B2

d1=(g1+g2)−−−−−−→ C

A
d′0=(f1,f2)−−−−−−→ B1 ⊕B2

d′1=(g1−g2)−−−−−−→ C

Then, we have (non-canonical) isomorphisms

ker(d0) ∼= ker(d′0), Coker(d1) ∼= Coker(d′1), ker(d1)
Im(d0)

∼=
ker(d′1)
Im(d′0) (1.4.18)

Now, we are ready to state the main theorem.
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Theorem 1.4.10. Given a Fano mirror pair (X,D = D1 ∪ D2), ((Y, ω), h : Y →

C2), the conjectural relative HMS (Conjecture 1.4.8) gives rise to the following

homological (Hodge theoretic, topological) correspondence.

⊕p−q=aGrpFGrWp+q+iHp+q(U) ∼= GrPn+a+iH
n+a(Y ) for all i = 0, 1, 2

Moreover, one can recover direct summands by taking associated graded pieces of

monodromy weight filtration from the Serre functors. Then we have

GrqFGrWp+q+iHp+q(U) ∼= GrW2(n−q)GrPn+a+iH
n+a(Y ) for all i = 0, 1, 2

In this case, we need to put extra care on studying the action of Serre func-

tors. This is because two monodromy weight filtrations W (w) and W (h|Ysm) on

H•(Y, Ysm) and H•(Ysm, Y12), respectively, are not compatible in the sense that the

connecting homomorphism ρ2 is trivial as a filterted homomorphism.

Note that the differential ρ2 : Ha+n−1(Ysm, Y12)→ Ha+n(Y, Ysm) factors through

d1 : Ha+n−1(Ysm, Y12) ι−→ Ha+n−1(Ysm) ρ−→ Ha+n(Y, Ysm)

where ι is induced by natural inclusions and ρ = ρ2 is the connecting homomor-

phism. The middle cohomology group Ha+n−1(Ysm) have two different filtrations;

(1) The weight filtration W•(w) associated to the monodromy around infinity as

the fiber of w : Y → C. Then the connecting homomorphism ρ is indeed a

filtered homomorphism

ρ : (Ha+n−1(Ysm),W•(w))→ (Ha+n(Y, Ysm),W•(w))
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(2) The other one is the Deligne’s canonical weight filtration W•. Then the con-

necting homomorphism ι is indeed a filtered homomorphism

ι : (Ha+n−1(Ysm, Y12),W•(h|Ysm))→ (Ha+n−1(Ysm),W•)

Since these filtrations except the Deligne’s canonical weight filtration are in-

duced by the logarithm of the action of Serre functors, we refine mirror P=W

correspondence in Theorem 1.4.10.

Corollary 1.4.11. If Hk(Y ) admits a mixed Hodge structure of Hodge-Tate type for

all k, then the conjectural relative HMS (1.4.8) implies the mirror P=W conjecture

(Conjecture 1.1.1).

Proof. • GrWk GrPa+nH
a+n(Y ) ∼= GrW (N)

k Coker(ρ2).

Consider the long exact sequence of mixed Hodge structures

· · · → Ha+n−1(Y, Ysm)→ Ha+n−1(Y )→ Ha+n−1(Ysm) ρ−→ Ha+n(Y, Ysm)→ · · ·

where H•(Y, Ysm) and H•(Ysm) admit the limiting mixed Hodge structure and

H•(Y ) admits a canonical mixed Hodge structure. The cokernel of ρ admits

an induced mixed Hodge structures so that we have

GrW (N)
k Coker(ρ) ∼= Coker(ρ : GrW (N)

k Ha+n−1(Ysm)→ GrW (N)
k Ha+n(Y, Ysm))

∼= GrWk GrPa+nH
a+n(Y )

Moreover, it is clear that Coker(ρ) ∼= Coker(ρ2).

53



• GrWk GrPa+n+1H
a+n(Y ) ∼= GrW (h|Ysm )

k (ker(ρ2)/Im(ρ1)).

Consider the long exact sequence of mixed Hodge structures

· · · → Ha+n−2(Ysm)→ Ha+n−2(Y12) ρ1−→ Ha+n−1(Ysm, Y12) ι−→ · · ·

where H•(Ysm, Y12) and H•(Y12) admit the limiting mixed Hodge structure

and H•(Ysm) admits the canonical mixed Hodge structure. Then we have an

isomorphism of the mixed Hodge structures.

Coker(ρ1) ∼= ker(Ha+n−1(Ysm)→ Ha+n−1(Y12))

Also, the kernel ker(ρ2) is isomorphic to ι−1(ker(ρ)). Therefore, we have an

isomorphism of mixed Hodge structures

GrWk GrPa+n+1H
a+n(Y ) ∼= GrW (h|Ysm )

k

(
ker(ρ) ∩ ker(Ha+n−1(Ysm)→ Ha+n−1(Y12))

)

• GrWk GrPa+n+2H
a+n(Y ) ∼= GrW (h|Ysm ) Ker(ρ1). Recall that GrPa+n+2H

a+n(Y ) ∼=

GrPa+n+1H
a+n(Ysm) which is compatible with the canonical weight filtrations.

1.4.3 Deformation Theory and Hodge Numbers

In this subsection, we study the deformation theory of hybrid Landau-Ginzburg

models by following the strategy in [KKP17] (See Section 2.2.2). Let’s fix a hybrid

LG model (Y, h : Y → C2) which is mirror to a Fano pair (X,D = D1∪D2). Similar

to the case where the anti-canonical divisor of X is smooth, we introduce the tame
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compactification of the LG model and study the relevant deformation theory which

controls the behavior at the boundary.

Definition 1.4.12. A compactified hybrid LG model is datum ((Z, f), DZ , volZ)

where:

• Z is a smooth projective variety and f = (f1, f2) : Z → P1 × P1 is a flat

projective morphism.

• DZ := D1∪D2 is a reduced normal crossings divisor such that Di := (f−1
i (∞))

is simple normal crossings divisor for all i = 1, 2.

• volZ is a meromorphic section of KZ with poles at most at DZ and no zeros.

Note that there is no horizontal divisor since we assume that the hybrid model

h : Y → C2 is proper. Let L = {∞} × P1 ∪ P1 × {∞} be the complement of C2

in P1 × P1. By definition, (Z, f1) is a compactified LG model whose open part is

(Y, h1). Moreover, the horizontal divisor of (Z, f1) is given by the reduced part of

f−1
2 (∞).

The deformation theory of (Z, f) preserving the boundary DZ , denoted by

(Z, f)DZ , is computed by the following sheaf of differential graded (dg) Lie algebra

g• :=
[
TZ,DZ

df=(df1,df2)−−−−−−−→ f ∗TP1×P1,L

]
(1.4.19)

Lemma 1.4.13. There is an isomorphism between two sheaves over the base P1×P1

TP1×P1,L
∼= TP1,∞ × TP1,∞ (1.4.20)
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Proof. Trivial by definition.

It implies that the sheaf of dg Lie algebra g• can be identifed with the following

form.

g• =
[
TZ,DZ

(df1,df2)−−−−→ f ∗1TP1,∞ ⊕ f ∗2TP1,∞

]

For i = 1, 2, we consider two sheaves of dg Lie algebra

g•i :=
[
TZ,DZ

dfi−→ f ∗i TP1,∞

]

controlling the deformations of compactified LG model (Z, fi)DZ . Note that there

exists an injective map of complexes from g• to g•1 ⊕ g•2 as follows;

g• TZ,DZ f ∗1TP1,∞ ⊕ f ∗2TP1,∞

g•1 ⊕ g•2 TZ,DZ ⊕ TZ,DZ f ∗1TP1,∞ ⊕ f ∗2TP1,∞

∆

df

∆ id

df

where ∆ is the diagonal map. We claim that it induces an injective morphism on

the level of hypercohomology.

Lemma 1.4.14. The induced morphism of ∆ : g• → g•1⊕g•2 on the hypercohomology

Ha(∆) : Ha(g•)→ Ha(g•1 ⊕ g•2)

is injective for all a.

Proof. Since the morphism ∆ : g• → g•1 ⊕ g•2 is injective, we have a short exact

sequence of complexes;

0→ g•
∆−→ g•1 ⊕ g•2

α−→ Coker(∆)→ 0
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where Coker(∆) =
[
TZ,DZ

0−→ 0
]
and α is canonical anti-diagonal map. It also

induces the long exact sequence on the level of hyper cohomology as follows;

· · · → Ha(g•) Hi(∆)−−−→ Ha(g•1 ⊕ g•2) Ha(α)−−−→ Ha(Coker(∆))→ Ha+1(g•)→ · · · (1.4.21)

It suffices to show that Ha(g•1⊕g•2) Ha(α)−−−→ Ha(Coker(∆)) is surjective for all a. Note

that Ha(g•1 ⊕ g•2) ∼= Ha(g•1) ⊕ Ha(g•2) and the morphism α is an alternating map

of the projection maps pri : TZ,DZ ⊗ TZ,DZ → TZ,DZ . Therefore the surjectivity of

Ha(α) follows from the surjectivity of Ha(πi) where

πi : g•i → [TZ,DZ → 0]

This can be computed by the following short exact sequence of complexes:

0 f ∗i TP1,∞

TZ,DZ f ∗i TP1,∞

TZ,DZ 0

id

dfi

id

Since fi’s are flat by assumption, the hypercohomology

Ha(Z, f ∗i TP1,∞) ∼= Ha(P1, TP1,∞) ∼= Ha(P1,OP1(1)) = 0

are zero for all a ≥ 1. It implies that the surjectivity of Ha(πi) for a ≥ 1 Therefore,

we have

0→ H0(g•i )
H0(πi)−−−→ H0(TZ,DZ )→ H1(f ∗i TP1,∞[1])→ H1(g•i )

H1(πi)−−−→ H1(TZ,DZ )→ 0

(1.4.22)
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To show H0(πi) is surjective, we consider the right inverse of πi, denoted by ιi. In

other words, πi ◦ ιi = Id so that we have

H0(TZ,DZ ) H0(ιi)−−−→ H0(g•i )
H0(πi)−−−→ H0(TZ,DZ )

where the composition is identity. It implies that H0(πi) is surjective.

Since both dg Lie algebra RΓ(Z, g•i ) are homotopy abelian, so is their product.

The lemma implies that RΓ(∆) : RΓ(Z, g•) → RΓ(g•1 ⊕ g•2) induces the injective

map on cohomology. Therefore, RΓ(Z, g•) is homotopy abelian.

Corollary 1.4.15. The deformation theory of (Z, f)DZ is unobstructed.

Note that the unobstructness of the deformation theory (Z, f)DZ depends on

the degeneration property of the fi-adapted de Rham complexes for i = 1, 2.

Remark 13. The versal deformation space of triple (Z, volZ , f)DZ is a C∗-bundle over

the versal deformation space of (Z, f)DZ . Hence, it is also unobstructed (Remark

7).

Remark 14. In the non-hybrid setting, the deformation complex g• is quasi-isomorphic

to truncated sheaf of f -adapted tangent complex T •Z(− logDZ , f)[−1] which is dual

to f -adapted de Rham complex. Therefore, it is reasonable to expect this to hap-

pen in the hybrid setting by introducing relevant f -adapted de Rham complex or

its dual. However, it turns out that the natural candidate of f -adpated de Rham

complex does not provide a dg Lie algebra, quasi-isomorphic to the deformation

complex g•.
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Next, we will study relevant de Rham complexes associated to the (compactified)

hybrid LG model and Hodge numbers.

f-adapted Hodge Numbers

To the compactified LG model ((Z,DZ), f : Z → P1 × P1), we can associate two

different subcomplexes of logarithmic de Rham complex Ω•Z(logDZ). First, consider

the subcomplex which are preserved by wedge product of both df1 and df2. We

denote it by Ω•Z(logDZ , f1, f2) which is indeed a pullback of the following diagram;

Ω•Z(logDZ , f1, f2) Ω•Z(logDZ , f1)

Ω•Z(logDZ , f2) Ω•Z(logDZ)

j1

j2 i1

i2

where i1 and i2 are natural inclusions. By definition, it admits three differentials

d, ∧df1 and ∧df2. The other subcomplex is the pushout of j1 and j2, denoted by

Ω•Z(logDZ , f), which we call f-adapted deRham complex. Unlike the complex

Ω•Z(logDZ , f1, f2), it only admits a standard de Rham differential.

We perform a local computation of two deRham complexes (Ω•Z(logDZ , f1, f2), d)

and (Ω•Z(logDZ , f), d). Recall that the complement of Y in Z is given by DZ =

D1 ∪ D2 where Di is a vertical boundary divisor of fi : Z → P1. Denote D12 the

inverse image f−1({∞}×{∞}). For p ∈ D12, we can find local analytic coordinates

z1, · · · , zn centered at p such that in a neighborhood of p:

• the divisor D1 is given by ∏k
i=1 zi = 0 and the potential f1 is given by

f(z1, · · · , zn) = 1
zm1

1 · · · zmkk
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for some mi ≥ 1.

• the divisor D2 is given by ∏n−k
j=k+1 zj = 0 and the potential f2 is given by

f(z1, · · · , zn) = 1
z
mk+1
k+1 · · · zmnn

for some mj ≥ 1.

Lemma 1.4.16. For i = 1, 2, the fi-adpated deRham complex Ωa
Z(logDZ , fi) is

locally free for all a. Explicitly

Ωa
Z(logDZ , fi) =

a⊕
p=0

[
1
fi
∧pWi ⊕ d log fi ∧

(
∧p−1Wi

)]⊗
∧a−pRi (1.4.23)

where Wi is spanned by logarithmic 1-forms associated to the vertical part of fi :

Z → P1 and Ri is spanned by holomorphic 1-forms on Y and logarithmic 1-forms

associated to the horizontal part of fi : Z → P1.

Proof. See [KKP17, Lemma 2.12]

The above local description allows one to describe Ωa
Z(logDZ , f1, f2) for all a.

Explicitly, we have

Ωa
Z(logDZ , f1, f2) =

a⊕
p+q=0

[
1
f1
∧pW1 ⊕ d log f1 ∧

(
∧p−1W1

)]
⊗[

1
f2
∧q W2 ⊕ d log f2 ∧

(
∧q−1W2

)]
⊗
∧a−p−qR

(1.4.24)

where R is spanned by holomorphic 1-forms on Y . Similarly, one can give a local

description of the f -adapted complex Ω•Z(logDZ , f). Since this is equivalent to the
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subcomplex of logarithmic de Rham complex Ω•Z(logDZ) preserved by either df1 or

df2, we can see that it is generated by differential forms in both Ω•Z(logDZ , f1) and

Ω•Z(logDZ , f2).

Ωa
Z(logDZ , f1, f2) =

a⊕
p=0

[
1
f1
∧pW1 ⊕ d log f1 ∧

(
∧p−1W1

)]

+
[

1
f2
∧pW2 ⊕ d log f2 ∧

(
∧p−1W2

)]
⊗
∧a−pR

(1.4.25)

By taking the contraction with the meromorphic volume form volZ , the de Rham

complex Ω•Z(logDZ , f) (resp. Ω•Z(logDZ , f1∪ f2)) induces a locally free subsheaf of

polyvector fields ∧•TZ , denoted by (∧•TZ)(− logDZ , f) (resp.(∧•TZ)(− logDZ , f1∪

f2)). Moreover, both form a Batalin-Vilkovisky algebra, hence encodes geometric

deformation associated to the pair ((Z,DZ), f : Z → P1 × P1). However, it turns

out that neither control the anchored deformation (Z, f)DZ (1.4.19). Nevertheless,

both de Rham complexes encode interesting geometric information. We first study

the Hodge filtrations on (Ω•Z(logDZ , f), d).

Proposition 1.4.17. The Hodge-to-de Rham spectral sequences of both complexes

(Ω•Z(logDZ , f), d) and (Ω•Z(logDZ , f1, f2), d) degenerate at E1-page.

Proof. Recall that the strictness of Hodge filtrations on both RΓ(Ω•Z(logDZ , f1), d)

and RΓ(Ω•Z(logDZ , f2), d) was done in [KKP17][ESY17] by applying the method

of Deligne-Illusie [DI87]. The main idea is to reduce the problem to the field of

positive characteristic p > 0, K, and show the formality by constructing the global
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lifting of Frobenius morphism over W2(K), the ring of witt vectors of length 2 of

K. For the complex (Ω•Z(logDZ , f1, f2), d), its local description 1.4.24 allows one

to apply the same argument used in [KKP17][ESY17]. The only non-trivial part

is to construct gluing morphism between two choices of local lifting. However,

since horizontal part of boundary divisor with respects to f1 is the vertical part

of boundary divisor with respects to f2 and vice versa, the choice of local lifting

for the case of each Ω•Z/K(logDZ , fi), d) are compatible. Therefore, the complex

RΓ(Ω•Z(logDZ , f1, f2), d) is strict. Also note that the pushout diagram

Ω•Z(logDZ , f1, f2) Ω•Z(logDZ , f1)

Ω•Z(logDZ , f2) Ω•Z(logDZ , f)

j1

j2 i1

i2

induces a short exact sequence of filtered complexes;

0→ (RΓ(Ω•Z(logDZ , f), d), F •) (j1,j2)−−−→
2⊕
i=1

(RΓ(Ω•Z(logDZ , fi), d), F •)

i1−i2−−−→ (RΓ(Ω•Z(logDZ , f), d), F •)→ 0

Since the first two terms are strict and both (j1, f2) and H(j1, j2) are strict mor-

phisms, we conclude that the cone complex (RΓ(Ω•Z(logDZ , f), d), F •) is strict as

well.

