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ABSTRACT

A1-Brouwer Degrees and Applications to Enriched Enumerative Geometry

Thomas Brazelton

Mona Merling & Kirsten Wickelgren, Advisors

A1-enumerative geometry, or enriched enumerative geometry, is a recent program

of mathematics following work of Kass-Wickelgren, Levine and others, which wields

tools from motivic homotopy theory in order to investigate enumerative geometry

problems over arbitrary fields. One of the key constructions used in this program

is an algebrao-geometric analogue of the Brouwer degree, called the A1-Brouwer

degree, first defined by Morel. Early computational results for A1-Brouwer degrees

include Cazanave’s thesis, and work of Kass and Wickelgren comparing A1-Brouwer

degrees at rational points with the Eisenbud–Khishiashvili–Levine signature formula.

However a few years ago, the general question of computing an A1-Brouwer degree

of an endomorphism of affine space with an isolated zero at an arbitrary closed point

was largely open. We report on work which closes this gap, providing a suite of

computational tools, and discussing applications to enriched enumerative geometry.
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Chapter 1

Introduction

1.1 The enumerative backdrop

Enumerative geometry emerged in antiquity alongside the development of projective

geometry. One of the earliest instances of an enumerative problem appears in writ-

ings of Pappus, attributing the original result to Apollonius: how many circles are

tangent to any three drawn on the plane? Results which may later be called “enu-

merative geometry” include the study of intersections of planar curves, dating back

to work of Newton and then Bézout, a century later. Poncelet is often credited with

inspiring the resurrection of projective geometry in France during the early 19th cen-

tury. His controversial “principle of continuity of number” postulates that answers
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to enumerative questions should be invariant under small parametrized changes in

initial parameters. Despite backlash to this idea from established mathematicians

like Cauchy, this idea was championed by Chasles and others, and it later appeared

in work of Schubert under the name “principle of conservation of number.” While

his work was undoubtedly more rigorous than that of Poncelet, Schubert’s “calculus

of conditions” (now known as Schubert calculus) lacked justification, leading Hilbert

to include its rationalization as the 15th entry in his famous list of problems for the

20th century. The calculations Schubert carried out were later formalized via the

methods of singular cohomology, as developed by early 20th century mathematicians

including van der Waerden and Lefschetz.

Enumerative geometry can be (and in general is) approached from the perspective

of algebraic geometry, with computations carried out in the Chow ring and reliant

upon the development of intersection theory following work of Fulton and MacPher-

son. While this modern perspective is the right one, many enumerative problems can

be passed through the bridge between algebraic geometry and topology and solved in

the topological world. Explicitly, the algebraic Chern classes of an algebraic vector

bundle over a sufficiently nice complex variety is mapped, under a cycle class map, to

the topological Chern classes of the underlying topological bundle over the associated

complex analytic space. This perspective lends credence to Poncelet’s continuity of
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number — solutions to enumerative problems are invariant under small parametrized

changes because they can literally be formulated as something which is homotopy

invariant.

1.2 Enter motivic homotopy theory

One does not have to pass entirely to the world of topology to study invariance under

a notion of algebraic homotopy, however. While the Yoneda philosophy tells us that

studying varieties is equivalent to studying their representable functors valued in

sets, Grothendieck had already in 1958 thought to look at presheaves valued in chain

complexes over a ring, and had formulated a sheaf condition in this setting. A decade

later, Quillen observed that the study of chain complexes up to quasi-isomorphism

shared a lot structurally with the study of spaces up to weak homotopy equivalence.

Quillen referred to this work as homotopical algebra, and we now know it as the

theory of model categories.

From this vantage point, one may ask to develop a notion of a “homotopy theory

of varieties,” by studying sheaves of varieties valued in a homotopical category such as

spaces or simplicial sets. Illusie outlined such a strategy in 1971, and this was deeply

influential on Joyal’s 1984 letter to Grothendieck, in which the first closed model

structure on simplicial sheaves was constructed. In 1990, Morel and Voevodsky
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released their seminal paper on A1-homotopy theory, in which they extended the

homotopical study of simplicial sheaves on varieties by formally inverting the affine

line in order to force it to behave in an analogous way to the unit interval. This

was one of the huge milestones in the recent history of homotopy theory, and this

work famously led to the resolution of the Milnor conjectures, winning Voevodsky

the Fields Medal.

In the motivic world, one can formulate hybrid theories that interpolate roughly

between both algebraic and topological phenomena. One such example is Chow-Witt

groups, following Barge and Morel — this is the motivic extension of Chow groups

of a smooth k-variety, but should also be thought of in some sense as analogous to

singular cohomology. In this setting, one may make precise notions such as Euler

classes of vector bundles, wrong-way maps on cohomology, and a quadratic analogue

of the Poincaré–Hopf theorem: that the Euler class of an appropriately oriented

vector bundle is Poincaré dual to the zero locus of a generic section. We consider

this as the jumping off point for an “enriched” approach to enumerative geometry.

1.3 Enriched enumerative geometry

Classically, the Poincaré–Hopf theorem states the following: given an oriented rank

r vector bundle E → M over a smooth compact oriented r-manifold, and a section
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σ : M → E, we have that the Euler number n(E) can be computed as the sum of

the local contributions of the connected components of the zero locus of the section;

that is n(E) =
∑

p∈Z(σ) indpσ. We call indpσ the local index of σ at p. Generically,

Z(σ) will be zero-dimensional, and indpσ can be computed as the Brouwer degree of

the intrinsic derivative of the section: indpσ = deg(dpσ).
1 The local index should be

interpreted as the local intersection multiplicity of the coordinate functions of σ on a

chart. This leads us to the slogan that Euler numbers count things with multiplicity.

Some illustrative examples include:

• n
(
OCP2(n)⊕OCP2(m)→ CP2

)
= nm; that is, generic planar curves of degrees

n and m intersect at nm points, counted with multiplicity (Bézout).

• n (O(1)⊕4 → Gr(2, 4)) = 2; there are two lines intersecting any four generic

lines in CP3 (Schubert).

• n
(
Sym3S∗ → GrC(2, 4)

)
= 27, there are 27 lines on a smooth cubic surface

(Salmon, Cayley).

With motivic analogues of Euler classes in hand, Kass and Wickelgren, and inde-

pendently Levine, commenced a study of enumerative geometry over arbitrary fields

1When Z(σ) is not zero-dimensional we may still make sense of indpσ via reference to ex-

cess/residual intersection.
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using techniques from motivic homotopy theory. We call this A1-enumerative geom-

etry (this is also referred to as enriched enumerative geometry or more specifically

quadratically enriched enumerative geometry).

The origin of the phrase “quadratically enriched” comes from the fact that Euler

numbers in this setting are not integers, but generally are quadratic forms. More

precisely, they are valued in the Grothendieck–Witt ring GW(k) of the ground field,

defined to be the group completion of the semiring of isomorphism classes of non-

degenerate symmetric bilinear forms (which agrees with quadratic forms in charac-

teristic ̸= 2).

A theorem of Kass and Wickelgren states that the “number” of lines on a smooth

cubic surface over k is 15 ⟨1⟩+ 12 ⟨−1⟩ ∈ GW(k), that is, a symmetric bilinear form

with Gram matrix given by a diagonal matrix with fifteen 1’s and twelve −1’s along

the diagonal. The invariants needed to classify symmetric bilinear forms encode

different information over other fields. The rank of this form is 27, recovering the

classical result that there are 27 lines on any smooth complex cubic surface. Over the

reals, another invariant is needed to classify symmetric bilinear forms, namely the

signature. Lines on a real cubic surface break into two classes, called hyperbolic and

elliptic, depending on whether the loop in the frame bundle induced by the line lifts

to the double cover. The signature of the form computed by Kass and Wickelgren is
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3, recovering a result of Segre (also Finashin-Kharlamov and Okonek-Teleman) that

the number of real hyperbolic lines minus the number of real elliptic lines is always

3. For more on this result see Subsection 2.2.4.

This is a fantastic illustration of the power of this research program — as the

field changes, conservation of number breaks, but it can be repaired if local indices

to enumerative problems are permitted to encode some deeper geometry about the

problem in question. An enriched analogue of the Poincaré-Hopf theorem appears in

various forms throughout the literature, with the most general statement appearing

as (BW21, Meta-Corollary 3.11)

Our capacity to solve enriched enumerative problems is then inhibited by our

ability to carry out explicit computations — in particular, given an enumerative

problem encoded as an appropriately oriented algebraic vector bundle E → M , can

we compute a local index indpσ at an isolated point? Such a computation makes use

of the A1-Brouwer degree, first defined by Morel, valued in GW(k). However Morel’s

identification between the (0, 0)th motivic stable stem and GW(k) does not inform

us how to carry out computations on affine charts.

Lannes and Morel understood how to compute local degrees at the origin for

endomorphisms of A1
k, while Cazanave’s thesis gave a beautiful construction for un-

derstanding global A1-degrees of endomorphisms of the projective line. Kass and

8



Wickelgren provided the first result permitting computations in higher dimensions

— they proved that for a morphism f : An
k → An

k with an isolated zero at the origin,

its local A1-degree degA
1

0 (f) can be computed as the EKL form (referring to work of

Eisenbud-Levine and Khimshiashvili in the 1970’s computing local Brouwer degrees

of maps of real manifolds). They further proved that if f is étale at a closed zero

p ∈ An
k , and the Jacobian of f in k(p) is non-vanishing at p, then degA

1

p (f) can be

computed as Trk(p)/k ⟨J(p)⟩, where Trk(p)/k : GW(k(p)) → GW(k) is the separable

field trace, and J(p) is the Jacobian determinant of f evaluated at p in k(p).

This leads to many questions. Can the étale assumption be dropped? To what

extent is the A1-degree always traced down from its field of definition? Can we

compute local A1-degrees at points whose residue fields are inseparable extensions

of the base field, making enriched enumerative geometry accessible over imperfect

fields? Can we provide easy efficient algorithms for computing A1-degrees?

The work that forms this thesis answers many of these questions.

1.4 Overview of results

Chapter 2 (Bra21) provides an expository introduction to A1-enumerative geom-

etry, following lectures of Kirsten Wickelgren. We provide a more precise intro-

duction to Grothendieck–Witt rings and outline the construction of motivic spaces
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and the stable motivic homotopy category. We provide an overview of the Eisenbud–

Khimshiashvili–Levine signature formula in Subsection 2.2.1 (see Section 4.4 for more

detail). Finally, we discuss A1-Milnor numbers and 27 lines on a cubic surface, follow-

ing work of Kass and Wickelgren, and lines meeting for lines in three-space, following

work of Srinivasan and Wickelgren.

Chapter 3 (BBM+21) studies the situation where f : An
k → An

k has an isolated

zero at a closed point p ∈ An
k , without any assumption that f is étale at the point.

We prove that

degA
1

p (f) = Trk(p)/k deg
A1

p̃ fk(p),

where p̃ ∈ An
k(p) is a canonical rational point above p, and fk(p) is the base change of

the morphism to k(p). This extends the context in which A1-Brouwer degrees align

with the so-called Scheja–Storch form.

Chapter 4 (BMP21b) provides the current state-of-the-art on A1-Brouwer degrees.

We prove that the local A1-Brouwer degree degA
1

p (f) can be computed at any closed

point, independent of any assumption about residue fields. This is done by aligning

the A1-Brouwer degree with the Scheja–Storch form in all cases, and indicating that

this can be computed in terms of a multivariate Bézoutian. We provide computation

rules for A1-Brouwer degrees and applications to A1-Brouwer degrees. Finally we

provide Sage code for efficiently computing A1-degrees in (BMP21a).
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Chapter 5 (BM23) explores A1-Brouwer degrees of univariate maps and inves-

tigates how local degrees at a closed point are transferred down from the field of

definition of the point. Along inseparable field extensions, the field trace identically

vanishes, nonetheless there are geometric and cohomological transfers GW(k(p)) →

GW(k) arising as incarnations of Becker–Gottlieb transfers in the stable motivic set-

ting. We define geometric and cohomological lifts of functions at a closed point, and

argue that A1-degrees can be computed as a transfer of the appropriate lift. This

leads to a structure theorem for univariate A1-Brouwer degrees.

Chapter 6 (Bra23) explores the A1-Brouwer degree of the Wronski map, com-

puted by Schubert over the complex numbers and by Eremenko-Gabrielov over the

reals. This has many enumerative applications, counting planes meeting planes of

complementary dimension in projective space (generalizing lines meeting four lines

in three-space), as well as counting rational curves with prescribed inflection. We

provide a computation for the local A1-Brouwer degree at a plane as a determinantal

relationship between Plücker coordinates of the complementary planes it intersects.

In certain parities we compute a global A1-degree of the Wronski map.
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Chapter 2

An introduction to A1-enumerative geometry

based on lectures by Kirsten Wickelgren

Abstract: We provide an expository introduction to A1-enumerative geometry,

which uses the machinery of A1-homotopy theory to enrich classical enumerative

geometry questions over a broader range of fields. Included is a discussion of en-

riched local degrees of morphisms of smooth schemes, following Morel, A1-Milnor

numbers, as well as various computational tools and recent examples.

Introduction

In the late 1990’s Fabien Morel and Vladimir Voevodsky investigated the question of

whether techniques from algebraic topology, particularly homotopy theory, could be

applied to study varieties and schemes, using the affine line A1 rather than the inter-

12



val [0, 1] as a parametrizing object. This idea was influenced by a number of preceding

papers, including work of Karoubi and Villamayor (KV71) and Weibel (Wei89) on

K-theory, and Jardine’s work on algebraic homotopy theory (Jar81a; Jar81b). In

work with Suslin developing an algebraic analog of singular cohomology which was

A1-invariant (SV96), Voevodsky laid out what he considered to be the starting point

of a homotopy theory of schemes parametrized by the affine line (Voe98). This re-

lied upon Quillen’s theory of model categories (Qui67), which provided the abstract

framework needed to develop homotopy theory in broader contexts. Following this

work, Morel (Mor99) and Voevodsky (Voe98) constructed equivalent unstable A1-

homotopy categories, laying the groundwork for their seminal paper (MV99) which

marked the genesis of A1-homotopy theory. Since its inception, this field of mathe-

matics has seen far-reaching applications, perhaps most notably Voevodsky’s resolu-

tion of the Bloch-Kato conjecture, a classical problem from number theory (Voe11).

The machinery of A1-homotopy theory works over an arbitrary field k (in fact over

arbitrary schemes, and even richer mathematical objects), allowing enrichments of

classical problems which have only been explored over the real and complex numbers.

Recent work in this area has generalized classical enumerative problems over wider

ranges of fields, forming a body of work which we are referring to as A1-enumerative

geometry.
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Beginning with a recollection of the topological degree for a morphism between

manifolds in Section 2.1.1, we pursue an idea of Barge and Lannes to produce a

notion of degree valued in the Grothendieck–Witt ring of a field k, defined in Sec-

tion 2.1.2. We produce such a naive degree for endomorphisms of the projective line

in Section 2.1.3, however in order to produce such a degree for smooth n-schemes

in general, we will need to develop some machinery from A1-homotopy theory. A

brief detour is taken to establish the setting in which one can study motivic spaces,

defining the unstable motivic homotopy category in Section 2.1.4, and establishing

some basic, albeit important computations involving colimits of motivic spaces in

Section 2.1.5. This discussion culminates in the purity theorem of Morel and Vo-

evodsky, stated in Section 5.2, which is requisite background for defining the local

A1-degree following Morel.

In Section 2.2, we are finally able to define the local A1-degree of a morphism

of schemes, which is a powerful, versatile tool in enriching enumerative geometry

problems over arbitrary fields. At this point, we survey a number of recent results

in A1-enumerative geometry. We discuss the Eisenbud–Khimshiashvili–Levine sig-

nature formula in Sections 2.2.1 and 2.2.2, and we see its relation to the A1-degree,

as proved in (KW19). An enriched version of the A1-Milnor number is provided in

Section 2.2.3, which provides an enriched count of nodes on a hypersurface, follow-

14



ing (KW16). The problem of counting lines on a cubic surface, and the associated

enriched results (KW21) are discussed in Section 2.2.4. Finally, in Section 2.2.5

we provide an arithmetic count of lines meeting four lines in three-space, following

(SW21).

Throughout these conference proceedings, various exercises (most of which were

provided by Wickelgren in her 2018 lectures) are included. Detailed solutions may

be found on the author’s website.
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2.1 Preliminaries

2.1.1 Enriching the topological degree

A continuous map f : Sn → Sn from the n-sphere to itself induces a homomorphism

on the top homology group f∗ : Hn(S
n)→ Hn(S

n), which is of the form f∗(x) = dx

for some d ∈ Z. This integer d defines the (global) degree of the map f . If f and

g are homotopic as maps from the n-sphere to itself, they will induce the same

homomorphism on homology groups. Therefore, taking [Sn, Sn] to denote the set of

homotopy classes of maps, we can consider degree as a function

degtop : [Sn, Sn]→ Z.

Throughout these notes, we will use the notation degtop to refer to the topological

(integer-valued) degree.

For any continuous map of n-manifolds f :M → N , we could define a naive notion

of the “local degree” around a point p ∈M via the following procedure: suppose that

q ∈ N has the property that f−1(q) is discrete, and let p ∈ f−1(q). Pick a small ball

W containing q, and a small ball V ⊆ f−1(W ) satisfying V ∩ f−1(q) = {p}. Then

we may see that the spaces V
/
(V \ {p}) ≃ (V

/
∂V ) ≃ Sn are homotopy equivalent.
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Similarly, we have that W
/
(W ∖ {q}) ≃ Sn. We obtain the following diagram:

Sn Sn

V
/
(V ∖ {p}) W

/
(W ∖ {q}).

≃

g

f

≃ (2.1.1)

Thus we could define the local (topological) degree of f around our point p, denoted

degtopp (f), to be the induced degree map on the n-spheres, that is, degtopp (f) :=

degtop(g) in the diagram above. If f−1(q) = {p1, . . . , pm} is a discrete set of isolated

points, we may relate the global degree to the local degree via the following formula

degtop(f) =
m∑
i=1

degtoppi (f).

One may prove that the left hand side is independent of q, and thus that the choice

of q is arbitrary in calculating the global degree from local degrees. In differential

topology, when discussing the degree of a locally differentiable map f between n-

manifolds, we have a simple formula for the local degree at a simple zero. We pick

local coordinates (x1, . . . , xn) in a neighborhood of our point pi, and local coordinates

(y1, . . . , yn) around a regular value q. Then we can interpret f locally as a map

f = (f1, . . . , fn) : Rn → Rn. Suppose that the Jacobian Jac(f) is nonvanishing at

the point pi. Then we define

degtoppi (f) = sgn(Jac(f)(pi)) =


+1 if Jac(f)(qi) > 0

−1 if Jac(f)(qi) < 0.
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When working over a field k, Barge and Lannes1 defined a notion of degree for a

map P1
k → P1

k. Their insight was, rather than taking the sign of the Jacobian as in

differential topology, to instead remember the value of Jac(f)(pi) as a square class in

k×/ (k×)
2
. Over the reals this recovers the sign, but over a general field we may have

vastly more square classes. We encode this value as a rank one symmetric bilinear

form over k, and we will soon see that this idea can be used to define a local degree at

k-rational points, and that by using field traces we can extend the definition of local

degree to hold for points with residue fields a finite separable extension of k. These

degrees, rather than being integers, are elements of the Grothendieck–Witt ring of k,

denoted GW(k), defined below.

2.1.2 The Grothendieck–Witt Ring

Over a field k, we may form a semiring of isomorphism classes of non-degenerate

symmetric bilinear forms (or quadratic forms if we assume char(k) ̸= 2) on vector

spaces over k, using the operations ⊗k and ⊕. Group completing this semiring with

respect to ⊕, we obtain the Grothendieck–Witt ring GW(k). For any a ∈ k×, we let
1Unpublished. See the note by Morel on (Mor06, p.1037).
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⟨a⟩ ∈ GW(k) denote the following rank one bilinear form:

⟨a⟩ : k × k → k

(x, y) 7→ axy.

Symmetric bilinear forms are equivalent if they differ only by a change of basis.

For example, if b ̸= 0 we can see that ⟨ab2⟩ (x, y) = ⟨a⟩ (bx, by), so we identify ⟨a⟩ =

⟨ab2⟩ in GW(k), since these bilinear forms agree up to a vector space automorphism

of k. We may describe GW(k) to be a ring generated by elements ⟨a⟩ for each

a ∈ k×
/
(k×)2, subject to the following relations (Mor12, Lemma 4.9)

1. ⟨a⟩ ⟨b⟩ = ⟨ab⟩

2. ⟨a⟩+ ⟨b⟩ = ⟨ab(a+ b)⟩+ ⟨a+ b⟩, for a+ b ̸= 0

3. ⟨a⟩ + ⟨−a⟩ = ⟨1⟩ + ⟨−1⟩. We conventionally denote this element as H :=

⟨1⟩+ ⟨−1⟩, called the hyperbolic element of GW(k).

Exercise 2.1.2. In the statements above, (1) and (2) imply (3).

Proposition 2.1.3. We have a ring isomorphism GW(C) ∼= Z, given by taking the

rank.

Proof. We remark that ⟨a⟩ = ⟨b⟩ for any a, b ∈ C×, thus we only have one isomor-

phism class of non-degenerate symmetric bilinear forms in rank one.
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The isomorphism GW(C) ∼= Z relates to a general fact that the A1-degree of a

morphism of complex schemes recovers the size of the fiber, counted with multiplicity.

Proposition 2.1.4. The rank and signature provide a group isomorphism GW(R) ∼=

Z× Z.

Proof. The Gram matrix of a symmetric bilinear form on Rn is an n × n real sym-

metric matrix A. After diagonalizing our matrix A, we can always find a change of

basis in which the eigenvalues lie in the set {−1, 0, 1}. A non-degenerate symmetric

bilinear form guarantees that no eigenvalues will vanish, so all of these eigenvalues

will be ±1. We may define the signature of A as the number of 1’s appearing on the

diagonalized matrix minus the number of -1’s, and by Sylvester’s law of inertia this

determines an invariant on our matrix A. Thus we obtain an injective map

GW(R)→ Z× Z

A 7→ (rank(A), sig(A)).

The image of this map is the subgroup {(a+ b, a− b) : a, b ∈ Z}, which one may

verify is isomorphic to Z× Z.

The multiplication on GW(R) does not agree with that of Z × Z, in the sense

that GW(R) ∼= Z × Z is not a ring isomorphism. However one may verify that the
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map

GW(R)→ Z[t]
(t2 − 1)

,

given by sending ⟨1⟩ 7→ 1 and ⟨−1⟩ 7→ t, is in fact a ring isomorphism, and hence

provides the multiplicative structure of GW(R).

Proposition 2.1.5. The rank and determinant provide a group isomorphism GW(Fq) ∼=

Z× F×
q

/
(F×

q )
2.

Proof sketch. We may still use the rank of our matrix as an invariant for GW(Fq).

Additionally, we might use the determinant of our matrix to distinguish between

symmetric bilinear forms. However note that, for any similar matrix CTAC, it has

determinant det(CTAC) = det(A) det(C)2. Therefore, we can view the determinant

as a well-defined map det : GW(Fq)→ F×
q

/
(F×

q )
2. After group completion, we obtain

a map GW(Fq)
(rank,det)−−−−−→ Z×F×

q

/
(F×

q )
2, which we verify is a group isomorphism. For

more details, see (Lam05, II,Theorem 3.5).

One may use GW(Fq) to understand GW(Qp) by applying the following result.

Theorem 2.1.6. (Lam05, VI,Theorem 1.4) (Springer’s Theorem) Let K be a com-

plete discretely valued field, and κ be its residue field, with the assumption that

char(κ) ̸= 2. Then there is an isomorphism of groups

GW(K) ∼=
GW(κ)⊕GW(κ)

Z[H,−H]
.
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Corollary 2.1.7. We have a group isomorphism GW(C((t))) = Z⊕ Z
/
2.

We should see how the Grothendieck–Witt ring interacts with extensions of fields.

For a separable field extension K ⊂ L, and an element β ∈ GW(L), we can view the

composition

V × V β−→ L
TrL/K−−−→ K

as an element of GW(K) by post-composing with the trace map L → K, and con-

sidering V as a K-vector space. This provides us a natural homomorphism between

Grothendieck–Witt rings2

TrL/K : GW(L)→ GW(K).

At the level of A1-homotopy theory, this trace comes from a transfer on stable ho-

motopy groups — for more detail see (Mor12, §4). Now that we have seen some

computations involving the Grothendieck–Witt ring, we can develop in detail the

notion of degree for maps of schemes.

2.1.3 Lannes’ formula

Let f : P1
k → P1

k be a non-constant endomorphism of the projective line over a field

of characteristic 0. We can then pick a rational point q ∈ P1
k, with fiber f−1(q) =

2When the field extension is assumed to be finite but the separability condition is dropped, a

more general notion of transfer is given by Scharlau’s transfer (Lam05, VII §1).

22



{p1, . . . , pm} such that Jac(f)(pi) ̸= 0 for each i, where the Jacobian is computed by

picking the same affine coordinates on both copies of P1
k. Since Jac(f)(pi) ∈ k(pi) is

only defined in a residue field, we must precompose with the trace map in order to

define the local A1-degree

degA
1

pi
f := Trk(pi)/k ⟨Jac(f)(pi)⟩ . (2.1.8)

We can then define the global A1-degree of f as the following sum, which is inde-

pendent of our choice of rational point q with discrete fiber (this fact is attributable

to Lannes and Morel, although a detailed proof may be found in (KW19, Proposi-

tion 14)):

degA
1

f :=
m∑
i=1

Trk(pi)/k ⟨Jac(f)(pi)⟩ .

Exercise 2.1.9. Compute the A1-degrees of the following maps:

1. P1
k → P1

k, given by z 7→ az, for a ∈ k×.

2. P1
k → P1

k, given by z 7→ z2.

Maps of schemes P1
k → P1

k are precisely rational functions f
g
. Assuming that f

and g are relatively prime, we can determine the classical topological (integer-valued)

degree of this rational function as

degtop
(
f

g

)
= max{degtop(f), degtop(g)}.
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To the rational function f
g
, one may associated a bilinear form, called the Bézout

form, which is denoted Béz
(
f
g

)
. This is done by introducing two variables X and

Y , and remarking that we have the following equality

f(X)g(Y )− f(Y )g(X)

X − Y
=

∑
1≤i,j≤n

BijX
i−1Y j−1,

where n = degtop
(
f
g

)
, and where Bij ∈ k. We can see that this defines a symmetric

bilinear form kn × kn → k, whose Gram matrix is given by the coefficients Bij.

Exercise 2.1.10. Compute the Bézout bilinear forms of the maps given in Exercise

2.1.9.

Theorem 2.1.11. (Cazanave) We have that

Béz

(
f

g

)
= degA

1

(
f

g

)
.

This is stated in (KW20, Theorem 2), but is attributable to (Caz12).

This provides us with an efficient way to compute the A1-degree of rational maps

while circumventing the tedium of computing the local A1-degree at each point in a

fiber.

2.1.4 The unstable motivic homotopy category

One of the primary ideas in A1-homotopy theory is to replace the unit interval in

classical homotopy theory with the affine line A1
k = Spec(k[t]). To this end, one
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might develop a naive A1-homotopy of maps of schemes f, g : X → Y as a morphism

h : X × A1
k → Y,

such that h(x, 0) = f(x) and h(x, 1) = g(x) for all x ∈ X. This was first intro-

duced by Karoubi and Villamayor (KV71). This notion of naive A1-homotopy is not

generally the most effective, partially due to the following observation.

Exercise 2.1.12. (Aso19) Prove that naive A1-homotopy fails to be a transitive

relation on hom-sets by considering three morphisms Speck → Speck[x, y]/(xy)

identifying the points (0, 1), (0, 0), and (1, 0).

We will build a model category in which we have a class of A1-weak equivalences,

and we will denote by [−,−]A1 the weak equivalence classes of morphisms. In particu-

lar, naive A1-homotopy equivalences are tractable examples of A1-weak equivalences.

Nonetheless, naive A1-homotopy generates an equivalence relation, and in practice

the naive homotopy classes of maps [X, Y ]N are often easier to compute than their

genuine counterparts [X, Y ]A1 . In fact, the naive homotopy classes of maps [P1
k,P1

k]N

are equipped with an addition, induced by pinch maps, which endows this set with

a monoid structure. It was demonstrated by Cazanave that the map

[P1
k,P1

k]N → [P1
k,P1

k]A1

is a group completion (Caz12).
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In order to study the homotopy theory of schemes, we must develop a model

structure which encodes a notion of A1-weak equivalence. In particular we must

force A1 to be contractible — as we have remarked, the initial motivation for forming

such a model category was to treat A1 as if it were akin to the interval [0, 1] in the

category of topological spaces. Morel and Voevodsky initially formulated the theory

of the “homotopy category of a site with an interval”; for this classical treatment see

(MV99, §2.3).

We remark that the category of smooth k-schemes Smk does not admit all colimits,

and therefore cannot be endowed with a model structure. To rectify this issue, we

pass to the category of the simplicial presheaves via the Yoneda embedding

Smk → sPre(Smk) = Fun(Smopk , sSet)

X 7→ Map(−, X).

This new category is cocomplete (it admits all small colimits), and moreover can

be equipped with the projective model structure arising from the classical model

structure on simplicial sets. Given our model structure, we are now permitted to

identify a class of morphisms which we would like to call weak equivalences, and

perform Bousfield localization in order to formally invert them. For exposition on

Bousfield localization and related results, we refer the reader to (Law20).

The analog of open covers in a categorical setting is provided by a Grothendieck
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topology τ . The category Smk can be equipped with a Grothendieck topology in

order to make it a site, after which, we will apply Bousfield localization to render

the class of τ -hypercovers (our analog of open covers) into weak equivalences. We

remark that by (DHI04, Theorem 6.2), this localization exists, and we denote it by

Lτ : sPre(Smk)→ Shτ,k. The fibrant objects in Shτ,k are those simplicial presheaves

which are homotopy sheaves in the τ topology (AE17, p. 20). We therefore think

about the localization Lτ as a way to encode the topology τ into the homotopy theory

of sPre(Smk).

Due to the wealth of properties granted to us by simplicial presheaves, the cat-

egory Shτ,k inherits a left proper combinatorial simplicial model category structure,

and in particular we are allowed to perform Bousfield localization again in order to

force A1 to be contractible. We identify a set of maps {X ×A1 → X}, indexed over

the set of isomorphism classes of objects in Smk, as our desired weak equivalences,

then perform a final Bousfield localization LA1 with respect to this set. Finally, we

define

SpcA
1

τ,k := LA1Shτ,k = LA1LτsPre(Smk).

This category has a model structure by construction, and we refer to its homotopy

category as the unstable motivic homotopy category. Throughout these notes and

in much of the literature, it is assumed we are using the Nisnevich topology (which
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is defined and contrasted with other choices of topologies below), and we will write

SpcA
1

k := SpcA
1

Nis,k. Our primary objects of study in SpcA
1

k will be the fibrant objects

of this category, which we refer to as A1-spaces. These admit a tangible recognition

as precisely those presheaves which are valued in Kan complexes, satisfy Nisnevich

descent, and are A1-invariant (AE17, Remark 3.58). For more detail, see (AE17, §3).

There are many equivalent constructions of SpcA
1

k , one notable one arising from

the universal homotopy theory on the category of smooth schemes, as described by

(Dug01). By freely adjoining homotopy colimits, we obtain a universal category

U(Smk) which we may localize at the collections of maps

{hocolimU• → X : {Uα} is a hypercover of X}

{X × A1 → X}.

This procedure produces a model category U(Smk)A1 which is Quillen equivalent to

SpcA
1

k .

Remark 2.1.13. In more modern language, one may build SpcA
1

k using (∞, 1)-

categories rather than model categories. Such a perspective may be found throughout

the literature, for example in (BH21; Rob15).

One may study the categories SpcA
1

k,τ arising from other choices of Grothendieck

topologies, and indeed the homotopy theories arising from each selection behave
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quite differently and merit individual study. A small inexhaustive list of possible

topologies includes the Zariski, Nisnevich, and étale topologies.

Definition 2.1.14. Suppose that X and Y are smooth over a field k. Then we say

f : X → Y is étale at x if the induced map on cotangent spaces

(f ∗ΩY/k)x
∼−→ ΩX/k,x

is an isomorphism (BLR90, §2.2, Corollary 10). If we have the additional structure

of coordinates on our base and target spaces, this is equivalent to the condition that

Jac(f) ̸= 0 in k(x).

For example, any open immersion X ◦↪→ Y is a local isomorphism, and is therefore

an étale map.

Definition 2.1.15. Let {fα : Uα → X} be a family of étale morphisms. We say that

it is

1. an étale cover if this is a cover of X, that is the underlying map of topological

spaces is surjective

2. a Nisnevich cover if this is a cover of X, and for every x ∈ X there exists an

α ∈ A and y ∈ Uα such that y 7→ x and it induces an isomorphism on residue

fields k(y)
∼=−→ k(x)
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3. a Zariski cover if this is a cover of X, and each fα is an open immersion.

Remark 2.1.16. Every Zariski cover is a Nisnevich cover, and every Nisnevich cover

is an étale cover, however the converses of these statements do not hold.

In the Nisnevich topology, we are also able to retain some of the advantages

that the Zariski topology offers. One of the primary advantages is that algebraic K-

theory satisfies Nisnevich descent. Additionally we are able to compute the Nisnevich

cohomological dimension as the Krull dimension of a scheme (MV99, p.94). Finally,

we refer the reader to (AE17, Proposition 7.2), which allows us to treat morphisms

of schemes locally as morphisms of affine spaces, analogous to charts of Euclidean

space in differential topology.

2.1.5 Colimits

Recall that the primary motivation in passing from Smk to sPre(Smk) was the ex-

istence of colimits. Despite the fact that Smk does not admit all small colimits, it

still admits some — as a class of examples, consider colimits of schemes arising from

Zariski open covers. The problem is that the Yoneda embedding y : Smk → sPre(Smk)

does not preserve colimits in general, thus in our efforts to rectify the failure of Smk

to admit colimits, we have essentially forgotten about the colimits that it did in

fact possess. This is part of the motivation to localize at τ -hypercovers — we see
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that colimits of schemes correspond to hypercovers on the associated representable

presheaves. By our discussion in the previous section, the localization Lτ can be

considered as the localization precisely at the class of maps hocolimU• → X for

any τ -hypercover U• → X. Thus colimits of schemes are recorded in the category

SpcA
1

k as homotopy colimits corresponding to hypercovers. For ease of reference, we

summarize this in the following slogan.

Slogan 2.1.17. Colimits of smooth schemes along τ -covers yield homotopy colimits

of motivic spaces.

To illustrate this point, we consider the following example, whereGm := Speck
[
x, 1

x

]
denotes the multiplicative group scheme.

Example 2.1.18. Let f : Gm → A1
k be given by z 7→ z, and g : Gm → A1

k be given

by z 7→ 1
z
. Then the diagram

Gm A1
k

A1
k P1

k

f

g

⌜

is a homotopy pushout of motivic spaces.

Proof. We see that the two copies of the affine line form a Zariski open cover of P1
k,

and hence a Nisnevich open cover of schemes. This corresponds to a hypercover on

the representable simplicial presheaves, and after localization at Nisnevich hypercov-

ers, we see that the homotopy pushout of (A1
k ← Gm → A1

k) is precisely P1
k.
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For based topological spaces, recall we have a smash product, defined as

X ∧ Y = X × Y
/
((X × {y}) ∪ ({x} × Y )) .

We can think about the category of based topological spaces as the slice category

∗/Top, where ∗ denotes the one-point space, i.e. the terminal object. By similarly

taking the slice category under the terminal object ∗ := Speck, we obtain a pointed

version of SpcA
1

k , which is often denoted by SpcA
1

k,∗.
3 We can then define the smash

product as the homotopy cofiber of the canonical map between the coproduct of two

pointed motivic spaces into their product:

X ∨ Y X × Y

∗ X ∧ Y.
⌜

One may define the suspension as ΣX := S1∧X, which we may verify is the same as

the homotopy cofiber of X → ∗. One may see that, since A1
k ≃ Speck is contractible,

we have that Example 2.1.18 implies that P1
k is the homotopy cofiber of the unique

map Gm → Speck. Concisely, this example tells us that

P1
k ≃ ΣGm.

Recall from topology that the spheres satisfy Sn ∧ Sm ∼= Sn+m. In developing a

homotopy theory of schemes, we would like to search for a class of objects satisfying

3We note that such a slice category must be taken at the level of model categories rather than

homotopy categories in order to have a tractable pointed homotopy theory.
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an analogous property. From this motivation, we uncover two types of spheres in

SpcA
1

k . The first, denoted S1, is called the simplicial sphere, and can be thought of

as the union of three copies of the affine line, enclosing a triangle. As a simplicial

presheaf, we think of it as the constant presheaf at S1 = ∆1/∂∆1. Our second sphere,

often called the Tate sphere, is taken to be the projective line P1
k ≃ S1 ∧Gm.