Next, we look at the local description of relative de Rham complex. Let ε =
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(ε1, ε2) be a point near the infinity and Yε be f−1(ε). Here we get

Ωa
Z(logDZ , relYε) : = ker(Ωa

Z(logDZ)→ iYεΩa
Yε)

=
a⊕
p=0

[
(z1 · · · zk − ε1) ∧pW1 + d log f1 ∧

(
∧p−1W1

)]⊗
∧a−pR1

+
[
(zk+1 · · · zn − ε2) ∧pW2 + d log f2 ∧

(
∧p−1W2

)]⊗
∧a−pR2

so when ε→ (0, 0), the sheaf specializes to the f -adapted deRham form Ωa
Z(logDZ , f).

In other words, we have

Proposition 1.4.18. The complex (Ω•Z(logDZ , f), d) is a well-defined limit of the

relative de Rham complex (Ω•Z(logDZ , f
−1(ρ1, ρ2), d) as (ρ1, ρ2) → (−∞,−∞). In

particular, the Gauss-Manin parallel transport has a well defined limit as ρ →

(−∞,−∞) which identifies Ha(Y, h−1(ρ);C) with Ha(Z,Ω•Z(logDZ , f)).

Proof. Let ∆2 ⊂ P1 × P1 be a small polydisk centered at {∞} × {∞} ∈ P1 × P1.

Let p : Z = Z×∆2 → ∆2 be a proper family. We consider the two relative divisors

in Z;

DZ := DZ ×∆2

Γ := (p× f)−1(graph : ∆ ↪→ P1 × P1)

Note that DZ is a simple normal crossing divisor and Γ is smooth. We also denote

the intersection of DZ and Γ by DΓ.

Next, Recall that the sheaf of relative meromorphic differential forms, Ωa
Z/∆2(logDZ)

is given by

Ωa
Z/∆2(logDZ) := ker(Ωa

Z(logDZ)→ p∗Ωa
∆2(logL))
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where L is the boundary of ∆2. We consider the subsheaf of Ωa
Z/∆2(logDZ) which

vanishes along DΓ as follows;

Ωa
Z/∆2(logDZ , relΓ) := ker(Ωa

Z/∆2(log(D))→ iΓ∗Ωa
Γ/∆2(logDΓ)

This is locally free and the complex (Ω•Z/∆2(logDZ , relΓ, d) is preserved under the

relative deRham differential. Let’s denote this complex by E•Z/∆2 . Note that from

the local computation, we have

(E•Z/∆2|)Z×{ε6=0} = (Ω•Z(logDZ , relYε), d)

(E•Z/∆2|)Z×{ε=0} = (Ω•Z(logDZ , f), d)

In other words, the complex E•Z/∆2 interpolates between the relative logarithmic

forms vanishing on Yε and relative f -adapted forms.

Geometrically, this interpolation can be refined as the Gauss-Manin parallel

transport. Consider the local system Ea of C-vector spaces on (∆×)2 ⊂ ∆2 whose

fiber at ε = (ε1, ε2) is isomorphic to the Betti cohomoglogy Ha(Y, Yε;C). The

underlying coherent sheaf Ea ⊗O(∆×)2 is identified with Rap∗E•Z×/(∆×)2 . Here (−)×

implies the restriction over (∆×)2. The Gauss-Manin connection is given by a C-

linear map of sheaves

∇GM : Rap∗E•Z×/(∆×)2 → Rap∗E•Z×/(∆×)2 ⊗(∆×)2 Ω1
(∆×)2

satisfying the Leibniz rule. One can identifies the Gauss-Manin connection ∇GM
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with the connecting homomorphism of the long exact sequence;

0→ E•Z×/(∆×)2 [−1]⊗p−1O
(∆×)2

p−1Ω1
(∆×)2 →

 (Ω•Z×(logDZ× , relΓ×)
p−1(Ω2

(∆×)2) ∧ (Ω•−2
Z× (logDZ× , relΓ×)

, d


→ E•Z×/(∆×)2 → 0

In order to show that the parallel transport with respects to the Gauss-Manin

connection ∇GM, it is enough to show that the middle complex

(Ω•Z×(logDZ× , relΓ×)/p−1(Ω2
(∆×)2 ∧ Ω•−2

Z× (logDZ× , relΓ×)), d)

extends to a well-defined subcomplex E•Z in (Ω•Z(logDZ , d)) on all Z, which will fit

into the short exact sequence of complex

0→ E•Z/∆2 [−1]⊗p−1O∆2 p
−1Ω1

∆2 → E•Z → E•Z/∆2 → 0

Define the subcomplex E•Z to be

E•Z := ker
 Ω•Z(logDZ ∪ f−1(L))
p−1(Ω2

(∆×)2) ∧ Ω•−2
Z (logDZ ∪ f−1(L))

→ iΓ∗
Ω•Γ(logDΓ)

p−1(Ω2
(∆×)2) ∧ Ω•−2

Γ (logDΓ)


(1.4.26)

Recall that L := ∆2\(∆×)2 and the above morphism is well-defined since the canon-

ical morphism Ω•Z(logDZ ∪ f−1(L)) → iΓ∗Ω•Γ is compatible with Koszul filtration.

Then, one can check that the short exact sequence is defined by the kernel of the
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following surjective morphism of the short exact sequences;

0 0

Ω•Z/∆2(logDZ , relΓ)[−1]⊗ p−1Ω1
∆2 iΓ∗Ω•Γ/∆2(logDΓ)[−1]⊗ p−1Ω1

∆2

Ω•Z(logDZ∪f−1(L))
p−1(Ω2

(∆×)2
)∧Ω•−2

Z (logDZ∪f−1(L)) iΓ∗
Ω•Γ(logDΓ)

p−1(Ω2
(∆×)2

)∧Ω•−2
Γ (logDΓ)

Ω•Z/∆2(logDZ , relΓ) iΓ∗Ω•Γ/∆2(logDΓ)

0 0

(1.4.27)

Remark 15. One can get a similar result for the de Rham complex (Ω•Z(logDZ , f1∪

f2), d). In other words, (Ω•Z(logDZ , f1 ∪ f2), d) is a well-defined limit of relative

de Rham complex (Ω•(logDZ , f
−1
1 (ρ1) t f−1

2 (ρ2) as (ρ1, ρ2) → (−∞,−∞) and its

hypercohomology is identifed with Ha(Y, Y1 t Y2;C). However, we will not deal

with this complex because the author does not fully understand monodromy weight

filtration on the cohomology Ha(Y, Y1 t Y2;C). For completeness, we only focus on

the f -adapted de Rham complex (Ω•Z(logDZ , f), d).

Definition 1.4.19. Let ((Z,DZ), f : Z → P1× P1) be the compactified hybrid LG

model of (Y, h : Y → C2). Then we define f -adapted Hodge number as follows. For

p, q ≥ 0,

fp,q(Y, h) := dimCHp(Z,Ωq
Z(logDZ , f)).

Note that E1-degeneration of the stupid filtration on (Ω•Z(logDZ , f), d) implies
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that the sum of f -adapted Hodge numbers over p+q = a is dimC Ha(Z,Ωq
Z(logDZ , f)).

Consider the relative Hodge numbers of the pair (Y, Y12),

hp,q(Y, Y12) := dimCH
p(Z,Ωq

Z(logDZ , relf−1(ρ)))

for a generic ρ ∈ C2. By applying Grauert’s semicontinuity theorem to Proposition

1.4.18, we have the following argument, which implies that the f -adapted Hodge

numbers are independent of the choice of tame compactification.

Corollary 1.4.20. Let ((Z,DZ), f : Z → P1 × P1) be the compactified hybrid LG

model of (Y, h : Y → C2). Then there is an equality between two Hodge numbers;

hp,q(Y, Y12) = fp,q(Y, h)

for all p, q ≥ 0.

The next goal is to extend Conjecture 1.3.12 to the hybrid setting. Recall that

in the non-hybrid case, one can associate the monodromy weight filtration to the

LG potential w : Y → C, which comes from the monodromy around ∞. However,

in the hybrid setting, we should consider two monodromy operators, denoted by N1

(resp. N2) around the infinity {∞}×{∞} along the first (resp. second) coordinate

axis. In addition, a linear combination of two operators N1 and N2 with positive

coefficients gives rise to a third-kind weight filtration, which in general different from

the ones associated to N1 and N2. Therefore, we should deal with three monodromy

weight filtrations W (N1),W (N2) and W (c1N1 + c2N2) for c1, c2 > 0 that give rise

to three different Hodge numbers.
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Definition 1.4.21. Let (Y, h : Y → C2) be a hybrid LG model. For c1, c2 ≥ 0,

define three different Hodge numbers by

hp,qW (c1N1+c2N2)(Y, h) := dimC GrW (c1N1+c2N2)
2p Hp+q(Y, Y12,∞;C)

where the additional subscript ∞ in Y12,∞ is used to distinguish the monodromy

weight filtration from the Deligne’s canonical weight filtration.

Conjecture 1.4.22. (Extended KKP) For p, q, c1, c2 ≥ 0, there is an identification

of Hodge numbers;

fp,q(Y, h) = hp,qW (c1N1+c2N2)(Y, h)

In other words, the associated graded pieces of three monodromy weight filtrations

are the same and equal to the relevant f -adapted Hodge numbers.

Comparison between ordinary and hybrid LG models

In this subsection, we will compare two different deformation theories of hybrid and

ordinary LG model and construct the morphism between deformation spaces. Fix a

hybrid LG model (Y, h : Y → C2) with an induced ordinary LG model w : Y → C.

Choose a tame compactification of the hybrid LG model, ((Z,DZ), f = (f1, f2) :

Z → P1×P1. Unfortunately, this doesn’t directly produce a tame compactification

of the ordinary LG model (Y,w : Y → C) because the compactification of the
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summation map Σ : C2 → C is given by

BlS(P1 × P1) P1

P1
[a:b] × P1

[c:d]

π

Σ̄

[ad+bc:bd]

where the blow-up loci S are two points {p1 = (0,∞), p2 = (∞, 0)}. Therefore,

in order to obtain a tame compactification of the ordinary LG model from that

of the hybrid LG model, we need to blow up the base over the discriminant locus

S and take the pullback of Z. We denote it by Z̄. Then, we obtains a tame

compactification ((Z̄,DZ̄), f̄ = Σ̄ ◦ fπ : Z̄ → P1) where DZ̄ is the union of DZ and

Ei × f−1(pi) for i = 1, 2 where Ei’s are exceptional divisor in BlS(P1 × P1). This is

summarized as follows;

Z Z̄

C2 P1
[a:b] × P1

[c:d] BlS(P1 × P1)

C P1

f

π̄

fπ

Σ [ad+bc:bd]

π

Σ̄

Let M(Z,f)DZ be a (formal) versal deformation space of the hybrid LG model

(Y, h : Y → C2) with the chosen compactification ((Z,DZ), f : Z → P1 × P1)

and M(Z̄,f̄)D
Z̄

be a (formal) versal deformation space of the ordinary LG model

(Y,w : Σ ◦ h : Y → C) with the induced compactification ((Z̄,DZ̄), f : Z̄ → P1).

Then the above construction gives a map

Φ : M(Z,f)DZ →M(Z̄,f̄)D
Z̄
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Proposition 1.4.23. The morphism Φ : M(Z,f)DZ →M(Z̄,f̄)D
Z̄
constructed above

is a submersion.

Proof. Recall that the deformation complex of (Z, f)DZ is given by the sheaf of

differential graded Lie algebras

g• :=
[
TZ,DZ

df−→ f ∗TP1×P1,L

]

Also, by definition, it is quasi-isomorphic to the sheaf of differential graded Lie

algebras associated to the blow-up pair ((Z̄,DZ̄), fπ : Z̄ → BlS(P1 × P1))

ḡ• :=
[
TZ̄,DZ̄

dfπ−−→ fπ
∗TBlS(P1×P1),LtE1tE2

]

and it admits a map to the deformation complex associated to the the tame com-

pactification ((Z̄,DZ̄), f̄ : Z̄ → P1)

TZ̄,DZ̄ fπ
∗TBlS(P1×P1),LtE1tE2

TZ̄,DZ̄ f̄ ∗TP1,∞

dfπ

= dΣ̄

df̄

whose kernel is ker(dΣ̄)[−1]. As H2(ker(dΣ̄)[−1]) = H1(Z̄, ker(dΣ̄) = 0, the induced

long exact sequence of hypercohomology gives a surjective map H1(ḡ•) → H1(ḡ1)

whose kernel is given by

H0(Z̄, f ∗π ker(dΣ̄)) ∼= H0(BlS(P1 × P1), ker(dΣ̄)
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1.5 Simple Normal Crossing Case - General

1.5.1 Extended Fano/LG Correspondence

A theory of hybrid Landau-Ginzburg models and related topics can be generalized

to the case where the mirror Fano pair (X,D) has more than two components. In

this section, we state main result whose proof are essentially the same with ones in

the case of two components.

LetD be an effective anti-canonical divisor with k components, D1∪D2∪· · ·∪Dk.

For any index set I = {i1, i2, · · · , im} ⊂ Ik := {1, 2, · · · , k}, we define

DI := Di1 ∩ · · · ∩Dim

D(I) := Σj /∈IDI ∩Dj

For example, if I = {1}, then D1 = D1 and D(1) = (D2 ∪ · · · ∪ Dk) ∩ D1. We

also assume that all quasi-Fano pairs (DI , D(I)) is indeed Fano. This positivity

assumption is necessary condition for relative HMS conjecture hold for Fano pairs

[Bal+13].

Similar to the two-components case, the SYZ mirror construction [SYZ96][Aur07]

suggests that counting holomorphic disk which touches each boundary compo-

nent provides a potential. Hence, we inductively define a hybrid LG potential,

h : Y → Ck, where the target is k-dimensional affine space.

Definition 1.5.1. (See Definition 1.4.1) A hybrid Landau-Ginzburg model

71



(mirror to (X,D)) is a triple (Y, ω, h = (h1, h2, · · · , hk) : Y → Ck) where

• (Y, ω) is 2n-dimensional complex Kähler Calabi-Yau manifold (orbifold) with

Kähler form ω ∈ Ω2(Y ).

• h := (h1, h2, · · · , hk) : Y → C2 is a proper morphism (Lefschetz fibration)

such that

(1) A generic fiber of hi, denoted by Yi with h|Yi : Y1 → Ck−1 is mirror to

(Di, D(i)) for all i;

(2) By composing with the summation map Σ : Ck → C, we get an ordinary

LG model

w := Σ ◦ h : Y → C

which is mirror to X in the sense of the usual Fano/LG correspondence.

A hybrid LG model encodes all different mirror symmetries associated to (X,D).

Example 1.5.2. Consider a Fano pair with (P2, D) where D = L1 ∪ L2 ∪ L3 is the

union of 3 lines, i.e toric divisor. By Hori-Vafa construction, one can get a hybrid

LG model ((Y, ω), h : Y → C3) such that

• An original LG potential w : Σ ◦ h : Y → C is obtained by removing three

horizontal divisor in the elliptic fibration over P1 which is mirror to (P2, Dsm).

(Example 1.3.3)
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• A hybrid LG model h : Y → C3 is

h : (C∗)2 → C3

(x, y) 7→ (x/y, 1/y, y2/x)

whose generic fiber is empty. This corresponds to the fact that D123 = ∅.

• A restriction of h : Y → C3 over each generic coordinate line recovers the

hybrid LG model mirror to (P1, 2pt).

The construction of hybrid LG models is similar to one introduced in Section

1.4.1. The only difference is that we should choose k sections each corresponding

to a line bundle mirror to Di for each i.

The gluing property (Proposition 1.4.5) is essential as well, but one should deal

with gluing of hybrid LG models, not the ordinary ones. This is due to the inductive

nature of hybrid LG models. For example, when k = 3, a hybrid LG model is

(Y, h : Y → C3). Denote Ysm a generic fiber of the induced ordinary LG potential

w := Σ◦h : Y → C. Associated to Ysm, there is a canonical fibration, the restriction

of the hybrid potential h|Ysm : Ysm → C2. Therefore, it is reasonable to glue hybrid

LG models (Yi, h|Yi → C2). mirror to (Di, D(i)) for each i.

Claim 1.5.3. A fibration on Ysm, h|Ysm : Ysm → Ck−1 is topologically glued by k

fibrations h|Yi : Yi → Ck−1 for all i = 1, . . . , k.

The above claim can be verified for Hori-Vafa hybrid LG models, mirror to a

Fano complete intersection X. The key is to describe discriminant loci of the hybrid
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LG model and study (linear) deformation of a general anti-diagonal hypersurface,

a base of the fibration h|Ysm : Ysm → Ck−1.

1.5.2 Relative HMS and the Mirror P=W Conjecture

Next, we introduce the relative HMS conjecture for the Fano pair (X,D).

Conjecture 1.5.4. (Relative HMS for the Fano pair (X,D)). There is an

equivalence of (Čech-type) diagrams of categories;

DbCoh(DIk)
⊕
|I|=k−1D

bCoh(DI) · · · ⊕
|I|=1D

bCoh(DI) DbCoh(X)

Fuk(YIk)
⊕
|I|=k−1 FSwr(YI ,w) · · · ⊕

|I|=1 FSwr(YI ,w) Fukwr(Y,w)

φk

∼=

φk−1

∼=

φ2 φ1

∼= ∼=

ψk ψk−1 ψ2 ψ1

(1.5.1)

where φi (resp. ψi) is an alternating sum of inclusion (resp. cup) functors.

By taking Hochschild homology HHa, one can expect that the induced sequence

represents the relation between the weight and perverse Leray filtration. Although

this is clear on the B-side, one need to verify that the induced sequence of coho-

mology groups is equivalent to the spectral sequence of the perverse Leray filtration

associated to the hybrid LG model (Y, h : Y → Ck). For simplicity, let’s assume

that k = 3. The induced sequence is the following;

Ha+n−3(Y123) ψ3−→
⊕
i<j

Ha+n−2(Yij, Y123) ψ2−→
3⊕
i=1

Ha+n−1(Yi, Yi,sm) ψ1−→ Ha+n(Y, Ysm)

(1.5.2)
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where Yi,sm is a generic fiber of w : Yi → C. The gluing property implies that

Ysm ∼= Y1 ∪ Y2 ∪ Y3 and Yi,sm ∼= Yij ∪ Yik for {i, j, k} = {1, 2, 3}. Denote Ysm,sm

a union Y12 ∪ Y23 ∪ Y13 ∼= Y1,sm ∪ Y2,sm ∪ Y3,sm. Then the above equation 1.5.2 is

quasi-isomorphic to the following complex

Ha+n−3(Y123) ρ3−→ Ha+n−2(Ysm,sm, Y123) ρ2−→
3⊕
i=1

Ha+n−1(Ysm, Ysm,sm) ρ1−→ Ha+n(Y, Ysm)

(1.5.3)

where ρi’s are connecting homomorphism. In order to obtain the E1-page of the

spectral sequence of the perverse Leray filtration associated to the hybrid LG po-

tential h : Y → C3, we need to verify that the flag

Y123 ⊂ Ysm,sm ⊂ Ysm ⊂ Y

forms a general linear flag [CM10]. In general, we have the following conjecture;

Conjecture 1.5.5. For a given Fano mirror pair (X,D) and (Y, ω, h : Y → Ck),

the relative HMS (Conjecture ) implies the mirror P=W conjecture

dimGrqFGrWp+q+iHp+q(U) = dimGrn−qF GrPn+p−q+iH
n+p−q(Y )

for all i ∈ Ik.

The main issue is to show that the induced A-side diagram is quasi-isomorphic

to the spectral sequence of perverse Leray filtration associated to the hybrid LG

potential h : Y → Ck.
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1.5.3 Deformation Theory and Hodge Numbers

In Section 2.3, we studied the deformation theory of hybrid LG models (Y, h :

Y → C2) by looking at the tame compactification ((Z,DZ), f : Z → P1 × P1.

All the arguments and theorems can be easily extended to a general case. Let

(Y, h : Y → Ck) be a hybrid LG model, which is mirror to the Fano pair (X,D)

where D satisfies the positivity assumption.

Definition 1.5.6. A compactified hybrid LG model is datum ((Z, f), DZ , volZ)

where:

• Z is a smooth projective variety and f = (f1, . . . , fk) : Z → (P1)k is a flat

projective morphism;

• DZ := D1 ∪ · · · ∪ Dk is a reduced normal crossings divisor such that Di :=

(f−1
i (∞)) is simple normal crossings divisor for all i;

• volZ is a meromorphic section of KZ with poles at most at DZ and no zeros.

Let L = ⋃P1×· · ·×{∞}×· · ·×P1 be the complement of Ck in (P1)k. Then the

deformation theory of (Z, f) preserving the boundary DZ , denoted by (Z, f)DZ , is

computed by the following sheaf of differential graded (dg) Lie algebra

g• :=
[
TZ,DZ

df=(df1,...,dfk)−−−−−−−−→ f ∗T(P1)k,L

]
(1.5.4)

Applying the same argument in Lemma 1.4.14, we obtain the following theorem.

Theorem 1.5.7. The deformation theory of (Z, f)DZ is unobstructed.
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One can also introduce the notion of f -adpated de Rham complex (Ω•Z(logDZ , f), d)

, a subcomplex of the logarithmic de Rham complex (Ω•Z(logDZ), d) preserved

by either ∧dfi’s. More generally, there are variants of f -adpated de Rham com-

plex depending on which differential dfi∧ preserves the forms. For an index set

I ⊂ {1, . . . , k}, we denote Ωa
Z(logDZ , fI) a set of logarithmic differential a-forms

which is preserved by either all dfi∧’s or dfj’s for i ∈ I, jI. For example, when

I = {1, . . . , k}, we have Ωa
Z(logDZ , fI) = Ωa

Z(logDZ , f) for all a. Similar to Lemma

1.4.16, one can write down the local description of Ωa
Z(logDZ , fI) which leads to

the following propositions.

Proposition 1.5.8. The Hodge-to-de Rham spectral sequences of both (Ω•Z(logDZ , fI), d)

degenerate at E1-page.

Proposition 1.5.9. The complex (Ω•Z(logDZ , f), d) is a well-defined limit of the

relative de Rham complex (Ω•Z(logDZ , f
−1(ρ), d) as ρ→ (−∞, . . . ,−∞). In partic-

ular, the Gauss-Manin parallel transport has a well defined limit as ρ→ (−∞, . . . ,−∞)

which identifies Ha(Y, h−1(ρ);C) with Ha(Z,Ω•Z(logDZ , f)).

The above two propositions allow one to define f -adapted Hodge numbers which

is intrinsic to the hybrid LG model (Y, h : Y → Ck).

Definition 1.5.10. Let ((Z,DZ), f : Z → (P1)k be the compactified hybrid LG

model of (Y, h : Y → Ck). Then we define f -adapted Hodge number as follows. For

p, q ≥ 0,

fp,q(Y, h) := dimCHp(Z,Ωq
Z(logDZ , f)).
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Moreover, in this hybrid setting, there are k monodromy operators Ni (i =

1, . . . k) around the infinity {∞}k along each coordinate axis. Hence, there are

2k − 1 monodromy weight filtration W (c1N1 + c2N2 + · · · + ckNk) depending on

ci ≥ 0.

Definition 1.5.11. Let (Y, h : Y → Ck) be a hybrid LG model. For ci ≥ 0, define

2k − 1 different Hodge numbers by

hp,qW (c1N1+···+ckNk)(Y, h) := dimC GrW (c1N1+···+ckNk)
2p Hp+q(Y, Yρ,∞;C)

where the additional subscript ∞ in Yρ,∞ is used to distinguish the monodromy

weight filtration from the Deligne’s canonical weight filtration.

Conjecture 1.5.12. (Extended KKP) (See Conjecture 1.4.22) For p, q, c1, . . . , ck ≥

0 , there is an identification of Hodge numbers;

fp,q(Y, h) = hp,qW (c1N1+···+ckNk)(Y, h)

In other words, the associated graded pieces of 2k − 1 monodromy weight filtrations

are the same and equal to the relevant f -adapted Hodge numbers.

Finally, we can also describe the relation between two versal deformation spaces

associated to the hybrid LG model (Y, : Y → Ck) by extending the case when k = 2.

From a tame compactification (Z,DZ , f : Z → (P1)k of the hybrid LG model, one

can obtain the tame compactification of the ordinary LG model (Y,w : Σ ◦h : Y →

C). This is achieved by compactifying Σ : Ck → C to Σ̄ : BlS(P1)k → P1 where S
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is the base locus of rational map

Σ : (P1)k 99K P1

([x1 : y1], . . . , [xk, yk]) 7→
[
x1

y1
+ · · ·+ xk

yk
: 1
]

and take the pullback of Z under the canonical map π : BlS(P1)k → (P1)k. We

denote it by Z̄. Then the tame compactification is given by ((Z̄,DZ̄), f̄ : Z̄ → P1)

where DZ̄ is a total transformation of DZ . This construction gives a morphism

between two versal deformation spaces

Φ : M(Z,f)DZ ) →M(Z̄,f̄)D
Z̄

We claim that this morphism Φ is submersion (Proposition 1.4.23

Proposition 1.5.13. The morphism Φ : M(Z,f)DZ →M(Z̄,f̄)D
Z̄
constructed above

is a submersion.

Proof. The proof is essentially the same with the proof of Proposition 1.4.23
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Chapter 2

Semi-polarized meromorphic

Hitchin and Calabi-Yau integrable

systems

2.1 Introduction

Since the seminal work of Hitchin [Hit87b][Hit87a], Higgs bundles and their moduli

spaces have been studied extensively. There have been numerous deep results on

the moduli space of Higgs bundles related to other areas of mathematics such as

the P = W conjecture [CHM12][CMS19], the fundamental lemma in the Langlands

program [Ngô06][Ngô10], the geometric Langlands conjecture [KW07] and mirror

symmetry [HT03][DP12]. One of the striking properties of these moduli spaces is
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that they admit a holomorphic symplectic form and the structure of an integrable

system, called the Hitchin system. In particular, the generic fiber of an integrable

system is an abelian variety which turns out to be the Jacobian or (generalized)

Prym variety of an associated spectral or cameral curve. This picture generalizes to

the meromorphic situation where we allow the Higgs field to have poles along some

divisors. While the meromorphic Hitchin system is no longer symplectic, it is still

Poisson and integrable with respect to the Poisson structure.

On the other hand, Donagi-Markman and Donagi-Diaconescu-Pantev (DDP)

introduced in [DM96a][DM96b][Dia+06][DDP07] integrable systems coming from

some families of projective or quasi-projective Calabi-Yau threefolds, called Calabi-

Yau integrable systems. A generic fiber is a complex torus or an abelian vari-

ety [Dia+06][DDP07], now obtained as the intermediate Jacobian of a Calabi-Yau

threefold in the family.

It is shown in [DDP07] that for adjoint groups G of type ADE, there is an iso-

morphism between G-Hitchin systems and suitable Calabi-Yau integrable systems,

which we call the DDP correspondence. An interesting aspect of the construction

in [DDP07] is that although the relevant Calabi-Yau threefold is non-compact, the

(a priori mixed) Hodge structure on its third cohomology happened to be pure of

weight one up to Tate twist. Because of this, the corresponding intermediate Ja-

cobian is a compact torus (in fact an abelian variety). Since the data of a weight

1 Hodge structure is equivalent to the data of an abelian variety, this isomorp-
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shism can be rephrased as an isomorphism between variations of weight 1 Hodge

structures equipped with the abstract Seiberg-Witten differential, see for example

[DDP07] [Bec20].

It is worth mentioning that the origin of this story comes from physics, specif-

ically, large N duality [Dia+06]. Recently, the correspondence has also found its

place in the study of T-branes in F-theory [AHK14][And+17].

The isomorphism between Hitchin and Calabi-Yau integrable systems has been

generalized successfully to groups of type BCFG by the work of Beck et al. [Bec20][Bec19][BDW20]

using the technique of foldings.

Main results

The goal of this paper is to extend the DDP correspondence to the setting of

meromorphic SL(n,C)-Hitchin system h : M(n,D) → B where D is a reduced

divisor of the base curve. The best case scenario will be to construct a family

of non-compact Calabi-Yau threefolds over the same base B and show that the

associated Calabi-Yau integrable system is isomorphic to the meromorphic Hitchin

system as Poisson integrable systems. However, since the deformation space of such

non-compact Calabi-Yau’s is strictly smaller than the base B, we do not expect to

get a natural family which induces the Possion integrable system (see [KS14]).

Instead, we consider the notion of semi-polarized integrable systems introduced

by Kontsevich-Soibelman [KS14]. These are non-compact versions of symplectic
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integrable systems whose fiber is a semi-abelian variety, an extension of an abelian

variety by an affine torus. The main advantage is that they canonically induce the

Poisson integrable systems as their compact quotients. In Section 2, we study this

structure from the Hodge theoretic viewpoint. Since the data of a semi-polarized

semi-abelian variety is equivalent to the data of a semi-polarized Z-mixed Hodge

structure of type {(−1,−1), (−1, 0), (0,−1)} (see Appendix), the semi-polarized

integrable system can be described as an admissible variation of Z-mixed Hodge

structures of such type with an abstract Seiberg-Witten differential as in the clas-

sical case.

The main objects on the Hitchin side are the moduli space of diagonally framed

Higgs bundles (resp. unordered), introduced by Biswas-Logares-Peón-Nieto [BLP19][BLP20]1,

and we denote these moduli space by M∆(n,D) (resp. M∆(n,D)). The mod-

uli space M∆(n,D) is a subspace of the moduli space of framed Higgs bundles

MF (n,D) whose object is a triple (E, θ, δ) where (E, θ) is a SL(n,C)-Higgs bundle

and δ is a framing of E at D. As the name suggests, an object in M∆(n,D) is a

framed Higgs bundle such that the residue of its Higgs field is diagonal with respect

to the framing δ. The unordered version M∆(n,D) is obtained as the quotient

of M∆(n,D) by S|D|n where S|D|n is the product of symmetric groups Sn acting on

the space of the framings by permuting the order of components. The following
1In [BLP20], what we call "diagonally framed" is referred to as "relatively framed" in [21].
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diagram summarizes the relation among the moduli spaces:

M∆(n,D) MF (n,D)

M∆(n,D) M(n,D)

B

q f1

f2

h∆ h

(2.1.1)

where q : M∆(n,D) → M∆(n,D) is the quotient map, f1 and f2 are the maps

of forgetting the framings and h∆ := h ◦ f2 : M∆(n,D) → B is the Hitchin map

on the moduli space of unordered diagonally framed Higgs bundles that we will

study. In this paper, we will mainly work over the locus Bur ⊂ B of smooth

cameral curves which are unramified over D and have simple ramifications. In

particular, for a triple (E, θ, δ) over b ∈ Bur, the residue of θ over D has distinct

eigenvalues. We shall write the restrictions as M∆(n,D)ur := (h∆ ◦ q)−1(Bur) and

M∆(n,D)ur := h−1
∆ (Bur).

We will show that M∆(n,D)ur and M∆(n,D)ur are symplectic using defor-

mation theoretic arguments. They also carry a smooth semi-polarized integrable

system structure over the locus Bur. The following is the first result of the paper.

Theorem 2.1.1. (Proposition 2.3.17, Corollary 2.3.20) The moduli space of un-

ordered diagonally framed Higgs bundle M∆(n,D) is symplectic. The Hitchin fi-

bration

hur∆ : M∆(n,D)ur → Bur

forms a smooth semi-polarized integrable system whose fiber is a semi-abelian vari-

84



ety.

In order to prove this, we study the fiber (hur∆ )−1(b) over each b ∈ Bur via

the spectral correspondence between unordered diagonally framed Higgs bundles

on Σ and framed line bundles on the associated spectral cover pb : Σb → Σ. The

framed line bundles on Σb are then parametrized by the Prym variety Prym(Σ◦b ,Σ◦)

associated to the restricted spectral cover p◦b := pb|Σ◦
b

: Σ◦b → Σ◦ where Σ◦b :=

Σb\p−1
b (D) and Σ◦ := Σ\D.More precisely, Prym(Σ◦b ,Σ◦) is a semi-abelian variety

defined as the kernel of the punctured norm map Nm◦ : Jac(Σ◦b)→ Jac(Σ◦).

Proposition 2.1.2. (Proposition 2.3.8, Spectral correspondence) A generic fiber

h−1
∆ (b) is canonically isomorphic to the semi-abelian variety Prym(Σ◦b ,Σ◦). In par-

ticular, the first homology H1(Prym(Σ◦b ,Σ◦)) admits a Z-mixed Hodge structure of

type {(−1,−1), (−1, 0), (0,−1)}.

On the Calabi-Yau side, we construct a family of Calabi-Yau threefolds π :

X → B by using the elementary modification technique in [Smi15]. To produce the

relevant Calabi-Yau integrable systems, we should restrict the family π : X → B

to Bur, denoted by πur : X ur → Bur, whose fiber is smooth and its third homology

admits a Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)} up to Tate

twist. Now, by taking fiberwise intermediate Jacobians, we obtain a family of

semi-abelian varieties πur : J (X ur/Bur) → Bur. The local period map induces an

integrable system structure of this family.
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The main result of the paper is to establish an isomorphism between the two

semi-polarized integrable systems:

Theorem 2.1.3. (Theorem 2.5.1) There is an isomorphism of smooth semi-polarized

integrable systems

J (X ur/Bur) M∆(n,D)ur

Bur

∼=

πur

hur∆

(2.1.2)

The idea is to compare the admissible variations of Z-mixed Hodge structures

associated to the two semi-polarized integrable systems, by using the gluing tech-

niques in [DDP07], [Bec20]. To complete the proof, we check that the comparison

map intertwines the abstract Seiberg-Witten differentials on each side.

Related work

The ideas of the spectral correspondence for unordered diagonally framed Higgs

bundles and the infinitesimal study of their moduli spaces are drawn from [BLP19].

We follow their approach closely in Section 2.3.3. However, we provide an im-

provement of their result in order to show that M∆(n,D)ur and M∆(n,D)ur are

symplectic which was not proved before. We also focus more on the Hodge struc-

tures of the relevant Hitchin fibers to prove Theorem 2.1.3.

A general construction of the moduli space of unordered diagonally framed Higgs

bundles M∆(n,D) comes from symplectic implosion [GJS02] associated to the level

group action on MF (n,D), viewed as the cotangent bundle of the moduli of framed
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bundles [Mar94]. One can obtain the Hitchin fibration over the full base B, but it

is a stratified space and very singular which makes it difficult to control. Indeed,

as we only need the smooth part for our main result, we focus on Higgs fields that

are diagonalizable over D throughout the paper.

Kontsevich-Soibelman proposed a different construction of the relevant Calabi-

Yau integrable system as an affine conic bundle over a holomorphic symplectic

surface containing a given spectral curve (see [KS14]). This can be done by blowing

up intersections of spectral curves and the preimage of the divisor D in the total

space of the twisted cotangent bundle KΣ(D). After removing the proper transform

of the preimage, one gets the desired symplectic holomorphic surface. This model

is birationally equivalent to the one we introduce in Section 4.

Plan

We first recollect the basics of integrable systems and introduce the notion of a

semi-polarized integrable system in Section 2. In Section 3, we study the integrable

system structure of the moduli space of unordered diagonally framed Higgs bundle.