There are various conventions for the notation on spheres in A1-homotopy theory,

and in the literature one may see Sp+qα, Sp,q or Sp+q,q to mean the same thing,

depending on the context. In these notes, we will use the convention that

Sp+qα := (S1)∧p ∧ (Gm)
∧q.

Exercise 2.1.19. Show that the diagram

X × Y X

Y Σ(X ∧ Y )
⌜

is a homotopy pushout diagram. The context for this example is left ambiguous as

the result holds in SpcA
1

k,∗ just as well as it does for pointed topological spaces.

Example 2.1.20. There is an A1-homotopy equivalence An
k ∖ {0} ≃ (S1)∧(n−1) ∧

(Gm)
∧n.
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Proof. Note that we may construct An
k ∖ {0} as a homotopy pushout

(A1
k ∖ {0})× (An−1

k ∖ {0}) A1
k × (An−1

k ∖ {0})

(A1
k ∖ {0})× An

k An
k ∖ {0} .

⌜

Applying the exercise above, we see that

An
k ∖ {0} ≃ Σ(An−1

k ∖ {0}) ∧ (A1
k ∖ {0}) = S1 ∧ (An−1

k ∖ {0}) ∧Gm.

The result follows inductively.

Notation 2.1.21. For a morphism of motivic spaces f : X → Y , denote by Y/X

the homotopy cofiber of the map f , that is, the homotopy pushout

X Y

∗ Y/X.

f

⌜

Example 2.1.22. (Excision) Suppose that X is a smooth scheme over k, that Z /↪→

X is a closed immersion, and that U ⊇ Z is a Zariski open neighborhood of Z inside

of X. Then we have a Nisnevich weak equivalence (that is, a weak equivalence in

the category ShNis,k)

U

U ∖ Z

∼−→ X

X ∖ Z
.

We refer to this result informally as excision (not to be confused with excision in the

sense of (AE17, Proposition 3.53)), as we regard this weak equivalence as excising

the closed subspace X ∖ U from the top and bottom of the cofiber X/(X ∖ Z).
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Proof. We remark that (X ∖ Z) and U form a Zariski open cover of X, and that

their intersection is (X ∖ Z) ∩ U = U ∖ Z. As Zariski covers are Nisnevich covers,

one remarks that we have a homotopy pushout diagram of motivic spaces

U ∖ Z X ∖ Z

U X.
⌜

The fact that the homotopy cofibers of the vertical maps in the diagram above are

A1-weakly equivalent follows from the following diagram:

U ∖ Z X ∖ Z ∗

U X X
X∖Z .

⌜ ⌜

As the left and right squares are homotopy cocartesian, it follows formally that the

entire rectangle is homotopy cocartesian.

Example 2.1.23. There is an A1-homotopy equivalence Pnk
/
Pn−1
k ≃ (S1)∧n∧(Gm)

∧n

Proof. As Pnk ∖ {0} is the total space of O(1) on Pn−1
k , we have an A1-equivalence

Pnk ∖ {0} ≃ Pn−1
k . Therefore, one sees Pnk

/
Pn−1
k ≃ Pnk

/
(Pnk − {0}). Via excision,

we are able to excise everything away from a standard affine chart, from which

we may see that Pnk
/
(Pnk − {0}) ≃ An

k

/
(An

k − {0}). Contracting An
k , we obtain

∗
/
(An

k −{0}) ≃ Σ(An
k −{0}). Therefore Pnk

/
Pn−1
k ≃ Σ(An

k −{0}) ≃ (S1)∧n ∧ (Gm)
∧n

after applying Example 2.1.20.
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This last example is of particular interest, as it exhibits the cofiber Pnk
/
Pn−1
k as

a type of sphere in A1-homotopy theory. Given an endomorphism of such a motivic

sphere, Morel defined a degree homomorphism

degA
1

:
[
Pnk/Pn−1

k ,Pnk/Pn−1
k

]
A1 → GW(k),

which he proved was an isomorphism in degrees n ≥ 2 (Mor06, Corollary 4.11).

Recall that to define a local Brouwer degree of an endomorphism between n-

manifolds, we first had to pick a ball containing a point p, and then identify the cofiber

W/(W ∖ {p}) with the n-sphere Sn. This allowed us to construct Diagram 2.1.1,

after which we could apply the degree homomorphism [Sn, Sn]→ Z to define a local

degree. An analogous procedure will be available to us in A1-homotopy theory if, for

a Zariski open neighborhood U around a k-rational point x, we are able to associate

a canonical A1-weak equivalence between U/(U ∖ {x}) and Pnk/P
n−1
k . Indeed this is

possible via the theorem of purity.

2.1.6 Purity

One of the major techniques in A1-homotopy theory comes from the purity theorem.

In manifold topology, the tubular neighborhood theorem allows us to define a dif-

feomorphism between a tubular neighborhood of a smooth immersion and an open

neighborhood around its zero section in the normal bundle. In A1 homotopy the-
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ory, the Nisnevich topology isn’t fine enough to define such a tubular neighborhood,

however we can still get an analog of the tubular neighborhood theorem which will

allow us to define, among other things, local A1-degrees of maps.

Definition 2.1.24. A Thom space of a vector bundle V → X is the cofiber

V
/
(V ∖X),

where V ∖X denotes the vector bundle minus its zero section. In the literature, this

may be denoted by

Thom(V,X) = Th(V ) = XV .

Remark 2.1.25. We may also describe the Thom space of a vector bundle via an

A1-weak equivalence

Th(V ) ≃ Proj(V ⊕O)
Proj(V )

.

Proof. We have a map V → V ⊕ O sending v 7→ (v, 1), and we may view this

inside of projective space via the inclusion V ⊕ O ⊆ Proj (V ⊕O). Via excision

(Example 2.1.22), we have a Nisnevich weak equivalence

Proj(V ⊕O)
Proj(V ⊕O)∖ 0

≃ V

V ∖ 0
,

where 0 denotes the image of the zero section. We remark that Proj(V ⊕O)∖ 0 is

the total space of O(−1) on Proj(V ), thus we have an A1-weak equivalence Proj(V ⊕

O)∖ 0 ≃ Proj(V ). The result follows from observing Proj (V⊕O)
Proj (V⊕O)∖0

≃ Proj (V⊕O)
Proj (V )

.
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Theorem 2.1.26. (Purity theorem) Let Z /↪→ X be a closed immersion in Smk. Then

we have an A1-equivalence

X

X ∖ Z
≃ Th(NZX),

where NZX → Z denotes the normal bundle of Z in X.

Proof. The proof uses the deformation to the normal bundle of Fulton and MacPher-

son (Ful98). Let f denote the composition of the maps

BlZ×{0}(X × A1
k)→ X × A1

k → A1
k.

We define DZX to be the scheme BlZ×{0}(X ×A1
k)∖BlZ×{0}(X ×{0}), and note

that f restricts to a map f
∣∣∣
DZX

: DZX → A1
k. We may compute the fiber of f |DZX

over 0 as

f
∣∣∣−1

DZX
(0) = Proj

(
NZ×{0}(X × A1

k)
)
∖ Proj

(
NZ×{0}(X × {0})

)
= Proj(NZX ⊕O)∖ Proj (NZX)

= NZX,

and the fiber over 1 as f
∣∣∣−1

DZX
(1) = X. Since Z ×A1

k determines a closed subscheme

in DZX, we have that the fiber over 0 is Z ⊆ NZX and the fiber over 1 is Z ⊆ X.

Thus we obtain morphisms of pairs
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(Z,NZX)
i0−→ (Z × A1

k, DZX)

(Z,X)
i1−→ (Z × A1

k, DZX),

(2.1.27)

corresponding to the inclusions of the fibers over the points 0 and 1, respectively.

To prove the purity theorem, it now suffices to show that the induced morphisms on

cofibers are weak equivalences:

NZX

NZX ∖ Z
→ DZX

DZX ∖ Z × A1
k

X

X ∖ Z
→ DZX

DZX ∖ Z × A1
k

.

Lemma 2.1.28. (AE17, Lemma 7.3) Suppose that P is a property of smooth pairs

of schemes such that the following properties hold:

1. If (Z,X) is a smooth pair of schemes and {Uα → X}α∈A is a Zariski cover of

X such that P holds for the pair

(Z ×X Uα1 ×X · · · ×X Uαn , Uα1 ×X · · · ×X Uαn)

for each (α1, . . . , αn), then P holds for (Z,X)

2. If (Z,X)→ (Z, Y ) is a morphism of smooth pairs inducing an isomorphism on

Z such that X → Y is étale, then P holds for (Z,X) if and only if P holds for

(Z, Y )
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3. P holds for the pair (Z,An
k × Z),

then P holds for all smooth pairs.

To conclude the proof of purity, we let P be the property on the pair (Z,X) that

the morphisms in Equation 2.1.27 induce homotopy pushout diagrams4

Z NZX
NZX∖Z

Z × A1
k

DZX
DZX∖Z×A1

k

⌜

Z X
X∖Z

Z × A1
k

DZX
DZX∖Z×A1

k
.

⌜

One may check that Lemma 2.1.28 holds for this property, and therefore since

Z → Z × A1
k is a weak equivalence, a homotopy pushout along this map is also a

weak equivalence. Thus we obtain a sequence of A1-weak equivalences

X

X ∖ Z

∼−→ DZX

DZX ∖ Z × A1
k

∼← NZX

NZX ∖ Z
= Th(NZX).

2.2 A1-enumerative geometry

As discussed above, Morel exhibited the global degree of maps of motivic spheres as

degA
1

: [Pnk/Pn−1
k ,Pnk/Pn−1

k ]A1 → GW(k).

4Equivalently, one may say that i0 and i1 are weakly excisive morphisms of pairs (Hoy17, Defi-

nition 3.17).
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Recall that, for a scheme X, we have functors to the category of topological spaces

obtained by taking real and complex points, that is, X 7→ X(R) and X 7→ X(C).

Morel’s degree map satisfies a compatibility diagram with the degree maps we rec-

ognize from algebraic topology5

[Sn, Sn] [PnR/P
n−1
R ,PnR/P

n−1
R ]A1 [S2n, S2n]

Z GW(R) Z.

degtop

C-ptsR-pts

degA
1

degtop

ranksig

(2.2.1)

We can apply the purity theorem to develop a notion of local degree for a general

map between schemes of the same dimension. Suppose that f : An
k → An

k , and

x ∈ An
k is a k-rational preimage of a k-rational point y = f(x). Further suppose that

x is an isolated point in f−1(y), meaning that there exists a Zariski open set U ⊆ An
k

such that x ∈ U and f−1(y) ∩ U = x.

Definition 2.2.2. In the conditions above, the local A1-degree of f at x is defined

to be the degree of the map

U
/
(U ∖ {x}) f−→ An

k

/
(An

k ∖ {y}),

under the A1-weak equivalences U
/
(U∖{x}) ∼= Th(TxAn

k)
∼= Pnk

/
Pn−1
k and An

k

/
(An

k∖

5The commutativity of this diagram is one of the key features of Morel’s A1-degree and is

attributable to him (Mor06, p. 1037). We can provide an alternative justification of this fact

following the discussion of the EKL form in Section 2.2.1.
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{y}) ∼= Pnk
/
Pn−1
k provided to us by purity and by the canonical trivialization of the

tangent space of affine space.

Dropping the assumption that k(x) = k, but still assuming that y is k-rational,

we may equivalently define degA
1

x f as the degree of the composite

Pnk
/
Pn−1
k → Pnk

/
(Pnk ∖ {x}) ∼= U

/
(U ∖ {x}) f−→ An

k

/
(An

k ∖ {y}) ∼= Pnk
/
Pn−1
k .

Proposition 2.2.3. These definitions of the local degree are equivalent. This was

proven in (KW19, Prop. 12), which is a generalization of a proof of Hoyois (Hoy14,

Lemma 5.5).

Equation 2.1.8 admits the following generalization to endomorphisms of affine

space.

Proposition 2.2.4. (KW19, Proposition 15) Let f : An
k → An

k , assume that f is

étale at a closed point x ∈ An
k , and assume that that f(x) = y is k-rational and that

x is isolated in its fiber. Then the local degree is given by

degA
1

x (f) = Trk(x)/k ⟨Jac(f)(x)⟩ .

Remark 2.2.5. At a non-rational point p whose residue field k(p)|k is a finite sep-

arable extension of the ground field, the local A1-degree can be computed by base

changing to k(p) to compute the local degree rationally, and applying the field trace

Trk(p)/k to obtain a well-defined element of GW(k) (BBM+21).
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2.2.1 The Eisenbud–Khimshiashvili–Levine signature formula

Given a morphism f = (f1, . . . , fn) : An
k → An

k with an isolated zero at the origin,

we may associate to it a certain isomorphism class of bilinear forms wEKL
0 (f), called

the Eisenbud–Levine–Khimshiashvili (EKL) class. This was studied by Eisenbud

and Levine, and independently by Khimshiashvili, in the case where f is a smooth

endomorphism of Rn (EL77; Him77). They ascertained that the degree degtop0 f can

be computed as the signature of the form wEKL
0 (f). If f is furthermore assumed to

be real analytic, the rank of this form recovers the degree of the complexification

fC (Pal67). This bilinear form wEKL
0 (f) can be defined over an arbitrary field k,

and in this setting Eisenbud asked the following question: does wEKL
0 (f) have any

topological interpretation? We will see that the answer is yes, via work of Kass and

Wickelgren (KW19).

Suppose that f = (f1, . . . , fn) : An
k → An

k has an isolated zero at the origin, and

define the local k-algebra

Q0(f) :=
k[x1, . . . , xn](x1,...,xn)

(f1, . . . , fn)
.

We may pick polynomials aij so that, for each i, we have the equality

fi(x1, . . . , xn) = fi(0) +
n∑
j=1

aij · xj.

By taking their determinant, we define E0(f) := det(aij) as an element of Q0(f),
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which we refer to as the distinguished socle element of the local algebra Q0(f). We

remark that when Jac(f) is a nonzero element of Q0(f), one has the equality (SS75,

4.7 Korollar)

Jac(f) = dimk(Q0(f)) · E0(f).

We then pick η to be any k-linear vector space homomorphism η : Q0(f) → k

satisfying η(E0(f)) = 1. One may check that the following bilinear form

Q0(f)×Q0(f)→ k

(u, v) 7→ η(u · v)

is non-degenerate and its isomorphism class is independent of the choice of η (EL77,

Propositions 3.4,3.5), (KW19, §3). The class of this form in GW(k) is referred to as

the EKL class, and denoted by wEKL
0 (f).

Example 2.2.6. If f : A1
k → A1

k is given by z 7→ z2, we may see that Q0(f) =

k[z](z)

/
(z2). We see that f has an isolated zero at the origin, and that

f = f(0) + x · x,

hence E0(f) = x. We determine η : Q0(f) → k on a basis for Q0(f) by setting

η(x) = 1 and η(1) = 0. Then we compute the EKL form via its Gram matrix as:η(1 · 1) η(1 · x)

η(x · 1) η(x · x)

 =

0 1

1 0

 = H.
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Theorem 2.2.7. If f : An
k → An

k is any endomorphism of affine space with an isolated

zero at the origin, there is an equality degA
1

0 f = wEKL
0 (f) in GW(k) (KW19).

In particular we observe that the compatibility stated in Diagram 2.2.1 is justified

by this theorem, combined with the results of Eisenbud–Khimshiashvili–Levine and

Palamodov. Moreover we remark that the EKL form can be defined at any k-rational

point, and an analogous statement to Theorem 2.2.7 holds in this context.

Exercise 2.2.8.

1. Compute the degree of f : A2
k → A2

k, given as f(x, y) = (4x3, 2y) in the case

where char(k) ̸= 2.

2. Supposing f is étale at the origin 0, show that wEKL
0 (f) = ⟨Jac(f)(0)⟩ is an

equality in GW(k). Show furthermore that an analogous equality holds at any

k-rational point x.

As a generalization of Exercise 2.2.8(2), one may show that if f is étale at a point

x, one has the following equality in GW(k)

wEKL
x (f) = Trk(x)/k ⟨Jac(f)(x)⟩ . (2.2.9)

This is shown using Galois descent, as in (KW19, Lemma 33).
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2.2.2 Sketch of proof for Theorem 2.2.7

Step 1 : We can see that degA
1

0 f and wEKL
0 (f) are finitely determined in the sense

that they are unchanged by changing f to f + g, with g = (g1, . . . , gn), and gi ∈ mN
0

for sufficiently large N , where m0 := (x1, . . . , xn) denotes the maximal ideal at the

origin (KW19, Lemma 17).

Step 2 : By changing f to f + g, we may assume that f extends to a finite, flat

morphism F : Pnk → Pnk , where F−1(An
k) ⊆ An

k and F |F−1(0)∖{0} is étale (KW19,

Proposition 23).

Proposition 2.2.10. (Scheja–Storch) (SS75, §3, pp.180—182)We have that wEKL
0 (f)

is a direct summand of the fiber at 0 of a family of bilinear forms over An
k , which we

construct below.

We will prove Proposition 2.2.10 following the construction of this family of bi-

linear forms.

The Scheja–Storch construction Let F : Spec(P )→ Spec(A), where

P = k[x1, . . . , xn]

A = k[y1, . . . , yn].

One may show that the collection {t1, . . . , tn} is a regular sequence inA[x1, . . . , xn],
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where ti := yi − Fi(x1, . . . , xn). Then

B = A[x1, . . . , xn]
/
⟨t1, . . . , tn⟩

is a relative complete intersection, which parametrizes the fibers of F . This regular

sequence determines a canonical isomorphism (SS75, Satz 3.3)

θ : HomA(B,A)
∼=−→ B,

via the following procedure: we may first express

tj ⊗ 1− 1⊗ tj =
n∑
i=1

aij (xi ⊗ 1− 1⊗ xi) ,

where each aij is an element of A[x1, . . . , xn]⊗A A[x1, . . . , xn]. Under the projection

map A[x1, . . . , xn] ⊗A A[x1, . . . , xn] → B ⊗A B, we have that det (aij) is mapped to

some element ∆. We now consider the bijection

B ⊗A B → HomA(HomA(B,A), B)

b⊗ c 7→ (ϕ 7→ ϕ(b)c) ,

and define θ to be the image of ∆. We remark that a priori θ is an A-module

homomorphism between HomA(B,A) and B, which both have B-module structures.

It is in fact a B-module homomorphism, and is moreover an isomorphism by (SS75,

Satz 3.3). Defining η = θ−1(1), we have that η determines a bilinear form, which we
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denote by w

B ⊗A B → A

b⊗ c w7−→ η(bc).

Proof of Proposition 2.2.10: We note that, when y1 = . . . = yn = 0, Spec(B) is

the fiber of F over 0, consisting of a discrete set of points. This corresponds to a

disjoint union of schemes. If b and c lie in different components, then their product

is zero. This implies that the bilinear form w decomposes into an orthogonal direct

sum of forms over each factor in F−1(0). These factors correspond to EKL forms

at each point in the fiber F−1(0), and in particular over 0 ∈ F−1(0), we recover the

EKL form wEKL
0 (F ).

The following theorem will allow us to relate the EKL forms at various points in

the fiber F−1(0).

Theorem 2.2.11. (Harder’s Theorem) (Lam06, VII.3.13) A family of symmetric

bilinear forms over A1
k is constant (respectively, has constant specialization to k-

points) for characteristic not equal to 2 (resp. any k). In particular when char(k) ̸= 2,

for any finite k[t]-module M , we have that the family of bilinear forms M ×k[t]M →

k[t] is pulled back from some bilinear form N ×kN → k via the unique morphism of

schemes A1
k → Spec(k).
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Step 3 : We choose y so that F |F−1(y) is étale. One may use the generalization of

Exercise 2.2.8(2) as stated in Equation 2.2.9, combined with Proposition 2.2.4 to see

that

∑
x∈F−1(y)

wEKL
x (F ) =

∑
x∈F−1(y)

degA
1

x F.

By Harder’s theorem, we have that
∑

x∈F−1(y)w
EKL
x (F ) =

∑
x∈F−1(0)w

EKL
x (F ),

and by the local formula for degree, we see that

∑
x∈F−1(y)

degA
1

x F = degA
1

F =
∑

x∈F−1(0)

degA
1

x F.

Thus
∑

x∈F−1(0)w
EKL
x (F ) =

∑
x∈F−1(0) deg

A1

x F . Since F |F−1(0)∖{0} is étale, we

may iteratively apply the equality in Equation 2.2.9 to cancel terms, leaving us with

the local degree and EKL form at the origin:

wEKL
0 (F ) = degA

1

0 F.

Therefore by finite determinacy we recover the desired equality wEKL
0 (f) = degA

1

0 (f).

This concludes the proof of Theorem 2.2.7.

2.2.3 A1-Milnor numbers

The following section is based off of joint work by Jesse Kass and Kirsten Wickel-

gren (KW19, §8). A variety over a perfect field is generically smooth, although it
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may admit a singular locus where the dimension of the tangent space exceeds the

dimension of the variety, for example a self-intersecting point on a singular elliptic

curve. Singularities are generally difficult to study, although certain classes are more

tractable than others. There is a particular class of singularities, called nodes, which

are in some sense the most generic. If k is a field of characteristic not equal to 2,

then a node is given by an equation x21 + . . . + x2n = 0 over a separable algebraic

closure k.

Consider a point p on a hypersurface {f(x1, . . . , xn) = 0} ⊆ An
k . Fix values

a1, . . . , an, and consider the family

f(x1, . . . , xn) + a1x1 + . . .+ anxn = t,

parametrized over the affine t-line. This hypersurface bifurcates into nodes over k.

Given any hypersurface g(x1, . . . , xn) with a node at a k-rational point p, we define

the type of the node as the element in GW(k) corresponding to the rank one form

represented by the Hessian matrix at p:

type(p) :=

〈
∂2g

∂xi∂xj
(p)

〉
.

In particular, we see that:

type(x21 + ax22 = 0) := ⟨a⟩

type

(
n∑
i=1

aix
2
i = 0

)
:=

〈
2n

n∏
i=1

ai

〉
.
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In the case where we have a node at p with k(p) = L, then L is separable over k

(DK73, Exposé XV, Théorème 1.2.6), and we define the type of the node as the trace

of the type over its residue field. In the examples above, this gives:

type

(
n∑
i=1

aix
2
i = 0

)
:= TrL/k

〈
2n

n∏
i=1

ai

〉
.

Thus the type encodes the field of definition of the node, as well as its tangent

direction. In the case where k = R, we can visualize the possible R-rational nodes

in degree two as:

x21 − x22 = 0

(a) split

x21 + x22 = 0

(b) non-split

Here we may think of split as corresponding to the existence of rational tangent

directions, while non-split refers to non-rational tangent directions. Over fields that

aren’t R, it is possible to have many different split nodes.

In the case where k = C, for any (a1, . . . , an) sufficiently close to 0, it is a

classical result that the number of nodes in this family is a constant integer, equal to

degtop0 gradf =: µ, which is called the Milnor number. This admits a generalization

as follows.
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Theorem 2.2.12. (KW16, Corollary 45) Assume that f has a single isolated singu-

larity at the origin. Then for a generic (a1, . . . , an), we have that the sum over nodes

on the hypersurface f + a1x1 + . . .+ anxn = t is

∑
nodes p
in family

type(p) = degA
1

0 gradf =: µA1

0 f.

We refer to this as the A1-Milnor number. We remark that the classical Milnor

number can be recovered by taking the rank of the A1-Milnor number.

Example 2.2.13. Let f(x, y) = x3 − y2, over a field of characteristic not equal to

2 or 3. Let p = (0, 0) be a point on the hypersurface {f = 0}. We can compute

gradf = (3x2,−2y), and then we have that

deg gradf = deg(3x2) · deg(−2y)

=

 0 1/3

1/3 0

 ⟨−2⟩
= H.

This has rank two, so the classical Milnor number is µ = 2. We can take our

family to be y2 = x3 + ax + t. If a = 0, then we have a node at 0. In general,

for a ̸= 0, we have nodes at those t with the property that the discriminant of the

curve y2 = x3 + ax+ t vanishes, that is at those t where ∆ = −16 (4a3 + 27t2) = 0.
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This has at most two solutions in t, which we may denote by {x2 + u1y
2 = 0} and

{x2 + u2y
2 = 0}, and we see by Theorem 2.2.12 that H = ⟨u1⟩+ ⟨u2⟩. This implies,

by taking determinants, that −1 agrees with u1u2 up to squares. This provides us

with obstructions to the existence of pairs of nodes of certain types, depending on

the choice of field we are working over. For example:

• Over F5, we see that ⟨1⟩ = ⟨−1⟩ in GW(F5) implying that u1u2 is always a

square. In particular, u1 and u2 cannot have the property that exactly one

of them is a non-square, meaning that we cannot bifurcate into a split and a

non-split node.

• Over F7 we have that ⟨1⟩ ≠ ⟨−1⟩, implying u1u2 is a non-square, so we cannot

bifurcate into two split or two non-split nodes.

Exercise 2.2.14. Compute µA1
for the following ADE singularities over Q:

singularity equation

An x2 + yn+1

Dn y(x2 + yn−2) (n ≥ 4)

E6 x3 + y4

E7 x(x2 + y3)

E8 x3 + y5.
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2.2.4 An arithmetic count of the lines on a smooth cubic

surface

The following is based off of joint work of Jesse Kass and Kirsten Wickelgren (KW21).

Let f ∈ k[x0, x1, x2, x3] be a homogeneous polynomial of degree three. Consider the

following surface

V = {f = 0} ⊆ Projk[x0, x1, x2, x3] = P3
k,

and suppose that V is smooth.

Theorem 2.2.15. (Cayley-Salmon Theorem) When k = C, there are exactly 27

lines on V (Cay09).

Proof. Consider the Grassmannian GrC(2, 4), which parametrizes 2-dimensional com-

plex subspacesW ⊆ C⊕4, or equivalently, lines in P3
C. As the Grassmannian is a mod-

uli space, it admits a tautological bundle S whose fiber over any point W ∈ GrC(2, 4)

is the vector space W itself. A chosen homogeneous polynomial f of degree three

defines a section σf of Sym3S∗, where

σf ([W ]) = f |W .

Thus we see that the line ℓ ⊆ P3
C corresponding to [W ] lies on the surface V if and

only if σf [W ] = 0. One may see that σf has isolated zeros (EH16, Corollary 6.17),

and thus we may express the Euler class of the bundle as
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e(Sym3S∗) = c4(Sym
3S∗) =

∑
ℓ

degtopℓ σf , (2.2.16)

where this last sum is over the zeros of σf . We determine degtopℓ σf by choosing

local coordinates near ℓ on GrC(2, 4) as well as a compatible trivialization for Sym3S∗

over this coordinate patch. Then σf may be viewed as a function

A4
C ⊇ U

σf−→ A4
C

with an isolated zero at ℓ. We can then define degtopℓ σf as the local degree of this

function. It is a fact that the smoothness of V implies that σf vanishes to order 1 at

ℓ. Thus the Euler class counts the number of lines on V . Finally, one may compute

c4(Sym
3S∗) = 27 by applying the splitting principle and computing the cohomology

of GrC(2, 4).

In the real case, Schäfli (Sch60) and Segre (Seg42) showed that there can be 3,

7, 15, or 27 real lines on V . One of the main differences between the real and the

complex case was the distinction that Segre drew between hyperbolic and elliptic

lines.

Definition 2.2.17. We say that I ∈ PGL2(R) is hyperbolic (resp. elliptic) if the set

Fix(I) = {x ∈ P1
R : Ix = x}

consists of two real points (resp. a complex conjugate pair of points).

55



To a real line ℓ ⊆ V we may associate an involution I ∈ Aut(ℓ) ∼= PSL2(R),

where I sends p ∈ ℓ to q ∈ ℓ if TpV ∩V = ℓ∪Q, for some Q satisfying ℓ∩Q = {p, q},

(that is, for any point p on a line ℓ, there is exactly one other point q having the

same tangent space). We can say that ℓ is hyperbolic (resp. elliptic) whenever I is.

Alternatively, we may describe these classes of lines topologically. We think of

the frame bundle as a principal SO(3)-bundle over RP3. As SO(3) admits a double

cover Spin(3), from any principal SO(3)-bundle we may obtain a principal Spin(3)-

bundle. Traveling on our cubic surface along the line ℓ gives a distinguished choice

of frame at every point on ℓ, that is, a loop in the frame bundle. This loop may or

may not lift to the associated Spin(3)-bundle. If the loop lifts, then ℓ is hyperbolic,

and if it doesn’t then ℓ is elliptic.

Theorem 2.2.18. In the real case, we have the following relationship between hy-

perbolic and elliptic lines:

#{real hyperbolic lines on V } −#{real elliptic lines on V } = 3.

We refer the reader to the following sources (Seg42; BS95; HS12; OT14; FK15).

Proof sketch. Via the map σf : GrR(2, 4)→ Sym3S∗, we have that

e(Sym3S∗) =
∑

ℓ∈GrR(2,4)
σf (ℓ)=0

degtopℓ σf .
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One may also show that

degtopℓ σf =


1 if ℓ is hyperbolic

−1 if ℓ is elliptic,

and compute that e(Sym3S∗) = 3 using the Grassmannian of oriented planes.

To define a notion of hyperbolic and elliptic which holds in more generality, we

introduce the type of a line. As before, we let V ⊆ P3
k be a smooth cubic surface,

and consider a closed point ℓ ∈ Grk(2, 4), with residue field L = k(ℓ). We can then

view ℓ as a closed immersion

ℓ ∼= P1
L

/↪→ P3
k ⊗k L.

Given such a line ℓ ⊆ V , we again have an associated involution:

I =

a b

c d

 ∈ PGL2(L).

Since I is an involution, its fixed points satisfy az+d
cz+d

= z, from which we can see

they are defined over the field L
(√

D
)
, whereD is the discriminant of the subscheme

Fix(I) ⊆ P1
L.

Definition 2.2.19. The type of a line ℓ is the element of GW(k(ℓ)) given by

type(ℓ) := ⟨D⟩ = ⟨ad− bc⟩ = ⟨−1⟩ degA1

(I).

We say a line is hyperbolic if type(ℓ) = ⟨1⟩, and elliptic otherwise.
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Theorem 2.2.20. (KW21, Theorem 2) The number of lines on a smooth cubic

surface is computed via the following weighted count

∑
ℓ⊆V

Trk(ℓ)/k(type(ℓ)) = 15 · ⟨1⟩+ 12 · ⟨−1⟩ .

Remark 2.2.21. We may apply the previous theorem to observe the following re-

sults:

1. If k = C, then by taking the rank, we obtain the Cayley-Salmon Theorem

(2.2.15), stating that the number of lines on a cubic surface is 27.

2. If k = R, then TrC/R ⟨1⟩ = ⟨1⟩ ⊕ ⟨−1⟩. Taking the signature, we recover

Theorem 2.2.18, stating that the number of hyperbolic lines minus the number

of elliptic lines is 3.

As a particular application, if we are working over a finite field k = Fq, then its

square classes are F×
q

/
(F×

q )
2 ∼= {1, u}. Thus the type of a line ℓ over Fqa is either

⟨1⟩ or ⟨ua⟩, which by Definition 2.2.19 we call hyperbolic or elliptic, respectively.

Corollary 2.2.22. (KW21, Theorem 1) For any natural number a, we have that

the number of lines on V satisfies

#{elliptic lines with field of definition Fq2a+1}

+#{hyperbolic lines with field of definition Fq2a} ≡ 0 (mod 2).
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In particular when all the lines in question are defined over a common field k, we

have that the number of elliptic lines is even.

In order to prove Theorem 2.2.20, one considers σf to be a section of the bundle

Sym3S∗ → Grk(2, 4), and computes a sum over its isolated zeros, weighted by their

local index. Over the complex numbers, this is precisely Equation 2.2.16, which

recovers the Euler number of the bundle. In a more general context, however, we

will want to obtain an element of GW(k). This requires us to use an enriched notion

of an Euler class, described below.

Digression 2.2.23. In this exposition, given a vector bundle E → X with section

σ, we use the Euler class e(E, σ) valued in GW(k) of (KW21, Section 4). In the

literature, there are a number of other Euler classes which coincide with this definition

in various settings. One may define this Euler class via Chow-Witt groups (BM00)

or oriented Chow groups (Fas08) as in the work of M. Levine (Lev20). In his seminal

book, Morel defines the Euler class of a bundle E → X as a cohomology class in

twisted Milnor-Witt K-theory Hn(X;KMW
n (detE∗)) (Mor12), and when det(E∗) is

trivial, one may relate these Euler classes up to a unit multiple via the isomorphism

Hn(X;KMW
n (detE∗)) ∼= C̃H(X, detE∗).

For more details, see the work of Asok and Fasel (AF16). Other versions of the Euler

class in A1-homotopy theory occur in the work of Déglise, Jin and Khan (DJK21)

59



and the work of Levine and Raksit (LR20). Many of these notions are equated in

work of Bachmann and Wickelgren (BW21).

Definition 2.2.24. Let X be a smooth projective scheme of dimension r, and let

E → X be a rank r bundle. We say that E is relatively oriented if we are given an

isomorphism

Hom(detTX, det E) ∼= L⊗2,

where L is a line bundle on X.

Suppose that σ is a section of a relatively oriented bundle E with isolated zeros,

and define Z = {σ = 0} to be its vanishing locus. For each x ∈ Z, we will define

degA
1

x σ as follows:

1. Choose Nisnevich coordinates ((KW21, Definition 17)) near x ∈ Z, that is, pick

an open neighborhood U ⊆ X around x, and an étale morphism ϕ : U → Ar
k

such that k(ϕ(x)) ∼= k(x).

2. Choose a compatible oriented trivialization E
∣∣
U
, that is, a local trivialization

ψ : E
∣∣
U
→ O⊕r

U ,

such that the associated section Hom(detTX, det E)(U) is a square of a section

in L(U). Then we have that ψ ◦ σ ∈ O⊕r
U and there exists a g ∈ (mN

x )
⊕r, with
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N sufficiently large, so that

ψ ◦ σ + g ∈ ϕ∗OAr
k
.

Define f := ψ ◦ σ + g, and then we have that f : ϕ(U) → Ar
k has an isolated

zero at ϕ(x). Since our trivialization was compatibly oriented, this definition

is independent of the choice of g.

3. Finally, we define degA
1

x σ := degA
1

ϕ(x) f ∈ GW(k).

Definition 2.2.25. For a relatively oriented bundle E → X, and a section σ with

isolated zeros, we define the Euler class to be

e(E, σ) :=
∑

x:σ(x)=0

degA
1

x σ.

In order to conclude the proof of Theorem 2.2.20, we must identify degA
1

ℓ σf with

type(ℓ). Then we are able to compute e(Sym3S∗) using a well-behaved choice of

cubic surface, for instance the Fermat cubic. For more details, see (KW21, §5).

Remark 2.2.26. Following our definition of an Euler class for a relatively oriented

bundle, we include the following closely related remarks.

1. Interesting enumerative information is still available when relative orientability

fails. For an example of this in the literature, we refer the reader to the paper

of Larson and Vogt (LV21) which defines relatively oriented bundles relative

61



to a divisor in order to compute an enriched count of bitangents to a smooth

plane quartic (LV21).

2. Given a smooth projective scheme over a field, one may push forward the

Euler class of its tangent bundle to obtain an Euler characteristic which is

valued in GW(k). A particularly interesting consequence of this is an enriched

version of the Riemann–Hurwitz formula, first established by M. Levine (Lev20,

Theorem 12.7) and expanded upon by work of Bethea, Kass, and Wickelgren

(BKW20).

Forthcoming work of Pauli investigates the related question of lines on quintic

threefold (Pau22). We also refer the reader to work of M. Levine, which includes

an examination of Witt-valued characteristic classes, including an Euler class of

Sym2n−dS∗ on Grk(2, n + 1) (Lev19), and results of Bachmann and Wickelgren for

symmetric bundles on arbitrary Grassmannians (BW21, Corollary 6.2). Finally, for

a further investigation of enriched intersection multiplicity, we refer the reader to

recent work of McKean on enriching Bézout’s Theorem (McK21).
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2.2.5 An arithmetic count of the lines meeting 4 lines in

space

The following is based off of work by Padmavathi Srinivasan and Kirsten Wickelgren

(SW21).

In enumerative geometry, one encounters the following classical question: given

four complex lines in general position in CP3, how many other complex lines meet

all four? The answer is two lines, whose proof we sketch out below.