Also, we give both the spectral and cameral descriptions for completeness. In

Section 4, we construct the semi-polarized Calabi-Yau integrable systems by using

the technique of elementary modification. It is then followed by a Hodge theoretic

computation. Finally, in Section 5, we give a proof of Theorem 2.1.3.
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Notation

• Σ - a non-singular curve of genus g.

• D - an effective divisor of d reduced points.

• Σ◦ - the complement of the divisor D in Σ.

• M(n,D) - the moduli space of KΣ(D)-twisted SL(n,C)-Higgs bundles.

• MF (n,D) - the moduli space of framed Higgs bundles.

• M∆(n,D) - the moduli space of diagonally framed Higgs bundles.

• M∆(n,D) - the moduli space of unordered diagonally framed Higgs bundles.

• B = ⊕ni=2H
0(Σ, KΣ(D)⊗i) - the Hitchin base.

• Bur ⊂ B - the subset consists of smooth cameral curves which are unramified

over D and have simple ramifications. Throughout the paper, we will always

assume an element b ∈ B is sitting in Bur.

• pb : Σb → Σ - the spectral cover for b ∈ B.

• p̃b : Σ̃b → Σ - the cameral cover for b ∈ B.

2.2 Semi-polarized integrable systems

In this section, we recall the notion of a semi-polarized integrable system, originally

introduced in [KS14]. This is a non-compact generalization of the notion of algebraic
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integrable system [Hit87a] which provides a new way to view integrable systems in

the Poisson setting. Similarly to the classical setting where algebraic integrable

systems can be associated with variations of polarized weight one Hodge structures,

we also have a Hodge-theoretic description of semi-polarized integrable systems. To

make the paper self-contained, we shall begin reviewing basics of algebraic integrable

systems by following [Bec20][Bec19].

2.2.1 Integrable systems and variations of Hodge structures

Definition 2.2.1. Let (M2n, ω) be a holomorphic symplectic manifold of dimension

2n and B be a connected complex manifold of dimension n. A holomorphic map

π : M → B is called an algebraic integrable system if it satisfies the following

conditions.

(1) π is proper and surjective;

(2) there exists a Zariski open dense subset B◦ ⊂ B such that the restriction

π◦ := π|M◦ : M◦ → B◦, M◦ := π−1(B◦)

has smooth connected Lagrangian fibers and admits a relative polarization of

index 0.

In particular, if B◦ = B, then (M,ω, π) is called a smooth algebraic integrable

system.
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The second condition that a generic fiber is Lagrangian puts rather restrictive

constraints on the geometry of the fiber. To see this, first consider ker(dπ◦), the

sheaf of vector fields on M◦ which are tangent to the fibers of π◦. Since the fibers

of π◦ are Lagrangians, the holomorphic symplectic form ω induces an isomorphism

ker(dπ◦) ∼= (π◦)∗T∨B◦ via v 7→ ω(v,−). By taking pushforward to B◦, we have

an isomorphism of coherent sheaves π◦∗ ker(dπ◦) ∼= π◦∗(π◦)∗T∨B◦. In fact, one can

apply the projection formula and see π◦∗(π◦)∗T∨B◦ ∼= T∨B◦ because the fibers of

π◦ are connected. Thus, the sheaf π◦∗ ker(dπ◦) is isomorphic to T∨B◦, hence locally

free. We denote it by V and call it a vertical bundle of π◦.

Next, choose a sufficiently small open subset U ⊂ B◦ and two local sections

u, v : U → V such that they are Hamiltonian vector fields u = X(π◦)∗f , v = X(π◦)∗g

for the functions f, g : U → C. As the fibers of π◦ are Lagrangians, we have

[u, v] = Xω(u,v) = 0. It implies that the Lie algebra (V , [−,−]) is abelian so that

one can define a group action of V on M◦ via the fiberwise exponential map. In

other words, the flows of the vector fields along the fibers of π◦ corresponding to

the sections of V act on M◦ while preserving the fibers of π◦.

The submanifold

Γ = {v ∈ V| ∃x ∈M◦such that v · x = x}

forms a full lattice in each fiber and induces a family of abelian varieties A(π◦) :=

V/Γ → B◦ which acts simply transitively on π◦ : M◦ → B◦. Therefore, a generic

fiber of π : M → B is non-canonically isomorphic to an abelian variety.

90



From now on, we will focus on smooth integrable systems (B◦ = B). From the

viewpoint of Hodge theory, a family of polarized abelian varieties can be obtained

from a variation of weight 1 polarized Z-Hodge structures V = (VZ, F •VO, Q) over

B where VO := VC⊗OB and F • is the Hodge filtration. This is done by taking the

relative Jacobian fibration so that we have the family

p : J (V) := Tot(VO/(F 1VO + VZ))→ B (2.2.1)

whose vertical bundle is V := VO/F
1VO → B.

A natural question is a condition for the family p : J (V)→ B being an integrable

system. In other words, we need a symplectic form on J (V) where fibers are

connected Lagrangians. This can be achieved by the following theorem.

Theorem 2.2.2. [Bec20] Let V = (VZ, F •VO, Q) be a variation of weight 1 polar-

ized Z-Hodge structures over B and ∇GM be the Gauss-Manin connection on VO.

Assume that there exists a global section λ ∈ H0(B, VO) such that

φλ :TB → F 1VO

µ 7→ ∇GM
µ λ

is an isomorphism. Then the polarization Q induces a canonical symplectic form

ωλ on J (V) such that the induced zero section becomes Lagrangian. Moreover, the

symplectic form is independent of the polarization Q up to symplectomorphisms.

Consider the dual variation of Hodge structure of V, V∨ = HomVHS(V,ZB)(−1)

over B. The polarization Q identifies V = VO/F
1VO with F 1V ∨O . Consider the

91



compositions

ι : V ψQ−→ F 1V ∨O
φ∨λ−→ T∨B. (2.2.2)

where ψQ is the identification induced by the polarization Q and φ∨λ is dual of φλ.

Then the lattice VZ in V embeds into T∨B as a Lagrangian submanifold. Therefore,

we obtain a symplectic structure from the canonical one on T∨B by descending

to J (VO) ∼= T∨B/ι(VZ). We call such λ an abstract Seiberg-Witten differential

[Bec20][Don97].

2.2.2 Semi-polarized integrable systems and variations of

mixed Hodge structures

One can generalize the notion of an algebraic integrable system by allowing fibers

to be non-proper. This is the main object of our study, first introduced in [KS14].

We recall the definition in a form convenient for our story.

Definition 2.2.3. Let (M2n+2k, ω) be a holomorphic symplectic manifold of di-

mension 2n + 2k and B be a connected complex manifold of dimension n + k. A

holomorphic map π : M → B is called a semi-polarized integrable system if it

satisfies the following conditions.

1. π is flat and surjective;

2. there exists a Zariski open dense subset B◦ ⊂ B such that the restriction

π◦ := π|M◦ : M◦ → B◦, M◦ := π−1(B◦)
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has smooth connected Lagrangian fibers;

3. each fiber of π◦ is a semi-abelian variety which is an extension of a n-dimensional

polarized abelian variety by a k-dimensional affine torus.

In particular, if B◦ = B, then (M,ω, π) is called a smooth semi-polarized integrable

system.

Similar to the classical case, the main example comes from an admissible varia-

tion of torsion-free Z-mixed Hodge structures. Let V = (VZ,W•VZ, F •VO) be an ad-

missible variation of Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)}

over B where VO := VC ⊗OB and GrW−1VC is polarizable. In other words, we have

• 0 = W−3 ⊂ W−2 ⊂ W−1 = VZ

• 0 = F 1 ⊂ F 0 ⊂ F−1 = VO

and can choose a relative polarization on GrW−1VO. Throughout this paper, we choose

a semi-polarization on VZ, a degenerate bilinear form Q : VZ×VZ → ZB which yields

the relative polarization on GrW−1VO. We call it a variation of semi-polarized Z-mixed

Hodge structures. Moreover, one can obtain a semi-abelian variety from a Z-mixed

Hodge structure of type {(−1,−1), (−1, 0), (0,−1)} by taking the Jacobian (see

Appendix). Therefore, we have a family of semi-abelian varieties by taking the

relative Jacobian fibration

p : J (V) := Tot(VO/(F 0VO + VZ))→ B (2.2.3)
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with its compact quotient pcpt : Jcpt(V) := Tot(W−1VO/(W−1VO∩F 0VO+VZ))→ B.

To define an abstract Seiberg-Witten differential, we consider the dual variation

of Z-mixed Hodge structures V∨ = (V ∨Z ,W•V ∨Z , F •V ∨O ) := HomVMHS(V,ZB) of V.

Note that we don’t take a Tate twist so that it is of type {(0, 1), (1, 0), (1, 1)}. Unlike

the classical case, the Seiberg-Witten differential is defined as a global section of

the dual vector bundle V ∨O .

Definition 2.2.4. Let V = (VZ,W•VZ, F •VO, Q) be an admissible variation of semi-

polarized Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)} over B, and

∇GM be the Gauss-Manin connection on VO. We define an abstract Seiberg-Witten

differential as a global section of the dual bundle V ∨O , λ ∈ H0(B, V ∨O ), such that the

following morphism

φλ :TB → F 1V ∨O

µ 7→ ∇GM
µ λ

(2.2.4)

is an isomorphism.

It is clear that the vertical bundle V of J (V)→ B can be identified with (F 1V ∨O )∨

via the canonical non-degenerate pairing, VO/F 0VO ⊗ F 1V ∨O → OB. Consider the

composition

ι : V → (F 1V ∨O )∨
φ∨λ−→ T∨B

under which the lattice VZ ⊂ V embeds into T∨B as a Lagrangian submanifold.

Similar to Theorem 2.2.2, we obtain a symplectic form from the canonical one on

T∨B with Lagrangian condition on a generic fiber. Moreover, the total space J (V)
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has a canonical Possion structure associated to the given symplectic form. As the

action of the affine torus on J (V) is Hamiltonian, free and proper, the quotient

space Jcpt(V) is a Poisson manifold. Thus, Jcpt(V) has a Poisson integrable system

structure whose symplectic leaves are locally parametrized by φ−1
λ (GrW2 V ∨O ∩F 1V ∨O )

(see [KS14, Section 4.2] for more details). This proves the following proposition.

Proposition 2.2.5. Let V = (VZ,W•VZ, F •VO, Q) be an admissible variation of

semi-polarized Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)} over B

and

λ ∈ H0(B, V ∨O ) be the Seiberg-Witten differential. Then, the relative Jacobian fibra-

tion

p : J (V) := Tot(VO/(F 0VO + VZ))→ B (2.2.5)

forms a semi-polarized integrable system. In particular, the compact quotient Jcpt(V)→

B admits a Poisson integrable system structure.

Remark 16. The reason we take a global section of the dual vector bundle in the

definition of Seiberg-Witten differential is that, unlike the classical case, the semi-

polarization Q does not induce the canonical identification between V and V∨.

Moreover, this is also motivated by the geometric examples we will consider where

VZ and V ∨Z are torsion-free integral homology and cohomology of a non-singular

quasi-projective variety, respectively.

Remark 17. In [KS14], Kontsevich and Soibelman introduce the notion of a central

charge Z ∈ H0(B, V ∨O ) which induces an local embedding of the base into V ∨O . It
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is equivalent to the data of an abstract Seiberg-Witten differential which suits our

story better.

2.3 Moduli space of diagonally framed Higgs bun-

dles

In this section, we will study the moduli space of (unordered) diagonally framed

Higgs bundles and the associated Hitchin map as introduced in [BLP19]. In partic-

ular, we will give the spectral and Hodge theoretic description of the generic Hitchin

fiber. Then we prove that it is a semi-polarized integrable system in two different

ways: using deformation theory and using abstract Seiberg-Witten differentials. As

mentioned in Section 1, parts of this section will follow the approach of [BLP19].

For basic properties of Hitchin systems and spectral covers, we refer to [DM96b].

2.3.1 The moduli space of (unordered) diagonally framed

Higgs bundles

We fix Σ to be a smooth curve of genus g, D a reduced divisor on Σ and Σ◦ := Σ\D.

Definition 2.3.1. A framed SL(n,C)-Higgs bundle on Σ is a triple (E, θ, δ), where

E is a vector bundle of rank n with trivial determinant, δ : ED ∼−→ ⊕ni=1OD is an

isomorphism, i.e. a framing at D, and θ ∈ Γ(Σ, End0(E) ⊗ KΣ(D)) is a traceless

Higgs field.
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A morphism between framed Higgs bundles (E, θ, δ) and (E ′, θ′, δ′) is a map

f : E → E ′ such that δ ◦ f |D = δ′ and θ′ ◦ f = (f ⊗ IdKΣ(D)) ◦ θ.

Remark 18. A framed GL(n,C)-Higgs bundle and PGL(n,C)-Higgs bundle are

defined in a similar way.

In order to discuss moduli spaces, we first define the stability conditions we

will be using. We shall follow the definition of stability conditions in [BLP19].

Essentially, the stability condition for a framed Higgs bundle is just the stability

condition for a KΣ(D)-twisted Higgs bundle. More precisely, we say that a framed

Higgs bundle (E, θ, δ) is stable (semistable respectively) if for every θ-invariant

proper subbundle F ⊂ E, that is, θ(F ) ⊂ F ⊗ K(D), we have µ(F ) < µ(E)

(µ(F ) ≤ µ(E) respectively). Here we write µ for the slope µ(E) = deg(E)/dim(E).

The following lemma and the next corollary can be found in [BLP19, Lemma

2.3]. We record them here for future reference. Let (E, θ) and (E, θ′) be KΣ(D)-

valued semistable Higgs bundles on Σ with µ(E) = µ(E ′).

Lemma 2.3.2. Let f : E → E ′ be a OΣ-modules homomorphism such that

(1) θ′ ◦ f = (f ⊗ IdKΣ(D)) ◦ θ,

(2) there is a point x0 ∈ Σ such that f |x0 = 0,

then f vanishes identically.

Corollary 2.3.3. A semistable framed Higgs bundle admits no non-trivial auto-

morphism.
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Proof. Indeed, suppose (E, θ, δ) admits an automorphism h, then the morphism

h− IdE vanishes on D. By the Lemma 2.3.2 above, h− IdE vanishes identically or

equivalently h = IdE.

We denote g := sln (gln respectively) and gE := End0(E) (End(E) respectively).

For our discussion, we will only consider the case of sln. Let t be the vector subspace

of diagonal traceless n× n matrices and q be the orthogonal complement of t with

respect to the Killing form, i.e. the vector subspace of n×n matrices whose diagonal

entries are all zero. We have g = t⊕ q. Given a framing δ of E, we can define the

δ-restrictions to D as the compositions:

gE � gE ⊗OD
adδ−−→ g⊗OD � q⊗OD

gE � gE ⊗OD
adδ−−→ g⊗OD � t⊗OD

where the maps g⊗OD � q⊗OD and g⊗OD � t⊗OD are given by the projections

for the decomposition g = t⊕ q.

Given a framed bundle (E, δ), we define subsheaves g′E, g′′E ⊂ gE as the kernels

0→ g′E → gE → qD := i∗q→ 0

0→ g′′E → gE → tD := i∗t→ 0

where i : D ↪→ Σ is the inclusion. In other words, a section of endomorphism in g′E

(g′′E respectively) restricted to p ∈ D is diagonal (anti-diagonal respectively) with

respect to δ.
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Definition 2.3.4. We say that a framed Higgs bundle (E, θ, δ) is diagonally framed

if θ ∈ H0(Σ, g′E ⊗KΣ(D)) ⊂ H0(Σ, gE ⊗KΣ(D)).

By the results of [Sim94a][Sim94b] [BLP19, Section 2], it is shown that the

moduli space of semistable framed SL(n,C)-Higgs bundles MF (n,D) exists as a

fine moduli space that is a smooth irreducible quasi-projective variety. The moduli

space we are interested in is the moduli space of semistable diagonally framed

SL(n,C)-Higgs bundle, denoted by M∆(n,D). It is clear that M∆(n,D) is a

subvariety of MF (n,D).

Remark 19. Unless mentioned otherwise, we will assume all diagonally framed Higgs

bundles are semistable with structure group SL(n,C) throughout the paper.

For each p ∈ D, there is a natural Sn-action on ⊕ni=1Op by permuting the order

of the components

σ : ⊕ni=1Op
∼−→ ⊕ni=1Op, (s1, ..., sn) 7→ (sσ(1), ..., sσ(n)), where σ ∈ Sn.

For each p ∈ D, this induces a Sn-action on the space of framings

σ · δ = σ ◦ δ : E|p → ⊕ni=1Op
σ−→ ⊕ni=1Op.

Hence, the moduli spaces M∆(n,D) and MF (n,D) admit a S|D|n -action: for σ ∈

S|D|n ,

σ : (E, θ, δ) 7→ (E, θ, σ · δ), where σ · δ : E|D → ⊕ni=1OD → ⊕ni=1OD.

Since the group is finite, we can consider the quotient MF (n,D)/(S|D|n ). The effect

of taking quotient is that, for a fixed Higgs bundle, framings that differ only in
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reordering of components will be identified. More precisely, a morphism between

unordered framed Higgs bundles (E, θ, δ) and (E ′, θ′, δ′) is a map f : E → E ′ such

that

δ ◦ f |D = σ ◦ δ′ for some σ ∈ S|D|n , θ′ ◦ f = (f ⊗ IdKΣ(D)) ◦ θ.

In other words, MF (n,D)/(S|D|n ) now parametrizes unordered framed Higgs bun-

dles. However, this group action is not free. In order to get a free action by

S|D|n , we will assume that the associated spectral curve is smooth and unrami-

fied over D, or equivalently, the residue of θ at D has distinct eigenvalues. More

precisely, we define Bur to be the locus of smooth cameral curves (see Section

2.3.4) which are unramified over D and have simple ramifications. Of course, the

associated spectral curve for b ∈ Bur is automatically a smooth spectral curve

that is unramified over D, and the necessity to work with smooth cameral curve

with simple ramifications will be explained in Section 5. Moreover, we restrict

to the subvariety M∆(n,D)ur := h
−1
∆ (Bur) where h∆ denotes the composition

M∆(n,D) ↪→MF (n,D) f1−→M(n,D) h−→ B and f1 denotes the forgetful map.

Lemma 2.3.5. The S|D|n -action on M∆(n,D)ur is free.

Proof. Consider (E, θ, δ) ∈M∆(n,D)ur and suppose that there exists σ ∈ S|D|n and

an isomorphism α : (E, θ, δ) → (E, θ, σ ◦ δ). The compability condition δ ◦ α|D =

σ ◦ δ implies that δ ◦ α|D ◦ δ−1 = σ, while the compatibility condition θ ◦ α =

(α⊗ IdKΣ(D))◦ θ restricted to D is equivalent to θδ ◦σ = σ ◦ θδ where θδ := δ−1θ|Dδ.

The last relation θδ ◦σ = σ ◦ θδ is clearly not possible as θδ is diagonal with distinct
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eigenvalues at each p ∈ D.

Since the S|D|n -action on M∆(n,D)ur is finite and free, we get a geometric quo-

tient M∆(n,D)ur := M∆(n,D)ur/(S|D|n ). The variety M∆(n,D)ur parametrizes

unordered diagonally framed Higgs bundles.

Clearly, there is a morphism f2 : M∆(n,D)ur → M(n,D)ur := h−1(Bur) by

forgetting the framings. For our purpose of proving Theorem 2.1.3, we will need to

study the composition of the forgetful map f2 and the Hitchin map h, denoted by

hur∆ : M∆(n,D)ur f2−→M(n,D)ur hur−−→ Bur. We summarize the relation among the

moduli spaces over Bur:

M∆(n,D)ur MF (n,D)ur

M∆(n,D)ur M(n,D)ur

Bur

q f1

f2

hur∆ hur

(2.3.1)

where MF (n,D)ur := (h ◦ f1)−1(Bur).

2.3.2 Spectral correspondence

We explain the spectral correspondence for unordered diagonally framed Higgs bun-

dles (see Proposition 2.3.8). After that, we describe the Hodge structures of a

generic Hitchin fiber which will be used in the proof of the main theorem.

Definition 2.3.6. Let D be an effective reduced divisor on C. A D-framed line

bundle on a curve C is a pair (L, β) where L is a line bundle and β : L|D ∼−→ OD is
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an isomorphism.

Remark 20. Unless mentioned otherwise, we will call (L, β) a framed line bundle

whenever the divisor D is clear from the context.

Proposition 2.3.7. Let C be a smooth curve and D a reduced divisor on C. Let

C◦ = C \D, j : C◦ → C and i : D → C be the natural inclusions. The isomorphism

classes of degree 0 framed line bundles on C are parametrized by the generalized

Jacobian

Jac(C◦) := H0(C,ΩC(logD))∨
H1(C◦,Z) . (2.3.2)

Proof. By duality, we can identify

Jac(C◦) = H0(C,ΩC(logD))∨
H1(C◦,Z)

∼=
H1(C,O(−D))
H1(C,D,Z)

Consider the exponential sequence

0→ j!Z→ OC(−D) exp(2πi(−))−−−−−−→ O∗C(−D)→ 0

where O∗C(−D) is defined as the subsheaf of O∗C consisting of functions with value

1 on D. It induces a long exact sequence

· · · →H1(C, j!Z) ∼= H1(C,D,Z)→ H1(C,OC(−D))→ H1(C,O∗C(−D))

c1−→H2(C, j!Z) ∼= H2(C,D,Z)→ H2(C,OC(−D))→ H2(C,O∗C(−D))→ · · ·

where the map c1 : H1(C,O∗C(−D)) → H2(C, j!Z) ∼= H2(C,D,Z) ∼= H2(C,Z) ∼=

Z can be interpreted as the first Chern class map. The group H1(C,O∗C(−D))
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naturally parametrizes all framed line bundles. Indeed, the sheaf O∗C(−D) sits in a

short exact sequence

1→ O∗C(−D)→ O∗C → i∗C∗ → 1

which induces a quasi-isomorphism O∗C(−D) → F • := [O∗C → i∗C∗] and hence

an isomorphism H1(C,O∗C(−D)) ∼= H1(C,F •). By choosing a Čech covering (Uα),

a 1-cocyle in Z1(Uα, F •) is a pair of fαβ ∈ H0(Uαβ,O∗C) and ηα ∈ H0(Uα, i∗C∗)

such that ηα/ηβ = fαβ|D. The data fαβ represents a line bundle. By assumption,

fαβ|D = 1 implies that ηα|D = ηβ|D ∈ C∗. Since a framing of a line bundle at a

point is equivalent to a choice of a non-zero complex number, (ηα) defines a framing

of the line bundle at D. In other words, the pair (fαβ, ηα) represents a framed line

bundle, and a class in H1(C,F •) represents an isomorphism class of the framed line

bundle.

In particular, we find that

Jac(C◦) ∼=
H1(C,O(−D))
H1(C,D,Z)

∼= ker(c1 : H1(C,O∗C(−D))→ Z)

which paramatrizes degree 0 framed line bundles.

We will apply the previous discussion to C = Σb , a spectral curve of Σ corre-

sponding to b ∈ Bur.

Remark 21. Unless mentioned otherwise, we will omit the the subscript b in Σb and

Σ◦b in this section for convenience, as it is irrelevant to our discussion.
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Since we are mainly interested in SL(n,C)-Higgs bundles, we will need to

consider the Prym variety of the spectral cover p : Σ → Σ. The norm map

Nm : Jac(Σ)→ Jac(Σ) induces a morphism of short exact sequences

0 (C∗)nd−1 Jac(Σ◦) Jac(Σ) 0

0 (C∗)d−1 Jac(Σ◦) Jac(Σ) 0

Nm◦ Nm

where d = |D| and Nm◦ : Jac(Σ◦) → Jac(Σ◦) is defined by taking norms on line

bundles and determinants on framings. Recall thatNm(L) = det(p∗L)⊗det(p∗OΣ)∨

and for a framed line bundle (L, β) ∈ Jac(Σ◦), the natural framing

p∗L|x
∼−→

⊕
y∈p−1(x)

Ly
∼−→
β

⊕
y∈p−1(x)

Oy

induces a framing on det(p∗L)|x over each x ∈ D. Also, there is a natural framing on

det(p∗OΣ)∨|x induced from the identity Id : OΣ|p−1(x) → OΣ|p−1(x). Both framings

determine a framing on Nm(L) and hence the map Nm◦.

By taking the kernel of this morphism, we get a commutative diagram:

0 (C∗)(n−1)d Prym(Σ◦/Σ◦) Prym(Σ/Σ) 0

0 (C∗)nd−1 Jac(Σ◦) Jac(Σ) 0

0 (C∗)d−1 Jac(Σ◦) Jac(Σ) 0

Nm◦ Nm

(2.3.3)

where Prym(Σ◦/Σ◦) := ker(Nm◦).

Proposition 2.3.8. (Spectral correspondence [BLP19]).

For a fixed b ∈ Bur, there is a one-to-one correspondence between degree zero framed
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line bundles on Σb and unordered diagonally framed Higgs bundles on Σ. Moreover,

the following results hold:

(1) The fiber h−1
∆,GL(n)(b) is isomorphic to Jac(Σ◦b);

(2) The fiber h−1
∆,SL(n)(b) is isomorphic to Prym(Σ◦b/Σ◦).

Proof. For simplicity, we assume D = {x}, D = p−1(x) in this proof. Let L be a

line bundle on Σb and (E, θ) a Higgs bundle on Σ. Recall that there is a bijection

between line bundles on Σb and Higgs bundles on Σ

Line bundle L on Σb Higgs bundle (E, θ) on Σ

p∗

coker(p∗θ−λId)

(2.3.4)

where λ denotes the tautological section ofKΣ(D). It remains to verify the bijection

on framings.

Pushing forward a D-framed line bundle (L, β) gives an unordered framed Higgs

bundle (p∗L, p∗λ, δ) where

δ : E|x ∼−→
⊕

y∈p−1(x)
Ly

∼−→
β

⊕
y∈p−1(x)

Oy

is well-defined as an unordered framing. With respect to the unordered framing,

the Higgs field p∗λ is diagonal as θ|x := p∗λ defines multiplication by λi on each

eigenline Li.

Conversely, given an unordered diagonally framed Higgs bundle (E, θ, δ), since

we assume that θ|x has distinct eigenvalues, for each λi ∈ p−1(D), the natural
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composition

ker(p∗θ − λiId)→ E|x → coker(p∗θ − λiId)

is an isomorphism. The assumption that θ|x is diagonal with respect to δ implies

that there is a component Ox
αi
↪−→ ⊕niOx such that

ker(p∗θ − λiId) E|x

Ox ⊕niOx
αi

∼= ∼=

In particular, we get a framing Ox
∼−→ coker(p∗θ − λiId) for each λi.

Finally, claims (1), (2) follow from Proposition 2.3.7.

Hodge structures Recall that since Σ◦ is non-compact, H1(Σ◦,Z) carries the

Z-mixed Hodge structure whose Hodge filtration is given by

F 0 = H1(Σ◦,C) ⊃ F 1 = H0(Σ,Ω1
Σ(logD)) ⊃ F 2 = 0. (2.3.5)

This induces the mixed Hodge structure on (H1(Σ◦,Z))∨ which is isomorphic to

H1(Σ◦,Z)/(torsion) ∼= H1(Σ◦,Z) by the universal coefficient theorem. Note that

Ext(H0(Σ◦,Z),Z) = Ext(Z,Z) = 0, so there is no torsion in this case. The Hodge

filtration of this dual mixed Hodge structure is given by

F−1 = H1(Σ◦,C)∨ ⊃ F 0 =
 H1(Σ◦,C)
H0(Σ,Ω1

Σ(logD))

∨ ⊃ F 1 = 0

Note that the weight filtration on H1(Σ◦,Z) is

W−3 = 0 ⊂ W−2 = Znd−1 ⊂ W−1 = H1(Σ◦,Z).
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Thus we can define as in [Car79] the Jacobian of this Hodge structure as

J(H1(Σ◦,Z)) := H1(Σ◦,C)
F 0 +H1(Σ◦,Z)

(2.3.6)

Lemma 2.3.9. There is an isomorphism between

J(H1(Σ◦,Z)) ∼= Jac(Σ◦)

Proof. Indeed,

J(H1(Σ◦,Z)) = H1(Σ◦,C)
F 0 +H1(Σ◦,Z)

= F−1

F 0 +H1(Σ◦,Z)
∼=
H0(Σ,Ω1

Σ(log(D)))
H1(Σ◦,Z)

.

Taking the first integral homology of every term in the diagram (2.3.3), we get

0 (Z)(n−1)d H∆,SL(n) HSL(n) 0

0 (Z)nd−1 H1(Σ◦,Z) H1(Σ,Z) 0

0 (Z)d−1 H1(Σ◦,Z) H1(Σ,Z) 0

Nm◦ Nm

where we define

H∆,SL(n) := H1(Prym(Σ◦/Σ◦),Z) ∼= ker(Nm◦ : H1(Σ◦,Z)→ H1(Σ◦,Z)), (2.3.7)

HSL(n) := H1(Prym(Σ/Σ),Z) ∼= ker(Nm : H1(Σ,Z)→ H1(Σ,Z)). (2.3.8)

Since the norm map is a morphism of mixed Hodge structures and taking the

Jacobian is functorial, we immediately get the following result.
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Corollary 2.3.10. The Prym lattice H∆,SL(n) is torsion free and admits the Z-mixed

Hodge structure of type {(−1,−1), (−1, 0), (0,−1)} induced by the map H1(Nm◦) :

H1(Σ◦,Z) → H1(Σ◦,Z). In particular, the Jacobian J(H∆,SL(n)) is isomorphic to

Prym(Σ◦/Σ◦).

Remark 22. Note that the mixed Hodge structure of the above type on H∆,SL(n) is

equivalent to the data of semi-abelian variety J(H∆,SL(n)). A review is included in

Appendix (2.6).

Remark 23. The Prym lattice H∆,SL(n) admits a sheaf-theoretic formulation which

will be needed in later sections. Consider the short exact sequence

0→ K→ p∗Z
Tr−→ Z→ 0

The trace map p∗Z
Tr−→ Z is defined by

p∗Z(U) = Z(p−1(U))→ Z(U), (s1, ..., sn) 7→
n∑
i=1

si

if U is away from the ramification divisor, where si is a section on each component

of p−1(U).

This short exact sequence induces a long exact sequence:

0→ H0
c (Σ,K)→ H0

c (Σ, p∗ZΣ) ∼= H0
c (Σ,Z)→ H0

c (Σ,Z)

→ H1
c (Σ,K)→ H1

c (Σ, p∗Z) ∼= H1
c (Σ,Z)→ H1

c (Σ,Z)

Since the cokernel of the map H0
c (Σ,Z) → H0

c (Σ,Z) is torsion and H1
c (Σ,Z)

is torsion-free, it follows that the maximal torsion free quotient H1
c (Σ,K)tf :=
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H1
c (Σ,K)/H1

c (Σ,K)tors can be identified as follows

H1
c (Σ,K)tf ∼= ker(H1

c (Σ,Z)→ H1
c (Σ,Z)) ∼= ker(H1(Σ,Z)→ H1(Σ,Z))

by Poincaré duality. Note that we could have used cohomology instead of compactly

supported cohomology since the curve Σ is compact, but the above argument also

works for the noncompact curve Σ◦. In particular, the same argument implies that

H1
c (Σ◦,K|Σ◦)tf ∼= ker(H1(Σ◦,Z)→ H1(Σ◦,Z)) ∼= H∆,SL(n). (2.3.9)

Note that H1
c (Σ◦,K|Σ◦)tf can also be written as H1(Σ, D,K)tf.

2.3.3 Deformation theory

In this section, we show that the moduli space of diagonally framed Higgs bundle

M∆(n,D) is symplectic. For the following discussion in this section, we fix a

diagonally framed Higgs bundle (E, θ, δ). Recall that we assume b ∈ Bur which

means that the associated cameral curve is smooth, unramified over D, and has

simple ramification. In particular, the residue of θ at D is diagonal with distinct

eigenvalues with respect to the framing δ.

Denote by Σ[ε] the fiber product Σ× Spec(C[ε]).

Definition 2.3.11. An infinitesimal deformation of diagonally framed Higgs bundle

is a triple (Eε, θε, δε) such that

• Eε is a locally free sheaf on Σ[ε],
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• θε ∈ H0(Σ[ε], g′Eε,D[ε] ⊗ p∗ΣKΣ(D)),

• δε : E|D[ε] → O⊕nD[ε] is an isomorphism,

• (Eε, θε, δε)|D×0 ∼= (E, θ, δ),

where as before g′Eε,D[ε] is defined as the kernel of the map gEε � q⊗OD[ε] induced

by δε and pΣ : Σ[ε]→ Σ denotes the natural projection.

Proposition 2.3.12. The space of infinitesimal deformations of a diagonally framed

Higgs bundle (E, θ, δ) is canonically isomorphic to H1(C•) where

C• : C0 = gE(−D) [·,θ]−−→ C1 = g′E ⊗KΣ(D) (2.3.10)

Proof. Recall that [Mar94] the space of infinitesimal deformation of a framed Higgs

bundles (E, θ, δ) is canonically isomorphic to H1(C•F ) where

C•F : C0
F = gE(−D) [·,θ]−−→ C1

F = gE ⊗KΣ(D). (2.3.11)

Choose a Čech cover U := (Uα) of Σ which induces cover U [ε] := (Uα[ε]) of Σ[ε].

Imposing further the condition that the Higgs bundles are diagonally framed implies

that θ ∈ g′E ⊗ KΣ(D) ⊂ gE ⊗ KΣ(D). Suppose that a 1-cocycle (ḟαβ, ϕ̇α) in

Z1(U [ε], C•F ) represents an infinitesimal deformation of (E, θ, δ) as framed Higgs

bundles where ḟαβ ∈ H0(Uαβ[ε], gE(−D)) and ϕ̇α ∈ H0(Uα[ε], gE ⊗ p∗ΣKΣ(D)).

Then (ḟαβ, ϕ̇α) is an infinitesimal deformation of (E, θ, δ) as diagonally framed Higgs

bundles if and only if ϕ̇α ∈ H0(Uα[ε], g′E⊗p∗ΣKΣ(D)). Hence, it follows that H1(C•)

parametrizes the infinitesimal deformations of diagonally framed Higgs bundles.
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Recall that the Serre duality says that H1(C•) ∼−→ (H1(Č•))∨ where

Č• : (g′E)∨ ⊗OΣ(−D) [−,θ]t−−−→ g∨E ⊗KΣ(D) (2.3.12)

is the Serre dual to C•. Combining the Serre duality isomorphism with the isomor-

phism in the next proposition, we get a non-degenerate skew-symmetric pairing on

H1(C•).

Proposition 2.3.13. There is a canonical isomorphism

H1(Č•) ∼= H1(C•). (2.3.13)

Proof. We consider an auxiliary complex2

C•1 : g′′E → gE ⊗KΣ(D)

and show that this is isomorphic to both C• and Č•.