Four lines in three-space, classically Let L1, L2, L3, L4 be lines in CP3 so that

no three of them intersect at one point (we refer to this condition as general). Given

a point p ∈ L1, there is a unique line Lp through p which intersects both L2 and L3.

We then examine the surface sweeped out by all such lines Q :=
⋃
p∈L1

Lp, and we

claim that this is a degree two hypersurface which contains L1, L2, and L3. To see

this, it suffices to verify that it is the vanishing locus of a degree two homogeneous

polynomial. A homogeneous polynomial of degree two, considered as an element of

H0(CP3,O(2)), will vanish on the line Li if and only if it lies in the kernel

H0(CP3,O(2))→ H0(Li,O(2)).
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We verify that

dimkH
0(CP3,O(2)) =

(
2 + 3

2

)
= 10

dimkH
0(Li,O(2)) = 3,

therefore for i = 1, 2, 3 each such map has kernel of dimension ≥ 7. This implies

there is a polynomial f in the common kernel of all three maps. We claim that

Lp ⊆ V (f) for each p ∈ L1, and indeed since three points of Lp lie in V (f), we see

that V (f) contains the entire line. Therefore we have containment V (f) ⊇ Q, and

it is easy to see we must have equality. Finally by applying Bézout’s Theorem, we

see that Q ∩ L4 consists of two points, counted with multiplicity.

One might ask how to answer this question over an arbitrary field k. We recall

that the Grassmannian Grk(2, 4) parametrizes lines in P3
k (that is, two-dimensional

subspaces of k⊕4), which is an appealing moduli space for this problem. We first

select a basis {e1, e2, e3, e4} of k⊕4 satisfying

L1 = ke3 ⊕ ke4,

and we define a new line L such that

L = kẽ3 ⊕ kẽ4,

where ẽ3 and ẽ4 are some linearly independent vectors whose definition we defer until

further below. Letting ϕi denote the dual basis element to ei, one may compute that
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L ∩ L1 is nonempty if and only if

(ϕ1 ∧ ϕ2)(ẽ3 ∧ ẽ4) = 0.

Consider the line bundle detS∗ = S∗ ∧ S∗ → Grk(2, 4), whose fiber over a point

W ∈ Grk(2, 4) is W
∗ ∧W ∗. We then have that ϕ1 ∧ ϕ2 ∈ H0(Grk(2, 4),S∗ ∧ S∗) and

(ϕ1 ∧ ϕ2)([W ]) = ϕ1|W ∧ ϕ2|W .

It is then clear that we obtain a bijection between lines intersecting L1 and zeros of

ϕ1 ∧ ϕ2:

{L : L ∩ L1 ̸= ∅} = {[W ] : (ϕ1 ∧ ϕ2)([W ]) = 0}.

We may repeat this process for each line to form a section σ of ⊕4
i=1S∗ ∧ S∗. Then

the zeros of σ will correspond exactly to lines which meet all four of our chosen lines:

{L : L ∩ Li ̸= ∅, i = 1, 2, 3, 4} = {[W ] ∈ Grk(2, 4) : σ([W ]) = 0}.

In particular, if σ is a section of a relatively oriented bundle, then we may calculate

an enriched count of lines meeting four lines in space, given by the Euler class

e
(
⊕4
i=1S∗ ∧ S∗, σ

)
=

∑
L : L∩Li ̸=0

indLσ. (2.2.27)

Denote by E = ⊕4
i=1S∗ ∧ S∗ our rank four vector bundle over X := Grk(2, 4).

Since X is a smooth projective scheme of dimension four, we have that (detTX)∗ ∼=
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ωX ∼= O(−2)⊗2, and det E ∼= (⊗2
i=1S∗ ∧ S∗)

⊗2
. Therefore Hom(detTX, det E) ∼=

wX ⊗ det E ∼= L⊗2, so E is relatively oriented over X, and Equation 2.2.27 is a valid

expression. In order to compute a local index of the section σ near a zero L, we must

first parametrize Nisnevich local coordinates near L. Here we define a parametrized

basis of k⊕4 by

ẽ1 = e1

ẽ2 = e2

ẽ3 = xe1 + ye2 + e3

ẽ4 = x′e1 + y′e2 + e4.

We then obtain a morphism from affine space to an open cell around L:

A4
k = Speck[x, y, x′, y′]→ U ⊆ Grk(2, 4)

(x, y, x′, y′) 7→ span{ẽ3, ẽ4}.

Over this cell, we obtain an oriented trivialization of the bundle detS∗, given by

ϕ̃3∧ ϕ̃4, where ϕ̃i denotes the dual basis element to ẽi. Under these local coordinates,

we may compute the local index indLσ as the local A1-degree at the origin of the

induced map A4
k → A4

k. Suppose that

L1 = {ϕ1 = ϕ2 = 0} = ke3 ⊕ ke4.
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Then we have that σ([W ]) =
(
ϕ1 ∧ ϕ2|[W ] , . . .

)
. We see then that

(ϕ1 ∧ ϕ2)|kẽ3⊕kẽ4 =
(
xϕ̃3 + yϕ̃4

)
∧
(
x′ϕ̃3 + y′ϕ̃4

)
= (xy′ − x′y)ϕ̃3 ∧ ϕ̃4.

Thus we may exhibit σ as a function

f = (f1, f2, f3, f4) : A4
k → A4

k,

where f1(x, y, x
′, y′) = xy′ − x′y. Then in the basis (x, y, x′, y′) we have that the

Jacobian of σ has its first column as:

Jac(f) = det



y′ · · ·

−x′ · · ·

−y · · ·

x · · ·


.

Question Is there a geometric interpretation of indLσ = degA
1

L f?

The intersections L ∩ Li for i = 1, . . . , 4 determine four points on L ∼= P1
k(L). Let

λL denote the cross-ratio of these points in k(L)∗. Denote by Pi the plane spanned by

L and Li. We note that planes P in P3
k correspond to subspaces V ⊆ k(P )⊕4 where

dim(V ) = 3. If P contains the line L = [W ] then it corresponds toW ⊆ V ⊆ k(P )⊕4,

which in turn corresponds to k(P )-points of Proj
(
k(L)⊕4

/
W
)
∼= P1

k(L). Thus we

might think of the planes Pi for i = 1, . . . , 4 as 4 points on P1
k(L). Let µL denote the

cross-ratio of these points.
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Theorem 2.2.28. (SW21, Theorem 1) Let L1, L2, L3, L4 be four general lines defined

over k in P3
k. Then

∑
{L : L∩Li ̸=∅ ∀i}

Trk(L)/k ⟨λL − µL⟩ = ⟨1⟩+ ⟨−1⟩ .

As a generalization, let π1, . . . , π2n−2 be codimension 2 planes in Pnk for n odd.

Then

∑
{L : L∩πi ̸=∅ ∀i}

Trk(L)/k det

· · · cib
i
1 · · ·

· · · cib
i
2 · · ·

 =
1

2n

(
2n− 2

n− 1

)
H,

where ci are normalized coordinates for the line πi ∩ L (defined in (SW21, Defini-

tion 10)), and [bi1, b
i
2] = L ∩ πi ∼= P1

k(L). This weighted count is expanded in forth-

coming work of the author, which provides a generalized enriched count of m-planes

meeting mp codimension m planes in (m+ p)-space (Bra23).

Corollary 2.2.29. (SW21, Corollary 3) Over Fq, we cannot have a line L over Fq2

with

λL − µL =


non-square q ≡ 3 (mod 4)

square q ≡ 1 (mod 4).

For related results in the literature, we refer the reader to the papers of Levine

and Bachmann–Wickelgren mentioned in the previous section (Lev19; BW21), as

well as Wendt’s work developing a Schubert calculus valued in Chow-Witt groups
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(Wen20). Finally, Pauli uses Macaulay2 to compute enriched counts over a finite field

of prime order and the rationals for various problems presented in these conference

proceedings, including lines on a cubic surface, lines meeting four general lines in

space, the EKL class, and various A1-Milnor numbers (Pau20).
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Chapter 3

The trace of the local A1-degree

with R. Burklund, S. McKean, M. Montoro, M. Opie

Abstract: We prove that the local A1-degree of a polynomial function at an isolated

zero with finite separable residue field is given by the trace of the local A1-degree

over the residue field. This fact was originally suggested by Morel’s work on motivic

transfers, and by Kass and Wickelgren’s work on the Scheja–Storch bilinear form. As

a corollary, we generalize a result of Kass and Wickelgren relating the Scheja–Storch

form and the local A1-degree.
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3.1 Introduction

The A1-degree, first defined by Morel (Mor04; Mor12), provides a foundational tool

for solving problems in A1-enumerative geometry.1 In contrast to classical notions

of degree, the local A1-degree is not integer valued: given a polynomial function

f : An
k → An

k with isolated zero p, the local A1-degree of f at p, denoted by degA
1

p (f),

is defined to be an element of the Grothendieck–Witt group of the ground field.

Definition 3.1.1. Let k be a field. The Grothendieck–Witt group GW(k) is defined

to be the group completion of the monoid of isomorphism classes of symmetric non-

degenerate bilinear forms over k. The group operation is the direct sum of bilinear

forms. We may also give GW(k) a ring structure by taking tensor products of bilinear

forms for our multiplication.

The local A1-degree, which will be defined in Definition 3.2.11, can be related

to other important invariants at rational points. The Scheja–Storch form (Defini-

tion 3.2.17) is another GW(k)-valued invariant defined via a duality on the local

complete intersection cut out by the components of a given polynomial map (see

Subsection 3.2.3 for details). Kass and Wickelgren show that the isomorphism class

1A1-enumerative geometry is the application of A1-homotopy theory to the study of enumerative

geometry over arbitrary fields. For details, see the expository paper (WW20), as well as the

exposition found in (KW21; Lev20; BKW20; SW21; KW19; LV21).
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of the Scheja–Storch bilinear form (SS75) is equal to the local A1-degree at rational

points (KW19). Kass and Wickelgren also show that at points with finite separable

residue field, the Scheja–Storch form is given by taking the trace of the Scheja–Storch

form over the residue field (KW21, Proposition 32).

In practice, one may need to consider the local A1-degree at non-rational points.

This is the case of interest to us. At points whose residue field is a finite extension of

the ground field, Morel’s work on cohomological transfer maps (Mor12) suggests the

following formula: the local A1-degree at a non-rational point should be computed

by first taking the local A1-degree over the residue field, and then by post-composing

with a field trace. This suggestion is supported by the aforementioned results of

Kass–Wickelgren on the Scheja–Storch form (KW21, Proposition 32). Our main

result is to confirm this formula. We state our result precisely in Theorem 3.1.3,

after introducing necessary terminology.

Definition 3.1.2. Given a separable field extension L/k of finite degree, the trace

TrL/k : GW(L)→ GW(k)

is given by post-composing the field trace (which we also denote TrL/k). That is,

if β : V × V → L is a representative of an isomorphism class of symmetric non-

degenerate bilinear forms over L, then its trace is the isomorphism class of the
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following symmetric bilinear form over k

TrL/kβ : V × V → L
TrL/k−−−→ k.

When p is not a k-rational point, we can lift f to a function fk(p) : An
k(p) →

An
k(p) after fixing a choice of field embedding k ↪−→ k(p). Moreover, we may lift

p to an isolated k(p)-rational zero p̃ of fk(p), and we thus obtain the local degree

degA
1

p̃ (fk(p)) ∈ GW(k(p)).

We can now state our main result.

Theorem 3.1.3. Let k be a field, f : An
k → An

k be an endomorphism of affine space,

and let p ∈ An
k be an isolated zero of f such that k(p) is a separable extension of

finite degree over k. Let p̃ denote the canonical point above p. Then

degA
1

p (f) = Trk(p)/k deg
A1

p̃

(
fk(p)

)
in GW(k).

As a corollary, we strengthen Kass and Wickelgren’s result relating the local A1-

degree and the Scheja–Storch form (KW19) by weakening the requirement that the

point be rational.

Corollary 3.1.4. At points whose residue fields are finite separable extensions of

the ground field, the local A1-degree coincides with the isomorphism class of the

Scheja–Storch form.
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In this paper we utilize the machinery of stable A1-homotopy theory, initially

developed by Morel and Voevodsky (MV99), as well as the six functors formalism

in this setting (Ayo07; CD19). We also rely heavily on results of Hoyois (Hoy14) to

prove our main result. After working in the stable A1-homotopy category, we apply

Morel’s A1-degree to obtain the desired equality in GW(k).

Conventions 3.1.5. Throughout, we adopt the following conventions:

• We will use k to denote a general field. If p is a point of a k-scheme, with

residue field k(p) such that k(p)/k a separable extension of finite degree, we

call p a finite separable point. We may also say that p has a finite separable

residue field in this context. We remark that all such points are closed points.

• Whenever a closed point p of a k-scheme X is chosen, we denote by ρ :

Speck(p) → Speck the composite of the morphism Speck(p)
p−→ X defining

the point p, and the structure map X → Speck. This fixes a field embedding

k ↪−→ k(p).

• Given a scheme X over k, we denote the base change X ×Speck Speck(p) by

Xk(p), and given a morphism of k-schemes f : X → Y , we denote its base

change by fk(p) : Xk(p) → Yk(p).

• The structure map ρ allows us to define the canonical k(p)-rational point in
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An
k(p) sitting above p, which we denote by p̃.
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3.2 Preliminaries

In this section, we introduce the main notions necessary to state and prove Theo-

rem 3.1.3. We begin in Subsection 3.2.1 by defining the local A1-degree. In Sub-

section 3.2.2, we highlight key properties of the stable motivic homotopy category

in the form that we will need them. Finally, in Subsection 3.2.3, we discuss the

Scheja–Storch form.

We will assume some familiarity with motivic homotopy theory. For more detail
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about the category of motivic spaces SpcA
1

k and the unstable motivic homotopy cat-

egory H(k), we refer the reader to the excellent expository articles (AE17; WW20).

For the construction of the stable motivic homotopy category SH(k), we refer the

reader to (Mor04).

Notation 3.2.1. We denote by SH(k) the stable motivic homotopy category over

the scheme Speck. The sphere spectrum in this category will be denoted by 1k. We

will also use [−,−]A1 to denote A1-weak equivalence classes of maps between two

motivic spaces, by which we mean a hom-set in the homotopy category H(k).

3.2.1 The local A1-degree

Given an endomorphism of affine space f : An
k → An

k with an isolated zero at a

point p, we describe how to obtain an endomorphism of the sphere spectrum in the

stable motivic homotopy category SH(k), following the exposition of (KW19, pp.

438–439). We remind the reader of Conventions 3.1.5, which we use in what follows.

Since p is an isolated zero of f , we may find an open neighborhood U ⊆ An
k for

which f−1(0)∩U = {p}, that is, an open neighborhood containing no other zeros of

f . Viewing U ⊆ An
k ⊆ Pnk as an open subset of projective space via a standard affine
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chart, we may take a Nisnevich-local pushout diagram in SpcA
1

k :

U ∖ {p} Pnk ∖ {p}

U Pnk .
⌜

This induces an A1-weak equivalence on cofibers

U

U ∖ {p}
∼−→ Pnk

Pnk ∖ {p}
.

We now appeal to the purity theorem (MV99, Theorem 2.23), a fundamental result

in A1-homotopy, which we record for future use. While the purity theorem holds

for smooth schemes over a sufficiently nice base scheme, we only need the result for

smooth schemes over a field.

Theorem 3.2.2 (Morel–Voevodsky). Let Z → X be a closed embedding of smooth

schemes over a field k. Let NX,Z denote the normal bundle of Z in X. Then there is

a canonical weak equivalence of motivic spaces:

X/(X ∖ Z) ≃ Th(NX,Z).

Returning to the situation above, we remark that projective space is endowed

with a local trivialization of the tangent bundle of Pnk around p, arising from the

trivialization of the tangent bundle of affine space. We thus obtain canonical A1-

weak equivalences identifying the Thom space of the trivial rank n bundle over
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Speck(p) with the object of study:

U

U ∖ {p}
∼−→ Pnk

Pnk ∖ {p}
≃ Th(Onk(p)) ≃

(
Pnk/Pn−1

k

)
∧ Speck(p)+.

We remark that U was chosen to satisfy f(U ∖{p}) ⊆ An
k ∖{0}, and we can perform

a completely analogous procedure to obtain A1-weak equivalences

An
k

An
k ∖ {0}

∼−→ Pnk
Pnk ∖ {0}

≃ Th(Onk ) ≃ Pnk/Pn−1
k .

Recall that in differential topology, the local degree is defined as the homotopy class

of an induced map of spheres about a point. The space Pnk/P
n−1
k analogously plays

the role of a sphere in SpcA
1

k when constructing the local A1-degree.

Definition 3.2.3. The collapse map is the map cp : Pnk/P
n−1
k → Pnk/(Pnk ∖ {p})

induced by the inclusion Pn−1
k ⊆ Pnk ∖ {p}.

Definition 3.2.4. For any f : An
k → An

k with an isolated zero at p, we denote by fp

the A1-homotopy class in the unstable motivic homotopy category assigned to the

composite

Pnk/Pn−1
k

cp−→ Pnk
Pnk ∖ {p}

∼← U

U ∖ {p}
f−→ An

k

An
k ∖ {0}

∼−→ Pnk/Pn−1
k .

Remark 3.2.5. Despite notational similarities, we remark that fp and fk(p) are

essentially unrelated. The notation fp is consistent with that used in (KW19, Def-

inition 11), while fk(p) is common notation for the base change of a morphism of

schemes.
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Remark 3.2.6. When p is k-rational, one can avoid the collapse map by applying

the purity theorem to obtain the composite

Pnk/Pn−1
k ≃ U

U ∖ {p}
f−→ An

k

An
k ∖ {0}

∼−→ Pnk/Pn−1
k .

This composite yields the same element of
[
Pnk/P

n−1
k ,Pnk/P

n−1
k

]
A1 as in Definition 3.2.4.

Indeed, by (KW19, Lemma 10), the composite of the collapse map with the canonical

A1-weak equivalence Pnk/(Pnk ∖ {0})
∼−→ Pnk/P

n−1
k is the class of the identity map in[

Pnk/P
n−1
k ,Pnk/P

n−1
k

]
A1 .

Remark 3.2.7. The A1-homotopy class of fp does not depend upon the original

choice of open neighborhood U ∋ p, provided that U contains no other zeros of f be-

sides p. This follows immediately from our ability to provide an A1-weak equivalence

between the cofiber U/ (U ∖ {p}) and the Thom space Th(Onk ).

We now describe how to obtain an endomorphism of the sphere spectrum in

SH(k) from the class fp defined above. By (MV99, Proposition 2.17), we have a

canonical A1-weak equivalence

Pnk/Pn−1
k ≃

(
P1
k

)∧n
. (3.2.8)

We recall also that P1 ≃ S1 ∧ Gm as elements of the stable homotopy category.

In particular by following the indexing convention of (Mor04) for motivic spheres,
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we see that Σ∞P1
k = Σ2,11k in SH(k), where 1k denotes the sphere spectrum. We

therefore have that

Σ∞Pnk/Pn−1
k ≃ Σ2n,n1k

in SH(k). It is immediate that, by desuspending, we obtain a canonical isomorphism

EndSH(k)

(
Σ2n,n1k

) ∼= EndSH(k)(1k)

in the stable homotopy category. Collecting these facts together, we see that fp

determines an element in EndSH(k)(1k). Abusing notation, we will refer to this

endomorphism of the sphere spectrum as fp.

Theorem 3.2.9 (Morel). For any field k, there is an isomorphism

degA
1

: EndSH(k)(1k) ∼= GW(k). (3.2.10)

Morel initially required the assumption that k be perfect (Mor12), however this can

be removed via work of Hoyois (Hoy15, Appendix A).

Definition 3.2.11. With notation as above, the image of fp in GW(k) under degA
1

is the local A1-degree of f at p, denoted degA
1

p (f).

3.2.2 Stable motivic homotopy theory

We begin by recalling a few concepts and results from stable motivic homotopy

theory that will play a role in the proof of Theorem 3.1.3.
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The category theory of SH(k) supports a six functor formalism, the general

exposition of which we defer to (Hoy14, §2). Indeed, for the purposes of this paper,

we need only consider this formalism in the case of functors induced by maps ρ :

Speck(p)→ Speck, where k(p)/k is a finite separable field extension. We recall that

we have an adjunction

ρ∗ : SH(k) ⇄ SH(k(p)) : ρ∗.

Since ρ is separated and finite type, we also have an exceptional adjunction

ρ! : SH(k(p)) ⇄ SH(k) : ρ!.

We denote by η the unit of the adjunction between the direct and inverse image

functors, and by ε the counit of the exceptional adjunction. That is, we have natural

transformations:

η : idSH(k) ⇒ ρ∗ρ
∗

ε : ρ!ρ
! ⇒ idSH(k).

Remark 3.2.12. To facilitate exposition, we pause here to provide references for a

few basic facts about six functors which we will make use of in this paper. Let ρ be

as in Conventions 3.1.5.
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1. Since ρ is smooth, ρ∗ admits a left adjoint, denoted ρ♯. As ρ is furthermore

finite and étale, we have a canonical equivalence ρ∗ ≃ ρ♯ (Hoy14, p.21).

2. We have a canonical isomorphism ρ∗ρ
∗1k ≃ ρ∗1k(p). This is due to (MV99,

p.112, Proposition 2.17(3)). See also (KW19, Equation 11).

3. Under our assumptions on ρ, we have canonical natural isomorphisms ρ! ≃ ρ∗

and ρ! ≃ ρ♯ ≃ ρ∗. This may be found in (Hoy14, p.21). In particular, we

remark that ρ♯ can be interpreted as a forgetful functor under the structure

map ρ.

4. There is a canonical equivalence ρ!1k(x) ∼= Speck(x)+ in SH(k). See (KW19,

p.441).

We are now in a position to recall a description of the collapse map at the level

of the stable motivic homotopy category.

Lemma 3.2.13. (Hoy14; KW19) In the stable homotopy category SH(k), the col-

lapse map of Definition 3.2.3

cp : Pnk/Pn−1
k → Pnk/(Pnk ∖ {p}) ∼=

(
Pnk/Pn−1

k

)
∧ Spec(k(p))+

is computed by applying Pnk/P
n−1
k ∧ (−) to the component of the unit η at the sphere
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spectrum:

η1k
: 1k → ρ∗ρ

∗1k ∼= ρ∗1k(p).

Proof. The case n = 1 may be found in (Hoy14, Lemma 5.5), and the proof gener-

alizes to higher n as in (KW19, Lemma 13).

Remark 3.2.14. We can furthermore describe fp ∈ EndSH(k)(1k) in the following

way. Recall that f induces a map

f : U/(U ∖ {p})→ An
k/(An

k ∖ {0}).

As above, we have A1-weak equivalences

U/(U ∖ {p}) ≃
(
Pnk/Pn−1

k

)
∧ Spec(k(p))+

and

An
k/(An

k ∖ {0}) ≃ Pnk/Pn−1
k .

We may thus identify f with the composite
(
Pnk/P

n−1
k

)
∧ Spec(k(p))+ → Pnk/P

n−1
k in

SH(k). By Definition 3.2.4, we have that fp is the composite of f and the collapse

map. In SH(k), we can record this via the following commutative diagram:(
Pnk/P

n−1
k

)
∧ Spec(k(p))+ Pnk/P

n−1
k

Pnk/P
n−1
k

f

Pn
k/P

n−1
k ∧(η1k )

fp
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We now recall that the trace Trk(p)/k : GW(k(p)) → GW(k) can be described

purely in terms of maps in the motivic homotopy category, under the isomorphism

of Theorem 3.2.9.

Definition 3.2.15. The transfer

Trk(p)/k : EndSH(k(p))(1k(p))→ EndSH(k)(1k)

is defined by sending ω ∈ EndSH(k(p))(1k(p)) to the composite

1k
η1k−−→ ρ∗1k(p) ≃ ρ♯1k(p)

ρ♯ω−−→ ρ♯1k(p) ≃ ρ!ρ
!1k

ε1k−−→ 1k.

Lemma 3.2.16. (Hoy14, Proposition 5.2, Lemma 5.3) The transfer agrees with the

field trace. That is, the diagram

EndSH(k(p))

(
1k(p)

)
EndSH(k) (1k)

GW(k(p)) GW(k)

Trk(p)/k

∼= ∼=

Trk(p)/k

commutes, where the vertical maps are given by Morel’s degree isomorphism (Equa-

tion 3.2.10), the top map is the transfer (Definition 3.2.15), and the bottom map is

the trace map on the Grothendieck–Witt group of k (Definition 3.1.2).
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3.2.3 The Scheja–Storch bilinear form

We give a brief description of the Scheja–Storch bilinear form (see also (SS75),

(KW19), and (KW21, Section 4)). Given a polynomial map

f = (f1, . . . , fn) : An
k → An

k

with isolated zero p, let m be the maximal ideal of k[x1, . . . , xn] corresponding to the

point p. Consider the local algebra Qp =
k[x1,...,xn]m
(f1,...,fn)

. As a local complete intersection,

Qp is isomorphic to its dual Homk(Qp, k). Scheja and Storch construct an explicit

Qp-linear isomorphism Θ : Homk(Qp, k)→ Qp realizing this self-duality, which gives

us a distinguished homomorphism η := Θ−1(1) : Qp → k.

Definition 3.2.17. Given a polynomical function f : An
k → An

k , the Scheja–Storch

bilinear form βp(f) : Qp×Qp → k is given by βp(f)(x, y) = η(xy), where η is defined

in the preceeding paragraph.

Since Qp is commutative, the Scheja–Storch bilinear form is symmetric. By

(KW19, Lemma 28) and (EL77, Proposition 3.4), the Scheja–Storch form is non-

degenerate. Thus the Scheja–Storch form gives a class in GW(k), which we denote

by indp(f) .

Kass–Wickelgren show that if p is k-rational or if f is étale at p, then degA
1

p (f) =
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indp(f) (KW19). They also show that if p is a finite separable point, then

indp(f) = Trk(p)/kindp̃(fk(p)),

where p̃ is the canonical k(p)-point above p and fk(p) : An
k(p) → An

k(p) is the base

change of f (KW21, Proposition 32). Given these two results, one would expect

Theorem 3.1.3 to be true.

3.3 Main Results

We now proceed to the proof of the main theorem, as stated in Theorem 3.1.3.

Our first step is to apply the machinery of Subsection 3.2.2 to frame our problem

in terms of motivic homotopy theory. Recall from Conventions 3.1.5 that we have

already fixed a choice of field embedding k ↪−→ k(p). Thus, for any k-scheme X and

any point p ∈ X, we have the canonical k(p)-rational point p̃ ∈ Xk(p) sitting over p,

defined via the following pullback diagram:

Speck(p)

Xk(p) Speck(p)

X Speck.

p̃

id

p ⌟
ρ
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We write fk(p) and π : An
k(p) → An

k for the morphisms induced by base change. We

then may consider the following diagram of k-schemes:

An
k(p) An

k(p)

An
k An

k

fk(p)

π π

f

which maps

p̃ 0

p 0.

Note that the point p̃ is a root of fk(p), so fk(p) has an isolated rational zero at p̃.

Let U ⊆ An
k(p) be an open neighborhood containing p̃ and no other zeros of fk(p).

As the structure map An
k → Speck is universally open, π is an open morphism of

schemes. Thus, π(U) is an open neighborhood of p and contains no other zeros of f

by construction. Taking cofibers, we obtain an induced diagram of motivic spaces

U
U∖{p̃}

An
k(p)

An
k(p)

∖{0}

π(U)
π(U)∖{p}

An
k

An
k∖{0} .

fk(p)

πp π0

f

(3.3.1)

As discussed in Section 3.2.1, we have the following A1-weak equivalences:

U

U ∖ {p̃}
∼−→

Pnk(p)
Pnk(p) ∖ {p̃}

≃
(
Pnk/Pn−1

k

)
∧ Spec(k(p))+,

An
k(p)

An
k(p) ∖ {0}

∼−→
Pnk(p)

Pnk(p) ∖ {0}
≃
(
Pnk/Pn−1

k

)
∧ Spec(k(p))+,

π(U)

π(U)∖ {p}
∼−→ Pnk

Pnk ∖ {p}
≃
(
Pnk/Pn−1

k

)
∧ Spec(k(p))+,

An
k

An
k ∖ {0}

∼−→ Pnk
Pnk ∖ {0}

≃ Pnk/Pn−1
k .
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Appending these A1-weak equivalences to Diagram 3.3.1, we obtain the following

diagram in the unstable homotopy category H(k).(
Pnk/P

n−1
k

)
∧ Spec(k(p))+

(
Pnk/P

n−1
k

)
∧ Spec(k(p))+

U
U∖{p̃}

An
k(p)

An
k(p)

∖{0}

(
Pnk/P

n−1
k

)
∧ Spec(k(p))+ Pnk/P

n−1
k

π(U)
π(U)∖{p}

An
k

An
k∖{0}

∼

πp

fk(p)

∼

∼

f

∼

π0

(3.3.2)

The dashed arrows above are obtained by inverting A1-weak equivalences.

We now turn our attention to the dashed face of the cube (3.3.2). We obtain

the class fp from Definition 3.2.4 by pre-composing with the collapse map (see Dia-

gram 3.3.3). Working in the stable homotopy category, the top edge of the dashed

face is exactly the image of
(
fk(p)

)
p̃
under ρ∗ : SH(k(p)) → SH(k). Taking suspen-

sion spectra, we get the following diagram in SH(k).
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(
Pnk/P

n−1
k

)
∧ Spec(k(p))+

(
Pnk/P

n−1
k

)
∧ Spec(k(p))+

(
Pnk/P

n−1
k

)
∧ Spec(k(p))+ Pnk/P

n−1
k

Pnk/P
n−1
k

ρ∗(fk(p))p̃

r g

(Pn
k/P

n−1
k )∧η1k

fp

(3.3.3)

The rest of our paper will center around the diagram above. In proving Theo-

rem 3.1.3, we will show that r in Diagram (3.3.3) is invertible in SH(k), which

allows us to rewrite fp by exploiting the commutativity of this diagram.

3.3.1 The stable classes of r and g

In order to analyze Diagram (3.3.3) we state the following two lemmas, which allow

us to characterize the SH(k)-classes of r and g, respectively.

Lemma 3.3.4. Let p ∈ An
k be a closed point with finite separable residue field

k(p)/k. Let π : An
k(p) → An

k be the projection map induced by the structure map

ρ : Speck(p) → Speck, and let p̃ ∈ An
k(p) be the canonical k(p)-rational point above

p. Then for any open neighborhood U about p̃ such that U ∩ π−1(p) = {p̃}, the

stable class in SH(k) of the map

U

U ∖ {p̃}
→ π(U)

π(U)∖ {p}
(3.3.5)

89



is given by (Pnk/P
n−1
k ) ∧ ρ∗id1k(p)

.

Proof. The base change π : An
k(p) → An

k is simply Spec applied to the k-algebra

homomorphism ι : k[x1, ..., xn] ↪−→ k(p)[x1, ..., xn]. As ι(xi) = xi, we get an induced

map TAn
k(p) → π∗TAn

k which in turn induces an isomorphism (TAn
k(p))p̃

∼−→ (π∗TAn
k)p̃.

The right hand side is easily seen to be TpAn
k ⊗k k(p). As k(p)-vector spaces, we have

isomorphisms Tp̃An
k(p)
∼= TpAn

k ⊗k k(p) ∼= An
k(p).

Next, we consider the Thom spaces Th(Tp̃An
k(p)) and Th(TpAn

k ⊗k k(p)). Via the

purity isomorphism in Theorem 3.2.2, we have weak equivalences of k-motivic spaces

U

U ∖ {p̃}
≃ Th

(
Tp̃An

k(p)

) ∼−→
(
Pnk/Pn−1

k

)
∧ Spec(k(p))+,

π(U)

π(U)∖ {p}
≃ Th (TpAn

k)
∼−→
(
Pnk/Pn−1

k

)
∧ Spec(k(p))+.

Since base change is a left adjoint and Thom spaces are obtained by taking colimits,

we deduce

Th(TpAn
k ⊗k k(p)) ≃ ρ∗Th(TpAn

k)

as k(p)-motivic spaces. Moreover, the purity theorem implies that Th(TpAn
k) is a

k(p)-motivic space, so its base change to k(p) is canonically identified with itself

in the homotopy category of k(p)-motivic spaces. That is, the class in SH(k(p)) of

Equation 3.3.5 is given by the class in SH(k(p)) of the canonical A1-weak equivalence
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Th(Tp̃An
k(p))

∼−→ Th(TpAn
k). This has the class of

(Pnk(p)/Pn−1
k(p)) ∧ id1k(p)

in SH(k(p)) under the identification given by the purity isomorphism. Finally, we

push forward via the functor ρ∗ : SH(k(p))→ SH(k) to get that the class of Equa-

tion 3.3.5 is (Pnk/P
n−1
k ) ∧ ρ∗id1k(p)

.

Lemma 3.3.6. Let k(p)/k be a finite separable field extension, let q ∈ An
k be any k-

rational point, and let π : An
k(p) → An

k be the projection map induced by the structure

map ρ : Speck(p) → Speck. Denote by q̃ ∈ An
k(p) the canonical k(p)-rational point

above q. Then for any open neighborhood U containing q̃, the stable class in SH(k)

of the map

U

U ∖ {q̃}
→ π(U)

π(U)∖ {q}
(3.3.7)

is given by (Pnk/P
n−1
k ) ∧ ε1k

.

Proof. Since q is k-rational, q̃ is the unique canonical k(p)-rational point above q, so

we may assume that q̃ and q are the origins of An
k(p) and An

k , respectively, in which

case we may take U = An
k(p). It thus suffices to consider the class in SH(k) of the map

of Thom spaces Th0An
k(p) → Th0An

k induced by the canonical map π : An
k(p) → An

k .

By viewing affine space as a trivial vector bundle over the origin, (Hoy14, p.9) implies

that this is the desired component of the counit of the exceptional adjunction.
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Corollary 3.3.8. The map g in Diagram 3.3.3 is
(
Pnk/P

n−1
k

)
∧ ε1k

, and the map r is(
Pnk/P

n−1
k

)
∧ ρ∗id1k(p)

.

Remark 3.3.9. Lemmas 3.3.4 and 3.3.6 hold more generally for schemes that are

locally isomorphic to affine space, as we rely only on local computations in their

proofs.

3.3.2 Proof of Theorem 3.1.3

By Corollary 3.3.8, we may rewrite Diagram (3.3.3) as

(
Pnk/P

n−1
k

)
∧ Spec(k(p))+

(
Pnk/P

n−1
k

)
∧ Spec(k(p))+

(
Pnk/P

n−1
k

)
∧ Spec(k(p))+ Pnk/P

n−1
k

Pnk/P
n−1
k

ρ∗(fk(p))p̃

(Pn
k/P

n−1
k )∧ρ∗id1k(p) ∼ (Pn

k/P
n−1
k )∧ε1k

(Pn
k/P

n−1
k )∧η1k

fp

(3.3.10)

In the stable homotopy category SH(k), Diagram 3.3.10 is Pnk/P
n−1
k ∧(−) applied

to the diagram

ρ∗1k(p) ρ∗1k(p)

ρ∗1k(p) 1k

1k

ρ∗(fk(p))p̃

ρ∗id1k(p) ∼ ε1k

η1k

fp

(3.3.11)
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We remark that we are able to invert the weak equivalence ρ∗id1k(p)
of Dia-

gram 3.3.11. Since Diagram 3.3.11 is commutative, we may express fp as the com-

posite

1k
η1k−−→ ρ∗ρ

∗1k ≃ ρ∗1k(p)
ρ∗(fk(p))p̃−−−−−−→ ρ∗1k(p) ≃ ρ!ρ

!1k
ε1k−−→ 1k.

Recall that in the setting of Theorem 3.1.3, the morphism ρ is finite and étale, which

gives a canonical isomorphism ρ∗ ≃ ρ♯ (Remark 3.2.12). Thus by Definition 3.2.15,

we have fp = Trk(p)/k
(
fk(p)

)
p̃
. Applying Lemma 3.2.16, we conclude that degA

1

p (f) =

Trk(p)/k deg
A1

p̃ (fk(p)), as desired.

3.3.3 A brief proof of Corollary 3.1.4

In (KW21, Proposition 32), the authors prove that the Scheja–Storch bilinear form,

denoted indp(f), is computed by the trace indp(f) = Trk(p)/kindp̃(fk(p)). Moreover in

(KW19), the authors prove that at any rational point, the Scheja–Storch form agrees

with the local A1-degree. Combining these two results with Theorem 3.1.3, for any

isolated zero p with finite separable residue field we have that

indp(f) = Trk(p)/kindp̃(fk(p)) = Trk(p)/k deg
A1

p̃ (fk(p)) = degA
1

p (f).
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Chapter 4

Bézoutians and the A1-degree

with S. McKean and S. Pauli

Abstract: We prove that both the local and global A1-degree of an endomorphism of

affine space can be computed in terms of the multivariate Bézoutian. In particular,

we show that the Bézoutian bilinear form, the Scheja–Storch form, and the A1-

degree for complete intersections are isomorphic. Our global theorem generalizes

Cazanave’s theorem in the univariate case, and our local theorem generalizes Kass–

Wickelgren’s theorem on EKL forms and the local degree. This result provides an

algebraic formula for local and global degrees in motivic homotopy theory.
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4.1 Introduction

Morel’s A1-Brouwer degree (Mor06) assigns a bilinear form-valued invariant to a

given endomorphism of affine space. However, Morel’s construction is not explicit.

In order to make computations and applications, we would like algebraic formulas for

the A1-degree. Such formulas were constructed by Cazanave for the global A1-degree

in dimension 1 (Caz12), Kass–Wickelgren for the local A1-degree at rational points

and étale points (KW19), and Brazelton–Burklund–McKean–Montoro–Opie for the

local A1-degree at separable points (BBM+21). In this paper, we give a general

algebraic formula for the A1-degree in both the global and local cases. In the global

case, we remove Cazanave’s dimension restriction, while in the local case, we remove

previous restrictions on the residue field of the point at which the local A1-degree is

taken.

Let k be a field, and let f = (f1, . . . , fn) : An
k → An

k be an endomorphism of affine

space with isolated zeros, so that Q := k[x1, . . . , xn]/(f1, . . . , fn) is a complete inter-

section. We now recall the definition of the Bézoutian of f , as well as a special bilinear

form determined by the Bézoutian. Introduce new variables X := (X1, . . . , Xn) and

Y := (Y1, . . . , Yn). For each 1 ≤ i, j ≤ n, define the quantity

∆ij :=
fi(Y1, . . . , Yj−1, Xj, . . . , Xn)− fi (Y1, . . . , Yj, Xj+1, . . . , Xn)

Xj − Yj
.
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Definition 4.1.1. The Bézoutian of f is the image Béz(f1, . . . , fn) of the determi-

nant det (∆ij) in k[X, Y ]/(f(X), f(Y )). Given a basis {a1, . . . , am} of Q as a k-vector

space, there exist scalars Bi,j for which

Béz(f1, . . . , fn) =
m∑

i,j=1

Bi,jai(X)aj(Y ).

We define the Bézoutian form of f to be the class βf in the Grothendieck–Witt ring

GW(k) determined by the bilinear form Q×Q→ k with Gram matrix (Bi,j).

For any isolated zero of f corresponding to a maximal ideal m, there is an anal-

ogous bilinear form βf,m on the local algebra Qm. We refer to βf,m as the local

Bézoutian form of f at m. We will demonstrate that both βf and βf,m yield well-

defined classes in GW(k). Our main theorem is that the Bézoutian form of f agrees

with the A1-degree in both the local and global contexts.

Theorem 4.1.2. Let chark ̸= 2. Let f : An
k → An

k have an isolated zero at a

closed point m. Then βf,m is isomorphic to the local A1-degree of f at m. If we

further assume that all the zeros of f are isolated, then βf is isomorphic to the

global A1-degree of f .

Because the Bézoutian form can be explicitly computed using commutative al-

gebraic tools, Theorem 4.1.2 provides a tractable formula for A1-degrees and Euler

classes in motivic homotopy theory. Using the Bézoutian formula for the A1-degree,
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we are able to deduce several computational rules for the degree. We also provide

a Sage implementation for calculating local and global A1-degrees via the Bézoutian

at (BMP21a).

Remark 4.1.3. The key contribution of this article is computability. Building on

the work of Kass–Wickelgren (KW19), Bachmann–Wickelgren (BW21) show that

the A1-degree agrees with the Scheja–Storch form as elements of KO0(k). In The-

orem 4.5.1, we show how this immediately implies that the A1-degree and Scheja–

Storch form determine the same element of GW(k). Scheja–Storch (SS75) showed

that their form is a Bézoutian bilinear form (in the sense of Definition 4.3.8; see also

Lemma 4.4.5 and Remark 4.4.9), which was further explored by Becker–Cardinal–

Roy–Szafraniec (BCRS96). Putting these results together shows that the isomor-

phism class of the Bézoutian bilinear form is the A1-degree.

In dimension 1, Cazanave (Caz12) gives a simple formula for computing the

A1-degree as a Bézoutian bilinear form in the global setting. However, it is not

immediately clear how to adapt this to higher dimensions or the local setting. Becker–

Cardinal–Roy–Szafraniec show how to compute Bézoutian bilinear forms in terms

of “dualizing forms,” but this method is computationally analogous to using the

Eisenbud–Khimshiashvili–Levine form to compute the A1-degree (KW19). In the

proof of Theorem 4.1.2 (found in Section 4.5), we show that our two notions of
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Bézoutian bilinear forms (Definitions 4.1.1 and 4.3.8) agree up to isomorphism. Since

Definition 4.1.1 is the desired generalization of Cazanave’s formula, this enables us

to calculate A1-degrees in full generality.

4.1.1 Outline

Before proving Theorem 4.1.2, we recall some classical results on Bézoutians (fol-

lowing (BCRS96)) in Section 4.3, as well as the work of Scheja–Storch on residue

pairings (SS75) in Section 4.4. We then discuss a local decomposition procedure for

the Scheja–Storch form and show that the global Scheja–Storch form is isomorphic

to the Bézoutian form in Section 4.4.1. In Section 4.5, we complete the proof of

Theorem 4.1.2 by applying the work of Kass–Wickelgren (KW19) and Bachmann–

Wickelgren (BW21) on the local A1-degree and the Scheja–Storch form. Using The-

orem 4.1.2, we give an algorithm for computing the local and global A1-degree at

the end of Section 4.5.1, available at (BMP21a). In Section 4.6, we establish some

basic properties for computing degrees. In Section 4.7, we provide a step-by-step

illustration of our ideas by working through some explicit examples. Finally, we

implement our code to compute some examples of A1-Euler characteristics of Grass-

mannians in Section 4.8. We check our computations by proving a general formula

for the A1-Euler characteristic of a Grassmannian in Theorem 4.8.4. The A1-Euler
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characteristic of Grassmannians is essentially a folklore result that follows from the

work of Hoyois, Levine, and Bachmann–Wickelgren.

4.1.2 Background

Let GW(k) denote the Grothendieck–Witt group of isomorphism classes of symmet-

ric, non-degenerate bilinear forms over a field k. Morel’s A1-Brouwer degree (Mor06,

Corollary 1.24)

deg : [Pnk/Pn−1
k ,Pnk/Pn−1

k ]A1 → GW(k),

which is a group isomorphism (in fact, a ring isomorphism (Mor04, Lemma 6.3.8))

for n ≥ 2, demonstrates that bilinear forms play a critical role in motivic homotopy

theory. However, Morel’s A1-degree is non-constructive. Kass and Wickelgren ad-

dressed this problem by expressing the A1-degree as a sum of local degrees (KW21,

Lemma 19) and providing an explicit formula (building on the work of Eisenbud–

Levine (EL77) and Khimshiashvili (Him77)) for the local A1-degree (KW19) at ra-

tional points and étale points. This explicit formula can also be used to compute

the local A1-degree at points with separable residue field by (BBM+21). Together,

these results allow one to compute the global A1-degree of a morphism f : An
k → An

k

with only isolated zeros by computing the local A1-degrees of f over its zero locus,

so long as the residue field of each point in the zero locus is separable over the base
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field. In the local case, Theorem 4.1.2 gives a commutative algebraic formula for the

local A1-degree at any closed point.

Cazanave showed that the Bézoutian gives a formula for the global A1-degree

of any endomorphism of P1
k (Caz12). An advantage to Cazanave’s formula is that

one does not need to determine the zero locus or other local information about f .

We extend Cazanave’s formula for morphisms f : An
k → An

k with isolated zeros.

The work of Scheja–Storch on global complete intersections (SS75) is central to

both (KW19) and our result. We also rely on the work of Becker–Cardinal–Roy–

Szafraniec (BCRS96), who describe a procedure for recovering the global version of

the Scheja–Storch form.

Theorem 4.1.2 has applications wherever Morel’s A1-degree is used. One partic-

ularly successful application of the A1-degree has been the A1-enumerative geometry

program. The goal of this program is to enrich enumerative problems over arbitrary

fields by producing GW(k)-valued enumerative equations and interpreting them ge-

ometrically over various fields. Notable results in this direction include Srinivasan

and Wickelgren’s count of lines meeting four lines in three-space (SW21), Larson and

Vogt’s count of bitangents to a smooth plane quartic (LV21), and Bethea, Kass, and

Wickelgren’s enriched Riemann–Hurwitz formula (BKW20). See (McK21; Pau22)

for other related works. For a more detailed account of recent developments in A1-
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enumerative geometry, see (Bra21; PW21).
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4.2 Notation and conventions

In this section, we fix some standard terminology and notation. Let k denote an

arbitrary field. We will always use f = (f1, . . . , fn) : An
k → An

k to denote an endo-

morphism of affine space, assumed to have isolated zeros when we work with it in the
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global context. We denote by Q the global algebra associated to this endomorphism

Q :=
k[x1, . . . , xn]

(f1, . . . , fn)
.

The maximal ideals of Q correspond to the maximal ideals of k[x1, . . . , xn] on which

f vanishes. For any maximal ideal m of k[x1, . . . , xn] on which f vanishes, we denote

by Qm the local algebra

Qm :=
k[x1, . . . , xn]m
(f1, . . . , fn)

.

If λ : V → k is a k-linear form on any k-algebra, we will denote by Φλ the associated

bilinear form given by

Φλ : V × V → k

(a, b) 7→ λ(ab).

Definition 4.2.1. We say that λ is a dualizing linear form if Φλ is non-degenerate

as a symmetric bilinear form (BCRS96, 2.1). If λ is dualizing, then we say that two

vector space bases {ai} and {bi} of V are dual with respect to λ if

λ(aibj) = δij,

where δij = 1 for i = j and δij = 0 for i ̸= j. We show in Remark 4.3.6 that if {ai}

and {bi} are dual with respect to λ, then λ is a dualizing linear form.
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More notation will be introduced as we provide an overview of Bézoutians and the

Scheja–Storch bilinear form. We will borrow and clarify notation from both (SS75)

and (BCRS96).

4.3 Bézoutians

We first provide an overview of the construction of the Bézoutian, following (BCRS96).

Given one of our n polynomials fi, we introduce two sets of auxiliary indeterminants

and study how fi changes when we incrementally exchange one set of indeterminants

for the other. Explicitly, consider variables X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn).

For any 1 ≤ i, j ≤ n, we denote by ∆ij the quantity

∆ij :=
fi(Y1, . . . , Yj−1, Xj, . . . , Xn)− fi (Y1, . . . , Yj, Xj+1, . . . , Xn)

Xj − Yj
.

Note that ∆ij is a multivariate polynomial. Indeed, fi(Y1, . . . , Yj−1, Xj, . . . , Xn) and

fi(Y1, . . . , Yj, Xj+1, . . . , Xn) differ only in the terms in which Xj or Yj appear, so we

can expand the difference

fi(Y1, . . . , Yj−1, Xj, . . . , Xn)− fi (Y1, . . . , Yj, Xj+1, . . . , Xn) =
∑
ℓ≥1

gℓ · (Xj − Yj)ℓ,

where gℓ ∈ k[Y1, . . . , Yj−1, Xj+1, . . . , Xn]. In this notation, ∆ij =
∑

ℓ≥1 gℓ · (Xj −

Yj)
ℓ−1.
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We view ∆ij as living in the tensor product ring Q⊗k Q, under the isomorphism

ε :
k[X, Y ]

(f(X), f(Y ))

∼=−→ Q⊗k Q,

given by sending Xi to xi ⊗ 1, and Yi to 1⊗ xi.

Definition 4.3.1. We define the Bézoutian of the polynomials f1, . . . , fn to be the

image Béz(f1, . . . , fn) of the determinant det (∆ij) in Q⊗k Q.

Example 4.3.2. Let (f1, f2, f3) = (x21, x
2
2, x

2
3). Then we have that

Béz(f1, f2, f3) = ε

det


X1 + Y1 0 0

0 X2 + Y2 0

0 0 X3 + Y3




= ε ((X1 + Y1)(X2 + Y2)(X3 + Y3))

= x1x2x3 ⊗ 1 + x1x2 ⊗ x3 + x1x3 ⊗ x2 + x2x3 ⊗ x1

+ x1 ⊗ x2x3 + x2 ⊗ x1x3 + x3 ⊗ x1x2 + 1⊗ x1x2x3.

There is a natural multiplication map δ : Q⊗k Q→ Q, defined by δ(a⊗ b) = ab,

that sends the Bézoutian of f to the image of the Jacobian of f in Q.

Proposition 4.3.3. Let Jac(f1, . . . , fn) be the image of the Jacobian determinant

det( ∂fi
∂xj

) in Q. Then

δ (Béz(f1, . . . , fn)) = Jac(f1, . . . , fn) ∈ Q.
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Proof. Note that (δ◦ε)(a(X, Y )) = a(x, x) and δ◦ε is an algebra homomorphism. In

particular, δ◦ε preserves the multiplication and addition occurring in the determinant

which defines Béz(f1, . . . , fn). Therefore it suffices for us to verify that

(δ ◦ ε) (∆ij) =
∂fi
∂xj

.

Recall that

∆ij =
fi(Y1, . . . , Yj−1, Xj, . . . , Xn)− fi(Y1, . . . , Yj, Xj+1, . . . , Xn)

Xj − Yj
.

Taking the xj-Taylor expansion of f(x1, . . . , xn) about Yj gives us

fi(x1, . . . , xn) = fi(x1, . . . , Yj, . . . , xn) +
∑
ℓ≥1

∂ℓfi
∂xℓj
· (xj − Yj)ℓ.

We now subtract fi(x1, . . . , Yj, . . . , xn) from both sides, evaluate xj 7→ Xj, and divide

by Xj − Yj to deduce

fi(x1, . . . , Xj, . . . , xn)− fi(x1, . . . , Yj, . . . , xn)
(Xj − Yj)

=
∂fi
∂xj

+
∑
ℓ≥2

∂ℓfi
∂xℓj
· (Xj − Yj)ℓ−1.

Finally, evaluating Xj 7→ xj and Yj 7→ xj gives us (δ ◦ ε)(∆ij) =
∂fi
∂xj

, as desired.

Lemma 4.3.4. Let a1, . . . , am be any vector space basis forQ, and write the Bézoutian

as

Béz(f1, . . . , fn) =
m∑
i=1

ai ⊗ bi

for some b1, . . . , bn ∈ Q. Then {bi}mi=1 is a basis for Q .
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Proof. This is (BCRS96, 2.10(iii)).

This allows us to associate to the Bézoutian a pair of vector space bases for Q.

Given any such pair of bases, we will construct a unique linear form for which the

bases are dual. Before doing so, we establish some equivalent conditions for the

duality of a linear form given a pair of bases.

Proposition 4.3.5. Let {ai} and {bi} be a pair of bases for B. Consider the induced

k-linear isomorphism

Θ : Homk(Q, k)→ Q

φ 7→
∑
i

φ(ai)bi.

Given a linear form λ : Q→ k, the following are equivalent:

1. We have that Θ(λ) =
∑

i λ(ai)bi = 1.

2. For any a ∈ Q, we have a =
∑

i λ(aai)bi.

3. We have that {ai} and {bi} are dual with respect to λ.

Proof. Note that (2) implies (1) by setting a = 1. Next, we remark that Θ is

a Q-module isomorphism by (SS75, 3.3 Satz), where the Q-module structure on

Homk(Q, k) is given by a · φ = φ(a · −). This allows us to conclude that a ·Θ(λ) =

106



Θ(a · λ) for any linear form λ. In particular, we have

a
∑
i

λ(ai)bi =
∑
i

λ(aai)bi.

It follows from this identity that (1) implies (2). Now suppose that (2) holds. By

setting a = bj for some j, we have

∑
i

λ(aibj)bi = bj.

Since {bi} is a basis, it follows that λ(aibj) = δij. Thus the bases {ai} and {bi} are

dual with respect to λ. Finally, suppose that (3) holds, so that λ(aibj) = δij. For

any a ∈ Q, write a as a :=
∑

j cjbj for some scalars cj. Then

∑
i

λ(aai)bi =
∑
i

λ

(
ai
∑
j

cjbj

)
bi =

∑
i

(∑
j

cjλ(aibj)

)
bi

=
∑
i

cibi = a.

Thus (3) implies (2).

Remark 4.3.6. If {ai} and {bi} are dual with respect to λ, then λ is a dualizing

form. Indeed, suppose there exists x ∈ Q such that Φλ(x, y) = 0 for all y ∈ Q. Write

x =
∑

i xiai with xi ∈ k. Then

0 = λ(xbj) = λ

(∑
i

xiaibj

)

=
∑
i

xiλ(aibj) = xj

for all j, so x = 0.
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Corollary 4.3.7. Let {ai} and {bi} be two k-vector space bases for Q. Then there

exists a unique dualizing linear form λ : Q → k such that {ai} and {bi} are dual

with respect to λ.

Proof. As Θ is a k-algebra isomorphism, it admits a unique preimage of 1. Thus,

given any pair of bases {ai} and {bi} of Q, there is a unique dualizing linear form

with respect to which {ai} and {bi} are dual.

Definition 4.3.8. We call Φλ a Bézoutian bilinear form if λ : Q→ k is a dualizing

linear form such that

Béz(f1, . . . , fn) =
m∑
i=1

ai ⊗ bi,

where {ai} and {bi} are dual bases with respect to λ.

A priori this is different than the Bézoutian form detailed in Definition 4.1.1,

although we will prove that they define the same class in GW(k) in Section 4.5.1.

Proposition 4.3.9. Given a function f : An
k → An

k with isolated zeros, its Bézoutian

bilinear form is a well-defined class in GW(k).

Proof. Let Φλ be a Bézoutian bilinear form for f . Recall that Φλ : Q × Q → k is

defined by Φλ(a, b) = λ(ab). Since λ is a dualizing linear form, Φλ is non-degenerate

and as Q is commutative, Φλ is symmetric. Lemma 4.3.4 implies that given a basis
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a1, . . . , am for Q, we can write

Béz(f1, . . . , fn) =
m∑
i=1

ai ⊗ bi,

and obtain a second basis b1, . . . , bm for Q. By Corollary 4.3.7, there is a dualizing

linear form for the two bases {ai}mi=1 and {bi}mi=1. It remains to show that if

Béz(f1, . . . , fn) =
m∑
i=1

ai ⊗ bi =
m∑
i=1

a′i ⊗ b′i,

for some bases {ai}, {bi} dual with respect to λ and {a′i}, {b′i} dual with respect to λ′,

then Φλ and Φλ′ are isomorphic. We will in fact show that λ = λ′, so that Φλ = Φλ′ .

Write ai =
∑

s αisa
′
s and bi =

∑
s βisb

′
s. Then

m∑
i=1

a′i ⊗ b′i =
m∑
i=1

ai ⊗ bi =
∑
i

(∑
s

αisa
′
s

)
⊗

(∑
t

βitb
′
t

)

=
∑
s,t

(∑
i

αisβit

)
a′s ⊗ b′t.

Since {a′s⊗ b′t} is a basis for Q⊗kQ, we conclude that
∑

i αisβit = δst. In particular,

(αij)
−1 = (βij)

T , so (βij)(αij)
T is the identity matrix. Thus

∑
j αsjβtj = δst.

Now given g =
∑

i ciai =
∑

i c
′
ia

′
i ∈ Q and 1 =

∑
i dibi =

∑
i d

′
ib

′
i, we have that

λ(g) = λ

(∑
i

(ciai) ·
∑
j

djbj

)
=
∑
i,j

cidjλ (aibj) =
∑
i

cidi.

Similarly, we have λ′(g) =
∑

i c
′
id

′
i. By our change of bases, we have c′j =

∑
i cjαij
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and d′j =
∑

i diβij. Thus

λ′(g) =
∑
j

c′jd
′
j =

∑
j

(∑
s

csαsj

)(∑
t

dtβtj

)

=
∑
s,t

csdt

(∑
j

αsjβtj

)
=
∑
s

csds = λ(g).

Therefore λ = λ′, as desired.

Example 4.3.10. Continuing Example 4.3.2, let f = (x21, x
2
2, x

2
3), so that

ε−1(Béz(f1, f2, f3)) = (X1 + Y1)(X2 + Y2)(X3 + Y3)

= X1X2X3 +X1X2Y3 +X1Y2X3 +X1Y2Y3

+ Y1X2X3 + Y1X2Y3 + Y1Y2X3 + Y1Y2Y3.

We give two bases for k[Z1, Z2, Z3]/(Z
2
1 , Z

2
2 , Z

2
3) in the following table, where we

replace Z by either X or Y . We pair off these bases in a convenient way.
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i ai bi

1 1 Y1Y2Y3

2 X1 Y2Y3

3 X2 Y1Y3

4 X3 Y1Y2

5 X1X2 Y3

6 X1X3 Y2

7 X2X3 Y1

8 X1X2X3 1

The Bézoutian we computed is in the desired form
∑8

i=1 ai ⊗ bi, so we now need to

compute the dualizing linear form λ for {ai} and {bi}. Since 1 = 1 · b8 +
∑7

i=1 0 · bi,

we define λ by λ(ai) = 0 for 1 ≤ i ≤ 7 and λ(a8) = λ(X1X2X3) = 1. Now let

g ∈ k[X1, X2, X3]/(X
2
1 , X

2
2 , X

2
3 ) be arbitrary. We can write g as

g = c1 + c2X1 + c3X2 + c4X3 + c5X1X2 + c6X1X3 + c7X2X3 + c8X1X2X3.

Then λ is the dualizing linear form sending

λ :
k[X1, X2, X3]

(X2
1 , X

2
2 , X

2
3 )
→ k

g 7→ c8.

Finally we can compute the Gram matrix of Φλ in the basis {ai}. Note that aiaj is
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a scalar multiple of X1X2X3 if and only if i+ j − 1 = 8. Thus the Gram matrix is

Φλ =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



∼=
4⊕
i=1

1 0

0 −1

 .

4.4 The Scheja–Storch bilinear form

Associated to any polynomial with an isolated zero, Eisenbud and Levine (EL77) and

Khimshiashvili (Him77) used the Scheja–Storch construction (SS75) to produce a bi-

linear form on the local algebra Qm. Kass and Wickelgren proved that this Eisenbud–

Khimshiashvili–Levine bilinear form computes the local A1-degree (KW19). The

machinery of Scheja and Storch works in great generality; in particular, one may

produce a Scheja–Storch bilinear form on the global algebra Q as well as the local al-

gebras Qm. We will provide a brief account of the Scheja–Storch construction before

comparing it with the Bézoutian.

In (SS75), k⟨X⟩ := k ⟨X1, . . . , Xn⟩ denotes either a polynomial ring k [X1, . . . , Xn]
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or a power series ring k [[X1, . . . , Xn]]. We will also use this notation, although we will

focus on the situation where k⟨X⟩ is a polynomial ring. Let ρ : k ⟨X⟩ → Q denote

the map obtained by quotienting out by the ideal (f1, . . . , fn), let µ1 : k ⟨X⟩ ⊗k

k ⟨X⟩ → k ⟨X⟩ denote the multiplication map, and let µ : Q ⊗k Q → Q denote the

multiplication map on the global algebra, fitting into a commutative diagram

k ⟨X⟩ ⊗k k ⟨X⟩ k ⟨X⟩

Q⊗k Q Q.

µ1

ρ⊗ρ ρ

µ

We remark that fj⊗1−1⊗fj lies in ker(µ1), and that ker(µ1) is generated by elements

of the form Xi⊗ 1− 1⊗Xi. Thus for any j, there are elements aij ∈ k ⟨X⟩ ⊗k k ⟨X⟩

such that

fj ⊗ 1− 1⊗ fj =
n∑
i=1

aij (Xi ⊗ 1− 1⊗Xi) . (4.4.1)

We denote by ∆ the following distinguished element in the tensor algebra Q⊗k Q

∆ := (ρ⊗ ρ) (det(aij)) ,

which corresponds to the Bézoutian which we will later demonstrate. It is true that

∆ is independent of the choice of aij, as shown by Scheja and Storch (SS75, 3.1 Satz).

We now define an important isomorphism χ of k-algebras used in the Scheja–Storch

construction. However, we will phrase this more categorically than in (SS75), as it

will benefit us later.
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Proposition 4.4.2. Consider two endofunctors F,G : Algfgk → Alg
fg
k on the category

of finitely generated k-algebras, where F (A) = A⊗kA andG(A) = Homk (Homk (A, k) , A).

Then there is a natural isomorphism χ : F → G whose component at a k-algebra A

is

χA : A⊗k A→ Homk (Homk (A, k) , A)

b⊗ c 7→ [φ 7→ φ(b)c] .

Proof. This canonical isomorphism is given in (SS75, p.181), so it will suffice for us

to verify naturality. Let g : A → B be any morphism of k-algebras. Consider the

induced maps g ⊗ g : A⊗k A→ B ⊗k B and

g∗ : Homk (Homk(A, k), A)→ Homk (Homk (B, k) , B)

ψ 7→ [ε 7→ g ◦ ψ(ε ◦ g)] .

It remains to show that the following diagram commutes.

A⊗k A Homk (Homk (A, k) , A)

B ⊗k B Homk (Homk (B, k) , B)

χA

g⊗g g∗

χB

To see this, we compute g∗ ◦ χA = [b⊗ c 7→ [ε 7→ g((ε ◦ g)(b) · c)]]. Note that ε ◦ g :

B → k, so (ε ◦ g)(b) ∈ k. Since g is k-linear, we have g((ε ◦ g)(b) · c) = ε(g(b)) · g(c).

Next, we compute χB ◦ (g ⊗ g) = [b⊗ c 7→ [ε 7→ ε(g(b)) · g(c)]]. Thus g∗ ◦ χA =

χB ◦ (g ⊗ g), so the diagram commutes.
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We now let Θ := χQ(∆) denote the image of ∆ under the component of this

natural isomorphism at the global algebra Q. We have that Θ is a k-linear map

Θ : Homk(Q, k)→ Q. Letting η denote Θ−1(1), we obtain a well-defined linear form

η : Q→ k by (SS75, 3.3 Satz).

Definition 4.4.3. We refer to Φη : Q×Q→ k as the global Scheja–Storch bilinear

form.

The Bézoutian gives us an explicit formula for ∆. As a result, the global Scheja–

Storch form agrees with the Bézoutian form.

Proposition 4.4.4. In Q⊗k Q, we have ∆ = Béz(f1, . . . , fn).

Proof. We first compute

n∑
i=1

∆ji (Xi − Yi) =
n∑
i=1

fj(Y1, . . . , Yi−1, Xi, . . . , Xn)− fj(Y1, . . . , Yi, Xi+1, . . . , Xn)

(Xi − Yi)
· (Xi − Yi)

=
n∑
i=1

fj(Y1, . . . , Yi−1, Xi, . . . , Xn)− fj(Y1, . . . , Yi, Xi+1, . . . , Xn)

= fj(X1, . . . , Xn)− fj(Y1, . . . , Yn).

Let φ : k⟨X⟩ ⊗k k⟨X⟩
∼−→ k⟨X, Y ⟩ be the ring isomorphism given by φ(b ⊗ c) =

b(X)c(Y ). Note that φ(xi ⊗ 1) = Xi and φ(1 ⊗ xi) = Yi, so the inverse of φ is
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characterized by φ−1(Xi) = xi ⊗ 1 and φ−1(Yi) = 1⊗ xi. It follows that

fj ⊗ 1− 1⊗ fj = φ−1(fj(X)− fj(Y )) =
n∑
i=1

φ−1(∆ji(Xi − Yi))

=
n∑
i=1

φ−1(∆ji)(xi ⊗ 1− 1⊗ xi).

We may thus set aij = φ−1(∆ji), and (SS75, 3.1 Satz) implies that ∆ = (ρ ⊗

ρ)(det(aij)). On the other hand, (ρ⊗ ρ)(φ−1(det(∆ji))) = Béz(f1, . . . , fn) by Defini-

tion 4.3.1.

Lemma 4.4.5. The Bézoutian bilinear form and the global Scheja–Storch bilinear

form are identical.

Proof. We showed in Proposition 4.4.4 that ∆ is the Bézoutian in Q⊗k Q. We now

show that the associated forms are identical. Pick bases {ai} and {bi} of Q such that

∆ = Béz(f1, . . . , fn) =
m∑
i=1

ai ⊗ bi.

Since the natural isomorphism χ has k-linear components, ∆ is mapped to

Θ := χQ(∆) =

[
φ 7→

m∑
i=1

φ(ai)bi

]
.

Thus η := Θ−1(1) is the linear form η : Q → k satisfying
∑m

i=1 η(ai)bi = 1. By

Proposition 4.3.5, this implies that η is the form for which {ai} and {bi} are dual

bases. As in Definition 4.3.8, this tells us that η is the linear form producing the

Bézoutian bilinear form.

116



4.4.1 Local decomposition

While our discussion of the Scheja–Storch form in the previous section was global,

it is perfectly valid to localize at a maximal ideal and repeat the story again (SS75,

p.180–181). The fact that Q is an Artinian ring then gives a convenient way to relate

the global version of η to the local version of η. This local decomposition has been

utilized previously, for example in (KW19).

Let m be a maximal ideal in k[x1, . . . , xn] at which the morphism f = (f1, . . . , fn)

has an isolated root. Letting ρm denote the quotient map k ⟨X⟩m → Qm, we have a

commutative diagram

k ⟨X⟩m ⊗k k ⟨X⟩m k ⟨X⟩m

Qm ⊗k Qm Qm.

ρm⊗ρm

µ′1

ρm

µ′

In k⟨X⟩m ⊗k k⟨X⟩m, we can again write

fj ⊗ 1− 1⊗ fj =
n∑
i=1

ãij(Xi ⊗ 1− 1⊗Xi)

to obtain the local Bézoutian ∆m := (ρm ⊗ ρm)(det(ãij)) ∈ Qm ⊗k Qm. Let λm : Q→

Qm be the localization map. From (SS75, p.181) we have (λm ⊗ λm) (∆) = ∆m. Via

the natural isomorphism χ in Proposition 4.4.2, we have a commutative diagram of
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the form

Q⊗k Q Homk (Homk(Q, k), Q)

Qm ⊗k Qm Homk (Homk(Qm, k), Qm) .

λm⊗λm

χQ

λm∗

χQm

Tracing ∆ through this diagram, we see that

∆ Θ

∆m Θm,

where Θm = χQm(∆m). Unwinding Θm = λm∗(Θ), we find that Θm is the map

Θm : Homk(Qm, k)→ Qm

ψ 7→ λm ◦Θ(ψ ◦ λm) .

Recall that as Q is a zero-dimensional Noetherian commutative k-algebra, the

localization maps induce a k-algebra isomorphism1

(λm)m : Q
∼−→
∏
m

Qm.

This is reflected by an internal decomposition of Q in terms of orthogonal idem-

potents (BCRS96, 2.13), which we now describe (see also (Sta21, Lemma 00JA)).

By the Chinese remainder theorem, we may pick a collection of pairwise orthogonal

1Q is Artinian by (Sta21, Lemma 00KH), so the claimed isomorphism exists by (Sta21, Lemma

00JA).
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idempotents {em}m such that
∑

m em = 1. The internal decomposition of Q is then

Q =
⊕
m

Q · em,

and the localization maps restrict to isomorphisms λm|Q·em : Q · em
∼−→ Qm with

λm(em) = 1. Moreover, λm(Q · en) = 0 for any n ̸= m.

Proposition 4.4.6. Suppose ℓ : Q → k is a linear form which factors through the

localization λm : Q→ Qm for some maximal ideal m. Then Θ(ℓ) lies in Q · em.

Proof. Recall that λm|Q·en = 0 for n ̸= m. Since em · en = 0 for n ̸= m and em is idem-

potent, the localization λm : Q→ Qm can be written as the following composition:

λm : Q
−·em−−−→ Q

λm−→ Qm.

Since ℓ factors through the localization, it can be written as a composite

ℓ : Q
−·em−−−→ Q

λm−→ Qm
ℓm−→ k.

Thus Θ(ℓ) = Θ(ℓm ◦ λm ◦ (em · −)). Scheja–Storch proved that Θ respects the Q-

module structure on Homk(Q, k) given by a · σ = σ(a · −) (SS75, 3.3 Satz). That is,

Θ(σ(a · −)) = Θ(a · σ) = aΘ(σ) for any a ∈ Q and σ ∈ Homk(Q, k). Thus

Θ(ℓ) = em ·Θ(ℓm ◦ λm) ,

so Θ(ℓ) ∈ Q · em.
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Returning to the Scheja–Storch form, we have the following commutative diagram

relating Θm and Θ:

Homk(Q, k) Q

Homk(Qm, k) Qm.

Θ

λm−◦λm

Θm

This coherence between Θ and Θm allows us to relate the local linear forms ηm :=

Θ−1
m (1) to the global linear form η := Θ−1(1) in the following way.

Proposition 4.4.7. For each maximal ideal m of Q, let ηm := Θ−1
m (1) : Qm → k,

and let η := Θ−1(1) : Q→ k. Then η =
∑

m ηm ◦ λm.

Proof. It suffices to show that Θ(
∑

m ηm ◦ λm) = 1. Since ηm = Θ−1
m (1) by definition,

we have 1 = Θm(ηm) := λm(Θ(ηm ◦ λm)). By Proposition 4.4.6, we have Θ(ηm ◦ λm) ∈

Q · em. Since λm(Θ(ηm ◦ λm)) = 1 and λm|Q·em is an isomorphism sending em to 1, it

follows that Θ(ηm ◦ λm) = em. Finally, since Θ is k-linear, we have

Θ

(∑
m

ηm ◦ λm

)
=
∑
m

Θ(ηm ◦ λm)

=
∑
m

em = 1.

Using this local decomposition procedure for the linear forms ηm and η, we obtain

a local decomposition for Scheja–Storch bilinear forms.

Lemma 4.4.8. (Local decomposition of Scheja–Storch forms) Let η and ηm be as in

Proposition 4.4.7. Then Φη =
⊕

mΦηm . In particular, the global Scheja–Storch form
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is a sum over local Scheja–Storch forms

SS(f) =
∑
m

SSm(f).

Proof. For each maximal ideal m, let {wm,i}i be a k-vector space basis for Qm.

Let {vm,i}m,i (ranging over all i and all maximal ideals) be a basis of Q such that

λm (vm,i) = wm,i for each i and m, and λm(vn,i) = 0 for m ̸= n. We now compare the

Gram matrix for η : Q→ k and the Gram matrices for ηm : Qm → k in these bases.

Via the internal decomposition consisting of pairwise orthogonal idempotents, we

have vm,i · vn,j = 0 if m ̸= n. Thus

η(vm,i · vn,j) = 0,

so the Gram matrix for Φη will be a block sum indexed over the maximal ideals. If

m = n, then Proposition 4.4.7 implies

η(vm,i · vm,j) =
∑
n

ηn (λn (vm,i · vm,j)) = ηm(λm (vm,i · vm,j))

= ηm (wm,i · wm,j) .

Thus the Gram matrices of Φη and
⊕

mΦηm are equal, so Φη =
⊕

mΦηm .

Remark 4.4.9. The local Scheja–Storch bilinear form is given by Φηm : Qm×Qm → k.

Given a basis {a1, . . . , am} of Qm, we may write ∆m =
∑
ai⊗ bi and define the local

Bézoutian bilinear form as a suitable dualizing form. Replacing Q, ∆, Θ, and η with
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Qm, ∆m, Θm, and ηm, the results of Sections 4.3 and 4.4 also hold for local Bézoutians

and the local Scheja–Storch form. In particular, the local analog of Lemma 4.4.5

implies that the local Scheja–Storch form is equal to the local Bézoutian form.

4.5 Proof of Theorem 4.1.2

We now relate the Scheja–Storch form to the A1-degree. The following theorem was

first proven in the case where p is a rational zero by Kass and Wickelgren (KW19),

and then in the case where p has finite separable residue field over the ground field

in (BBM+21, Corollary 1.4). Recent work of Bachmann and Wickelgren (BW21)

gives a general result about the relation between local A1-degrees and Scheja–Storch

forms.

Theorem 4.5.1. Let chark ̸= 2. Let f : An
k → An

k be an endomorphism of affine

space with an isolated zero at a closed point p. Then we have that the local A1-degree

of f at p and the Scheja–Storch form of f at p coincide as elements of GW(k):

degA
1

p (f) = SSp(f).