First, consider the morphism of complexes t : C• → C•1 :

C• gE ⊗OΣ(−D) g′E ⊗KΣ(D)

C•1 g′′E gE ⊗KΣ(D)

t t0 t1

Both t0 and t1 are injective. The diagram clearly commutes away from D, hence

commutes everywhere. In particular, around D, choose an open subset U that

trivializes all the bundles, we see that the maps become the natural maps

t(−D)⊕ q(−D) (t⊕ q(−D))⊗KΣ(D)|U

t(−D)⊕ q (t⊕ q)⊗KΣ(D)|U

t0|U t1|U

2The complex C•
1 here coincides with the complex ”C ∆

• ” that is defined in [BLP19, Section 5].
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where we abuse notations by denoting t and q the trivial bundles with fibers t and

q, respectively. The cokernel of t is

coker(t) : qD
[·,θ]|D−−−→ qD ⊗KΣ(D)

Lemma 2.3.14.

Hi(coker(t)) = 0, for all i.

Proof. Since the complex is supported at D, it reduces to a complex of C-vector

spaces. Assume D consists of a single point for simplicity. The complex reduces to

q
[·,θ]|D−−−→ q.

Recall our assumption that the associated spectral curve is unramified over D. The

restriction θ|D of the Higgs field to D is a diagonal matrix with distinct eigenvalues

with respect to δ. In particular, θ|D is regular and semisimple, so its centralizer

Zg(θ|D) = {x ∈ g|[x, θ|D] = 0} is a Cartan subalgebra and coincides with t. Since

ker([·, θ]|D : g → g) = Zg(θ|D) = t which intersects q trivially, it follows that the

restricted map ([·, θ]|D)|q : q → q is an isomorphism. Hence, all the cohomologies

of the complex coker(t) must be zero.

The long exact sequence induced by 0→ C• → C•1 → coker(t)→ 0 is:

0→ H0(C•)→ H0(C•1)→ H0(coker(t)) = 0

→ H1(C•)→ H1(C•1)→ H1(coker(t)) = 0→ ...
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and hence H0(C•) ∼= H0(C•1) and H1(C•) ∼= H1(C•1).

Finally, we claim that there is an isomorphism of complexes C•1 ∼= Č•

C•1 g′′E gE ⊗KΣ(D)

Č• (g′E)∨ ⊗OΣ(−D) (gE)∨ ⊗KΣ(D)

∼= r0 r1 (2.3.14)

The map r0 is defined as follows. Consider the composition of morphisms

g′′E ↪→ gE
∼−→ g∨E ↪→ (g′E)∨ → (g′E)∨ ⊗OD. (2.3.15)

where the isomorphism gE → g∨E is given by the trace pairing. If we know that this

composition is zero, then we will get a map

r0 : g′′E → ker((g′E)∨ → (g′E)∨ ⊗OD) = (g′)∨E ⊗OΣ(−D).

Away from D, the map (2.3.15) is clearly zero. Around D, we can find an open

subset U such that each sheaf in the composition is trivial, then

g′′E|U gE|U g∨E|U (g′E)∨|U ((g′E)∨ ⊗OD)|U

t(−D)⊕ q t⊕ q t∨ ⊕ q∨ t∨ ⊕ q∨(D) (t∨ ⊗OD)⊕ (q∨ ⊗OD(D))

∼= ∼= ∼= ∼= ∼=

Each component of the bottom row clearly composes to zero, hence the whole

composition is zero. Locally over U , the map r0 : g′′E → (g′E)∨⊗OΣ(−D) is induced

by the trace pairing: t ∼−→ t∨ and q
∼−→ q∨,

r0|U : g′′E|U ∼= t(−D)⊕ q
∼−→ t∨(−D)⊕ q∨ ∼= (g′E)∨ ⊗OΣ(−D)|U

Since r0 is clearly an isomorphism away fromD, it follows that r0 is an isomorphism.
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The commutativity can be argued in the same way. Again, the diagram com-

mutes away from D. Around D, the bundles trivialize and we get the diagram

t(−D)⊕ q t⊕ q⊗KΣ(D)|U

t∨(−D)⊕ q∨ t∨ ⊕ q∨ ⊗KΣ(D)|U

which commutes on the nose.

All of this together gives

H1(C•) ∼= H1(C•1) ∼= H1(Č•). (2.3.16)

as claimed.

Let ω∆ : H1(C•)×H1(C•)→ C be the non-degenerate skew-symmetric pairing

induced by Serre duality and the isomorphism in Proposition 2.3.13.

Proposition 2.3.15. The nondegenerate 2-form ω∆ is closed.

Proof. Consider the following inclusion of complexes C• u
↪−→ C•F :

C• gE ⊗OΣ(−D) g′E ⊗KΣ(D)

C•F gE ⊗OΣ(−D) gE ⊗KΣ(D)

u u0 u1

where as before C•F is the complex whose first hypercohomology controls the de-

formations of the framed Higgs bundle (E, θ, δ). By the same argument as in

Proposition 2.3.13, since u0 is isomorphic and u1 is injective whose cokernel has

zero-dimensional support and concentrated in degree one, we have an injection

i : H1(C•) ↪→ H1(C•F ).
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Note that Serre duality induces a non-degenerate bilinear pairing on H1(C•F ) which

corresponds to the well-known symplectic form ωF on MF (n,D), see [BLP19]. We

claim that the pairing ω∆ is obtained by restricting ωF to H1(C•) ⊂ H1(C•F ). In

other words, the corresponding 2-form on M∆(n,D) is obtained by pulling back

the symplectic form ωF on MF (n,D). It then follows that ωF is closed as well.

Our claim is equivalent to the commutativity of the following diagram:

H1(C•F ) H1(Č•F )∨ H1(C•F )∨

H1(C•) H1(Č•)∨ H1(C•1)∨ H1(C•)∨
i∨i

The left square diagram commutes by the functoriality of Serre duality. Then it

remains to check the commutativity of the right square diagram. This follows from

the commutativity of the diagram of complexes:

Č•F C•F

Č• C•1 C•

Away from D, the diagram clearly commutes. Around D, we again trivialize the

bundles and the diagram looks like

t∨(−D)⊕ q∨(−D)→ (t∨ ⊕ q∨)L t(−D)⊕ q(−D)→ (t⊕ q)L

t∨(−D)⊕ q∨ → (t∨ ⊕ q∨)L t(−D)⊕ q→ (t⊕ q)L t(−D)⊕ q(−D)→ (t⊕ q(−D))L

where we denote by L the operation "⊗KΣ(D)".

Proposition 2.3.16.
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(1) H0(C•) = H2(C•) = 0. In particular, the deformations of a diagonally framed

Higgs bundle (E, θ, δ) are unobstructed.

(2) dim(H1(C•)) = (n2 − 1)(2g − 2 + d) + (n− 1)d.

Proof. (1) Since morphisms between diagonally framed Higgs bundles are in par-

ticular morphisms between framed Higgs bundles, automorphisms of diagonally

framed Higgs bundles are the same as automorphisms as framed Higgs bundles. So

Corollary 2.3.3 implies that the diagonally framed Higgs bundles are rigid. Hence,

H0(C•) = 0.

On the other hand, again by Serre duality,

H2(C•) ∼= (H0(Č•))∨ ∼= (H0(C•1))∨

where the second isomorphism comes from the isomorphism of the complex (2.3.14).

Finally, recall that from the long exact sequence above, we have that H0(C•) ∼=

H0(C•1) which vanishes as we just proved, hence H2(C•) = 0.

(2) By the definition of g′E, we have a short exact sequence

0→ gE ⊗OΣ(−D)→ g′E → i∗t→ 0

and thus

χ(g′E ⊗KΣ(D)) = χ(g′E) + (n2 − 1) deg(KΣ(D))

= χ(t⊗OD) + χ(gE(−D)) + (n2 − 1) deg(KΣ(D))

= (n− 1)d+ χ(gE) + (n2 − 1) deg(OΣ(−D)) + (n2 − 1) deg(KΣ(D))

= χ(gE) + (n− 1)d+ (n2 − 1)(2g − 2).
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By (1), χ(C•) = H1(C•), so

H1(C•) = χ(g′E ⊗KΣ(D))− χ(gE(−D))

= χ(gE) + (n− 1)d+ (n2 − 1)(2g − 2)− χ(gE) + (n2 − 1)d

= (n2 − 1)(2g − 2 + d) + (n− 1)d.

Remark 24. In the case of g = gln, a similar computation shows that

H1(C•) = n2(2g − 2 + d) + nd.

Remark 25. A direct computation by applying the Riemann-Roch theorem shows

that

dim(B) =
n∑
i=2

h0(Σ, (K(D))⊗i) = (2g − 2 + d)
(
n(n+ 1)

2 − 1
)

+ (n− 1)(1− g)

= 1
2
(
(n2 − 1)(2g − 2 + d) + (n− 1)d

)
= 1

2dim(H1(C•)).

Proposition 2.3.17. The open subset M∆(n,D)ur of the moduli space M∆(n,D)

is a smooth quasi-projective variety of dimension (n2−1)(2g−2+d)+(n−1)d. The

tangent space T[(E,θ,δ)]M
∆(n,D)ur is canonically isomorphic to H1(C•). Moreover,

M∆(n,D)ur admits a symplectic form ω∆ which is the restriction of the symplectic

form ωF on MF (n,D).

Proof. All the claims follow immediately from Proposition 2.3.12, 2.3.15 and 2.3.16.
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The argument to show that ω∆ is a restriction of ωF is contained in the proof of

Proposition 2.3.15.

Proposition 2.3.18. The fiber of the map h∆ : M∆(n,D)ur → Bur is Lagrangian

with respect to ω∆.

Proof. Denote by (h1, ..., hl) := h ◦ f1 : MF (n,D) → M(n,D) → Cl = B the

composition of the forgetful map and the Hitchin map. According to [BLP19,

Theorem 5.1], the functions hi Poisson-commute. Since the symplectic form ω∆ on

M∆(n,D)ur is the restriction of the symplectic form ωF onMF (n,D), the functions

hi Poisson-commute as well when restricted to M∆(n,D)ur.

Since the dimension of the fiber h−1
∆ (b) for b ∈ Bur is exactly 1

2dim(M∆(n,D)ur)

by Remark (25), it suffices to show that ω∆ restricted to h−1
∆ (b) vanishes to prove

our claim. This follows from Poisson-commutativity of (hi)|M∆(n,D)ur .

Proposition 2.3.19. The tangent space T[(E,θ,δ)]M∆(n,D)ur is canonically iso-

morphic to H1(C•). Moreover, the symplectic form ω∆ on M∆(n,D)ur is invari-

ant under the S|D|n -action. In particular, ω∆ descends to a symplectic form ω′∆ on

M∆(n,D)ur.

Proof. In the proof of Proposition 2.3.12, given an infinitesimal deformation (Eε, θε, δε),

the assignment of a 1-cocyle (ḟαβ, ϕ̇α) in H1(C•) is independent of the reordering
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of components. That means we have the following commutative diagram

T[(E,θ,δ)]M
∆(n,D)ur H1(C•)

T[(E,θ,σ·δ)]M
∆(n,D)ur H1(C•)

∼

dσ =

∼

for σ ∈ S|D|n . The differential of the quotient map

dq : T[(E,θ,δ)]M
∆(n,D)ur → T[(E,θ,S|D|n ·δ)]

M∆(n,D)ur

is an isomorphism. Hence, the canonical identification T[(E,θ,δ)]M
∆(n,D)ur ∼= H1(C•)

descends to the tangent space T[(E,θ,S|D|n ·δ)]
M∆(n,D)ur via dq and yields a canoni-

cal isomorphism T[(E,θ,S|D|n ·δ)]
M∆(n,D)ur ∼= H1(C•). Since the group action of S|D|n

is trivial on H1(C•), the symplectic form ω∆ on M∆(n,D)ur is invariant under

S|D|n .

Corollary 2.3.20. The map hur∆ : M∆(n,D)ur → Bur forms a semi-polarized

integrable system.

Proof. By the spectral correspondence proved in Proposition 2.3.8, the fibers are

semi-abelian varieties. Since ω′∆ descends from the symplectic form ω∆, it follows

immediately from Proposition 2.3.18 that the fiber of the map hur∆ : M∆(n,D)ur →

Bur is Lagrangian with respect to ω′∆.

Remark 26. For a fixed b ∈ Bur, the fiber (hur∆ )−1(b) is a semi-abelian variety

Prym(Σ◦b ,Σ◦) which admits a (C∗)(n−1)d-action. This group action can be seen by

viewing Prym(Σ◦b ,Σ◦) as parametrizing framed line bundles on Σb which correspond
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to unordered diagonally framed SL(n,C)-Higgs bundles under spectral correspon-

dence. Then (C∗)(n−1)d acts simply transitively on the space of framings over D

for each fixed line bundle, and the quotient map is equivalent to the natural map

Prym(Σ◦b ,Σ◦) → Prym(Σb,Σ) of forgetting the framings. Applying this fiberwise

quotient by (C∗)(n−1)d to the fibration M∆(n,D)ur → Bur, we see that the quo-

tient map is precisely the forgetful map f1 : M∆(n,D)ur →M(n,D)ur. Thus, this

provides a geometric interpretation of the fact that the Poisson integrable system

M(n,D)ur → Bur is realized as the fiberwise compact quotient of the semi-polarized

integrable system M∆(n,D)→ Bur as discussed in Section 2.2.2.

2.3.4 Cameral description

Although the spectral curve description is more intuitive and straightforward, it

only works for classical groups. To describe the general fiber of Hitchin system

for any reductive group G as well as prove DDP-type results, it is more natural

to use the cameral curve description and generalized Prym variety. In this section,

we focus on the extension of classical results in our case (A-type). We refer to

[DG02][DP12] for more basics and details about the cameral description.

In this section, we use general notation from algebraic group theory with an eye

towards a generalization of the previous arguments to any reductive group G (see

Remark 27).

As the Hitchin base B can be considered as the space of sections ofKΣ(D)⊗t/W ,
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we have the following commutative diagram

Σ̃ Ũ := Tot(KΣ(D)⊗ t)

Σ×B U := Tot(KΣ(D)⊗ t/W )

p̃ φ

ev

(2.3.17)

where Σ̃ is the universal cameral curve of Σ. By projecting to B, we have a family

of cameral curves Σ̃ → B whose fiber is a W -Galois cover of the base curve Σ.

An interesting observation is that in the meromorphic case, one can consider the

universal cameral pair (Σ̃, D̃ := p̃−1(D×B)), which allows us to extend the notion

of generalized Prym variety [Don93]. Let’s recall the definition of the generalized

Prym variety. For a generic b ∈ B, we define a sheaf of abelian groups Tb by

Tb(U) := {t ∈ p̃b∗(ΛG ⊗O∗Σ̃)W (U)|α(t)|Mα = +1 ∀α ∈ R(G)}

where R(G) is a root system and ΛG is the cocharater lattice and Mα is the ramifi-

cation locus of p̃b : Σ̃b → Σ fixed by the reflection S2 ∈ W corresponding to α. We

define the generalized Prym variety of Σ̃b over Σ as the sheaf cohomology H1(Σ, Tb).

Theorem 2.3.21 ([DG02][HHP10]). For b ∈ B◦, the fiber h−1(b) in the meromor-

phic Hitchin system is isomorphic to the generalized Prym variety H1(Σ, Tb):

h−1(b) ∼= H1(Σ, Tb)

where B◦ is the locus of smooth cameral curves with simple ramifications.

Let iD : D ↪→ Σ ←↩ Σ \ D : jD be inclusions. Associated to the cameral pair

(Σ̃b, D̃b), one can extend the generalized Prym variety to H1(Σ, jD!j
∗
DTb) which is

isomorphic to h−1
∆ (b).
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Proposition 2.3.22. For b ∈ Bur, the unordered diagonally framed Hitchin fiber

(h∆)−1(b) is isomorphic to H1(Σ, jD!j
∗
DTb). In particular, it is a semi-abelian variety

which corresponds to the Z-mixed Hodge structure

(H1(Σ, D, (p̃b∗ΛSL(n))W )tf, H
1(Σ̃b, D̃b, t)W )

whose weight and Hodge filtration are induced from Hodge structure of H1(Σ̃b, t)W

and H0(D̃b, t)W .

Proof. For completeness, we use the spectral description of unordered diagonally

framed Higgs bundles. The fiber (h∆)−1(b) is isomorphic to the Jacobian of the rela-

tive Z-mixed Hodge structure on H1(Σ, D,Kb) where Kb := ker(Tr : p̄b∗Z→ Z) (see

Remark 23). To relate with the cameral description, we consider an isomorphism

of sheaves,

(p̃b∗ΛSL(n))W ∼= Kb (2.3.18)

proved in Lemma 2.5.4. It induces the isomorphism of Z-mixed Hodge structures

on the relative sheaf cohomology:

H1(Σ, D, (p̃b∗ΛSL(n))W ) ∼= H1(Σ, D,Kb).

They agree on the torsion free part, hence we obtain the result by complexifying

the lattice.

Remark 27. In the forthcoming paper [LL], we develop the theory of diagonally

framed Higgs bundle for arbitrary reductive group G and its abelianization by fol-

lowing [DG02]. In summary, note that an additional data of diagonal framing
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amounts to specifying W -equivariant section of T -bundle at D. This can be for-

mulated as H0(Db, T ) = H0(D, (p̃b∗ΛSL(n))W ⊗C∗) modulo the action of the center

Z(G). Moreover, the distinguished triangle in the constructible derived category of

Σ, Db
c(Σ)

jb!j
∗
b → id→ ib∗i

∗
b

induces the long exact sequence as follows

H0(Σ, jb!j∗bTb)→ H0(Σ, Tb)
i∗D−→ H0(D, Tb)→ H1(Σ, jb!j∗bTb)→ H1(Σ, Tb)→ 0.

(2.3.19)

Here, H0(Σ, Tb) is the space of W -equivariant maps, HomW (Σ̃b, T ), which takes

values 1 on Mα

Σ̃b
for every root α. Note that

Z(G) = {t ∈ TW |α(t) = 1 for all α ∈ R(G)}.