Proof. We may rewrite f as a section of the trivial rank n bundle over affine space

OnAn
k
→ An

k . Under the hypothesis that p is isolated, we may find a neighborhood

X ⊆ An
k of p where the section f is non-degenerate (meaning it is cut out by a
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regular sequence). By (BW21, Corollary 8.2), the local index of f at p with the

trivial orientation, corresponding to the representable Hermitian K-theory spectrum

KO, agrees with the local Scheja–Storch form as elements of KO0(k):

indp(f, ρtriv,KO) = SSp(f). (4.5.2)

Let S denote the sphere spectrum in the stable motivic homotopy category SH(k).

It is a well-known fact that Hermitian K-theory receives a map from the sphere

spectrum, inducing an isomorphism π0(S)
∼−→ π0(KO) if chark ̸= 2 (see for example

(Hor05, 6.9) for more detail); this is the only place where we use the assumption

that chark ̸= 2. Combining this with the fact that that π0(S) = GW(k) under

Morel’s degree isomorphism, we observe that Equation 4.5.2 is really an equality in

GW(k). By (BW21, Theorem 7.6, Example 7.7), the local index associated to the

representable theory agrees with the local A1-degree:

indp(f, ρtriv,KO) = degA
1

p (f).

Combining these equalities gives the desired equality in GW(k).

Remark 4.5.3. Bachmann and Wickelgren in fact show that degA
1

Z (f) = SSZ(f)

for any isolated zero locus Z of f (BW21, Corollary 8.2). This gives an alternate

viewpoint on the local decomposition described in Lemma 4.4.8

123



Corollary 4.5.4. Let chark ̸= 2. The local Bézoutian bilinear form is the local

A1-degree.

Proof. As discussed in Remark 4.4.9, we can modify Lemma 4.4.5 to the local case

by replacing Q, ∆, Θ, and η with Qm, ∆m, Θm, and ηm. The local Bézoutian form is

thus equal to the local Scheja–Storch form, which is equal to the local A1-degree by

Theorem 4.5.1.

In contrast to previous techniques for computing the local A1-degree at rational

or separable points, Corollary 4.5.4 gives an algebraic formula for the local A1-degree

at any closed point.

As a result of the local decomposition of Scheja–Storch forms, the Bézoutian form

agrees with the A1-degree globally as well.

Corollary 4.5.5. Let chark ̸= 2. The Bézoutian bilinear form is the global A1-

degree.

Proof. Let Φη denote the Bézoutian bilinear form, which is equal to the global Scheja–

Storch bilinear form by Lemma 4.4.5. By Lemma 4.4.8, the global Scheja–Storch form

decomposes as a block sum of local Scheja–Storch forms. By Theorem 4.5.1, the local

Scheja–Storch bilinear form agrees with the local A1-degree. Finally, we have that

the sum of local A1-degrees is the global A1-degree. Putting this all together, we
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have

Φη = SS(f) =
∑
m

SSm(f) =
∑
m

degA
1

m (f) = degA
1

(f). (4.5.6)

Remark 4.5.7. It is not known if GW is represented by KO over fields of charac-

teristic 2, which is the source of our assumption that chark ̸= 2. If this problem

is resolved, one can remove any characteristic restrictions from our results. Al-

ternately, Lemma 4.4.8 implies Corollaries 4.5.4 and 4.5.5 if all roots of f satisfy

degA
1

p (f) = SSp(f). By (KW19), (BBM+21), and (KW21, Proposition 34), Corollar-

ies 4.5.4 and 4.5.5 are true in any characteristic if all roots of f are rational, étale,

or separable.

4.5.1 Computing the Bézoutian bilinear form

We now prove Theorem 4.1.2 by describing a method for computing the class in

GW(k) of the Bézoutian bilinear form in terms of the Bézoutian.

Proof of Theorem 4.1.2. Let R denote either a global algebra Q or a local algebra

Qm. Let {αi} be any basis for R, and express

Béz(f1, . . . , fn) =
∑
i,j

Bi,jαi ⊗ αj.
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Rewriting this, we have

Béz(f1, . . . , fn) =
∑
i

αi ⊗

(∑
j

Bi,jαj

)
.

Let βi :=
∑

j Bi,jαj, so that {αi} and {βi} are dual bases. Then for any linear

form λ : R → k for which {αi} and {βi} are dual, we will have that Φλ agrees with

the global or local A1-degree (depending on our choice of R) by Corollaries 4.5.4

and 4.5.5. Let λ be such a form. The product of αi and βj is given by

αiβj = αi ·
∑
s

Bj,sαs.

Applying λ to each side, we get an indicator function

δij = λ(αiβj) = λ

(
αi
∑
s

Bj,sαs

)
=
∑
s

Bj,sλ (αiαs) .

Varying over all i, j, s, this equation above tells us that the identity matrix is equal

to the product of the matrix (Bj,s) and the matrix (λ(αiαs)) = (λ(αsαi)). Explicitly,

we have that

1 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


=



B1,1 B1,2 · · · B1,m

B2,1 B2,2 · · · B2,m

...
...

. . .
...

Bm,1 Bm,2 · · · Bm,m





λ(α2
1) λ(α1α2) · · · λ(α1αm)

λ(α2α1) λ(α2
2) · · · λ(α2αm)

...
...

. . .
...

λ(αmα1) λ(αmα2) · · · λ(α2
m)


.

Thus the Gram matrix for Φλ in the basis {αi} is (Bi,j)
−1. We conclude by

proving that (Bi,j) and (Bi,j)
−1 represent the same element of GW(k). Since any
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symmetric bilinear form can be diagonalized, there is an invertible m×m matrix S

such that ST · (Bi,j) · S is diagonal. Since (ST · (Bi,j) · S) · (S−1 · (Bi,j)
−1 · (S−1)T )

is equal to the identity matrix, it follows that S−1 · (λ(αiαj)) · (S−1)T is diagonal

with entries inverse to the diagonal entries of ST · (Bi,j) · S. Applying the equality

⟨a⟩ = ⟨1/a⟩ along the diagonals, it follows that (Bi,j)
−1 and (Bi,j) define the same

element in GW(k). Theorem 4.1.2 now follows from Corollaries 4.5.4 and 4.5.5.

The following tables describe algorithms for computing the global and local A1-

degrees in terms of the Bézoutian bilinear form. A Sage implementation of these

algorithms is available at (BMP21a).

Computing the global A1-degree via the Bézoutian:

1. Compute the ∆ij and the image of their determinant Béz(f) = det (∆ij) in

k[X, Y ]/(f(X), f(Y )).

2. Pick a k-vector space basis a1, . . . , am of Q = k[X1, . . . , Xn]/(f1, . . . , fn). Find

Bi,j ∈ k such that

Béz(f) =
m∑
i=1

Bi,jai(X)aj(Y ).

3. The matrix B = (Bi,j) represents deg
A1

(f). Diagonalize B to write its class in

GW(k).
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Computing the local A1-degree via the Bézoutian:

1. Compute the ∆ij and the image of their determinant Béz(f) = det (∆ij) in

k[X, Y ]/(f(X), f(Y )).

2. Pick a k-vector space basis a1, . . . , am of Qm = k[X1, . . . , Xn]m/(f1, . . . , fn).

Find Bi,j ∈ k such that

Béz(f) =
m∑
i=1

Bi,jai(X)aj(Y ).

3. The matrix B = (Bi,j) represents deg
A1

m (f). Diagonalize B to write its class in

GW(k).

4.6 Calculation rules

Using the Bézoutian characterization of the A1-degree, we are able to establish var-

ious calculation rules for local and global A1-degrees. See (KST21; QSW22) for

related results in the local case.

Our ultimate goal in this section is the product rule for the A1-degree (see Propo-

sition 4.6.5), which was already known by the work of Morel. See the paragraph

preceding Proposition 4.6.5 for a more detailed discussion.

Proposition 4.6.1. Suppose that f = (f1, . . . , fn) and g = (g1, . . . , gn) are endo-
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morphisms of affine space that generate the same ideal

I = (f1, . . . , fn) = (g1, . . . , gn) ◁ k[x1, . . . , xn].

If Béz(f) = Béz(g) in k[X, Y ], then degA
1

(f) = degA
1

(g), and degA
1

p (f) = degA
1

p (g)

for all p.

Proof. We may choose the same basis for Q = k[x1, . . . , xn]/I (or Qp in the local

case) in our computation for the degrees of f and g. The Bézoutians Béz(f) = Béz(g)

will have the same coefficients in this basis, so their Gram matrices will coincide.

The following result is the global analogue of (QSW22, Lemma 14).

Lemma 4.6.2. Let f = (f1, . . . , fn) : An
k → An

k be an endomorphism of An
k with

only isolated zeros. Let A ∈ kn×n be an invertible matrix. Then

⟨detA⟩ · degA1

(f) = degA
1

(A ◦ f)

as elements of GW(k).

Proof. Write A = (aij) and

∆g
ij =

gi(X1, . . . , Xj, Yj+1, . . . , Yn)− gi(X1, . . . , Xj−1, Yj . . . , Yn)

Xj − Yj
,

where g is either f or A ◦ f . Then ∆A◦f
ij =

∑n
l=1 ail∆

f
lj, and thus (∆A◦f

ij ) = A · (∆f
ij)

as matrices over k[X, Y ]. The ideals generated by A ◦ (f1, . . . , fn) and (f1, . . . , fn)
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are equal, and the images in Q ⊗k Q of det(∆A◦f
ij ) and detA · det(∆fij) are equal.

Thus the Gram matrix of the Bézoutian bilinear form for A ◦ f is detA times the

Gram matrix of the Bézoutian bilinear form for f . Proposition 4.6.1 then proves the

claim.

Example 4.6.3. We may apply Lemma 4.6.2 in the case where A is a permutation

matrix associated to some permutation σ ∈ Σn. Letting fσ :=
(
fσ(1), . . . , fσ(n)

)
, we

observe that

degA
1

p (fσ) = ⟨sgn(σ)⟩ · degA
1

p (f)

at any isolated zero p of f , and an analogous statement is true for global degrees as

well.

Next, we prove a lemma inspired by (KST21, Lemma 12).

Lemma 4.6.4. Let f, g : An
k → An

k be two endomorphisms of An
k . Assume that f

and g are quasi-finite. Let L ∈ Mn(k) be an invertible n × n matrix, which defines

a morphism L : An
k → An

k given by (x1, . . . , xn) 7→ (x1, . . . , xn) · LT . Let In denote

the n × n identity matrix, and assume that det(In + t(L − In)) ∈ k[t] is in fact an

element of k×. Then degA
1

(f ◦ g) = degA
1

(f ◦ L ◦ g).

Proof. Quasi-finite morphisms have isolated zero loci by (Sta21, Definition 01TD

(3)). The composition of quasi-finite morphisms is again quasi-finite (Sta21, Lemma
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01TL), so f ◦ g has isolated zero locus.

Next, we show that L is also quasi-finite. We will actually prove a stronger

statement. Let At ∈ Mn(k[t]) be an invertible n × n matrix, which implies that

detAt ∈ k[t]× = k×. This matrix determines a family of morphisms At : An
k ×A1

k →

An
k by (x1, . . . , xn, t) 7→ (x1, . . . , xn) · ATt . Given t0 ∈ A1

k, the morphism At0 has

Jacobian determinant det(
∂(At0 )i
∂xj

) = detAt, which is a unit. In particular, At0 is

unramified for each t0 ∈ A1
k. Thus At0 is locally quasi-finite (Sta21, Lemma 02VF).

Since An
k is Noetherian, At0 : An

k → An
k is quasi-compact. Quasi-compact and locally

quasi-finite morphisms are quasi-finite (Sta21, Lemma 01TJ), so we conclude that

At0 is quasi-finite for each t0 ∈ A1
k.

Just as in (KST21, Lemma 12), we now define Lt = In + t · (L − In). Our

assumption on det(In + t(L − In)) implies that Lt is invertible. Thus Lt is quasi-

finite, so f ◦ Lt ◦ g is quasi-finite and hence only has isolated zeros for all t. Set

Q̃ =
k[t][x1, . . . , xn]

(f ◦ Lt ◦ g)
.

Then (SS75, p. 182) gives us a Scheja–Storch form η̃ : Q̃ → k[t] such that the

bilinear form Φη̃ : Q̃ × Q̃ → k[t] is symmetric and non-degenerate. By Harder’s

theorem (KW19, Lemma 30), the stable isomorphism class of Φη̃ ⊗k k(t0) ∈ GW(k)

is independent of t0 ∈ A1
k(k). In particular, the Scheja–Storch bilinear forms of

f ◦ L0 ◦ g = f ◦ g and f ◦ L1 ◦ g = f ◦ L ◦ g are isomorphic.
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The following product rule is a consequence of Morel’s proof that the A1-degree

is a ring isomorphism (Mor04, Lemma 6.3.8). We give a more hands-on proof of this

product rule. See (KST21, Theorem 13) and (QSW22, Theorem 26) for an analogous

proof of the product rule for local degrees at rational points.

Proposition 4.6.5 (Product rule). Let f, g : An
k → An

k be two quasi-finite endomor-

phisms of An
k . Then degA

1

(f ◦ g) = degA
1

(f) · degA1

(g).

Proof. We follow the proofs of (KST21, Theorem 13) and (QSW22, Theorem 26).

The general idea is to mimic the Eckmann–Hilton argument (EH62). Let x :=

(x1, . . . , xn) and y := (y1, . . . , yn). Define f̃ , g̃ : An × An → An × An by f̃(x, y) =

(f(x), y) and g̃(x, y) = (g(x), y), and note that f̃ and g̃ are both quasi-finite because

f and g are quasi-finite. Since (f ◦ g, y) and f̃ ◦ g̃ define the same ideal in k[x, y] and

have the same Bézoutian, we have degA
1

(f ◦ g) = degA
1

(f̃ ◦ g̃) by Proposition 4.6.1.

Let g × f : An
k × An

k → An
k × An

k be given by (g × f)(x, y) = (g(x), f(y)). Using

Lemma 4.6.4 repeatedly, we will show that degA
1

(f̃ ◦ g̃) = degA
1

(g × f). Let In be

the n× n identity matrix, and let

L1 =

 In 0

−In In

 , L2 =

In In

0 In

 , A =

 0 −In

In 0

 .

By construction, det(I2n+ t(L1− I2n)) = det(I2n+ t(L2− I2n)) = 1, so Lemma 4.6.4
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implies that

degA
1

(f̃ ◦ g̃) = degA
1

(f̃ ◦ L1 ◦ g̃)

= degA
1

(f̃ ◦ L2 ◦ (L1 ◦ g̃))

= degA
1

(f̃ ◦ L1 ◦ (L2 ◦ L1 ◦ g̃)).

One can check that A ◦ f̃ ◦ L1 ◦ L2 ◦ L1 ◦ g̃ = g × f . By Lemma 4.6.2, we have

⟨detA⟩ · degA1

(f̃ ◦ g̃) = ⟨detA⟩ · degA1

(f̃ ◦ L1 ◦ L2 ◦ L1 ◦ g̃)

= degA
1

(g × f).

Since detA = 1, it just remains to show that degA
1

(g × f) = degA
1

(g) · degA1

(f).

Let a1, . . . , am be a basis for k[x1,...,xn]
(g1,...,gn)

and a′1, . . . , a
′
m′ be a basis for k[y1,...,yn]

(f1,...,fn)
. Write

Béz(g) =
∑m

i,j=1Bijai⊗ aj and Béz(f) =
∑m′

i,j=1B
′
ija

′
i⊗ a′j. By Theorem 4.1.2, (Bij)

and (B′
ij) are the Gram matrices for degA

1

(g) and degA
1

(f), respectively. Next, we

have Béz(g × f) = Béz(g) · Béz(f), since

(∆g×f
ij ) =

(∆g
ij) 0

0 (∆f
ij)

 .

Note that {ai(x)a′i′(y)}
m,m′

i,i′=1 is a basis of k[x1,...,xn,y1,...,yn]
(g1(x),...,gn(x),f1(y),...,fn(y))

. In this basis, we

have

Béz(g) · Béz(f) =
m∑

i,j=1

m′∑
i′,j′=1

BijB
′
i′j′aia

′
i′ ⊗ aja′j′ ,
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so the Gram matrix of degA
1

(g× f) is the tensor product (Bij)⊗ (B′
ij). We thus we

have an equality degA
1

(g × f) = degA
1

(g) · degA1

(f) in GW(k).

4.7 Examples

We now give a few remarks and examples about computing the Bézoutian.

Remark 4.7.1. It is not always the case that the determinant det(∆ij) ∈ k[X, Y ]

is symmetric. For example, consider the morphism f : A2
k → A2

k sending (x1, x2) 7→

(x1x2, x1 + x2). Then the Bézoutian is given by

Béz(f) = det

X2 Y1

1 1

 = X2 − Y1.

However, the Bézoutian is symmetric once we pass to the quotient k[X,Y ]
(f(X),f(Y ))

(BCRS96,

2.12). Continuing the present example, let {1, x2} be a basis for the algebra Q =

k[x1, x2]/(x1x2, x1 + x2). Then we have that

Béz(f) = X2 − Y1 = X2 + Y2,

which is symmetric. Moreover, the Bézoutian bilinear form is represented by ( 0 1
1 0 ),

so degA
1

(f) = H.
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Example 4.7.2. Let k = Fp(t), where p is an odd prime, and consider the endo-

morphism of the affine plane given by

f : SpecFp(t)[x1, x2]→ SpecFp(t)[x1, x2]

(x1, x2) 7→ (xp1 − t, x1x2) .

As the residue field of the zero of f is not separable over k, existing strategies for

computing the local A1-degree are insufficient. Our results allow us to compute this

A1-degree. The Bézoutian is given by

Béz(f) = det


Xp

1−Y
p
1

X1−Y1 0

X2 Y1


= Xp−1

1 Y1 +Xp−2
1 Y 2

1 + . . .+X1Y
p−1
1 + Y p

1

= Xp−1
1 Y1 +Xp−2

1 Y 2
1 + . . .+X1Y

p−1
1 + t.

In the basis {1, x1, . . . , xp−1
1 } of Q, the Bézoutian bilinear form consists of a t in the

upper left corner and a 1 in each entry just below the anti-diagonal. Thus

degA
1

(f) = degA
1

(t1/p,0)(f) = ⟨t⟩+
p− 1

2
H.

Example 4.7.3. Let f1 = (x1− 1)x1x2 and f2 = (ax21− bx22) for some a, b ∈ k× with

a
b
not a square in k. Then f = (f1, f2) has isolated zeros at m := (x1− 0, x2− 0) and

n := (x1 − 1, x22 − a
b
). We will use Bézoutians to compute the local degrees degA

1

m (f)
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and degA
1

n (f), as well as the global degree degA
1

(f). Let

Q =
k[x1, x2]

((x1 − 1)x1x2, ax21 − bx22)
.

We first compute the global Bézoutian as

Béz(f) =det

(X1 + Y1 − 1)X2 a(X1 + Y1)

Y 2
1 − Y1 −b(X2 + Y2)


=− a(X1Y

2
1 −X1Y1 + Y 3

1 − Y 2
1 )

− b(X1X
2
2 +X2

2Y1 −X2
2 +X1X2Y2 +X2Y1Y2 −X2Y2).

In the basis {1, x1, x2, x21, x1x2, x31} of Q, the Bézoutian is given by

Béz(f) =− a
(
X1Y

2
1 −X1Y1 + Y 3

1 − Y 2
1 +X3

1 +X2
1Y1 −X2

1

)
− b(X1X2Y2 +X2Y1Y2 −X2Y2).

We now write the Bézoutian matrix given by the coefficients of Béz(f).

1 X1 X2 X2
1 X1X2 X3

1

1 0 0 0 a 0 −a

Y1 0 a 0 −a 0 0

Y2 0 0 b 0 −b 0

Y 2
1 a −a 0 0 0 0

Y1Y2 0 0 −b 0 0 0

Y 3
1 −a 0 0 0 0 0
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One may check (e.g. with a computer) that this is equal to 3H in GW(k).

In Qm, we have that x21x2 = x1x2 = 0 and x31 = b
a
x1x

2
2 = 0. In the basis

{1, x1, x2, x21} of Qm, the global Bézoutian reduces to

Béz(f) = −a
(
X1Y

2
1 −X1Y1 − Y 2

1 +X2
1Y1 −X2

1

)
+ bX2Y2

We thus get the Bézoutian matrix at m.

1 X1 X2 X2
1

1 0 0 0 a

Y1 0 a 0 −a

Y2 0 0 b 0

Y 2
1 a −a 0 0

This is H+ ⟨a, b⟩ in GW(k).

In Qn, we have x1 = 1. In the basis {1, x2} for Qn, the Bézoutian reduces to

Béz(f) = −a− bX2Y2.

We can then write the Bézoutian matrix at n.

1 X2

1 −a 0

Y2 0 −b
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This is ⟨−a,−b⟩ in GW(k). Note that ⟨−a,−b⟩ need not be equal to H. However,

this does not contradict (QSW22, Theorem 2), since n is a non-rational point.

Putting these computations together, we see that

degA
1

m (f) + degA
1

n (f) = H+ ⟨a, b⟩+ ⟨−a,−b⟩ = 3H = degA
1

(f).

4.8 Application: the A1-Euler characteristic of Grass-

mannians

As an application of Theorem 4.1.2, we compute the A1-Euler characteristic of var-

ious low-dimensional Grassmannians in Example 4.8.2 and Figure 4.1. These com-

putations suggest a recursive formula for the A1-Euler characteristic of an arbitrary

Grassmannian, which we prove in Theorem 4.8.4. This formula is analogous to the

recursive formulas for the Euler characteristics of complex and real Grassmannians.

Theorem 4.8.4 is probably well-known, and the proof is essentially a combination of

results of Hoyois, Levine, and Bachmann–Wickelgren.

4.8.1 The A1-Euler characteristic

Let X be a smooth, proper k-variety of dimension n with structure map π : X →

Speck. Let p : TX → X denote the tangent bundle of X. The A1-Euler characteristic
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χA1
(X) ∈ GW(k) is a refinement of the classical Euler characteristic. In particular, if

k = R, then rankχA1
(X) = χ(X(C)) and sgnχA1

(X) = χ(X(R)). There exist several

equivalent definitions of the A1-Euler characteristic (Lev20; LR20; AMBO+22). For

example, we may define χA1
(X) to be the π-pushforward of the A1-Euler class

e(TX) := z∗z∗1X ∈ C̃H
n
(X,ωX/k),

of the tangent bundle (Lev20), where z : X → TX is the zero section and C̃H
d
(X,ωX/k)

is the Chow–Witt group defined by Barge–Morel (BM00; Fas08). That is,

χA1

(X) := π∗(e(TX)) ∈ C̃H
0
(Speck) = GW(k).

Analogous to the classical case (Mil65), the A1-Euler characteristic can be com-

puted as the sum of local A1-degrees at the zeros of a general section of the tangent

bundle using the work of Kass–Wickelgren (BW21; KW21; Lev20). We now de-

scribe this process. Let σ be a section of TX which only has isolated zeros. For

a zero x of σ, choose Nisnevich coordinates2 ψ : U → An
k around x. Since ψ is

étale, it induces an isomorphism of tangent spaces and thus yields local coordinates

around x. Shrinking U if necessary, we can trivialize TX |U ∼= U × An
k . The chosen

Nisnevich coordinates (ψ,U) and trivialization τ : TX |U ∼= U×An
k each define distin-

guished elements dψ, dτ ∈ detTX |U . In turn, this yields a distinguished section d of

2Nisnevich coordinates consist of an open neighborhood U of x and an étale map ψ : U → An
k

that induces an isomorphism of residue fields k(x) ∼= k(ψ(x)) (KW21, Definition 18).
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Hom(detTX |U , detTX |U), which is defined by dψ 7→ dτ . We say that a trivialization

τ is compatible with the chosen coordinates (ψ,U) if the image of the distinguished

section d under the canonical isomorphism ρ : Hom(detTX |U , detTX |U) ∼= OU is a

square (KW21, Definition 21).

Given a compatible trivialization τ : TX |U ∼= U × An
k , the section σ trivializes to

σ : U → An
k . We can then define the local index indxσ at x to be the A1-degree of

the composite

Pnk
Pn−1
k

→ Pnk
Pnk\{ψ(x)}

∼=
An
k

An
k\{ψ(x)}

∼=
U

U\{x}
σ−→ An

k

An
k\{0}

∼=
Pnk
Pn−1
k

.

Here, the first map is the collapse map, the second map is excision, the third map

is induced by the Nisnevich coordinates (ψ,U), and the fifth map is purity (see

e.g. (BW21, Definition 7.1)). By (KW21, Theorem 3), the A1-Euler characteristic is

then the sum of local indices

χA1

(X) =
∑

x∈σ−1(0)

indxσ ∈ GW(k).

By Theorem 4.1.2, we may thus compute the A1-Euler characteristic by computing

the global Bézoutian bilinear form of an appropriate map f : An
k → An

k .

Remark 4.8.1. If all the zeros of f : An
k → An

k are simple, then each local ring Qm

in the decomposition of Q = k[x1,...,xn]
(f1,...,fn)

= Qm1 × . . .×Qms is equal to the residue field

of the corresponding zero. If each residue field Qmi
is a separable extension of k, then
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the A1-degree of f is equal to sum of the scaled trace forms TrQmi/k
(⟨J(f)|mi

⟩) (see

e.g. (BBM+21, Definition 1.2)), where J(f)|mi
is the determinant of the Jacobian of

f evaluated at the point mi. In (Pau20) the last named author uses the scaled trace

form for several A1-Euler number computations. However, Theorem 4.1.2 yields a

formula for degA
1

(f) for any f with only isolated zeros and without any restriction

on the residue field of each zero. Moreover, we can even compute degA
1

(f) without

solving for the zero locus of f .

4.8.2 The A1-Euler characteristic of Grassmannians

Let G := Grk(r, n) be the Grassmannian of r-planes in kn. In order to compute

χA1
(G), we first need to describe Nisnevich coordinates and compatible trivializations

for G and TG. We then need to choose a convenient section of TG and describe the

resulting endomorphism Ar(n−r)
k . The tangent bundle TG → G is isomorphic to

p : Hom(S,Q) → G, where S → G and Q → G are the universal sub and quotient

bundles.

We now describe Nisnevich coordinates on G and a compatible trivialization of

TG, following (SW21). Let d = r(n− r) be the dimension of G, and let {e1, . . . , en}

be the standard basis of kn. Let Ad
k = Speck[{xi,j}r,n−ri,j=1 ]

∼= U ⊂ G be the open affine
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subset consisting of the r-planes

H({xi,j}r,n−ri,j=1 ) := span

{
en−r+i +

n−r∑
j=1

xi,jej

}r

i=1

.

The map ψ : U → Ad
k given by ψ

(
H({xi,j}r,n−ri,j=1 )

)
= ({xi,j}n−r,ri,j=1 ) yields Nisnevich

coordinates (ψ,U) centered at ψ (span{en−r+1, . . . , en}) = (0, . . . , 0). For the trivial-

ization of TG|U , let

ẽi =


ei i ≤ n− r,

ei +
∑n−r

j=1 xi−(n−r),jej i ≥ n− r + 1.

Then {ẽ1, . . . , ẽn} is a basis for kn, and we denote the dual basis by {ϕ̃1, . . . , ϕ̃n}.

Over U , the bundles S∗ and Q are trivialized by {ϕ̃n−r+1, . . . , ϕ̃n} and {ẽ1, . . . , ẽn−r},

respectively. Since

TG ∼= Hom(S,Q) ∼= S∗ ⊗Q,

we get a trivialization of TG|U given by {ϕ̃n−r+i ⊗ ẽj}r,n−ri,j=1 . By construction, our

Nisnevich coordinates (ψ,U) induce this local trivialization of TG. It follows that the

distinguished element of Hom(detTG|U , detTG|U) sending the distinguished element

of detTG|U (determined by the Nisnevich coordinates) to the distinguished element

of TG|U (determined by our local trivialization) is just the identity, which is a square.

Next, we describe sections of TG → G and the resulting endomorphisms Ad
k →

Ad
k. Let {ϕ1, . . . , ϕn} be the dual basis of the standard basis {e1, . . . , en} of kn. A
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homogeneous degree 1 polynomial α ∈ k[ϕ1, . . . , ϕn] gives rise to a section s of S∗,

defined by evaluating α. In particular, given a vector t =
∑n

i=1 tiẽi in H({xi,j}r,n−ri,j=1 ),

we use the dual change of basis

ϕj =


ϕ̃j +

∑r
i=1 xi,jϕ̃n−r+i j ≤ n− r,

ϕ̃j j ≥ n− r + 1

to set

s(t) = α

(
t1 +

r∑
i=1

xi,1tn−r+i, . . . , tn−r +
r∑
i=1

xi,n−rtn−r+i, tn−r+1, . . . , tn

)
.

Note that t1 = · · · = tn−r = 0 if and only if t ∈ H({xi,j}r,n−ri,j=1 ), so s(t) ∈ k[tn−r+1, . . . , tn].

Taking n sections s1, . . . , sn of S∗, we get a section of TG ∼= Hom(S,Q) given by

S (s1,...,sn)−−−−−→ An
k → Q,

where the second map is quotienting by {ẽn−r+1, . . . , ẽn}. We obtain our map Ad
k →

Ad
k by applying the trivializations {ϕ̃n−r+i⊗ ẽj}r,n−ri,j=1 of TG. Explicitly, take n sections

s1, . . . , sn of S∗. Since ei = ẽi −
∑n−r

j=1 xi−(n−r),jej for i > n− r, we have

sjej ≡ sjej −
r∑
i=1

xi,jsn−r+iejMod(ẽn−r+1, . . . , ẽn),

for all j ≤ n−r. Recall that ej = ẽj for j ≤ n−r. The coordinate of Ad
k → Ad

k corre-

sponding to ϕ̃n−r+i ⊗ ẽj is thus the coefficient of tn−r+i in sj(t)−
∑r

ℓ=1 xℓ,jsn−r+ℓ(t).
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For a general section σ of p : TG → G, the finitely many zeros of σ will all lie in

U . In this case, the A1-Euler characteristic of G is equal to the global A1-degree of

the resulting map Ad
k → Ad

k, which can computed using the Bézoutian.

Example 4.8.2 (Grk(2, 4)). Let

α1 = ϕ2 = ϕ̃2 + x1,2ϕ̃3 + x2,2ϕ̃4,

α2 = ϕ3 = ϕ̃3,

α3 = ϕ4 = ϕ̃4,

α4 = ϕ1 = ϕ̃1 + x1,1ϕ̃3 + x2,1ϕ̃4.

Evaluating at t = (0, 0, t3, t4) in the basis {ẽi}, we have

s1 = x1,2t3 + x2,2t4,

s2 = t3,

s3 = t4,

s4 = x1,1t3 + x2,1t4.

It remains to read off the coefficients of t3 and t4 of

s1 − x1,1s3 − x2,1s4 = (x1,2 − x1,1x2,1)t3 + (x2,2 − x1,1 − x22,1)t4,

s2 − x1,2s3 − x2,2s4 = (1− x1,1x2,2)t3 + (−x1,2 − x2,1x2,2)t4.

144



n

r 1 2 3 4 5

2 H ⟨1⟩

3 H+ ⟨1⟩ H+ ⟨1⟩ ⟨1⟩

4 2H 2H+ ⟨1, 1⟩ 2H ⟨1⟩

5 2H+ ⟨1⟩ 4H+ ⟨1, 1⟩ 4H+ ⟨1, 1⟩ 2H+ ⟨1⟩ ⟨1⟩

6 3H 6H+ ⟨1, 1, 1⟩ 10H 6H+ ⟨1, 1, 1⟩ 3H

7 3H+ ⟨1⟩ 9H+ ⟨1, 1, 1⟩ 16H+ ⟨1, 1, 1⟩ 16H+ ⟨1, 1, 1⟩ 9H+ ⟨1, 1, 1⟩

Figure 4.1: More examples of χA1
(Grk(r, n))

We thus have our endomorphism σ : A4
k → A4

k defined by

σ = (x1,2 − x1,1x2,1, x2,2 − x1,1 − x22,1, 1− x1,1x2,2,−x1,2 − x2,1x2,2).

Using the Sage implementation of the Bézoutian formula for the A1-degree (BMP21a),

we can calculate χA1
(Grk(2, 4)) = degA

1

(σ) = 2H+ ⟨1, 1⟩.

Using a computer, we performed computations analogous to Example 4.8.2 for

r ≤ 5 and n ≤ 7. These A1-Euler characteristics of Grassmannians are recorded in

Figure 4.1.

Recall that the Euler characteristics of real and complex Grassmannians are given

by binomial coefficients. In particular, these Euler characteristics satisfy certain re-

currence relations related to Pascal’s rule. The computations in Figure 4.1 indi-
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cate that an analogous recurrence relation is true for the A1-Euler characteristic of

Grassmannians over an arbitrary field. In fact, this recurrence relation is a direct

consequence of a result of Levine (Lev20).

Proposition 4.8.3. Let 1 ≤ r < n be integers. Then

χA1

(Grk(r, n)) = χA1

(Grk(r − 1, n− 1)) + ⟨−1⟩r χA1

(Grk(r, n− 1)) .

Proof. Fix a line L in kn. Let Z be the closed subvariety consisting of all r-planes

containing L (which is isomorphic to Grk(r − 1, n − 1)), and let U be its open

complement (which is isomorphic to an affine rank r bundle over Grk(r, n− 1)). We

then get a decomposition Grk(r, n) = Z ∪ U . Since Grk(l,m) ∼= Grk(m − l,m), we

have χA1
(Grk(l,m)) = χA1

(Grk(m − l,m)). We can thus apply (Lev20, Proposition

1.4 (3)) to obtain

χA1

(Grk(r, n)) = χA1

(Grk(n− r, n))

= χA1

(Grk(n− r, n− 1)) + ⟨−1⟩r χA1

(Grk(n− r − 1, n− 1))

= χA1

(Grk(r − 1, n− 1)) + ⟨−1⟩r χA1

(Grk(r, n− 1)) .

We can now apply a theorem of Bachmann–Wickelgren (BW21) to completely

characterize χA1
(Grk(r, n)).

Theorem 4.8.4. Let k be field of characteristic not equal to 2. Let nC :=
(
n
r

)
, and
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let nR :=
(⌊n

2
⌋

⌊ r
2
⌋

)
. Then

χA1

(Grk(r, n)) =
nC + nR

2
⟨1⟩+ nC − nR

2
⟨−1⟩ .

Proof. By (BW21, Theorem 5.8), we can restrict this computation to two different

possibilities. We will prove by induction that χA1
(Grk(r, n))ModH has no ⟨2⟩ sum-

mand. The desired result will then follow from (BW21, Theorem 5.8) by noting that

nC and nR are the Euler characteristics of GrC(r, n) and GrR(r, n), respectively.

Since An
k is A1-homotopic to Speck, we have χA1

(An
k) = χA1

(Speck) = ⟨1⟩. Us-

ing this observation and the decomposition Pnk =
⋃n
i=0 Ai

k (and a result analogous

to (Lev20, Proposition 1.4 (3))), Hoyois computed the A1-Euler characteristic of

projective space (Hoy14, Example 1.7):

χA1

(Pnk) =


n
2
H+ ⟨1⟩ n is even,

n+1
2
H n is odd.

Note that Grk(0, n) ∼= Grk(n, n) ∼= Speck and Grk(1, n) ∼= Grk(n − 1, n) ∼= Pn−1
k .

In particular, χA1
(Grk(i, n))ModH is either trivial or ⟨1⟩ for i = 0, 1, n − 1, or n.

This forms the base case of our induction, with the inductive step given by Proposi-

tion 4.8.3 – namely, if χA1
(Grk(r − 1, n− 1))ModH and χA1

(Grk(r, n− 1))ModH only

have ⟨1⟩ and ⟨−1⟩ summands, then

(χA1

(Grk(r − 1, n− 1)) + ⟨−1⟩r χA1

(Grk(r, n− 1)))ModH
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only has ⟨1⟩ and ⟨−1⟩ summands.

4.8.3 Modified Pascal’s triangle for χA1

(Grk(r, n))

Pascal’s triangle gives a mnemonic device for binomial coefficients and hence for the

Euler characteristics of complex and real Grassmannians. The recurrence relation of

Proposition 4.8.3 indicates that a modification of Pascal’s triangle can also be used

to calculate the A1-Euler characteristics of Grassmannians. Explicitly, each entry in

the modified Pascal’s triangle is an element of GW(k). The two diagonal edges of

this triangle correspond to χA1
(Grk(0, n)) = ⟨1⟩ and χA1

(Grk(n, n)) = ⟨1⟩. Elements

of each row of the modified Pascal’s triangle are obtained from the previous row by

the addition rule illustrated in Figure 4.2.

We rewrite the data recorded in Figure 4.1 in a modified Pascal’s triangle in

Figure 4.3. The rows correspond to the dimension n of the ambient affine space

kn, while the southwest-to-northeast diagonals correspond to the dimension r of the

planes kr in the ambient space.
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a b

a+ b

a b

a + ⟨−1⟩ b

Figure 4.2: Addition rules for modified Pascal’s triangle
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⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

⟨1⟩

n = 0

n = 1

r
=
0

r
=
1

r
=
2

r
=
3

r
=
4

r
=
5

r
=
6

r
=
7

n = 2 H

n = 3 H+ ⟨1⟩ H+ ⟨1⟩

n = 4 2H 2H + 2 ⟨1⟩ 2H

n = 5 2H+ ⟨1⟩ 4H + 2 ⟨1⟩ 4H + 2 ⟨1⟩ 2H+ ⟨1⟩

n = 6 3H 6H + 3 ⟨1⟩ 10H 6H + 3 ⟨1⟩ 3H

n = 7 3H+ ⟨1⟩ 9H + 3 ⟨1⟩ 16H + 3⟨1⟩ 16H + 3⟨1⟩ 9H + 3 ⟨1⟩ 3H+ ⟨1⟩

Figure 4.3: Modified Pascal’s triangle for χA1
(Grk(r, n)) (see Section 4.8.3)
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Chapter 5

Lifts, transfers, and degrees of univariate maps

with S. McKean

Abstract: One can compute the local A1-degree at points with separable residue

field by base changing, working rationally, and post-composing with the field trace.

We show that for endomorphisms of the affine line, one can compute the local A1-

degree at points with inseparable residue field by taking a suitable lift of the polyno-

mial and transferring its local degree. We also discuss the general set-up and strategy

in terms of the six functor formalism. As an application, we show that trace forms

of number fields are local A1-degrees.
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5.1 Introduction

Let k be a field. In order to compute the local A1-Brouwer degree of a map f :

An
k → An

k at a closed point p with finite separable residue field k(p)/k, one can base

change to the field of definition, compute the local degree of fk(p) at the canonical

k(p)-rational point p̃ sitting over p, and then apply a field trace (BBM+21). That is,

there is an equality

degA
1

p (f) = Trk(p)/k deg
A1

p̃ (fk(p))

in the Grothendieck–Witt group GW(k). For general finite extensions, two issues

arise when k(p)/k is inseparable. First, the trace form of an inseparable extension is

degenerate, so the field trace does not provide a well-defined transfer GW(k(p)) →

GW(k). While alternate transfers are available from motivic homotopy theory, the

second issue is simply that base changing f to k(p) and applying a transfer yields a

bilinear form whose rank is too large.

We rectify these issues by providing two new ways of lifting f . Assuming that

k(p)/k is a finite simple field extension with primitive element t, we consider two

transfers arising from A1-homotopy theory, namely the geometric transfer, denoted

τ
k(p)
k (t), and the cohomological transfer, denoted Tr

k(p)
k . Some motivic yoga suggests

that the local A1-degree of f at p is transferred down from the local degree of a

suitable lift of f at the k(p)-rational point p̃ (corresponding to the ideal (x−t)) above
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p. We introduce the geometric lift fg and the cohomological lift fc of our polynomial

f at the point p. In the separable setting, the cohomological lift agrees with the base

change of fk(p), recovering the main result of (BBM+21) in the univariate case.

Theorem 5.1.1. Let f : A1
k → A1

k be a morphism with an isolated root at a closed

point p. Then

degA
1

p (f) = τ
k(p)
k (t) degA

1

p̃ (fg) = Tr
k(p)
k degA

1

p̃ (fc).

The proof of Theorem 5.1.1 will be given in Lemma 5.5.6 and Corollary 5.5.9.

In Remark 5.5.7, we discuss how a suitable definition of an unstable transfer would

imply that Theorem 5.1.1 holds unstably. As a corollary of Theorem 5.1.1, we get

an upper bound on the rank of the non-hyperbolic part of the local A1-degree of a

polynomial map f : A1
k → A1

k.

Corollary 5.1.2. Let f : A1
k → A1

k have a root at a closed point p, defined by a

monic, irreducible polynomial m(x) of some degree n. Let t ∈ k(p) be a primitive

element for the field extension k(p)/k. Then f(x) = u(x)m(x)d for some polynomial

u ̸∈ m(x) · k[x], and

degA
1

p (f) =


nd
2
H d is even

n(d−1)
2

H+ τ
k(p)
k (t) ⟨u(t)⟩ d is odd.
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In particular, the rank of the non-hyperbolic part of degA
1

p (f) is bounded above

by [k(p) : k].

Another immediate corollary provides a connection between motivic degrees and

scaled trace forms or scaled Scharlau forms.

Corollary 5.1.3 (Scaled trace and Scharlau forms are A1-degrees). Let L/k be a

finite, separable field extension with primitive element t. Then for any ⟨a⟩ ∈ GW(L),

the scaled trace form TrLk ⟨a⟩ and the scaled Scharlau form τLk (t) ⟨a⟩ are given by the

local A1-degree of an endomorphism of A1
k.

Combined with the main result of (BMP21b), this provides a method for com-

puting scaled trace forms via Bézoutians.

5.1.1 Outline

We begin with some exposition on purity and the six functor formalism in Section 5.2.

In Section 5.3, we recall some basic material on transfers in stable motivic homo-

topy theory and give evidence suggesting the existence of lifts. We discuss relevant

commutative and linear algebraic tools in Section 5.4. Finally, we define geometric

and cohomological lifts of univariate polynomials, prove Theorem 5.1.1, and discuss

applications to trace forms in Section 5.5.
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5.2 Purity and the six functor formalism

In this section, we recall the six functor formalism in stable motivic homotopy the-

ory. We also discuss the (previously established) reformulation of Morel–Voevodsky’s

purity theorem in terms of the six functors formalism. Throughout this section, we

will assume that k is a field finitely generated over a perfect field. This assumption

will not be necessary when we arrive at our main results later in the paper.

Assigned to any scheme X, there is a stable symmetric monoidal category SH(X)

of motivic spectra. Given any morphism f : X → Y , there is an adjunction

f ∗ : SH(Y ) ⇆ SH(X) : f∗,

where f ∗ is symmetric monoidal (in particular, it preserves sphere spectra: f ∗1Y =

1X). If f is smooth, then f ∗ admits a left adjoint, denoted f♯, which is a “forgetful”
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functor. Finally, if f is locally of finite type, then there is an exceptional adjunction

f! : SH(X) ⇆ SH(Y ) : f !.

When f is a sufficiently nice morphism, many of these functors are isomorphic. If

f is proper, then there is a natural isomorphism f∗ ≃ f!, while if f is étale, we

have a natural isomorphism f! ≃ f♯. In particular, if f is proper and étale, then

f∗ ≃ f♯. In the case where f is an open immersion, we have a natural isomorphism

f ∗ ≃ f !. Given a cartesian square, there are various exchange isomorphisms which

allow one to interchange various six functors operations. Finally, we have a motivic

J-homomorphism K(X) → Pic(SH(X)) mapping any ξ to Σξ1X , where Σξ is the

Thom transformation associated to ξ. If ξ is a vector bundle over X, then Σξ can

be seen as smashing with the Thom space Th(ξ). We refer the reader to (EHK+20,

§2) and (BW21, §4.1) for more about the six functor formalism.

We will use the following well-known result.

Proposition 5.2.1. Let π : X → S be a smooth S-scheme. Let i : Z ↪−→ X

be a closed immersion (not necessarily smooth over S). Then we have a canonical

A1-homotopy equivalence in SH(X):

Σ∞ X

X − Z
≃ i∗1Z .

Proof. Denote by j : X −Z ↪−→ X the open immersion of the complement of Z. The
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localization theorem (see (MV99, Theorem 2.21, p. 114) and (Hoy21, §1)) then gives

an exact sequence

j!j
! → id→ i∗i

∗.

As j is an open immersion, we have that j!j
! ≃ j♯j

∗. Applying this exact sequence

at the sphere spectrum, we obtain

j♯j
∗1X → 1X → i∗i

∗1X .

We have that j♯j
∗1X = j♯1X−Z , which is Σ∞

+ (X − Z) in SH(X). This implies that

i∗1Z is the cofiber of the natural inclusion X − Z ↪−→ X.

Definition 5.2.2. (DJK21, §2.5) Let f : X → Y be a morphism that is smoothable,

local complete intersection (lci), and separated of finite type. Let Lf be the cotangent

complex of f . There is then a natural transformation

pf : Σ
Lff ∗ → f !,

which is called the purity transformation.

If f is smooth, then pf is a natural isomorphism. While the purity transforma-

tion generally fails to be a natural isomorphism when f is not smooth, some of its

components may still be isomorphisms. That is, there may be spectra E such that

the map ΣLff ∗E → f !E is invertible.

157



Definition 5.2.3. (DJK21, Definition 4.3.7) A spectrum E is called f -pure if the

component of purity ΣLff ∗E → f !E is invertible.

Proposition 5.2.4. (DJK21, Proposition 4.3.10) Let f : X → Y be a smoothable,

separated morphism of finite type between regular k-schemes. Assume that E ∈

SH(k) is a motivic spectrum pulled back from a motivic spectrum defined over a

perfect subfield of k. Let π : Y → Speck denote the structure map. Then f is lci

and π∗E is f -pure.

In particular, consider the map q : Speck(p)→ Speck of regular k-schemes. This

map satisfies the conditions of Proposition 5.2.4, and since 1k is pulled back from

any perfect subfield of k, the canonical purity morphism

ΣLqq∗1k
∼−→ q!1k (5.2.5)

is invertible. It is well-known that the purity isomorphism in Equation 5.2.5 subsumes

the foundational theorem of Morel and Voevodsky (MV99, Theorem 2.23, p. 115).

We will briefly discuss how to see this. Let S be a scheme, and letX and Z be smooth

S-schemes. Consider a (not necessarily smooth) closed immersion i : Z ↪−→ X:

Z X

S.

i

g
f

From the short exact sequence f ∗Li → Lg → Lg, we have the equality Lg = Li◦f =

i∗Lf + Li in K(Z). Let Ni be the normal bundle of Z in X. Since Ni[1] = Li in
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K(Z), we have

Σ−i∗LfΣLgg∗ = ΣLig∗ = Σ−Nig∗.

We now apply purity to both g and f to obtain

Σ−i∗LfΣLgg∗ ∼= Σ−i∗Lfg! = Σ−i∗Lf i!f !

∼= i!Σ−Lff ! ∼= i!Σ−LfΣLff ∗ ∼= i!f ∗.

Thus we have a natural isomorphism Σ−Nig∗ ∼= i!f ∗. Passing to left adjoints, we

obtain g♯Σ
Ni ∼= f♯i∗. Finally, we consider the component of this equivalence at the

sphere spectrum. By Proposition 5.2.1, we have that i∗1Z = Σ∞ X
X−Z as X-motivic

spectra. Forgetting along f gives us f♯i∗1Z = f♯Σ
∞ X
X−Z in SH(S). Conversely,

we have that ΣNi1Z = Th(Ni) in SH(Z). Forgetting along g gives us g♯Th(Ni) =

g♯Σ
Ni1Z in SH(S). Since g♯Σ

Ni1Z ≃ f♯i∗1Z , we have the following equivalence in

SH(S):

g♯Th (Ni) ≃ f♯Σ
∞ X
X−Z .

5.3 Transfers

In this section we discuss transfers arising in stable motivic homotopy theory, as well

as their algebraic incarnations for Grothendieck–Witt groups.
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Given a finite simple extension, residue homomorphisms induce a transfer called

the geometric transfer (Mor12, §4.2) arising in Milnor–WittK-theory. The geometric

transfer can alternatively be defined using motivic spaces. In an attempt to extend

this definition to finite field extensions, one might naively factor a finitely generated

field extension k ⊆ L into a composite of simple field extensions, and then compose

geometric transfers. However, such a composition of geometric transfers will depend

on the choice of factorization, indicating that the geometric transfer is not functorial

along arbitrary finite field extensions. This can be rectified by multiplication by

a certain rank one bilinear form, built out of the choice of primitive element of

the extension, yielding the cohomological transfer (Mor12, §4.2). Alternatively, by

incorporating all possible such factorizations simultaneously, one obtains a transfer

along twisted Grothendieck–Witt rings, called the absolute transfer (Mor12, §5.1).

Throughout this section, we will maintain our assumption from Section 5.2 that k

is finitely generated over a perfect field, which allows us to align the absolute transfer

with Gysin maps. This assumption can be dropped in latter sections where our main

results are proved.
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5.3.1 Geometric transfers

In Milnor K-theory, the residue homomorphisms associated to discrete valuations

enable the construction of transfers along field extensions. In Milnor–Witt K-theory,

first defined by Hopkins and Morel, residue homomorphisms are still available, but

ambiguities arise corresponding to a choice of uniformizing parameter. In degree

zero, the Milnor–Witt K-theory of a field is the Grothendieck–Witt ring GW(k),

so these residue homomorphisms permit us to define transfers of symmetric bilinear

forms along finite simple field extensions.

Suppose that p ∈ A1
k is a closed point, so that k(p)/k is a finite simple field exten-

sion. Let t ∈ k(p) be a primitive element of the extension with minimal polynomial

m(x) ∈ k[x]. Considering the affine line as a subspace of the projective line with

global sections k(x), the minimal polynomial m of p ∈ A1
k ⊆ P1

k defines a discrete

valuation on k(x). With m(x) as a uniformizing parameter, we obtain a residue

homomorphism

KMW
1 (k(x))

∂p−→ GW(k(p)).

We additionally have a residue homomorphism −∂∞ : KMW
1 (k(x))→ GW(k) for the

point at infinity on the projective line, corresponding to the uniformizing parameter

−1/x. Given a class α ∈ GW(k(p)), we may select an arbitrary preimage of α in

KMW
1 (k(x)) and then map to GW(k) along −∂∞. It turns out that this defines a
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well-defined group homomorphism called the geometric transfer (Mor12, §4.2).

Definition 5.3.1. The geometric transfer for a finite simple extension k(p)/k with

primitive element t is defined by

τ
k(p)
k (t) : GW(k(p))→ GW(k)

α 7→ −∂∞
(
∂−1
p (α)

)
.

Turning our attention to motivic spaces, we can alternatively consider the com-

posite of a collapse map and purity isomorphism to obtain a canonical map1

P1
k →

P1
k

P1
k − p

≃ Th
(
Np/P1

k

)
.

The minimal polynomial of p determines a non-canonical trivialization of the normal

bundle, yielding an isomorphism Th
(
Np/P1

k

)
≃ Th

(
Ok(p)

)
. We now take cohomology

(with coefficients in the Grothendieck–Witt sheaf) of the composite P1
k → Th

(
Ok(p)

)
to get a map GW(k(p)) → GW(k) that agrees with τ

k(p)
k (t). This geometric de-

scription motivates the terminology “geometric transfer” (see, for instance, (Mor12,

§4.2)).

Remark 5.3.2. Note that any k-linear map h : L→ k along a finite field extension

will induce a transfer h∗ : GW(L)→ GW(k) by post-composition. It turns out that

the geometric transfer is induced by a classical map called the Scharlau form.
1Here we are using our assumption that k is finitely generated over a perfect field in order to

apply purity.
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Definition 5.3.3. Let L/k be a finite simple extension with primitive element t.

Then the Scharlau form is the k-linear map s : L→ k defined by

s(tj) =


1 j = [L : k]− 1,

0 otherwise.

Lemma 5.3.4. (CF17, Lemma 2.2), (Hoy14, Lemma 5.10) Let L/k be a finite simple

extension with primitive element t, and let s : L→ k be the Scharlau form associated

to t. Then τLk (t) = s∗ as homomorphisms GW(L)→ GW(k).

This description allows us to understand explicitly the geometric transfer of any

rank one form in GW(L). We first set up some notation.

Notation 5.3.5. Let L/k be a finite simple extension of degree n with primitive

element t, so that BL/k := {1, t, . . . , tn−1} is a k-vector space basis of L. Given an L-

vector space V with basisBV/L := {a1, . . . , ad}, the setBV/k := {ai, ait, . . . , aitn−1}di=1

is a k-basis of V .

Lemma 5.3.6. In the context of Notation 5.3.5, let β : V × V → L be a symmetric

bilinear form whose Gram matrix with respect to BV/L is (βij)i,j, and let s : L→ k

be the Scharlau form. Then the Gram matrix of s∗β with respect to BV/k is a block

matrix whose (i, j)th block is equal to the Gram matrix of s∗ ⟨βij⟩ with respect to

BL/k.
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Proof. By definition, the (i, j)th block of s∗β in the basis BV/k is given by

aj ajt · · · ajt
n−1

ai s(β(ai, aj)) s(β(ai, ajt)) · · · s(β(ai, ajt
n−1))

ait s(β(ait, aj)) s(β(ait, ajt)) · · · s(β(ai, tajt
n−1))

...
...

...
. . .

...

ait
n−1 s(β(ait

n−1, aj)) s(β(ait
n−1, ajt)) · · · s(β(ait

n−1, ajt
n−1).

Since t ∈ L and β is L-bilinear, we can rewrite this block as

aj ajt · · · ajt
n−1

ai s(βij) s(tβij) · · · s(tn−1βij)

ait s(tβij) s(t2βij) · · · s(tnβij)

...
...

...
...

...

ait
n−1 s(tn−1βij) s(tnβij) · · · s(t2n−2βij),

which is precisely s∗ ⟨βij⟩ with respect to the k-basis {1, t, . . . , tn−1} of L.

5.3.2 Cohomological transfers

Let L/k be a finite simple extension with primitive element t ∈ L, and take m(x) ∈

k[x] to be the minimal polynomial of t. Let p be the exponential characteristic of k,

which is defined to be chark in positive characteristic and 1 in characteristic 0. We
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may factor the extension L/k as

k ⊂ Lsep = k[tp
i

] ⊆ L,

for some i, where Lsep is the separable closure of k in L. This implies that m(x) =

m0(x
pi) for some suitablem0(x) ∈ k[x]. Note thatm0(x) is the minimal polynomial of

tp
i
over k, and hence is separable. Moreover, if L/k is separable, then m0(x) = m(x).

Notation 5.3.7. Using the notation from the previous paragraph, we define a dis-

tinguished polynomial ω0(x) ∈ L[x] associated to the extension L/k by

ω0(x) :=
m0(x)

x− tpi
.

Note that tp
i
is a root of m0(x) since t is a root of m(x), so ω0(x) is indeed a polyno-

mial. Since m0(x) is separable, we see that ω0(t) ∈ L×. We will use ω0(x) to define

the cohomological transfer in terms of the geometric transfer in Definition 5.5.8.

Example 5.3.8. Let L/k be a finite purely inseparable extension in characteristic

p. Then its minimal polynomial is by definition of the form xp
r − a for some a ∈ k,

so m0(x) = x− a and therefore ω0(x) = 1.

Example 5.3.9. Let L/k be a finite separable extension with primitive element t,

and let m(x) be the minimal polynomial of t. Then ω0(x) =
m(x)
(x−t) , so ω0(t) = m′(t)

by the product rule.
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Definition 5.3.10. (Mor12, Definition 4.26) For a finite simple extension L/k with

primitive element t, the cohomological transfer TrLk is defined to be the composite

GW(L) GW(L)

GW(k).

⟨ω0(t)⟩

TrLk

τLk (t)

Under nice conditions, TrLk does not depend on the choice of primitive element t

(Mor12, Theorem 4.27). Moreover, loc. cit. also implies that the cohomological trans-

fer is functorial along field extensions outside of characteristic two, so we can define

the cohomological transfer of an arbitrary finite extension as the composite of co-

homological transfers over constituent simple extensions. For finite separable exten-

sions, the cohomological transfer recovers the transfer on Grothendieck–Witt groups

induced by the field trace (CF17, Lemma 2.3). For purely inseparable extensions,

the cohomological transfer and the geometric transfer coincide by Example 5.3.8.

5.3.3 Absolute transfers

Let L/k be a finite, purely inseparable extension. We can factor this into simple

extensions

k = L0 ⊆ L1 ⊆ · · · ⊆ Ln = L.
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Let ti be a primitive element for the simple extension Li/Li−1. From this we obtain

a composite of geometric transfers

τL1
k (t1) ◦ τL2

L1
(t2) ◦ · · · ◦ τLLn−1

(tn) : GW(L)→ GW(k).

This composite transfer is not independent of the tuple (t1, . . . , tn). However, this

transfer depends only on the class of the element dt1 ∧ · · · ∧ dtn in the determinant

of the L-vector space of Kähler differentials of L over k (Mor12, §5). Thus any class

in ωL/k := detΩL/k provides a way to transfer from L down to k. This perspective

allows us to produce a well-defined absolute transfer

Tr
k(p)
k

(
ωL/k

)
: GW(L, ωL/k)→ GW(k),

where GW(L, ωL/k) denotes the twisted Grothendieck–Witt group (Mor12, Definition

5.4). In the simple setting, ωL/k is a one-dimensional L-vector space, and therefore

isomorphic to L, inducing a group isomorphism GW(L, ωL/k) ∼= GW(L). This idea

can be leveraged to canonically untwist the absolute transfer in odd characteristic to

obtain a transfer GW(L)→ GW(k), which coincides with the cohomological transfer

(Mor12, Remark 5.6).

It turns out that the absolute transfer is hiding in the background of the defini-

tion of the local A1-Brouwer degree. We will establish this fact after recalling the

definition of the local degree.
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Definition 5.3.11. A point p ∈ An
k is called an isolated zero of a morphism f :

An
k → An

k is f(p) = 0 and p is isolated in its fiber f−1(0).

Let f : An
k → An

k be a morphism of affine space, and let p ∈ An
k be an isolated

zero of f . By viewing An
k ⊆ Pnk as a subscheme of projective space via a standard

chart, f induces a map

f :
Pnk

Pnk − p
→ Pnk

Pnk − 0
≃ Pnk

Pn−1
k

.

Precomposing with the collapse map cp : Pnk/P
n−1
k → Pnk/(Pnk − p) yields a morphism

fp as in the following diagram:

Pnk/(Pnk − p) Pnk/P
n−1
k

Pnk/P
n−1
k

f

cp
fp

Definition 5.3.12. Let f : An
k → An

k , and let p be an isolated zero of f . The local

A1-degree degA
1

p (f) of f at p is the image of the homotopy class of fp under Morel’s

degree map

degA
1

:
[
Pnk/Pn−1

k ,Pnk/Pn−1
k

]
SH(k)

→ GW(k).

If k(p)/k is separable, then the stable class of the collapse map admits a tractable

description (KW19, Lemma 13). In particular, since Speck(p) is a smooth k-scheme,
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purity gives an equivalence

Pnk
Pnk − p

≃ ThTpPnk ≃
(

Pnk
Pn−1
k

)
∧ Speck(p)+.

From this, one can prove that the collapse map is
(
Pnk/P

n−1
k

)
∧ η1k , where η : id →

q∗q
∗ is the unit of the pushforward-pullback adjunction for the structure map q :

Speck(p)→ Speck.

If k(p)/k is not separable, we defer to the theory of Gysin maps in order to

characterize the collapse map.

Proposition 5.3.13. Let E ∈ SH(k) be a motivic spectrum. Then the compactly

supported cohomology of Pnk on p ∈ Pnk is given by

Ep (Pnk) = E

(
Pnk

Pnk − p

)
.

Proof. Let i : Speck(p) → Pnk be the closed immersion of p into Pnk . Let π : Pnk →

Speck be the structure map, which is smooth. Cohomology with compact supports

(c.f. (BW21, 4.2.1)) is defined to be

Ep (Pnk) :=
[
1k, π∗i!i

!π∗E
]
SH(k)

.

Since i is a closed immersion, it is a proper map, so we have a canonical natural

isomorphism i! ≃ i∗. As π is smooth, π♯ exists and is left adjoint to π∗. Combining

these facts with the basic properties of adjunctions, we have a string of natural
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isomorphisms:

[
π∗1k, i!i

!π∗E
]
SH(Pn

k )
∼=
[
1Pn

k
, i∗i

!π∗E
]
SH(Pn

k )
(i∗ ≃ i!)

∼=
[
i∗1Pn

k
, i!π∗E

]
SH(k(p))

(i∗ left adjoint to i∗)

∼=
[
1k(p), i

!π∗E
]
SH(k(p))

(i∗ monoidal)

∼=
[
i∗1k(p), π

∗E
]
SH(Pn

k )
(i∗ ≃ i! left adjoint to i

!)

∼=
[
π♯i∗1k(p), E

]
SH(k)

(π♯ left adjoint to π
∗).

Proposition 5.2.1 states that i∗1k(p) is the cofiber Pnk/ (Pnk − p), while π♯ is the for-

getful functor. The result follows from the definition of E
(

Pn
k

Pn
k−p

)
.

Proposition 5.3.14 (The collapse map induces the Gysin transfer). Let E be any

motivic spectrum over k. Let i : Speck(p) → Pnk be the inclusion of a closed point

p, and let q : Speck(p) → Speck denote the structure map. The collapse map

cp :
Pn
k

Pn−1
k

→ Pn
k

Pn
k−p

induces a map c∗p : Ep(Pnk ,Onk )→ EAn
k
(Pnk ,Onk ), and the composite

E (Speck(p),Lq)
i!−→ Ep(Pnk ,Onk )

c∗p−→ EAn
k
(Pnk ,Onk ) ≃ E(Speck)

is equal to the Gysin transfer q! (EHK
+20, (2.2.4)).

Proof. This can be seen by the commutativity of the bottom rectangle of (EHK+20,

(3.2.12)).

Given a map f : An
k → An

k with an isolated zero p, the class f lives in the stable
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homotopy classes of maps from the cofiber Pnk/ (Pnk − p) into Pnk/P
n−1
k . This group

admits a nice algebraic description.

Proposition 5.3.15. There is an isomorphism of groups[
Pnk

Pnk − p
,

Pnk
Pnk − 0

]
SH(k)

∼= GW(k(p), ωq) .

Proof. Excision implies that

Pnk
Pnk − 0

≃ An
k

An
k − 0

≃ Th(Onk ),

where Onk is the trivial rank n bundle over a point. As an element of SH(k), we

can write Σ∞Th(Onk ) as Σn1k. Let π̃ : Pnk(p) → Speck(p), π : Pnk → Speck, and

q : Speck(p) → Speck be structure maps. Let i : Speck(p) → Pnk denote the

inclusion of p, and let ι : Speck(p) → Pnk(p) denote inclusion of the canonical k(p)-

rational point p̃ lying over p. These maps fit into the commutative diagram

Speck(p) Pnk(p) Speck(p)

Speck(p) Pnk Speck.

ι π̃

⌟
q

i π

(5.3.16)

By Proposition 5.2.1 and purity, we can rewrite our mapping classes as[
Pnk

Pnk − p
,

Pnk
Pnk − 0

]
SH(k)

∼=
[
π♯i∗1k(p),Σ

n1k
]
SH(k)

.

Functoriality implies (qπ̃ι)∗ = q∗π̃∗ι∗ and (πi)∗ = π∗i∗. As π and π̃ are both proper

and étale, we have π∗ ≃ π♯ and π̃∗ ≃ π̃♯. Since q is proper, we have q∗ ≃ q!, with
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right adjoint q!. Equation 5.3.16 thus allows us to rewrite

[
π♯i∗1k(p),Σ

n1k
]
SH(k)

∼=
[
π∗i∗1k(p),Σ

n1k
]
SH(k)

(π∗ ≃ π♯)

∼=
[
q∗π̃∗ι∗1k(p),Σ

n1k
]
SH(k)

(qπ̃ι = πi)

∼=
[
π̃♯ι∗1k(p), q

!Σn1k
]
SH(k(p))

(q! right adjoint to q∗, π̃∗ ≃ π̃♯)

∼=

[
Σ∞ Pnk(p)

Pnk(p) − p̃
, q!Σn1k

]
SH(k(p))

(Proposition 5.2.1)

∼=
[
Σn1k(p), q

!Σn1k
]
SH(k(p))

(purity).

We can now use the isomorphism q!Σn ∼= Σnq!, desuspend, and remark that the

sphere spectrum is q-pure (Equation 5.2.5) to deduce

[
Σn1k(p),Σ

nq!1k
] ∼= [1k(p), q!1k] ∼= [1k(p),ΣLq1k(p)

]
.

Since the unit map 1k(p) → HZ̃ induces an isomorphism on π0, we have an isomor-

phism

[
1k(p),Σ

Lq1k(p)
] ∼= [1k(p),ΣLqHZ̃

]
= C̃H0 (Speck(p), ωq) .

Here C̃H denotes the Chow–Witt groups of a scheme, which are represented by the

motivic spectrumHZ̃, and ωq = detLq. We conclude by noting that C̃H0 (Speck(p), ωq) ∼=

GW(Speck(p), ωq) (see e.g. (EHK+20, p. 35)).

Corollary 5.3.17 (Precomposition with the collapse map is the absolute transfer).
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The collapse map cp : Pnk/P
n−1
k → Pnk/ (Pnk − p) induces a morphism

[
Pnk

Pnk − p
,
Pnk
Pn−1
k

]
SH(k)

→
[

Pnk
Pn−1
k

,
Pnk
Pn−1
k

]
SH(k)

, (5.3.18)

which is a map of the form GW(k(p), ωq)→ GW(k). This is the absolute transfer.

Proof. By Proposition 5.3.15 and (Mor12, Corollary 1.24), Equation 5.3.18 can be

written as a map GW(k(p), ωq) → GW(k). Taking E = 1k to be the sphere

spectrum, Proposition 5.3.14 implies that the collapse map induces a Gysin map

GW(k(p), ωq) → GW(k). By (EHK+20, Proposition 4.3.17), the Gysin map coin-

cides with the absolute transfer.

5.3.4 Hinting at lifts for transfers

So far, we have discussed transfers in the context of both Grothendieck–Witt rings

and motivic spectra. The following result suggests that one can lift the class f up

to a class f̃ around the canonical k(p)-rational point p̃. We then ask if the lift f̃ is

compatible with a given transfer τ : is τ(f̃) = f?

Proposition 5.3.19. Morel’s canonical untwisting (in odd characteristic) can be

thought of as a map of the form

[
Pnk

Pnk − p
,

Pnk
Pnk − 0

]
SH(k)

∼= GW(k(p), ωq)
∼−→ GW(k(p)) ∼=

[
Pnk(p)

Pnk(p) − p̃
,

Pnk(p)
Pnk(p) − 0

]
SH(k(p))

.
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Proof. Since both p̃ and 0 are k(p)-rational, the equivalence [
Pn
k(p)

Pn
k(p)

−p̃ ,
Pn
k(p)

Pn
k(p)

−0
]SH(k(p))

∼=

GW(k(p)) follows immediately by purity and (Mor12, Corollary 1.24). The result

now follows from Proposition 5.3.15.

Remark 5.3.20. Suppose that f is an endomorphism of An
k with an isolated root

at a closed point p. This induces a class f ∈
[

Pn
k

Pn
k−p

,
Pn
k

Pn
k−0

]
whose absolute transfer

is degA
1

p (f). However, Proposition 5.3.19 implies that we can untwist f to obtain

a class f̃ ∈
[ Pn

k(p)

Pn
k(p)

−p̃ ,
Pn
k(p)

Pn
k(p)

−0

]
whose geometric transfer recovers degA

1

p (f). This leads

us to the question of lifts, transfers, and degrees: is there an endomorphism g of

An
k(p) such that g = f̃? Lemma 5.5.6 answers this question in the affirmative in the

univariate setting.

5.4 Bézoutians, Hankel forms, and Horner bases

We now discuss a few algebraic tools used for computing local A1-degrees. The first

tool will be the Bézoutian Béz(f) of a map f : An
k → An

k , which is a polynomial in 2n

variables. The coefficients of Béz(f) determine a bilinear form k[X1, . . . , Xn]/(f) ×

k[Y1, . . . , Yn]/(f) → k whose isomorphism class is degA
1

(f) (BMP21b). This was

first noticed by Cazanave in the univariate case (Caz12). One can also recover the

local A1-degree degA
1

p (f) from Béz(f) in a similar manner (BMP21b).

The second tool will be Hankel matrices. In the univariate case, the bilinear forms
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determined by Bézoutians have a particular structure (namely, they are represented

by Hankel matrices). By exploiting this structure, one can easily diagonalize these

bilinear forms to better understand their classes in GW(k).

The final tool will be Horner bases, which serve as an alternative to the monomial

basis of a quotient k[x]/(f). We will also discuss how Horner bases interact with

the Scharlau form when k[x]/(f) is a field. This will be relevant in the proof of

Lemma 5.5.6.

5.4.1 Bézoutians and A1-degrees

Given a map f/g : P1
k → P1

k, let

Béz(f/g) :=
f(X)g(Y )− f(Y )g(X)

X − Y
∈ k[X, Y ]

be its Bézoutian. Writing Béz(f/g) =
∑

i,j cijX
i−1Y j−1, the matrix of coefficients

(cij) defines the Bézoutian bilinear form of f/g, and the class in GW(k) of this

bilinear form recovers degA
1

(f/g) (Caz12).

In the univariate case, every local A1-degree can be expressed as a global A1-

degree of the projective line.

Proposition 5.4.1 (Univariate local degrees are global degrees). Let f : A1
k → A1

k

be a map with an isolated zero at a closed point p, and let m(x) ∈ k[x] be an
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irreducible polynomial that generates the maximal ideal corresponding to p. Then

f(x) = u(x)m(x)d for some u(x) ∈ k[x] that is nonvanishing at p, and

degA
1

p (f) = degA
1

(
P1
k

md/u−−−→ P1
k

)
.

Proof. Combining Cazanave’s theorem with (BMP21b), it suffices to show that

Béz(f) ≡ Béz(md/u) mod (f(X), f(Y )). Moreover, since u(x) is not contained in

the ideal (m(x)), we have an isomorphism

k[x](m)

(f)
∼=
k[x](m)

(md)

of k-algebras. It thus suffices to show that Béz(f) ≡ Béz(md/u) mod (m(X)d,m(Y )d).

We compute that

Béz(f) =
u(X)m(X)d − u(Y )m(Y )d

X − Y

=
u(X)m(X)d − u(Y )m(Y )d

X − Y
+
u(Y )m(X)d − u(Y )m(X)d

X − Y

+
u(X)m(Y )d − u(X)m(Y )d

X − Y

=
u(Y )m(X)d − u(X)m(Y )d

X − Y
+
u(X)− u(Y )

X − Y
(m(X)d +m(Y )d)

≡ u(Y )m(X)d − u(X)m(Y )d

X − Y
mod (m(X)d,m(Y )d).

≡ Béz(md/u) mod (m(X)d,m(Y )d).

Corollary 5.4.2. Let p ∈ A1
k be a closed point, and letm(x) ∈ k[x] be an irreducible

polynomial that generates the maximal ideal corresponding to p. This polynomial
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determines a map m : A1
k → A1

k, and

degA
1

p (m) = degA
1

(m) = degA
1

(P1
k

m/1−−→ P1
k).

Proof. The equality degA
1

(m) = degA
1

(P1
k

m/1−−→ P1
k) is a special case of Proposi-

tion 5.4.1 (with d = 1 and u = 1). Morally speaking, degA
1

p (m) = degA
1

(m) since p

is the only root of m over k. More precisely, the isomorphism

k[x]

(m)
∼=
k[x](m)

(m)

of k-algebras preserves the Bézoutian and basis of k[x]/(m). By (BMP21b, Lemma

4.7), it follows that degA
1

p (m) = degA
1

(m).

5.4.2 Hankel and block Hankel forms

A Hankel matrix is a symmetric matrix with constant anti-diagonals. A symmetric

bilinear form that can be represented by a Hankel matrix is called a Hankel form.

Hankel matrices and forms are classical objects of study (Ioh82). In the univariate

setting, we may observe that Bézoutian bilinear forms of polynomials can be naturally

represented by Hankel matrices. As a motivating example, consider the polynomial

f(x) = x3 + 3x2 − 4x+ 1. Its Bézoutian is given by

Béz(f) =
f(X)− f(Y )

X − Y
= (X2 +XY + Y 2) + 3(X + Y )− 4.
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Writing this in monomial basis for the global algebra k[x]/f(x), we obtain

degA
1

(f) =



1 X X2

1 −4 3 1

Y 3 1 0

Y 2 1 0 0


.

In particular, degA
1

(f) is a Hankel form. Note that all the anti-diagonals below the

main anti-diagonal are constantly zero. We call such a form an upper triangular

Hankel form. The isomorphism class in GW(k) of an upper triangular Hankel form

is well-understood — interestingly, none of the information lying above the main

anti-diagonal matters.