Therefore, the cokernel of i∗D : H0(Σ, Tb) → H0(D, Tb) can be identified with

T |D|/Z(G), a level subgroup. Clearly this is a copy of C∗’s, so we have the semi-

abelian variety H1(Σ, jb!j∗bTb) as an extension of H1(Σ, Tb) by T |D|/Z(G). In order

to get the complete description of the general fiber, we should verify the precise

torsor structure. For type A, this can be done easily with the help of spectral

description.

2.3.5 Abstract Seiberg-Witten differential

Using the cameral description, one can define an abstract Seiberg-Witten differen-

tial. Note that in the classical case, the Seiberg-Witten differential is a holomorphic
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one-form which is obtained by the tautological section of the pullback of KΣ under

Tot(KΣ) → Σ. Similarly, in the meromorphic case, the tautological section of the

pullback of KΣ(D) under Tot(KΣ(D)) → Σ gives the logarithmic 1-form θ. For

each b ∈ B, we define the Seiberg-Witten differential to be the restriction

λ∆,b := θ|Σ̃b ∈ H
0(Σ̃b, t⊗ ΩΣ̃b

(log D̃b))W = F 1H1(Σ̃b \ D̃b, t)W

where (H1(Σ \D, (p̃b,∗ΛSL(n))W ), H1(Σ̃b \ D̃b, t)W ) is the Z-mixed Hodge structure

associated to the cameral pair (Σ̃b, p̃
−1
b (D)). This is the dual to the one we described

earlier and is of type {(0, 1), (1, 0), (1, 1)}. For simplicity, let’s denote it by V ∨b =

H1(Σ̃b \ D̃b, t)W .

Note that having a variation of Z-mixed Hodge structures over B corresponds

to having the classifying map to mixed period domain; Φ : B → D/Γ. It admits a

holomorphic lift [SSU87] Φ̃ : B → D which factors through relative Kodaira-Spencer

map κ : TB,b → H1(Σ̃b, TΣ̃b
(− log D̃b))

TB,b TD,Φ̃(b)

H1(Σ̃b, TΣ̃b
(− log D̃b))

dΦ̃

κ m∨ (2.3.20)

where m∨ : H0(Σ̃b, t ⊗ ΩΣ̃b
(log D̃b))W ⊗ H1(Σ̃b, TΣ̃b

(− log D̃b)) → H1(Σ̃b,OD̃b
)W is

the logarithmic contraction.

Proposition 2.3.23. For each b ∈ Bur, applying the Gauss-Manin connection to
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λ∆, one can obtain an isomorphism

∇GM : TbB
∼=−→ F 1V ∨b

µ 7→ ∇GM
µ (λ∆,b)

Proof. The idea is to follow the local computation as in the original proof of the

classical case [HHP10]. We can apply the same arguments because we restrict to

cameral covers with no ramification over the divisors. First, given µ ∈ TbB, one

can compute ∇GM
µ by using the above diagram (2.3.20). Let’s consider

Cµ := pr ◦ ∇GM
µ : F 1 → V ∨b → V ∨b /F

1

Cµ(α) = α ∪ κ(µ).

One can see that ∇GM
µ (λ∆) ∈ F 1 for all µ ∈ TbB by noticing that Cµ(λ∆,b) = 0.

This also follows from Griffiths’ transversality of variation of mixed Hodge structures

[PS08, Section 14.4]. On the other hand, using the isomorphism TbB ∼= F 1V ∨b
∼=

H0(Σ̃b, t⊗KΣ̃b
(D̃b))W , we can assign a logarithmic one form αµ to every µ ∈ TbB.

From the definition of the Seiberg-Witten differential form, it now follows that

∇GM
µ (λ∆,b) = αµ

for all µ ∈ TbB.
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2.4 Calabi-Yau integrable systems

2.4.1 Construction

In this section, we shall generalize Smith’s elementary modification idea [Smi15] to

construct a (semi-polarized) Calabi-Yau integrable system.

First, we describe the construction of a family of Calabi-Yau threefolds. Let

V := Tot(KΣ(D)⊕ (KΣ(D))n−1 ⊕KΣ(D)) and consider the short exact sequence

0→ OΣ(−D) α−→ OΣ → iD∗OD → 0.

Suppose u is a local frame of OΣ(−D). In terms of a local coordinate z around a

point of D where z = 0, α(u) is represented by f · u where f is a locally defined

function that vanishes at z = 0. We define an elementary modification W of V

along the first component:

W := Tot(KΣ(D−D)⊕(KΣ(D))n−1⊕KΣ(D))→ Tot(KΣ(D)⊕(KΣ(D))n−1⊕KΣ(D))

and denote the projection map by πW : W → Σ.

For b = (b2(z), ..., bn(z)) ∈ B = ⊕ni=2H
0(Σ, KΣ(D))⊗i, we define the threefold

Xb as the zero locus of a section in Γ(W,π∗WKΣ(D)⊗n):

Xb := {α(x)y − sn − π∗W b2(z)sn−2 − ...− π∗W bn(z) = 0} ⊂ W (2.4.1)

with the projection πb : Xb → Σ. Here we denote by x, y and s the tautological

sections of KΣ, (KΣ(D))n−1 and KΣ(D), respectively. Note that each term in the
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equation (2.4.1) is a section of π∗WKΣ(D)⊗n. More explicitly, we have

x ∈ Γ(W,π∗WKΣ), α(x) ∈ Γ(W,π∗WKΣ(D)), y ∈ Γ(W,π∗W (KΣ(D))n−1)

s ∈ Γ(W,π∗WKΣ(D)), π∗bi ∈ Γ(W,π∗W (KΣ(D))i)

This construction gives rise to a family of quasi-projective threefolds

pr2 ◦ π : X → B.

Next, we show that the threefold Xb is indeed a non-singular Calabi-Yau three-

fold.

Proposition 2.4.1. The threefold Xb has trivial canonical bundle.

Proof. By the adjunction formula,

KXb = KW ⊗ π∗W (KΣ(D))⊗n|Xb .

where πW : W → Σ. Note that

KW = π∗W det(W∨)⊗ π∗WKΣ ∼= π∗W (K−n−1
Σ (−nD))⊗ π∗WKΣ ∼= π∗W (K−nΣ (−nD)).

So it follows that

KXb = π∗W (K−nΣ (−nD))⊗ π∗W (KΣ(D))⊗n|Xb ∼= OXb .

Proposition 2.4.2. For each b ∈ Bur, the threefold Xb is non-singular.
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Proof. This is a local statement, so we can restrict to neighbourhoods in Σ. Around

a point of D with local coordinate z, the local model of Xb is

{f(z)xy − sn − b̃2(z)sn−2 − ...− b̃n(z) = 0} ⊂ C3
(x,y,s) × Cz,

where b̃i are now functions of z, and f(z) is function with zero only at z = 0. We

check smoothness by examining the Jacobian criterion. The equation

∂

∂s

(
sn − b̃2(z)sn−2 − ...− b̃n(z)

)
= 0

implies that, for each z, the equation sn − b̃2(z)sn−2 − ... − b̃n(z) = 0 must have

repeated solutions, this happens only when z is at a critical value. The remaining

equations in the Jacobian criterion are

f(z)y = 0, f(z)x = 0, f ′(z)xy + ∂

∂z

(
sn − b̃2(z)sn−2 − ...− b̃n(z)

)
= 0

When x = y = 0, the equation ∂
∂z

(
sn − b̃2(z)sn−2 − ...− b̃n(z)

)
= 0 has no solution

since we assume that the spectral curve associated to b is smooth. Hence, it must

be the case f(z) = 0 or equivalently z = 0. However, since we assume b ∈ Bur, this

cannot happen and Xb is non-singular around D.

Away from D, a similar argument shows that the threefold is non-singular over

the local neighbourhood. Hence, Xb is non-singular everywhere.

Again, by examining the defining equation (2.4.1), we can list the types of fibers

of the map πb : Xb → Σ:
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• For p ∈ D with coordinate z = 0, the fiber is defined by the equation

sn − b̃2(z)sn−2 − ...− b̃n(z) = 0, i.e. disjoint union of n copies of C2.

• For a critical value p of πb, the fiber is defined by xy − ∏m
i=1(s − si)ki where

∑m
i=1 ki = n (m < n). Hence, the fiber is a singular surface with Aki−1-

singularity at si.

• For p away from D and the discriminant locus of πb, the fiber is defined by

(xy − sn) − b̃2(z)sn−2 − ... − b̃n(z) = 0 and smooth, so it is isomorphic to a

smooth fiber of the universal unfolding of An−1-singularity C2/Zn.

Next, we study the mixed Hodge structure of Xb. Let’s denote the complement

of π−1
b (D) by X◦b . The long exact sequence of compactly supported cohomologies

associated to the pair (Xb, π
−1
b (D)) is

· · · → H2
c (π−1

b (D),Z)→ H3
c (X◦b ,Z)→ H3

c (Xb,Z)→ H3
c (π−1

b (D),Z)→ · · ·

As H2
c (π−1

b (D),Z) = H3
c (π−1

b (D),Z) = 0, we have an isomorphism of Z-mixed

Hodge structures

H3
c (Xb,Z) ∼= H3

c (X◦b ,Z) (2.4.2)

Moreover, the Leray spectral sequence for compactly supported cohomology asso-

ciated to π◦b := πb|X◦
b

: X◦b → Σ◦ implies

H3
c (X◦b ,Z) ∼= H1

c (Σ◦, R2π◦b!Z) (2.4.3)

because the (compactly supported) cohomology of a fiber is non-trivial only for

degree 0 and 2 [DDP07, Lemma 3.1]. As the Leray spectral sequence is compatible
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with mixed Hodge structures ([Ara05], [De 09, Corollary 2.10]), it is enough to

compute the Hodge type of H1
c (Σ◦, R2π◦b!Z). For this, we need to deal with critical

values of π◦b and the monodromy around D. First, note that the critical values

do not determine Hodge type. This is because a local system F having finite

monodromies M (only around the critical values) can be trivialized by pulling back

to an order |M | covering πM : Σ̃M → Σ. Then the sheaf cohomology H1(Σ,F) is

the same as H1(Σ̃M , π
∗
MF)M whose Hodge type is determined by H1(Σ̃M , π

∗
MF).

Applying this to our case, we can ignore the critical values and it is enough to

consider only the monodromy of R2π◦b!Z around D to compute the Hodge type.

Since Xb is constructed via elementary modification from another threefold which

has smooth fibers everywhere around D, we see that the monodromy of R2πb!Z

around D is trivial. As H1
c (Σ◦, R2π◦b!Z) ∼= H1(Σ, D,R2πb!Z), it admits the Z-mixed

Hodge structure of type {(−2,−2), (−2,−1), (−1,−2)} due to the relative version

of Zucker’s theorem [Zuc79]. Therefore, we have the following result.

Proposition 2.4.3. For b ∈ Bur, the third homology group H3(Xb,Z) admits a Z-

mixed Hodge structure of type {(−2,−2), (−2,−1), (−1,−2)}. Moreover, the third

cohomology group H3(Xb,Z) admits a Z-mixed Hodge structure of type {(1, 2), (2, 1), (2, 2)}.

The homology version of the second intermediate Jacobian of Xb is defined to

be Jacobian associated to the Z-mixed Hodge structure of H3(Xb,Z)(1)

J2(Xb) := J(H3(Xb,Z)(1)) = H3(Xb,C)
F−1H3(Xb,C) +H3(Xb,Z) (2.4.4)
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Remark 28. The homology group H3(Xb,Z)(1) turns out to have torsion (see The-

orem 2.5.2). To get the Z-mixed Hodge structure on the lattice of the semi-abelian

variety J2(Xb), we should consider the Z-mixed Hodge structure on the torsion-free

part H3(Xb,Z)tf(1).

Corollary 2.4.4. For b ∈ Bur, the homology version of the second intermediate

Jacobian J2(Xb) is a semi-abelian variety.

Remark 29. (Adjoint Type) Unlike the classical case, the cohomological interme-

diate Jacobian on H3(Xb,Z) is not a semi-abelian variety. This is one of the new

features, so we need to consider different data to describe the case of PGL(n,C), the

adjoint group of type A. It turns out that the right object is a mixture of compactly

supported cohomology and ordinary cohomology associated to πb : Xb → Σ:

H1
c (Σ, R2πb∗Z) ∼= H1

c (Σ◦, R2π◦b∗Z).

2.4.2 Calabi-Yau integrable systems

Having constructed the family of Calabi-Yau threefolds X ur → Bur, we can consider

the relative intermediate Jacobian fibration πur : J (X ur/Bur) → Bur whose fiber

is J2(Xb) = H3(Xb,C)/(F−1H3(Xb,C) + H3(Xb,Z)). One way to equip it with

an integrable system structure is to find an abstract Seiberg-Witten differential

(see Section 2). In the case of an intermediate Jacobian fibration, this can be

achieved by finding a global nowhere-vanishing holomorphic volume form in each
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fiber. The resulting semi-polarized integrable system will again be called the Calabi-

Yau integrable system.

Consider the subfamily of Calabi-Yau threefolds

(X ◦)ur := X ur \ π−1(D ×Bur) ⊂ X ur → Bur.

whose fiber is X◦b := Xb \ π−1
b (D). From the relation (2.4.2), it is enough to find

global holomorphic volume forms for the family (X ◦)ur → Bur. The idea is that

the family (X ◦)ur → Bur can be constructed alternatively by gluing Slodowy slices

as in [DDP07][Bec20], which is the key ingredient used for the existence of global

volume forms.

Claim 2.4.5. The family of quasi-projective Calabi-Yau threefolds πur : (X ◦)ur →

Bur can be obtained by gluing Slodowy slices.

Recall that in the classical case [Slo80], the Slodowy slice S ⊂ g provides a

semi-universal C∗-deformation σ : S → t/W of simple singularities via the adjoint

map σ : g → t/W . However, if we denote by dj the standard (C∗-action) weights

of the generators of the coordinate ring C[χ1, ..., χj] of t/W , then the weights on

C[χ1, ..., χj] must be chosen as 2dj for σ to be C∗-equivariant (see [BDW20, Remark

2.5.3], [Slo80]).

Now we choose a theta characteristic L on Σ, i.e. L2 ∼= KΣ. Since L2|Σ◦ ∼=

KΣ|Σ◦ ∼= KΣ(D)|Σ◦ , we have an isomorphism of associated bundles over Σ◦

L|Σ◦ ×C∗ t/W ∼= KΣ(D)|Σ◦ ×C∗ t/W

132



where the weights of the C∗-action on both sides are different: the left hand side

has weights 2dj and the right hand side has weights dj. As the map σ : S → t/W

is C∗-equivariant, we can glue it along Tot(L) to obtain

σ : S := Tot(L×C∗ S)→ Tot(L×C∗ t/W )

and its restriction

σ|Σ◦ : S|Σ◦ := Tot(L×C∗S)|Σ◦ → Tot(L|Σ◦×C∗t/W ) ∼= Tot(KΣ(D)|Σ◦×C∗t/W ) = U |Σ◦ .

Pulling back under the evaluation map from Σ × B, one gets a family of quasi-

projective threefolds (Y◦)ur as follows:

(Y◦)ur S|Σ◦

Σ◦ ×Bur U |Σ◦
π′ σ|Σ◦

ev

(2.4.5)

Lemma 2.4.6. We have an isomorphism of the families (Y◦)ur ∼= (X ◦)ur over Bur

and, in particular, Y ◦b ∼= X◦b where Y ◦b is a member of the family Y◦.

Proof. For type A, we have a semi-universal C∗-deformation of An−1 singularities

(see [KM92, Theorem 1]) as follows:

σ′ : H := {xy − sn − b2s
n−2 − ...− bn = 0} ⊂ C3 × Cn−1 → Cn−1 ∼= t/W

(x, y, s, b2, ..., bn) 7→ (b2, ..., bn)
(2.4.6)

The map σ′ is C∗-equivariant if we endow the following C∗-actions on C3 and Cn−1:

(x, y, s) 7→ (λ2x, λ2(n−1)y, λ2s), (b2, ..., bn) 7→ (λ4b2, ..., λ
2nbn). (2.4.7)
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Since the semi-universal C∗-deformation of a simple singularity is unique up to

isomorphism, the two deformations σ and σ′ are isomorphic. In other words, the

Slodowy slice S contained in g is isomorphic to the hypersurface H in C3×Cn−1 as

semi-universal C∗-deformation. Note that it is important to choose the C∗-action

on Cn−1 ∼= t/W and C3 as above for S and H to be isomorphic as C∗-deformation

(see [BDW20, Remark 2.5.3]).

Next, let’s turn to the global situation. We again have the isomorphism of

associated bundles

L|Σ◦ ×C∗ C∗ ∼= KΣ(D)|Σ◦ ×C∗ C∗

with the weights of the C∗-action on the left hand side being twice the weights on

the right hand side. Hence, the associated bundle L|Σ◦ ×C∗ C3 is

L2|Σ◦ ⊕ L2(n−1)|Σ◦ ⊕ L2|Σ◦ ∼= (KΣ(D)⊕KΣ(D)⊗n−1 ⊕KΣ(D))|Σ◦ ∼= V |Σ◦

Also, since the elementary modification is an isomorphism i.e. V |Σ◦ ∼= W |Σ◦ away

from D, the previous construction (2.4.1) of the family π◦ : (X ◦)ur → Bur as a

family of hypersurfaces in the total space of W |Σ◦ is equivalent to the construction

as the pullback of the gluing of H and σ′ over KΣ(D)|Σ◦ :

(X ◦)ur H|Σ◦ ⊂ Tot(KΣ(D)|Σ◦ ×C∗ C3)×Tot(KΣ(D)|Σ◦ ×C∗ t/W )

Σ◦ ×Bur U |Σ◦ = Tot(KΣ(D)|Σ◦ ×C∗ t/W )
π◦ (σ′)|Σ◦

ev

(2.4.8)

where we define σ′ : H = Tot(KΣ(D) ×C∗ H) → U and all the C∗-actions in the

diagram are understood as having half the weights in (2.4.7). By the argument
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that S and H are isomorphic as C∗-deformation, we have that σ|Σ◦ : S|Σ◦ =

Tot(L|Σ◦ ×C∗ S)→ U |Σ◦ and σ′|Σ◦ : H|Σ◦ → U |Σ◦ are also isomorphic. By pulling

back this isomorphism along the evaluation map to Σ◦×Bur, we get the isomorphism

(Y◦)ur ∼= (X ◦)ur.

Proposition 2.4.7. The relative intermediate Jacobian fibration πur : J (X ur/Bur)→

Bur is a semi-polarized integrable system.

Proof. By the relation (4.2), it is enough to show that there exists a Seiberg-Witten

differential associated to the subfamily (X ◦)ur → Bur. In other words, we need to

construct a holomorphic volume form λCY
◦ on (X ◦)ur which yields the nowhere

vanishing holomorphic volume form λ◦CY,b ∈ H0(X◦b , KX◦
b
) for each b ∈ Bur and

satisfies the condition (2.2.4).

First, the holomorphic volume form λCY
◦ is obtained from the holomorphic

3-form λ on S. Note that the Kostant-Kirillov form on g induces the nowhere van-

ishing section in ν ∈ H0(S,Kσ). One can glue the sections over L by tensoring with

local frames in the pullback of KΣ, which turns out to be the holomorphic 3-form

λ on S [DDP07][Bec20]. By restricting λ to Σ◦, it becomes a global holomorphic

3-form whose pullback to (X ◦)ur is the desired volume form λ◦CY .

Next, the proof that λ◦CY becomes the Seiberg-Witten differential relies on our

main result (Theorem 2.5.1). In particular, we identify the volume form λ◦CY with

the Seiberg-Witten differential for the Hitchin system so that the form λ◦CY au-
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tomatically satisfies the condition (2.2.4). Therefore, it follows from Proposition

(2.2.5) that J (X ur/Bur)→ Bur is a semi-polarized integrable system.

2.5 Meromorphic DDP correspondence

2.5.1 Isomorphism of semi-polarized integrable systems

The goal of this section is to prove an isomorphism between the two semi-polarized

integrable systems that have been studied so far: the moduli space of unordered

diagonally framed Higgs bundles M∆(n,D)ur → Bur and the relative intermediate

Jacobian fibration J (X ur/Bur)→ Bur of the family of Calabi-Yau threefolds X ur →

Bur. The main result is stated as follows.

Theorem 2.5.1. There is an isomorphism of semi-polarized integrable systems:

J (X ur/Bur) M∆(n,D)ur

Bur

∼=

πur

hur∆

(2.5.1)

Recall that we have shown in Proposition 2.3.8 and Corollary 2.3.10 that (hur∆ )−1(b) ∼=

Prym(Σ◦b ,Σ◦) ∼= J(H∆,SL(n),b) whereH∆,SL(n),b := H1(Prym(Σ◦b ,Σ◦),Z) = H1(Σ◦,Kb|Σ◦)tf

and Kb := ker(Tr : pb∗Z → Z). By definition, the fiber (πur)−1(b) = J2(Xb) =

J(H3(Xb,Z)(1)). The specialization of Theorem 2.5.1 to b ∈ Bur is equivalent to

an isomorphism between the semi-abelian varieties J2(Xb) and Prym(Σ◦b ,Σ◦), or

equivalently, between the Z-mixed Hodge structures H3(X,Z)tf(1) and H∆,SL(n),b of

type {(−1,−1), (−1, 0), (0,−1)}. We begin by proving the following result.
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Theorem 2.5.2. For b ∈ Bur, there is an isomorphism of Z-mixed Hodge struc-

tures:

(H3(Xb,Z)tf(1),WCY
• , F •CY ) ∼= (H∆,SL(n),b,W

∆,b
• , F •∆,b). (2.5.2)

Proof. We first fix some notations. Denote by Σ1 := Σ◦\Br(p̃◦b), Σ̃1
b := Σ̃◦b\Ram(p̃◦b)

the complement of the ramification and branch divisors in Σ◦b , Σ̃◦b respectively. Since

the branch divisor of the spectral cover pb : Σb → Σ is contained in the branch

divisor of the cameral cover p̃◦b : Σ̃◦b → Σ◦, we write Σ1
b := Σ◦b \ (p◦b)−1Br(p̃◦b).

The restricted maps of the spectral cover p1
b : Σ1

b → Σ1 and the cameral cover

p̃1
b : Σ̃1

b → Σ1 are then unramified. Similarly, we write X1
b ⊂ X◦b the complement of

(π◦b )−1(D) in X◦b and the restricted map as π1
b : X1

b → Σ1.

Step 1. As argued in (2.4.2) and (2.4.3) of the previous section, we have the

isomorphisms of Z-mixed Hodge structures of type {(−1,−1), (−1, 0), (0,−1)}

H3(Xb,Z)(1) ∼= H3
c (Xb,Z)(1) ∼= H3

c (X◦b ,Z)(1) ∼= H1
c (Σ◦, R2π◦b!Z)(1). (2.5.3)

Step 2.

Lemma 2.5.3. Over Σ◦, we have an isomorphism of sheaves,

R2π◦b !Z ∼= (p̃◦b∗ΛSL(n))W . (2.5.4)

Proof. In the classical work of [Slo80], Slodowy provided a detailed study of the

topology of the maps in the following diagram via its simultaneous resolution:

S̃ S

t t/W

σ̃ σ

φ

(2.5.5)

137



It can be shown that there is an isomorphism of constructible sheaves

R2σ1
∗Z ∼= (φ1

∗ΛSL(n))W (2.5.6)

over an open subset t1/W ⊂ t/W defined as the image of another open subset t1 ⊂ t

under φ. Here we denote φ1 := φ|t1 and σ1 : σ−1(t1/W ) → t1/W . For details, see

[Bec20, Lemma 5.1.3].

Next, we glue the maps σ and φ along KΣ(D)|Σ◦ as in (2.3.17) and (2.4.8)

S|Σ◦ = Tot(L|Σ◦ ×C∗ S)

Ũ |Σ◦ := Tot(KΣ(D)|Σ◦ ×C∗ t) U |Σ◦ = Tot(KΣ(D)|Σ◦ ×C∗ t/W ) ∼= Tot(L|Σ◦ ×C∗ t/W )

σ|Σ◦

φ|Σ◦

(2.5.7)

Let us define U1 := Tot(KΣ(D)×C∗ t
1/W ) ⊂ U . Since the varieties here are glued

using the same cocyle of L|Σ◦ (again, in taking the associated bundles here, L|Σ◦

as a C∗-bundle acts with twice the weights of the action by KΣ(D)|Σ◦), the iso-

morphism of constructible sheaves (2.5.6) over t1/W also glues together to another

isomorphism of constructible sheaves over U1|Σ◦ :

R2(σ)!Z ∼= (φ∗ΛSL(n))W . (2.5.8)

As argued in Claim (2.4.5), σ|Σ◦ : S|Σ◦ → U |Σ◦ is equivalent to (σ′)|Σ◦ : H|Σ◦ →

U |Σ◦ , so we obtain

R2(σ′)!Z ∼= (φ∗ΛSL(n))W (2.5.9)

over U1|Σ◦ . In both (2.5.8) and (2.5.9), we drop the notation of the restrictions of

σ, σ′ and φ to U1|Σ◦ for convenience.
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Recall from Claim (2.4.5) that π◦b : X◦b → Σ◦ can be obtained by pulling back

from σ′|Σ◦ : H|Σ◦ → U |Σ◦ along the composition of the inclusion and the evaluation

map Σ◦ × {b} ↪→ Σ◦ × B → U |Σ◦ . For b ∈ Bur, the section b : Σ → U factorizes

through U1 and then restricts to b|Σ◦ : Σ◦ → U1|Σ◦ , so the isomorphism (2.5.9)

specializes to R2π◦b!Z ∼= (p̃◦b∗ΛSL(n))W by pulling back along b|Σ◦ .

Step 3.

Lemma 2.5.4. Over Σ◦, we have an isomorphism of sheaves,

(p̃◦b∗ΛSL(n))W ∼= Kb|Σ◦ . (2.5.10)

Proof. To simplify the notation, we will write K◦b := Kb|Σ◦ in this proof. Recall that

there is an isomorphism (see [Don93, (6.5)]) between the two sheaves away from

the branch locus:

p1
b∗Z ∼= (p̃1

b∗R)W (2.5.11)

where R := Z[W/W0] denote the free abelian group generated by the set of right

(or left) cosets W/W0. Then we see that

Kb|Σ1 = ker(p1
b∗Z→ Z) ∼= ker((p̃1

b∗R)W → Z) ∼= (p̃1
b∗ΛSL(n))W ,

the last isomorphism holds because ker(R→ Z) = ΛSL(n).

Denote by j : Σ1 → Σ◦ the inclusion map. We first write K◦b as j∗j∗K◦b . Indeed,

as p◦b∗Z = j∗p
1
b∗Z and Z ∼= j∗Z, applying the functor j∗ to the short exact sequence
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0→ j∗K◦b → p1
b∗Z

Tr|Σ1−−−→ Z→ 0, we get

0→ j∗j
∗K◦b → j∗p

1
b∗Z = p1

b∗Z
Tr−→ j∗Z = Z→ R1j∗j

∗K◦b → ...

In particular, it follows that j∗j∗K◦b ∼= ker(Tr) = K◦b .

Hence, we get

(p̃◦b∗ΛSL(n))W ∼= j∗(p̃1
b∗ΛSL(n))W ∼= j∗j

∗K◦b ∼= K◦b

which means that the isomorphism (2.5.11) above extends from Σ1 to Σ◦.

Step 4. Finally, since the isomorphic local systems R2π◦b!Z ∼= (p̃◦b∗ΛSL(n))W ∼= Kb|Σ◦

have trivial monodromy at D, one can argue as in [DDP07, Lemma 3.1] and the

argument for Proposition 2.4.3 that it induces the Z-mixed Hodge structure of type

{(−1,−1), (−1, 0), (0,−1)} on

H1
c (Σ◦, R2π◦b!Z)(1) ∼= H1

c (Σ◦, (p̃◦b∗ΛSL(n))W ) ∼= H1
c (Σ◦,Kb|Σ◦).

Hence, taking the torsion free part, we achieve the isomorphism of Z-mixed Hodge

structures

H3(Xb,Z)tf(1) ∼= H1
c (Σ◦,Kb|Σ◦)tf ∼= H∆,SL(n),b.

By the equivalence between semi-abelian varieties and torsion free Z-mixed

Hodge structures of type {(−1,−1), (−1, 0), (0,−1)}, we immediately get the fol-

lowing result:

140



Corollary 2.5.5. We have an isomorphism of semi-abelian varieties

J2(Xb) ∼= h−1
∆ (b) ∼= Prym(Σ◦b/Σ◦). (2.5.12)

Now we return to the main theorem.

Proof of Theorem 2.5.1. Clearly, the argument in Theorem 2.5.2 works globally for

the family of CY threefolds pr2 ◦ πur : X ur → Σ × Bur → Bur and the family

of punctured spectral curves pr2 ◦ pur : Σ◦ → Σ◦ × Bur → Bur, so it yields an

isomorphism of admissible variations of Z-mixed Hodge structures:

R3(pr2 ◦ πur)!Z(1) ∼= R1(pr2)!(K) (2.5.13)

where K := ker(Tr : pur∗ Z→ Z). By taking the relative Jacobian fibrations of both

sides, we immediately get an isomorphism of varieties:

J (X ur/Bur) Prym(Σ◦,Σ◦) ∼= M∆(n,D)ur

Bur

∼=

πur

hur∆

(2.5.14)

where Prym(Σ◦,Σ◦) is the relative Prym fibration of the family of punctured

spectral curves Σ◦ → Bur. By the spectral correspondence proved in Proposition

2.3.8, we have Prym(Σ◦,Σ◦) ∼= M∆(n,D)ur.

It remains to verify that the morphism J (X ur/Bur)→M∆(n,D)ur intertwines

the abstract Seiberg-Witten differentials constructed on each side. This can be eas-

ily obtained by modifying the classical results in [DDP07] [Bec20] to our punctured

case. Note that both the abstract Seiberg-Witten differentials come from the tauto-

logical section on Ũ . In order to compare them, we again look at the simulteneous
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resolution of S → t/W :
S̃ S

t t/W

σ̃ σ

φ

(2.5.15)

and recall that σ̃ is C∞-trivial.

Taking a step further in (2.5.7), we can glue all the maps in the simultaneous

resolution diagram to a commutative diagram

S̃|Σ◦ S|Σ◦

Ũ |Σ◦ U |Σ◦

Ψ

σ̃|Σ◦ σ|Σ◦

φ|Σ◦

(2.5.16)

where S̃|Σ◦ := Tot(L|Σ◦ ×C∗ S̃).

The map Ψ induces an inclusion of cohomologies

Ψ∗ : H3((X ◦)ur/Bur,C)→ H3((X̃ ◦)ur/Bur,C) (2.5.17)

so that we can lift λ◦CY to X̃ ◦. As both are induced from the tautological section

on Ũ , under the following isomorphism

H3((X̃ ◦)ur/Bur,C) ∼= H1(Σ̃◦, t)

the two abstract Seiberg-Witten differentials λ◦CY and λ∆ coincide [Bec20, Theorem

5.2.1].

Remark 30. (Adjoint type) The above argument is easily applied to the adjoint case,

PGL(n,C), so that there is an isomorphism between (unordered) diagonally framed

PGL(n,C)-Hitchin system and Calabi-Yau integrable system. On the Hitchin side,
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we consider dual Prym sheaf K∨. The key is to construct the relevant family of

semi-abelian varieties on the Calabi-Yau side as mentioned in Remark 29.

2.6 Appendix: Summary of Deligne’s theory of

1-motives

In [Del74], Deligne gave a motivic description of variations of (polarized) Z-mixed

Hodge structures of type {(−1,−1), (−1, 0), (0,−1), (0, 0)}. We recall the argu-

ments in [Del74] and study the special case which is of main interest in this paper.

Definition 2.6.1. An 1-motive M over C consists of

(1) X free abelian group of finite rank, a complex abelian variety A, and a complex

affine torus T.

(2) A complex semi-abelian variety G which is an extension of A by T.

(3) A homomorphism u : X → G.

We will denote a 1-motive by (X,A, T,G, u) or M = [X u−→ G].

Proposition 2.6.2. The category of (polarizable) mixed Hodge structures of type

{(−1,−1), (−1, 0), (0,−1), (0, 0)} is equivalent to the category of 1-motives.

Proof. Given a 1-motiveM , Deligne constructed a mixed Hodge structure (T (M)Z,W, F )

of type {(−1,−1), (−1, 0), (0,−1), (0, 0)} as follows. Define a lattice T (M)Z as the

143



fiber product
T (M)Z X

Lie(G) G

β

α u

exp

(2.6.1)

The weight filtration on T (M)Z is given by setting W−1T (M)Z := H1(G,Z) =

ker(β) and W−2T (M)Z = H1(T,Z). Also, by linearly extending α : T (M)Z →

Lie(G) to C, we define F 0(T (M)Z⊗C) := ker(αC). By construction GrW−1(T (M)Z) =

H1(A,Z) with the usual Hodge filtration and is therefore polarizable.

Conversely, if H := (HZ,W, F ) is a mixed Hodge structure of the given type

with GrW−1(HZ) polarizable, then one can construct a 1-motive by taking

(1) A := GrW−1(HC)/(F 0GrW−1(HC) + GrW−1(HZ))

(2) T := GrW−2(HC)/GrW−2(HZ)

(3) G := HC/(F 0HC +HZ)

(4) X := GrW0 (HZ)

In particular, if X is trivial, the 1-motive M is equivalent to a semi-abelian va-

riety G. By Proposition 2.6.2, we have an equivalence between the abelian category

of semi-abelian varieties and the abelian category of (polarizable) Z-mixed Hodge

structures of type {(−1,−1), (−1, 0), (0,−1)}.

Example 2.6.3. A typical example coming from geometry is the mixed Hodge struc-

ture on the first homology group of a punctured curve. Let C be a Riemann
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surface and D ⊂ C be a reduced divisor. The first homology group HZ = H1(C \

D,Z) carries a Z-mixed Hodge structure of type {(−1,−1), (−1, 0), (0,−1)} where

GrW−1(HC) = H1(C,Z) ⊗ C. Moreover, it admits a degenerate intersection pairing

Q : HZ×HZ → Z whose kernel is W−2HC∩HZ. Note that it induces a polarization

on GrW−1(HC) and so gives rise to the type of object in proposition 2.6.2. In other

words, we get a semi-abelian variety G by taking the Jacobian of (HZ,W•, F
•) as

follows

G := J(H) = HC/(F 0HC +HZ)

A := Jcpt(H) = GrW−1HC/(GrW−1F
0HC +HZ)

T := W−2HC/W−2HZ

We call such integral mixed Hodge structure a semi-polarized Z-mixed Hodge

structure. Moreover, consider the dual mixed Hodge structure H∨ which is of type

{(0, 1), (1, 0), (1, 1)}. Geometrically it corresponds to the first cohomology H1(C \

D) of the punctured Riemann surface C \ D. The associated Jacobian J(H∨) =

H∨C/(F 1H∨C +HZ) is no longer a semi-abelian variety, but just a complex torus.
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