Proposition 5.4.3. (KW20, Lemma 6) Let s1, . . . , sd ∈ k with sd ̸= 0. Then the

matrix 

s1 s2 · · · sd−1 sd

s2 s3 · · · sd 0

...
...

...
...

...

sd−1 sd · · · 0 0

sd 0 · · · 0 0


.
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represents the GW(k) class 
d
2
H d is even

d−1
2
H+ ⟨sd⟩ d is odd.

The global A1-degree of any polynomial map P1
k → P1

k is an upper triangular

Hankel form, so Proposition 5.4.3 characterizes such A1-degrees. This characteriza-

tion alternatively follows from the fact that any univariate polynomial can be näıvely

A1-homotoped to its leading term (Caz12, Example 2.4).

One might ask whether local A1-degrees of univariate polynomials exhibit a sim-

ilar symmetry. Since localizing the global algebra k[x]/(f) at a maximal ideal

m(x) · k[x] (corresponding to an isolated zero p of f) can decrease its rank, the

monomials {1, x, . . . , xdeg(f)} may not form a basis of k[x](m)/(f). In a suitable ba-

sis, we will show that the Gram matrix of degA
1

p (f) is a block upper triangular matrix

with constant blocks on each anti-diagonal. We call such a form a block Hankel form.

We will also see that each block in this Gram matrix for degA
1

p (f) is itself a Hankel

matrix.2

As in Proposition 5.4.3, we will demonstrate that information above the main

off-diagonal of blocks does not affect the GW(k) class of a block Hankel form. We

first introduce some notation before proving this general result.

2We have elected to not call this a Hankel block Hankel form.
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Notation 5.4.4. Let V be an algebra over a field K. Let

B := {a1b1, . . . , a1bn, . . . , adb1, . . . , adbn}

be a vector space basis for V . Let β be a bilinear form on V . The dn × dn Gram

matrix for β in the basis B can be written as

βB =



a1 a2 · · · ad

a1 A11 A12 · · · A1d

a2 A21 A22 · · · A2d

...
...

...
. . .

...

an Ad1 Ad2 · · · Add


,

where each Aij is a block matrix of the form

Aij =



ajb1 ajb2 · · · ajbn

aib1 β11
ij β12

ij · · · β1n
ij

aib2 β21
ij β22

ij · · · β2n
ij

...
...

...
. . .

...

aibn βn1ij βn2ij · · · βnnij


.

That is, βℓkij is the coefficient appearing on aibℓ ⊗ ajbk in β.

Lemma 5.4.5. Let V , B, and β be as in Notation 5.4.4. Assume that charK ̸= 2.
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Suppose that β is non-degenerate, and that βB is a block Hankel matrix

βB =



A1 A2 · · · Ad−1 Ad

A2 A3 · · · Ad 0

...
...

...
...

...

Ad−1 Ad · · · 0 0

Ad 0 · · · 0 0


.

Also suppose that each Ai is an n× n Hankel matrix

Ai =



β1
i β2

i · · · βni

β2
i β3

i · · · βn+1
i

...
...

...
...

βni βn+1
i · · · β2n−1

i


.

Then the class in GW(K) of β is nd
2
H if d is even and n(d−1)

2
H+ Âd if d is odd.3

Proof. The goal here is to exhibit a basis B′ such that the Gram matrix βB′ is block

diagonal. In the basis B, the Gram matrix for β can be written as

βB =
d∑

i,j=1

n∑
ℓ,k=1

βℓ+k−1
i+j−1 aibℓ ⊗ ajbk

for some scalars βℓ+k−1
i+j−1 ∈ K. We will recursively use the rows of βB to construct

the basis B′. See Section 5.6 for the intuition behind the following details. For

3Here we are abusing notation to conflate the Gram matrix Ad with the isomorphism class of

forms it represents in GW(k).
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1 ≤ i ≤ ⌊d
2
⌋ and 1 ≤ ℓ ≤ n, let

ψℓi =
β2ℓ−1
i

2
aibℓ +

n∑
k=ℓ+1

β2ℓ−1+k
i aibk +

d∑
j=i+1

n∑
k=1

βk+ℓ−1
j ajbk.

Now let

B′ = {a1b1, ψ1
1, a1b2, ψ

2
1, . . . , a1bn, ψ

n
1 , . . . , a⌊d/2⌋bn, ψ

n
⌊d/2⌋}

∪


∅ d is even{
a d+1

2
b1, . . . , a d+1

2
bn

}
d is odd.

The assumption that β is non-degenerate implies that the elements of B′ are linearly

independent, so B′ is a K-basis for V . We now rewrite βB in terms of B′:

βB =

⌊d/2⌋∑
i=1

n∑
ℓ=1

(
aibℓ ⊗ ψℓi + ψℓi ⊗ aibℓ

)
+


0 d is even

∑n
ℓ,k=1 β

ℓ+k−1
d a d+1

2
bℓ ⊗ a d+1

2
bk d is odd.

It follows that βB′ is block diagonal. For 1 ≤ i ≤ ⌊d
2
⌋, the ith block of βB′ (corre-
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sponding to the basis elements {aib1, ψ1
i , . . . , aibn, ψ

n
i }) is

aib1 ψ1
i aib2 ψ2

i · · · aibn ψni

aib1 0 1

ψ1
i 1 0

aib2 0 1

ψ2
i 1 0

...
. . .

aibn 0 1

ψni 1 0.

This is a block sum of n copies of the hyperbolic form H. If d is odd, the final block

of βB′ (corresponding to the basis elements {a d+1
2
b1, . . . , a d+1

2
bn}) is simply Ad. It

follows that β is the direct sum of hyperbolic forms, along with a direct summand

of Âd when d is odd.

In Section 5.5, we will use Lemma 5.4.5 to compare the local A1-degree of a

function f with the transfer of the local A1-degree of the lift of f .

5.4.3 Horner bases

Many of our calculations in Section 5.5 involve choosing convenient bases of quotients

of polynomial rings. The Horner basis, defined below, is a basis which is dual to the
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monomial basis with respect to the Scharlau form (see Proposition 5.4.7); this fact

will be useful when we prove Lemma 5.5.6. We will collect a few definitions and

results from (BPR06) for later use.

Definition 5.4.6. (BPR06, Notation 8.6) Letm(x) = xn+an−1x
n−1+. . .+a0 ∈ k[x].

Define the Horner polynomials

Hori(m,x) :=


1 i = 0,

xHori−1(m,x) + an−i 1 ≤ i < n.

The set {Horn−1(m,x),Horn−2(m,x), . . . ,Hor0(m,x)} forms a k-basis of k[x]/(m),

which is called the Horner basis.

Let s : k[x]/m(x) → k be the Scharlau form associated to the primitive element

x. The following proposition states that s is a dualizing form for the monomial and

Horner bases, in the sense of (BMP21b, Definition 2.1).

Proposition 5.4.7. (BPR06, Proposition 9.18) Let 0 ≤ i, j ≤ n− 1. Then

s(xiHorn−1−j(m,x)) =


1 i = j,

0 i ̸= j.

Proof. Since we have assumed that m(x) is monic, the Kronecker form mentioned in

loc. cit. is equal to the Scharlau form.
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By (BMP21b, Proposition 3.5(2)), the Scharlau form gives a straightforward way

to write down elements of k[x]/m(x) in terms of the Horner basis. This is also proved

directly in (BPR06, Corollary 9.19).

Corollary 5.4.8. For any g ∈ k[x]/m(x), we have

g(x) ≡
n−1∑
i=0

s(xig(x))Horn−1−i(m,x) mod (m(x)).

We now show that there is a close connection between the Bézoutian of m and

the Horner basis associated to m. In the language of (BMP21b, Definition 3.8), we

will demonstrate that the bilinear form induced by the Scharlau form is in fact a

Bézoutian bilinear form.

Proposition 5.4.9. We have an equality in k[X, Y ] of the form

m(X)−m(Y )

X − Y
=

n−1∑
i=0

X iHorn−1−i(m,Y ).

Proof. Since m(x) =
∑n

i=0 aix
i is a polynomial, its Bézoutian can be written as

m(X)−m(Y )

X − Y
=

n∑
ℓ=1

aℓ

( ∑
i+j=ℓ−1

X iY j

)
=

n−1∑
i+j=0

ai+j+1X
iY j.

Next, the coefficient of Y j in Hori(m,Y ) is an+j−i when i ≥ j, and is zero other-

wise. In particular, the coefficient of X iY j in X iHorn−1−i(m,Y ) is ai+j+1. Thus the

coefficients of X iY j in Béz(m) and
∑n−1

i=0 X
iHorn−1−i(m,Y ) agree.
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To conclude this section, we will relate the coefficients of the Bézoutian in the

Horner basis to the coefficients of the Scharlau transfer in the monomial basis. Since

the Scharlau transfer is equal to the geometric transfer for finite simple extensions

(Lemma 5.3.4), the following result will be useful when computing a geometric trans-

fer in Lemma 5.5.6. See also (BPR06, Proposition 9.20).

Proposition 5.4.10. Let L/k be a finite simple extension with primitive element

t, and let m(x) ∈ k[x] be the minimal polynomial of t. Given any u(x) ∈ L[x], the

coefficient matrix of u(X)m(X)−m(Y )
X−Y in the Horner basis is equal to the coefficient

matrix of s∗⟨u(t)⟩ in the monomial basis.

Proof. By Proposition 5.4.9, we have

m(X)−m(Y )

X − Y
=

n−1∑
i=0

X iHorn−1−i(m,Y ).

Multiplying both sides by u(X), we obtain

u(X)
m(X)−m(Y )

X − Y
=

n−1∑
i=0

u(X)X iHorn−1−i(m,Y ). (5.4.11)

Since u(X)X i =
∑

j s (u(X)X i+j)Horn−1−j(m,X) by Corollary 5.4.8, we can rewrite

Equation 5.4.11 as

n−1∑
i,j=0

s
(
u(X)X i+j

)
Horn−1−i(m,X)Horn−1−j(m,Y ).
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On the other hand, the coefficient matrix of s∗⟨u(t)⟩ in the monomial basis is given by(
s(u(t)ti+j)

)n−1

i,j=0
. Since k(t) = k[X]/m(X), we have s(u(X)X i+j) = s(u(t)ti+j) ∈ k,

as desired.

5.5 Lifts of univariate maps and transfers of local

degrees

Given a map f : An
k → An

k with a non-rational isolated zero p, we would like to

compute the local degree degp(f) ∈ GW(k) by lifting f to a map f̃ : An
k(p) → An

k(p)

with rational isolated zero p̃, computing degp̃(f̃) ∈ GW(k(p)), and applying the

appropriate transfer GW(k(p))→ GW(k). If k(p)/k is a finite, separable extension,

one may take f̃ to be the base change fk(p) (BBM
+21). However, if k(p)/k is finite

and purely inseparable, lifting f to fk(p) yields a local degree whose rank is too large,

as illustrated in Example 5.5.1.

Example 5.5.1. Let k = Fp(t) for some prime p > 2, and let f : A1
k → A1

k be given

by f(x) = (xp − t)d, where d ≥ 1 is an integer. Take q ∈ A1
k to be the non-rational

point defined by the ideal (xp − t) ⊂ Fp(t)[x], and note that k(q) = Fp(t1/p). Let

q̃ = (x − t1/p) be the k(q)-rational lift of q. By (SS75, p. 182) (and e.g. (BMP21b,
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Theorem 5.1)), we have

rank(degq(f)) = dimk
k[x]q
(f)

,

rank(degq̃(fk(q))) = dimk(q)
k(q)[x]q̃
(fk(q))

.

Since f is a polynomial of degree pd lying in the maximal ideal (xp − t), we observe

that dimk k[x]q/(f) = pd. The freshman’s dream implies fk(q) = (x− t1/p)pd, so it fol-

lows that dimk(q) k(q)[x]q̃/(fk(q)) = pd as well. Applying the geometric (equivalently,

Scharlau) transfer τ
k(q)
k (t1/p) = s∗ : GW(k(q))→ GW(k) scales rank by [k(q) : k], so

rank(s∗ degq̃(fk(q))) > rank(degq(f)).

This too-high rank issue arises from the splitting of the minimal polynomial m(x) of

q. Any morphism f : A1
k → A1

k vanishing at q must be a multiple of m. If k(q)/k is

purely inseparable, then all linear factors of mk(q) are contained in the ideal q̃ and

are hence not invertible in k(q)[x]q̃. This stands in contrast with the separable case,

where all but one linear factor of mk(q) are not contained in q̃ and are hence invertible

in the relevant local ring. The invertibility of these factors of mk(p) causes the desired

drop in dimension when constructing the quotient ring k(q)[x]q̃/(fk(q)).

As motivated by Proposition 5.3.19, we would like to look for a suitable lift of f .

Notation 5.5.2. Throughout Section 5.5, let p ∈ A1
k be a closed point with corre-

sponding minimal polynomial m(x) ∈ k[x]. Since A1
k = Speck[x], the residue field
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L := k(p) is a finite simple extension of k. Let t be a primitive element of L/k. The

canonical point p̃ ∈ A1
L is the point corresponding to the ideal (x− t) ⊂ L[x]. We fix

f(x) ∈ k[x] to be a polynomial vanishing at p, written uniquely as f(x) = u(x)m(x)d,

where u(x) is not contained in the ideal corresponding to p (that is, u is non-vanishing

at p).

5.5.1 Geometric lifts of univariate polynomials

We now describe how to lift univariate polynomials relative to geometric and coho-

mological transfers. We begin with geometric lifts.

Definition 5.5.3. Let f(x) = u(x)m(x)d and p be as in Notation 5.5.2. The geo-

metric lift of f at the point p is the polynomial

fg(x) := u(x)(x− t)d ∈ L[x].

Now that we have defined the geometric lift of f at p, we can compute its local

A1-degree.

Lemma 5.5.4. Let f(x) = u(x)m(x)d and p be as in Notation 5.5.2. Then, as

elements of GW(L), we have

degA
1

p̃ (fg) =


d
2
H d is even

⟨u(t)⟩+ d−1
2
H d is odd.
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Proof. The Bézoutian of fg at p̃ will be an element of the algebra

L[X](X−t)

(u(X)(X − t)d)
⊗

L[Y ](Y−t)

(u(Y )(Y − t)d)
∼=

L[X](X−t)

((X − t)d)
⊗
L[Y ](Y−t)

((Y − t)d)
.

We expand the Bézoutian as

Béz(fg) =
u(X)(X − t)d − u(Y )(Y − t)d

X − Y

=
u(X)(X − t)d − u(Y )(Y − t)d

X − Y
+
u(X)(Y − t)d − u(X)(Y − t)d

X − Y

= u(X)
(X − t)d − (Y − t)d

(X − t)− (Y − t)
+
u(X)− u(Y )

X − Y
(Y − t)d

≡ u(X)
(X − t)d − (Y − t)d

(X − t)− (Y − t)
mod ((X − t)d, (Y − t)d)

= u(X)

(
d−1∑
i=0

(X − t)i(Y − t)d−1−i

)
.

Our next goal is to write Béz(fg) with respect to the basis {(x−t)d−1, (x−t)d−2, . . . , (x−

t), 1} of L[x](x−t)/((x − t)d). In order to do so, we must expand u(x) mod (x − t)d

in this basis. This is done using a truncated Taylor series expansion. Let u(i) denote

the ith Hasse derivative of u(x). Then
∑d−1

i=0 u
(i)(t)(x− t)i ≡ u(x) mod (x− t)d, so

Béz(fg) =

(
d−1∑
i=0

u(i)(t)(X − t)i
)(

d−1∑
j=0

(X − t)j(Y − t)d−1−j

)
.

It follows that the Bézoutian bilinear form of fg with respect to the basis {(x −
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t)d−i}di=1 is

(X − t)d−1 (X − t)d−2 · · · (X − t) 1

(Y − t)d−1 u(d−1)(t) u(d−2)(t) · · · u(1)(t) u(t)

(Y − t)d−2 u(d−2)(t) u(d−3)(t) · · · u(t) 0

...
...

...
...

...
...

(Y − t) u(1)(t) u(t) · · · 0 0

1 u(t) 0 · · · 0 0.

(5.5.5)

Since u(x) is not an element of the maximal ideal m(x) ·k[x], it cannot be an element

of the maximal ideal (x− t) ·L[x]. In particular, u(t) ̸= 0, so the result follows from

Proposition 5.4.3.

Corollary 5.1.2 now follows from Lemma 5.5.4.

Proof of Corollary 5.1.2. Apply Lemma 5.3.6 to Equation 5.5.5. Conclude with

Lemma 5.4.5 to block diagonalize the bilinear form.

Since we have computed degA
1

p̃ (fg), we can compare its geometric transfer to

degA
1

p (f).

Lemma 5.5.6. The geometric lift is compatible with the local degree and geometric

transfer. That is, τ
k(p)
k (t)

(
degA

1

p̃ (fg)
)
= degA

1

p (f) in GW(k).
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Proof. Using the same idea as in the proof of Lemma 5.5.4, we have

Béz(f) =
u(X)m(X)d − u(Y )m(Y )d

X − Y

≡ u(X)
m(X)d −m(Y )d

X − Y
mod (m(X)d,m(Y )d)

= u(X)
m(X)d −m(Y )d

m(X)−m(Y )
· m(X)−m(Y )

X − Y
.

For 0 ≤ j < n, let Hj(x) := Horj(m,x) be the jth Horner polynomial associated to

m(x) (as defined in Definition 5.4.6), and let

Bi(x) = {Hn−1(x)m(x)d−1−i, Hn−2(x)m(x)d−1−i, . . . , H0(x)m(x)d−1−i}.

Note that B(x) :=
⋃d−1
i=0 Bi(x) is a k-basis of k[x](m)/(f) ∼= k[x](m)/(m

d), since all

elements of this set have distinct polynomial degree. Collecting powers of m(X) and

m(Y ), we have

Béz(f) ≡ u(X)
m(X)−m(Y )

X − Y

(
d−1∑
i=0

m(X)im(Y )d−1−i

)
mod (m(X)d,m(Y )d).

In this expansion, each summand of Béz(f) is divisible by m(X)im(Y )d−1−i. In

particular, in the basis B(X) × B(Y ), the matrix of coefficients of Béz(f) is block

upper left triangular, where the (i, j)th block corresponds to the coefficients of the

basis elements Bi(X)×Bj(Y ). By Lemma 5.4.5, it suffices to compare the blocks of

the coefficient matrix of Béz(f) along the main anti-diagonal to those appearing in

τLk (t)(deg
A1

p̃ (fg)). The blocks appearing along this diagonal consists of the coefficients
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of u(X)m(X)−m(Y )
X−Y mod (m(X),m(Y )) expanded in the Horner basis {Hn−1(X), . . . , H0(X)}×

{Hn−1(Y ), . . . , H0(Y )}, because the coefficients of any terms of u(X)m(X)−m(Y )
X−Y that

are divisible bym(X) orm(Y ) will be shifted to blocks above the main anti-diagonal.

This is exactly the Gram matrix of τLk (t)⟨u(t)⟩ (see Equation 5.5.5) by Proposi-

tion 5.4.10. The desired result now follows from Lemma 5.5.4.

Remark 5.5.7 (Unstable degree). We expect that Lemma 5.5.6 holds unstably.

While Morel’s A1-degree homomorphism

degA
1

: [(P1
k)

∧n, (P1
k)

∧n]H•(k) → GW(k)

is an isomorphism for n ≥ 2, this map is only an epimorphism for n = 1 (Mor12).

Building on the work of Morel (Mor06, p. 1037), Cazanave showed that

(degA
1

, detBéz) : [P1
k,P1

k]H•(k) → GW(k)×k×/k×2 k×

is an isomorphism (Caz12), where Béz(f) is the Bézoutian bilinear form of the ra-

tional map f . Moreover, the A1-degree of f is the isomorphism class of Béz(f), so

(Béz, detBéz) can be regarded as the unstable A1-degree.

In the proof of Lemma 5.5.6, we showed that Bézp(f) and τ
k(p)
k (t) (Bézt(fg))

represent the same class in GW(k). However, we also showed that detBézp(f) =

(detBézt(fg))
[k(p):k]. Thus if the geometric transfer τ

k(p)
k (t) : GW(k(p)) → GW(k)
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can be extended to an “unstable transfer”

(
τ
k(p)
k (t), ϕ

)
: GW(k(p))×k(p)×/k(p)×2 k(p)× → GW(k)×k×/k×2 k×

such that ϕ(a) = a[k(p):k] for any a ∈ k×, then the geometric lift will be compatible

with the unstable local degree and unstable transfer:

(
τ
k(p)
k (t)(degA

1

p̃ (fg)), ϕ(det Bézp̃(fg))
)
= (degA

1

p (f), detBézp(f)).

5.5.2 Cohomological lifts of univariate polynomials

As discussed earlier, geometric transfers do not behave well with respect to composite

field extensions. One can rectify this issue by twisting geometric transfers, which

leads to the notion of cohomological transfers. In Lemma 5.5.6, we saw that the

geometric transfer of the local A1-degree at p̃ of the geometric lift of f is the local

degree of f at p. Analogously, we will define the cohomological lift of f by twisting

the geometric lift. We will also prove that the cohomological lift is compatible with

the cohomological transfer.

Definition 5.5.8. Let f(x) = u(x)m(x)d and p be as in Notation 5.5.2. The coho-

mological lift of f at p is the polynomial

fc(x) := ω0(x)
du(x)(x− t)d ∈ L[x],
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where ω0(x) is the polynomial associated to the extension L/k defined in Nota-

tion 5.3.7.

Corollary 5.5.9. The cohomological lift is compatible with the local A1-degree and

cohomological transfer. That is, Tr
k(p)
k degA

1

p̃ (fc) = degA
1

p (f).

Proof. Sincem0(x) is a separable polynomial, ω0(x) is non-vanishing at t. Lemma 5.5.4

thus implies that

degA
1

p̃ (fc) =


d
2
H d is even

〈
ω0(t)

du(t)
〉
+ d

2
H d is odd

=


d
2
H d is even

⟨ω0(t)u(t)⟩+ d
2
H d is odd

= ⟨ω0(t)⟩ degA
1

p̃ (fg).

The result now follows from Definition 5.3.10 and Lemma 5.5.6.

Proposition 5.5.10. Assume that k(p)/k is separable. Then the cohomological lift

of f at p is the base change fk(p).

Proof. This follows from the observation that ω0(x)(x − t) = m0(x) = m(x) in this

setting.
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For finite separable extensions, the cohomological transfer is equal to the field

trace on Grothendieck–Witt groups (CF17, Lemma 2.3). By Proposition 5.5.10, we

have that Corollary 5.5.9 recovers the main result of (BBM+21) for univariate maps.

Example 5.5.11. The cohomological lift and geometric lift of a polynomial agree

at a point with purely inseparable residue field by Example 5.3.8.

Example 5.5.12. Consider the polynomial f(x) = (x + 2)(x − 2)(x2 + 1)3 ∈ R[x],

vanishing at (x2 + 1). We have that the geometric lift of f is

fg = (x+ 2)(x− 2)(x− i)3,

while ω0(x) = (x+ i), so that fc(x) = fC(x).

5.5.3 Trace forms and Scharlau forms

Given a finite separable extension L/k, the trace form (x, y) 7→ TrL/k(xy) is an

important invariant of the extension; see (CP84) for a survey. Post-composition

with the field trace induces a homomorphism GW(L) → GW(k), which coincides

with the cohomological transfer.

Proposition 5.5.13. (CF17, Lemma 2.3) Let L/k be a finite separable field ex-

tension. Then post-composition with the field trace TrL/k : L → k induces the
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cohomological transfer

TrLk : GW(L)→ GW(k)[
V × V β−→ L

]
7→
[
V × V β−→ L

TrL/k−−−→ k

]
.

Similarly, associated to each a ∈ L× is the scaled trace form (x, y) 7→ TrL/k(axy).

Since the field trace induces the cohomological transfer for finite separable extensions,

(scaled) trace forms are of the form TrLk ⟨a⟩.

Definition 5.5.14. Let L/k be a finite separable extension with primitive element

t. Recall that the geometric transfer is equal to the Scharlau transfer (Lemma 5.3.4).

In analogy with (scaled) trace forms, we define the (scaled) Scharlau form associated

to a ∈ L× as τLk (t) ⟨a⟩.

We will show that the isomorphism class of any (scaled) trace form or Scharlau

form along a finite separable field extension L/k is given by a local A1-degree. Paired

with the main result of (BMP21b), we obtain a straightforward computational for-

mula for the isomorphism class of any scaled trace form or Scharlau form in the

separable setting. We first recall a result that allows us to relate cohomological and

geometric transfers in the separable setting.

Proposition 5.5.15. (Hoy14, Lemma 5.8) Let L/k be a finite separable extension

with primitive element t. Let m(x) ∈ k[x] be the minimal polynomial of t. Then for
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any β ∈ GW(L), we have TrLk (β) = τLk (t) (⟨m′(t)⟩ · β).

Proof. Since L/k is separable, we have ω0(t) = m0(t) = m′(t). The result thus

follows from Definition 5.3.10.

After giving a definition, we will be ready to show that scaled trace forms are in

fact local A1-degrees.

Definition 5.5.16. Let L/k be a finite simple field extension with primitive element

t. Given a ∈ L, we then have a =
∑[L:k]−1

i=0 ait
i, with ai ∈ k uniquely determined

(since t is fixed). Define a(x) :=
∑[L:k]−1

i=0 aix
i ∈ k[x].

Proposition 5.5.17 (Scaled Scharlau forms are A1-degrees). Let L/k be a finite

separable extension with primitive element t, and let m(x) ∈ k[x] be the minimal

polynomial of t. Let p ∈ A1
k be the closed point defined by m(x). Let a ∈ L×. Then

τLk (t) ⟨a⟩ = degA
1

p (a(x)m(x)).

Proof. Let h(x) = a(x)m(x). By Proposition 5.5.10, we have that m(x) = ω0(x)(x−

t). Since a(x) is non-vanishing at t, the cohomological lift of h(x) is simply the base
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change hc(x) = hL(x). By (KW19, Proposition 15), its local degree at t is

degA
1

t (hL) =

〈
d

dx
hL(x)

∣∣∣∣
x=t

〉
= ⟨a′(x)m(x) + a(x)m′(x)|x=t⟩

= ⟨a(t)m′(t)⟩ .

Applying the cohomological transfer and invoking Corollary 5.5.9, we have degA
1

p (h) =

TrLk deg
A1

t (hc). Combining this with Proposition 5.5.15 concludes the proof.

Example 5.5.18. The Scharlau form τ
k(p)
k ⟨1⟩ is the local degree of the minimal

polynomial of p at the point p. This is also equal to the global degree of the minimal

polynomial by Corollary 5.4.2. This indicates that unscaled Scharlau forms are

uninteresting, in the sense that they are either entirely hyperbolic or hyperbolic plus

a summand of ⟨1⟩.

Proposition 5.5.19 (Scaled trace forms are A1-degrees). Let L/k be a finite sepa-

rable extension with primitive element t, and let m(x) ∈ k[x] be the minimal poly-

nomial of t. Let a ∈ k(p)×. Then

TrLk ⟨a⟩ = degA
1

p (a(x)m′(x)m(x)).

Proof. Let h(x) = a(x)m′(x)m(x). The geometric lift is given by hg(x) = a(x)m′(x)(x−
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t), so the local degree of hg at t is

degA
1

t (hg) =

〈
d

dx
a(x)m′(x)(x− t)

∣∣∣∣
x=t

〉
= ⟨a(t)m′(t)⟩ .

Combining this with Proposition 5.5.15, we have that

degA
1

p (h) = τLk (t)
(
degA

1

t (hg)
)
= TrLk ⟨a⟩ .

Example 5.5.20. Let K = Q( 3
√
2) with minimal polynomial m(x) = x3 − 2. The

extension K/Q has trace form

TrK/Q⟨1⟩ =
(
TrK/Q(

3
√
2
i
· 3
√
2
j
)
)
0≤i,j≤2

=


3 0 0

0 0 6

0 6 0


= ⟨3⟩+H.

Using the code provided in (BMP21a), we verify that degA
1

3√2
(m′(x) ·m(x)) = ⟨3⟩+H.

Remark 5.5.21. Given any irreducible polynomial m(x) ∈ k[x] (defining a finite

simple field extension L/k) and any unit a ∈ L×, we can readily compute the scaled

trace form TrLk ⟨a⟩ using Proposition 5.5.19 together with the Sage code provided in

(BMP21a).
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5.6 Appendix: Pictorial intuition for diagonaliza-

tion arguments

Suppose we are given a symmetric bilinear form that can be represented by an upper

left triangular Hankel matrix. The intuition behind the proof of Proposition 5.4.3 is

that the data of the matrix can be repackaged into “upper-left corners.” To illustrate

what we mean by this, consider the 5× 5 example illustrated in Figure 5.1.

a1 a2 a3 a4 a5
a2 a3 a4 a5
a3 a4 a5
a4 a5
a5




Figure 5.1: Upper triangular Hankel matrix

Given a vector space basis {x1, . . . , x5}, this matrix defines a bilinear form by

∑
i,j

ai+j−1xi ⊗ xj.

Consider all the terms with a factor of x1, illustrated in red (or the darkest shade in

grayscale). The top row is given by x1 ⊗ (a1x1 + . . .+ a5x5); by symmetry, the first

column is given by (a1x1 + . . . + a5x4) ⊗ x1. Note that a1x
⊗2
1 is double counted, so

we define a new basis element

ψ1 =
a1
2
x1 + a2x2 + . . .+ a5x5.
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In this terminology, the first corner of the matrix (highlighted in red) can be rewritten

as x1 ⊗ ψ1 + ψ1 ⊗ x1. Similarly, for the second corner (highlighted in cyan, or the

medium shade in grayscale), we can define

ψ2 =
a3
2
x2 + a4x3 + a5x4.

Then the cyan portion of the form is x2⊗ψ2 +ψ2⊗ x2. Finally, we are left with the

lone term in yellow (or the lightest shade in grayscale), which is a5x
⊗2
3 . We can thus

define a new basis {x1, ψ1, x2, ψ2, x3}. In this basis, our form can be written as

x1 ⊗ ψ1 + ψ1 ⊗ x1 + x2 ⊗ ψ2 + ψ2 ⊗ x2 + a5x
⊗2
3 ,

so the isomorphism class of this form is 2H+ ⟨a5⟩.

Note that the Hankel structure was not used in this discussion — we only needed

symmetry and upper left triangularity.

Remark 5.6.1. The proof of Proposition 5.4.3 holds when the matrix is symmetric

and upper left triangular, so the Hankel assumption is unnecessary.

Passing to a more general case, replace the each ai with a block matrix Ai (see

Figure 5.2). We will use the same idea to diagonalize this matrix. If there is an

odd number of blocks along the diagonal, we will stop our modifications short of the

central block.
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A1 A2 A3 A4 A5

A2 A3 A4 A5

A3 A4 A5

A4 A5

A5




a11 a21 a31 a12 a22 a32

a21 a31 a41 a22 a32 a42

a31 a41 a51 a32 a42 a52

a12 a22 a32 a13 a23 a33

a22 a32 a42 a23 a33 a43

a32 a42 a52 a33 a43 a53

Figure 5.2: Block upper triangular Hankel matrix

We can now clarify the intuition behind the choice of

ψℓi =
β2ℓ−1
i

2
aibℓ︸ ︷︷ ︸

(i)

+
d∑

k=ℓ+1

β2ℓ−1+k
i aibk︸ ︷︷ ︸
(ii)

+
n∑

j=i+1

d∑
k=1

βk+ℓ−1
j ajbk︸ ︷︷ ︸

(iii)

,

which we used to diagonalize the block form in Lemma 5.4.5. The term (i) is the term

lying on the diagonal in the ith block on the ℓth row. The sum (ii) travels horizontally

from the term on the diagonal until it reaches the edge of the block. Finally, the

double sum (iii) continues the row to the right across all the other remaining blocks.

We can now decompose our form as a sum of hyperbolic forms
∑

i,ℓ aibℓ ⊗ ψℓi +

ψℓi ⊗ aibℓ. If there is an odd number of blocks, this decomposition will leave the

central block (in this example, a copy of A5) alone.
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Remark 5.6.2. Again, we did not use any Hankel structure in this argument. In

particular, the statement of Lemma 5.4.5 holds when the matrix is any symmetric

matrix that is block upper left triangular.
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Chapter 6

An enriched degree of the Wronski map

Abstract: Given mp different p-planes in general position in (m + p)-dimensional

space, a classical problem is to ask how many p-planes intersect all of them. For

example when m = p = 2, this is precisely the question of “lines meeting four lines

in 3-space” after projectivizing. The Brouwer degree of the Wronski map provides

an answer to this general question, first computed by Schubert over the complex

numbers and Eremenko and Gabrielov over the reals. We provide an enriched degree

of the Wronski map for all m and p even, valued in the Grothendieck–Witt ring

of a field, using machinery from A1-homotopy theory. We further demonstrate in

all parities that the local contribution of an m-plane is a determinantal relationship

between certain Plücker coordinates of the p-planes it intersects.

205



6.1 Introduction

Given m functions f1(t), . . . , fm(t) of degree equal to m + p − 1, we define their

Wronskian

Wr(f1, . . . , fm)(t) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(t) f2(t) · · · fm(t)

f ′
1(t) f ′

2(t) · · · f ′
m(t)

...
...

. . .
...

f
(m−1)
1 (t) f

(m−1)
2 (t) · · · f

(m−1)
m (t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This is a polynomial of degree at most mp. Let km+p−1[t] denote the vector space

of polynomials of degree at most m + p − 1 over a field k. We observe that if s is

a root of the Wronskian, then the m-plane span {f1, . . . , fm} ⊆ km+p−t[t] intersects

the p-plane Ep(s) = span {(t− s)m+p−1, . . . , (t− s)m} nontrivially. Thus the fiber of

the Wronski counts certain m-planes intersecting mp different p-planes. For example

when m = p = 2, we recover the classical statement that there are two lines meeting

four lines in three-space.

We could also envision these polynomials fi as defining a rational curve by P1 →

Pm−1, given by t 7→ [f1(t) : . . . : fm(t)]. In this case s is a root of the Wronski if and

only if the vectors ϕ(s), ϕ′(s), . . . , ϕ(m−1)(s) do not span all of Pm−1.1 We say that

1This is analogously phrased as inflection of a linear series V ⊆ Γ(P1,O(m + p − 1)). For an

investigation of arithmetically-enriched inflection on elliptic and hyperelliptic curves, see (CGL22;

CDH20).
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ϕ inflects at such a point. Thus the fiber of the Wronski counts rational curves of

degree (m+ p− 1) with mp prescribed inflection points. Viewing the polynomials fi

as spanning an m-plane in the (m+ p)-dimensional vector space of polynomials over

k of degree at most (m + p − 1), we can consider the Wronski map as a morphism

between mp-dimensional varieties

Wr : Grk(m,m+ p)→ Pmpk = Proj(kmp[t]). (6.1.1)

In 1886, Schubert (Sch86) formulated the number of m-planes meeting mp general

p-planes in (m+ p)-dimensional space as

nC =
1!2! · · · (p− 1)!(mp)!

m!(m+ 1)! · · · (m+ p− 1)!
. (6.1.2)

This admits a combinatorial description in that it counts the number of standard

Young tableaux of size m × p. It is also the Brouwer degree of the complex Wron-

ski map (Equation 6.1.1 when k = C). Over the reals, orientation data prevents

producing a well-defined integer value for the Brouwer degree of the real Wronski,

nonetheless by working on an affine open cell, Eremenko and Gabrielov computed the

Brouwer degree of the real Wronski map (Equation 6.1.1 when k = R) (EG01; EG02),

which also admits a combinatorial description, being the number of semi-shifted stan-
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dard Young tableaux of size m× p (HH92; Whi01).

nR = ±


1!2!···(p−1)!(m−1)!(m−2)!···(m−p+1)!(mp/2)!

(m−p+2)!(m−p+4)!···(m+p−2)!(m−p+1
2 )!(m−p+3

2 )!···(m+p−1
2 )!

m+ p odd

0 m+ p even.

We attach the first few values of these for the reader’s reference:

p

m
2 3 4 5

2 2 5 14 42

3 5 42 462 6006

4 14 462 24024 1662804

5 42 6006 1662804 701149020

Figure 6.1: Values of nC

p

m
2 3 4 5

2 0 1 0 2

3 1 0 2 0

4 0 2 0 12

5 2 0 12 0

Figure 6.2: Values of |nR|

In this paper we unify these two computations into a single enriched Brouwer

degree in the case when m and p are both even. The algebrao-geometric analogue

of the Brouwer degree that we use is called the A1-Brouwer degree, first defined

by Morel (Mor06), which is valued in the Grothendieck–Witt group of symmetric

bilinear forms over k. This tool has been instrumental in the development of A1-

enumerative geometry (or enriched enumerative geometry). This program has grown

in recent years due to seminal work of Levine (Lev20), Kass and Wickelgren (KW19),
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Bachmann and Wickelgren (BW21), among others.

Theorem A. (As Theorem 6.3.29) Let k be any field in which (m + p − 1)! is

invertible, and let m and p both be even. Then the A1-degree of the Wronski Wr :

Grk(m,m+ p)→ Pmpk computed on an open affine cell is

degA
1

Wr =
nC

2
H,

where nC is the Brouwer degree of the Wronski over the complex numbers, and H

denotes the hyperbolic form ⟨1,−1⟩.

Given a closed point W = span {f1, . . . , fm} with Wronskian having roots at

distinct scalars s1, . . . , smp ∈ k, we may compute the local degree of the Wronski

map in any parities.

Theorem B. (As Theorem 6.4.3) Let k be any field in which (m+p−1)! is invertible,

and let W ∈ Grk(m,m + p) be a closed point whose Wronskian is of the form

Wr(W )(t) =
∏mp

i=1(t− si) for distinct si ∈ k. Then we have that

degA
1

W (Wr) = ⟨C · detB⟩ ,

where C is a fixed constant depending only on m, p, and the si’s, and B is a matrix

of distinguished Plücker coordinates of the p-planes Ep(s1), . . . , Ep(smp).

The ℓth column of B consists of mp distinguished Plücker coordinates of the

plane Ep(sℓ), and each row corresponds to the same coordinate. Thus considering
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the columns as vectors over k, we have that detB is a signed volume of vectors

determined by the p-planes that span {f1, . . . , fm} intersects.

As the Wronski map also counts rational curves with prescribed inflection data,

we provide evidence that the local A1-degree encodes information about the geometry

of the associated rational curve. In Corollary 6.4.10 we demonstrate that the local

degree at a planar quartic aligns with an enriched Welschinger invariant in the sense

of (KLSW22).

6.1.1 Outline

In Section 6.2, we provide some historical background for studying the Brouwer

degree of the Wronski map, before exploring in greater detail the technical machinery.

We discuss the rational normal curve, Grassmann duality, and Plücker coordinates,

before providing relevant background from A1-enumerative geometry. We discuss

relative orientations of vector bundles and how the formalism of A1-enumerative

geometry allows one to associate to them a well-defined Euler number valued in

Grothendieck–Witt of a ground field.

In Section 6.3, we compare the Wronski map to a section of an appropriate

vector bundle over an affine chart on the Grassmannian, and demonstrate that their

Brouwer degrees agree up to some global constant. In the case where m and p are
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both even, we can compute the global A1-degree of the Wronski map on an affine

patch using the fact that the Euler classes of relatively oriented vector bundles with

odd rank summands are hyperbolic.

Finally, in Section 6.4, we provide an arithmetic formula for the local A1-degree

of the Wronski map that holds in all parities. We demonstrate that this local index

at an m-plane can be interpreted as a “signed volume” of the p-planes that this

m-plane intersects. This agrees with and generalizes the local index computed by

(SW21). We provide some very preliminary evidence towards a connection between

the local A1-degree of the Wronski map and arithmetic Welschinger invariants a la

(KLSW22).
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6.2 Preliminaries

We will begin by delving into the Wronski map, understanding its geometric inter-

pretation as counting planes meeting planes of the correct codimension osculating

the rational normal curve. By mapping a plane of covectors to the plane it annihi-

lates, we have a natural duality on Grassmannians, and it will benefit us to be able

to translate information through this duality, and discuss how it relates to things

like Plücker coordinates. After this, we establish some of the foundations of A1-

enumerative geometry, from which we collect the tools to explore the local degree of

the Wronski in greater detail.

6.2.1 The rational normal curve

Over the complex numbers, the degree of the Wronski map provides a count of planes

which meet a collection of planes, which are said to osculate the rational normal

curve. We will define these terms, and provide a rough outline of this argument over

any field here, but for a more rigorous version of this statement over the complex

numbers, we refer the reader to (Sot11, §10.1).

We may view affine space Am+p
k as the space km+p−1[t] of polynomials of degree at

mostm+p−1 with coefficients in k by considering a rational point (a0, . . . , am+p−1) ∈

An
k as a polynomial a0+ a1t+ . . .+ am+p−1t

m+p−1 ∈ k[t]. We then let γ : A1
k → Am+p

k
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denote the rational normal curve, also referred to the moment curve γ, defined to

be the image of the map

s 7→ (1, s, s2, s3, . . . , sm+p−1),

where as above we are identifying affine space with a space of polynomials. That is

γ(s) = 1 + st+ s2t2 + . . .+ sm+p−1tm+p−1 ∈ km+p−1[t].

We may define the derivative of the rational normal curve by deriving termwise,

to obtain

γ′(s) = (0, 1, 2s, 3s2, . . . , (m+ p− 1)sm+p−2),

which corresponds to the polynomial

γ′(s) = t+ 2st2 + 3s2t3 + . . .+ (m+ p− 1)sm+p−2tm+p−1 ∈ km+p−1[t].

Higher derivatives are defined analogously. One may check that, for any s, the

elements γ(s), γ′(s), . . ., γ(m+p−1)(s) yield a basis of km+p−1[t]. Thus we obtain an

osculating flag F•(s) along the rational curve whose i-plane at any time s is the span:

Fi(s) := span
{
γ(s), γ′(s), . . . , γ(i−1)(s)

}
. (6.2.1)

In this setting, we say that the i-plane Fi(s) osculates the rational normal curve at

the point γ(s). We will see in Remark 6.2.5 that Fm(s) is dual in a sense to the

planes Ep(s) defined in the introduction.
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The monomial basis for polynomials provides an isomorphism between km+p−1[t]

and its dual km+p−1[t]
∗, given by sending a polynomial g to g∗, where g∗(f) is defined

to be the dot product of the coefficients of g and f . Under this isomorphism we

may view each γ(i)(s) as a covector, from which perspective it admits an interesting

interpretation.

Proposition 6.2.2. Considering γ(i)(s) as a covector, we see that it has the inter-

pretation of mapping a polynomial to its ith derivative evaluated at s:

(
γ(i)(s)

)∗
(f) = f (i)(s).

Proof. We may compute explicitly for 0 ≤ j ≤ m+ p− 1 that

γ(j)(s) =

m+p−1∑
r=j

r!

(r − j)!
sr−jtr ∈ km+p−1[t].

Therefore for any f(t) =
∑m+p−1

i=0 ait
i, we have that

(
γ(j)(s)

)∗
(f) =

m+p−1∑
r=j

r!

(r − j)!
ars

r−j = f (j)(s).

We note that we may write the Wronskian as a determinant of matrices built

out of the rational normal curve and the input polynomials. Let f1(t), . . . , fm(t) ∈

km+p−1(t) be m linearly independent polynomials of degree at most m + p − 1, so
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that their span defines a point on Grk(m,m + p). Let fi(t) =
∑m+p−1

j=0 ai,jt
j, and

define a matrix M comprised of the coefficients of the polynomials fi:

M =



coefficients of f1

coefficients of f2

...

coefficients of fm


=



a1,0 a1,1 · · · a1,m+p−1

a2,0 a2,1 · · · a2,m+p−1

...
...

. . .
...

am,0 am,1 · · · am,m+p−1


.

Let Γ(s) denote the matrix km → km+p−1[t] whose jth column is given by the coeffi-

cients of the polynomial γ(j−1)(s) ∈ km+p−1[t]

Γ(s) =

(
γ(s) γ′(s) · · · γ(m−1)(s)

)
.

Phrased differently, the columns of Γ(s) are the basis vectors spanning the m-plane

Fm(s) osculating the rational normal curve at γ(s).

Proposition 6.2.3. In the previous notation, one may express the Wronskian of

f1, . . . , fm evaluated at a point s as a determinant:

det(M · Γ(s)) = Wr(f1, . . . , fm)(s).

Proof. Multiplying a row of M with a column of Γ(s) is the same as taking the dot

product of γ(i)(s) with fj(t), yielding f
(i)(s) by Proposition 6.2.2. It follows then

that the determinant of the product of M and Γ(s) yields the Wronskian evaluated

at s.
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Corollary 6.2.4. Consider f1, . . . , fm as covectors, let H be the p-plane defined by

their simultaneous vanishing, and let s ∈ k be a fixed scalar. Then the Wronskian

Wr(f1, . . . , fm)(t) vanishes at s if and only if H meets Fm(s) non-trivially.

Proof. Linear dependence in the columns of M · Γ(s) implies that there is a non-

trivial linear combination of the covectors γ(s), . . . , γ(m−1)(s) which vanishes on

each fi(t). This linear combination provides a point on the intersection of Fm(s),

which is the span of these covectors, and on H, the plane of covectors annihilating

span {f1, . . . , fm}.

We can rephrase this result slightly to state that the plane defined by the span

of f1, . . . , fm intersects a p-plane dual to Fm(s) nontrivially. In order to make this

precise, we must discuss a natural duality arising on Grassmannian varieties.

6.2.2 Grassmann Duality

Let Grk (m, (km+p−1[t])
∗) denote the collection of m-planes in the space of linear

forms on km+p−1[t], and let span {h1, . . . , hm} denote a point on this Grassmannian.

We may consider the action of the hi’s on km+p−1[t]. The subspace of km+p−1[t] given

by those polynomials f so that h1(f) = 0 is a subspace of codimension 1. The van-

ishing locus of m linearly independent linear forms imposes m linearly independent

conditions, and thus produces a subspace of km+p−1[t] of codimension m. That is
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to say, each such point {h1, . . . , hm} canonically defines a p-plane in km+p−1[t]. This

yields a canonical (i.e. basis-independent) isomorphism

Grk (m, (km+p−1[t])
∗) ∼= Grk(p, km+p−1[t]).

This isomorphism is called Grassmann duality. It is an important property of

Grassmannians, and for instance can be used to explain the fact that d(m, p) =

d(p,m). Grassmann duality is a crucial tool for our geometric interpretation of the

Wronski map, and shall be used heavily in this paper.

Remark 6.2.5. Wemay define a flag E•(s) in km+p−1 whereEi(s) = span {(t− s)m+p−1, . . . , (t− s)m+p−i−1}

is the space of those polynomials which vanish at s to order ≥ m + p− i. Then for

a polynomial f , the following are equivalent:

1. f ∈ Ei(s)

2. (t− si)m+p−i
∣∣f(t)

3. f , viewed as a linear form, annihilates Fm+p−i(s), the osculating plane to the

rational normal curve at s.

Thus the flags E•(s) and F•(s) are dual (Sot11, Theorem 10.8). This allows us

to revisit Corollary 6.2.4 to say that Wr(f1, . . . , fm)(t) vanishes at s if and only if

the m-plane W = span {f1, . . . , fm} intersects Ep(s) non-trivially. This perspective

allows us to develop a geometric intuition for the Wronski.
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Proposition 6.2.6. (Geometric interpretation of the Wronski map) Let s1, . . . , smp

be distinct scalars in k. Then Wr−1 (
∏mp

i=1(t− si)) consists of those m-planes which

intersect each of Ep(s1), . . . , Ep(smp) non-trivially.

In particular this tells us that the Brouwer degree of the Wronski map provides

a solution to an enumerative problem.

6.2.3 Schubert cells and the Plücker embedding

Frequently the Grassmannian can be understood better once it has been embedded

in projective space. Viewing the vectors spanning a plane as a wedge power, we can

sit the Grassmannian inside a suitably large projective space.

Definition 6.2.7. The Plücker embedding for the Grassmannian Grk(m, km+p−1[t])

is defined to be the closed embedding

Pl : Gr(m, km+p−1[t]) /↪→ Proj (∧mkm+p−1[t])

span {f1, . . . , fm} 7→ [f1 ∧ · · · ∧ fm] .

Notation 6.2.8. We denote by
(
[m+p]
m

)
the following set of integer sequences:(

[m+ p]

m

)
= {(α1, . . . , αm) : 1 ≤ α1 < α2 < · · · < αm ≤ m+ p} .

Provided we have chosen a basis e1, . . . , em+p for km+p−1[t], we see that the pro-

jective space Proj (∧mkm+p−1[t]) = P(
m+p
m )−1 inherits a basis consisting of the coor-
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dinates

Pα = eα1 ∧ eα2 ∧ · · · ∧ eαm ,

where α is varying over all multiindices in
(
[m+p]
m

)
. Given any W = span {f1, . . . , fm}

on Grk(m,m+p), we may embed it in projective space, where it must be expressible

as a k-linear sum over the Pα’s. We refer to the coefficients appearing in this sum as

the Plücker coordinates of W , and denote them by zα(W ):

f1 ∧ · · · ∧ fm =
∑

α∈([m+p]
m )

zα(W )Pα.

How do we compute these zα(W )’s? We remark that we may write the coefficients

of f1, . . . , fm in the basis e1, . . . , em+p, yielding an m × (m + p) matrix over k. The

coefficient zα(W ) associated to a multiindex α = (α1, . . . , αm) is precisely the deter-

minant of the m×m-minor of this matrix given by the αith columns. As the image

of the Plucker embedding is a projective space, any ambiguities arising in expressing

W as a matrix are resolved; that is, the Plücker coordinates corresponding to W are

well-defined.

Remark 6.2.9. It is a classical fact that the Plücker embedding is injective; that is,

a point on the Grassmannian can be recovered from its Plücker coordinates.

Grassmann duality translates to duality on Plücker coordinates as well. In order

to demonstrate this, we must first define the dual of a multiindex.
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Definition 6.2.10. Let α ∈
(
[m+p]
m

)
be a multiindex (α1, . . . , αm). Denote by αc ∈(

[m+p]
p

)
the complement of α in (1, . . . ,m + p). Then we define the dual multiindex

α∗ whose entries are m+ p+ 1− (αc)i.

Example 6.2.11. If m = 2 and p = 3, let α = (1, 4). Then αc = (2, 3, 5), and

α∗ = (1, 3, 4).

Proposition 6.2.12. Consider the Grassmann duality isomorphism

Grk(m, km+p−1[t]
∗)

∼−→ Grk(p, km+p−1[t]),

given by sending an m-plane of covectors to the p-plane it annihilates. Let α ∈(
[m+p]
m

)
, and fix a basis {ei} of km+p−1[t] with dual basis {e∗i }. Then for any W ∗ ∈

Grk(m, km+p−1[t]
∗), where W is the plane it annihilates, we have that

zα(W
∗) = zα∗(W ).

That is, the αth Plücker coordinate of W ∗ in the dual basis e∗i is the α∗th Plücker

coordinate of W in the basis {ei}.

Example 6.2.13. We have that zα(Fm(s)) = zα∗(Ep(s)) for any scalar s and any

multiindex α.
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6.2.4 Background from A1-enumerative geometry

Solving an enumerative problem can often be reduced to the computation of a certain

characteristic number of a vector bundle, under certain orientation data and expected

dimension assumptions. We first begin with a moduli space of possible solutions to

the enumerative problem (for the example of lines on a cubic surface, our moduli

space would simply be the Grassmannian of lines in projective 3-space). Following

this, we construct an appropriate vector bundle over the moduli space together with

a section of the bundle whose zeros are precisely the solutions to the enumerative

problem at hand, and which are assumed to be isolated points. In the presence of

certain orientation data for the bundle, the solution to our enumerative problem is the

Euler class of the bundle, which by the Poincaré–Hopf theorem can be thought of as

a sum of local indices of the section at points in its zero locus. On a coordinate patch

which is compatible with our orientation data, these local indices can be computed

as local Brouwer degrees of our section at points in the vanishing locus. Over the

complex numbers, the local Brouwer degree at any simple zero will be equal to 1,

which we read as a Boolean value informing us that this point on the moduli space

is a solution to the enumerative problem (at non-simple points, it will encode the

multiplicity of the solution as a natural number). Over other fields, a richer definition

of Brouwer degree can produce a wider variety of data at a single solution to an
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enumerative problem, often revealing deep information about the ambient geometry

that was invisible in the complex setting.

The algebrao-geometric analogue of the Brouwer degree that we use is called the

A1-Brouwer degree, first defined by Morel (Mor06), which is valued in the Grothendieck–

Witt group of symmetric bilinear forms over k. This tool has been instrumental in

the development of A1-enumerative geometry (or enriched enumerative geometry).

This program has grown in recent years due to seminal work of Levine (Lev20), Kass

and Wickelgren (KW19), Bachmann and Wickelgren (BW21), among others. Recent

results include an enriched Bézout’s theorem (McK21), an enriched count of lines on a

quintic threefold (Pau22), and a count of conics meeting eight lines (DGGM21). For

further reading on this field we refer the reader to the survey papers (Bra21; PW21).

In order to compute local A1-degrees of sections of vector bundles, we will first

need some analogue of charts from differential topology. This is provided by Nis-

nevich coordinates, defined by (KW21, Definition 17).

Definition 6.2.14. Let X be a smooth n-scheme, p ∈ X a closed point, and U ∋ p

an open neighborhood. Then we say that an étale map

ϕ : U → An
k ,

which induces an isomorphism on the residue field at p, defines Nisnevich coordinates

near p. We say this defines Nisnevich coordinates centered at p if ϕ(p) = 0.
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Definition 6.2.15. Let X be a smooth n-scheme admitting Nisnevich coordinates

ϕ : U → An
k = Speck[x1, . . . , xn] near a point p ∈ X. Affine space admits a standard

trivialization, given by the basis elements d
dx1
, . . . , d

dxn
on TAn

k . Since ϕ is étale, it

induces an isomorphism

TX|U
∼−→ TAn

k ,

and by pulling back the basis elements d
dxi

, we obtain a basis for TX|U . We refer

to these basis elements as the distinguished trivialization of TX|U arising from the

Nisnevich coordinates ϕ.

Example 6.2.16. If f : An
k → X is a Zariski open immersion, then by denoting

U := im(f), the function U → An
k given by y 7→ f−1(y) is étale, and moreover

defines Nisnevich coordinates.

Definition 6.2.17. (c.f. (OT14), (KW21), (Mor12, §4.3)) Suppose E → X is a

vector bundle of rank n over a smooth, projective n-scheme over a field k. Then we

say E is relatively oriented over X if there is an isomorphism

j : Hom (detTX, detE) ∼= L ⊗2,

for L → X a line bundle. Any such choice of isomorphism j is called a relative

orientation.
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Definition 6.2.18. For an open set U ⊆ X, and a relatively oriented bundle (E, j)

we say a section s ∈ Γ (U,Hom (detTX, detE)) is a square if its image in Γ(U,L ⊗2)

is a square, meaning it is of the form s′ ⊗ s′ for some s′ ∈ Γ(U,L ).

Now suppose we had Nisnevich coordinates ϕ : U → An
k near a point p ∈ X, and

a relative orientation j : Hom (detTX, detE)
∼−→ L ⊗2. As in Definition 6.2.15, the

coordinates ϕ induce a trivialization of TX|U , and by restricting U we may assume

that there is a trivialization of the vector bundle E over U , meaning an isomorphism

ψ : E|U ∼= An
k .

Definition 6.2.19. In the situation above, we say the trivialization ψ is compatible

with the Nisnevich coordinates ϕ and the relative orientation (E, j) if the associated

element in

Hom (det TX|U , det E|U)

taking our distinguished basis of det TX|U to the distinguished basis of det E|U is a

square.

If σ : X → E is a section, p is an isolated zero of σ, and U ∋ p an open

neighborhood not containing any other points of Z(σ), we can pull back the map

ψ ◦ σU by ϕ to an endomorphism of affine space, which we denote by (f1, . . . , fn),
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yielding the following diagram:

U E|U

An
k An

k .

ϕ

σ|U

ψ

(f1,...,fn)

Definition 6.2.20. The local index of σ at p is defined by

indpσ = degA
1

ϕ(p)(f1, . . . , fn),

where degA
1

ϕ(p)(f) is the local A1-Brouwer degree of f at ϕ(p), that is, it is a class in

the Grothendieck–Witt group GW(k).

For techniques and code for computing such local degrees, we refer the reader to

(BMP21b).

Definition 6.2.21. (KW21, Definition 33) Let E → X be a relatively oriented vector

bundle of rank r over a smooth r-dimensional scheme X ∈ Schk, and let σ : X → E

be a section of the bundle with isolated zeros so that Nisnevich coordinates exist

near every zero. We define the Euler number

e(E, σ) =
∑
p∈Z(σ)

indpσ,

where we are summing over closed points p where σ vanishes.

Proposition 6.2.22. ((BW21, Theorem 1.1)) The Euler class of a relatively oriented

vector bundle e(E, σ) over a smooth and proper scheme X is independent of the

choice of section.
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We can also ask about how we might wield Nisnevich coordinates to compute a

global A1-degree of a morphism between suitably nice smooth n-schemes. This notion

is based off forthcoming work of Kass, Levine, Solomon and Wickelgren (KLSW22),

and was discussed briefly in the expository paper (PW21, §8). See also (MS20, 2.53)

for the degree of an endomorphism of projective space, and (Mor12) for the degree

of an endomorphism of Pn/Pn−1.

Definition 6.2.23. ((KLSW22)) Let f : X → Y be a finite map of smooth n-

schemes over a field k. We say that f is oriented if Hom (detTX, det f ∗TY ) is a

relatively oriented vector bundle over X. Phrased differently, a relative orientation

for f is a choice of isomorphism

j : Hom(detTX, det f ∗TY )
∼−→ L ⊗2,

for L → X a line bundle over X.

Definition 6.2.24. ((KLSW22)) Let U ⊆ X and V ⊆ Y be open sets such that

f(U) ⊆ V . We say that Nisnevich coordinates ϕ : U → An
k and ψ : V → An

k are

compatible with the relative orientation j if the distinguished section of

Γ(U,Hom(det TX|U , det f
∗TY |U)

is a square.
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Theorem 6.2.25. ((KLSW22), c.f. (PW21, 8.7)) For a finite oriented map f : X →

Y of smooth k-schemes, with Y an A1-connected scheme, we have a well-defined

degree valued in GW(k), defined by degA
1

(f) =
∑

p∈f−1(q) deg
A1

p (f).

6.3 The A1-degree of the Wronski map

Our strategy for computing the A1-degree of the Wronski is to exhibit a section σ of

a particular vector bundle V → Grk(m,m+ p), and on a suitable open chart, equate

σ with the Wronski map up to another morphism of constant A1-degree. In this way,

we will be able to equate the local index of the section σ with a constant multiple

of the local A1-degree of the Wronski map in all possible parities (Lemma 6.3.27).

In the case when m and p are even, the bundle V will be relatively orientable, and

its Euler class will therefore be an integer multiple of the hyperbolic form in GW(k)

(Lemma 6.3.28), as will the global A1-degree of the Wronski map on an affine chart.

Deferring to the classical computation of Schubert, as we know the rank of this

form over C, we are able to provide the global A1-degree of the Wronski map in

Theorem 6.3.29.

227



6.3.1 Nisnevich coordinates on the Grassmannian, distin-

guished bases

We will begin by establishing the existence of Nisnevich coordinates on an arbitrary

Grassmannian. Let W ∈ Grk(m,m + p) be an arbitrary point, and pick a basis

e1, . . . , em+p of km+p−1[t] so that

W = span {ep+1, . . . , em+p} .

Definition 6.3.1. We define a moving basis around W , denoted by {ẽ1, . . . , ẽm+p},

to be a basis of km+p−1[t], parametrized by Amp
k = Spec[xi,j]1≤i≤m, 1≤j≤p:

ẽi =


ei 1 ≤ i ≤ p

ei +
∑p

j=1 xi−p,jej p+ 1 ≤ i ≤ m+ p.

(6.3.2)

Consider the morphism

Amp
k = Spec[xi,j]1≤i≤m, 1≤j≤p → Grk(m,m+ p)

(xi,j)i,j 7→ span {ẽp+1, . . . , ẽm+p} .

Another way to phrase the image of this map is that (xi,j) is sent to

RowSpace



x1,1 · · · x1,p 1 0 · · · 0

x2,1 · · · x2,p 0 1 · · · 0

...
. . .

...
...

...
. . .

...

xm,1 · · · xm,p 0 0 · · · 1


. (6.3.3)
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where the columns correspond to the basis elements e1, . . . , em+p. This define a

Zariski open immersion by the content of the argument in (KW21, Lemma 40).

Letting U denote its image, we obtain Nisnevich coordinates centered around W by

Example 6.2.16.

Remark 6.3.4. We can provide a more classical description of the Nisnevich coor-

dinates above. We note that the m-plane W lives inside the ambient vector space,

so we have a short exact sequence

W ↪−→ km+p−1[t]→ km+p−1[t]/W.

Picking a splitting for this is equivalent to picking a complementary p-plane to W .

We remark that, due to the construction of the tangent space to the Grassmannian

at W , we have an isomorphism

TWGrk(m, km+p−1[t]) ∼= Hom(W, km+p−1[t]/W ).

By fixing such a complementary plane (i.e. choosing a basis e1, . . . , ep), we can

identify Hom(W,km+p−1[t]/W ) with Amp
k , by sending a homomorphism to its graph.

This graph is precisely given by the matrix in Equation 6.3.3. In this sense, our

open cell U is the subspace of m-planes in the Grassmannian which only intersect

the p-plane span {e1, . . . , ep} trivially (c.f. (EH16, §3.2.2)).
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Remark 6.3.5. We remark that the xi,j’s can be recovered as particular Plücker

coordinates. Let W denote the m-plane corresponding to (xi,j). Consider the k × k

minor of columns (j, p+1, . . . , p̂+ i, . . . , p+m). Expanding along the first column, we

see that everything vanishes until we hit the ith row, at which point the determinant

yields (−1)ixi,j. That is,

xi,j = (−1)ip
(j,p+1,̂p+i,...,p+m)

(W ).

Here the Plücker coordinates are taken with respect to the basis {e1, . . . , em+p}. For

concision we will introduce new notation to correspond to this multiindex:

α(i, j) := (j, p+ 1, . . . , p̂+ i, . . . , p+m). (6.3.6)

Nisnevich coordinates defined by a moving basis induce distinguished basis el-

ements on the tangent space TGrk(m,m+ p)|U . In order to describe these distin-

guished basis elements, we first must discuss the structure of the tangent space of

the Grassmannian.

Definition 6.3.7. The tautological bundle on the Grassmannian, denoted S →

Grk(m,m + p), is the m-plane bundle whose fiber over the point W is the vector

space W itself.

The line bundle O(1) on the Grassmannian, defined to be the pullback of O(1)

under the Plücker embedding, is precisely detS = ∧mS. Including the tautological
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bundle into the trivial rank mp bundle, we obtain the quotient bundle, defined as the

cokernel

0→ S → Amp
k ↠ Q → 0.

We can therefore express the tangent bundle of the Grassmannian by

TGrk(m,m+ p) ∼= Hom(S,Q) = S∗ ⊗Q. (6.3.8)

Proposition 6.3.9. Given Nisnevich coordinates U → Amp
k corresponding to a mov-

ing basis ẽ1, . . . , ẽm+p, then one has the following distinguished bases over U :

1. {ẽp+1, . . . , ẽp+m} is a distinguished basis for the tautological bundle S|U

2. Letting ϕ̃i denote the cobasis element to ẽi, we see that
{
ϕ̃p+1, . . . , ϕ̃m+p

}
provides a distinguished basis for the dual tautological bundle S∗|U .

3. {ẽ1, . . . , ẽp} provides a distinguished basis for the quotient bundle Q|U .

4. The tensor products of vectors

{
ϕ̃j ⊗ ẽi : 1 ≤ i ≤ p and p+ 1 ≤ j ≤ m+ p

}
provide a distinguished basis for the tangent bundle TGrk(m,m+ p)|U .

Lemma 6.3.10. Ifm and p are both even, there is a global orientation of the tangent

bundle TGrk(m,m+ p) which is compatible with any Nisnevich coordinates defined

by moving bases.
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Proof. This is a direct generalization of (SW21, Lemma 8). Let (e1, . . . , em+p) and

(e′1, . . . , e
′
m+p) denote two bases of km+p−1[t], and let {ẽi}, {ẽ′i} denote the associated

moving bases parametrizing open cells U and U ′ of the Grassmannian. If U∩U ′ ̸= ∅,

we have that

span{ẽp+1, . . . , ẽm+p} = span{ẽ′p+1, . . . , ẽ
′
m+p} on U ∩ U ′. (6.3.11)

Letting ϕ̃i and ϕ̃
′
i denote the dual basis elements, respectively, we obtain canonical

trivializations for TGrk(m,m+ p)|U∩U ′ , given by:

{ϕ̃j ⊗ ẽi : 1 ≤ i ≤ p, p+ 1 ≤ j ≤ m+ p},

{ϕ̃′
j ⊗ ẽ′i : 1 ≤ i ≤ p, p+ 1 ≤ j ≤ m+ p}.

Denote by B the change of basis matrix from {ẽ1, . . . , ẽp} and
{
ẽ′1, . . . , ẽ

′
p

}
on the

quotient bundle Q|U∩U ′ , and denote by A the change of basis matrix on S∗|U∩U ′

from the basis
{
ϕ̃p+1, . . . , ϕ̃m+p

}
to
{
ϕ̃′
p+1, . . . , ϕ̃

′
m+p

}
. Then the change of basis

matrix on TGrk(m,m+ p)|U∩U ′ is given by A⊗ B. The determinant of this matrix

is det(A)m det(B)p. As m and p are both even, this is a square in O(U ∩ U ′)×.
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6.3.2 Relative orientations of bundles over the Grassman-

nian; even-even parity

We will discuss a bundle V over the Grassmannian, which is relatively orientable

in the case where m and p are both even. We will additionally construct a section

σ : Grk(m,m+ p)→ V , whose local degree at any simple zero is related to the local

A1-degree of the Wronski map in any parities.

Notation 6.3.12. We denote by V the mp-dimensional line bundle

V =

mp⊕
i=1

m∧
S∗ → Grk(m,m+ p). (6.3.13)

Proposition 6.3.14. The vector bundle V → Grk(m,m+ p) is relatively orientable

if and only if m and p are both even.

Proof. For our bundle V , we compute that

Hom(detTGr(m,m+ p), detV) ∼= Hom(O(m+ p),

mp∏
i=1

det(E)) ∼= Hom(O(m+ p),O(mp))

∼= O(−m− p)⊗O(mp) ∼= O(mp−m− p).

We note that O(mp−m−p) is a square of a line bundle if and only if mp−m−p ≡ 0

(mod 2), that is, m and p are both even.
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Proposition 6.3.15. If m and p are both even, then there is a relative orientation of

the vector bundle V → Grk(m,m+p) which is compatible with Nisnevich coordinates

defined by moving bases.

Proof. Take two cells U and U ′ on Grk(m,m + p) with non-empty intersection,

parametrized respectively by the moving bases ẽi and ẽ
′
i, and assume as before that

span {ẽp+1, . . . , ẽm+p} = span
{
ẽ′p+1, . . . , ẽ

′
m+p

}
on U ∩ U ′.

The trivializations
{
ϕ̃p+1, . . . , ϕ̃m+p

}
and

{
ϕ̃′
p+1, . . . , ϕ̃

′
m+p

}
on the dual tautological

bundle S∗|U∩U ′ induce associated trivializations ϕ̃p+1∧· · ·∧ϕ̃m+p and ϕ̃
′
p+1∧· · ·∧ϕ̃′

m+p,

respectively, for ∧mS∗|U∩U ′ . If A denotes the change of basis matrix on S∗|U∩U ′ as

above, then det(A) denotes the change of basis on ∧mS∗|U∩U ′ . Since V = ⊕mpi=1∧mS∗,

we have that the change of basis on V|U∩U ′ is given by a block sum of mp copies

of det(A). Thus the change of basis matrix in Hom(detTGrk(m,m + p), detV) ∼=

(detTGrk(m,m+ p))∗ ⊗ detV over U ∩ U ′ is given by

det (A⊗B)−1 ⊗ det

(
mp⊕
i=1

det(A)

)
= det(A)−m det(B)−p det(A)mp.

As m and p are both even, this is a square.
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6.3.3 Interpreting the Wronski map as a section of a line

bundle

We now construct a section σ of the bundle V which is intimately related to the

Wronski. For this section we fix s1, . . . , smp to be distinct scalars in k — the reader

is invited to think of these scalars as timestamps on A1
k, yielding positions on the

rational normal curve at each time, as well as osculating planes.

Recall from Proposition 6.2.2 the covector
(
γ(j)(s)

)∗
, which mapped a polynomial

f to f (j)(s). We would like to consider these covectors as j ranges from 0 to m− 1,

and as s varies over our set of scalars {s1, . . . , smp}. To that end, it will be beneficial

to introduce some more compact notation.

Notation 6.3.16. We denote by σi,j the covector
(
γ(j−1)(si)

)∗
, given by

σi,j : km+p−1[t]→ k

f 7→ f (j−1)(si).

Note the indexing on σi,j: the index i is running from 1 to mp, keeping track of the

time on the rational normal curve, while j is running from 1 to m, indicating the

extent to which the input is being differentiated.

Remark 6.3.17. For a fixed i, the covectors {σi,1, σi,2, . . . , σi,m} cut out a p-plane un-

der Grassmannian duality. This plane is precisely Ep(si), as defined in Remark 6.2.5.
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Notation 6.3.18. We denote by σi the wedge of covectors σi,1∧ · · · ∧σi,m. This is a

section of O(1) over the Grassmannian, that is, σi : Grk(m,m+p)→ ∧mS∗. Letting

i vary from 1 to mp, we obtain mp sections of ∧mS∗, that is, a section of our bundle

V . We denote by σ this section:

σ :=

mp⊕
i=1

σi =

mp⊕
i=1

(
∧mj=1σi,j

)
: Grk(m,m+ p)→ V =

mp⊕
i=1

∧mS∗.

We may also write σ = σ(s1, . . . , smp) if we wish to indicate dependence of σ on the

initial choice of scalars si.

Proposition 6.3.19. We see that W = span {f1, . . . , fm} is a zero of σi if and only

if the Wronskian Wr(f1, . . . , fm)(t) vanishes at si.

Proof. We observe that σi(W ) vanishes if and only if (σi,1∧· · ·∧σi,m)(f1∧· · ·∧fm) = 0.

This evaluation of wedges of covectors can be computed as

σi(W ) = (σi,1 ∧ · · · ∧ σi,m)(f1 ∧ · · · ∧ fm)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f1(si) f2(si) · · · fm(si)

f ′
1(si) f ′

2(si) · · · f ′
m(si)

...
...

. . .
...

f
(m−1)
1 (si) f

(m−1)
2 (si) · · · f

(m−1)
m (si)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= Wr(f1, . . . , fm)(si).
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Corollary 6.3.20. Consider the class of the polynomial Φ(t) =
∏mp

i=1(t − si) in

projective space Pmpk . We have that the following are equivalent for a point W =

span {f1, . . . , fm} ∈ Grk(m,m+ p):

1. W has nonempty intersection with each of Ep(s1), . . . , Ep(smp).

2. W is a zero of the section σ : Grk(m,m+ p)→ V .

3. Wr(f1, . . . , fm)(t), as a polynomial in t, has a root at each si for 1 ≤ i ≤ mp.

4. W lives in the fiber Wr−1 (Φ(t)).

6.3.4 Big open cells

Let Y ⊆ Pmpk denote the collection of monic polynomials in Proj kmp[t] of degree

equal to mp. This defines an open affine cell of projective space, of dimension mp.

Denote by X = Wr−1(Y ) the preimage of this cell in the Grassmannian.

Remark 6.3.21. We refer to X as the big open cell, and remark a few properties

about it.

1. This is is a coordinate patch parametrized around the point span {tp, . . . , tm+p−1},

and therefore X ∼= Amp
k .

2. This is the big open cell as defined in (EG02, p.5), from where we took the

terminology.
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3. A point W ∈ Grk(m,m + p) lies in the open cell X if and only its Wronskian

is of degree mp.

By this very last point, if Φ(t) :=
∏mp

i=1(t − si), then in order to study the fiber

Wr−1(Φ(t)), it suffices to restrict our attention to the big open cell X. Let W ∈ X

be an arbitrary point, and fix ep+1, . . . , ep+m to be monic polynomials which span

W . Extending this to a basis e1, . . . , em+p of km+p−1[t], we can parametrize an open

cell U ∼= Amp
k centered around W . For degree reasons, we observe that U ⊆ X, so

that we have an induced map Wr|U : U → Y .

Remark 6.3.22. Let W ∈ X, and let U be an affine cell parametrized around W

by a moving basis. Then the restricted Wronski map Wr|U : U → Y admits an

orientation induced by the trivializations of TU and TY .

Thus we see that Wr|U is a map of the form Amp
k → Amp

k . What does this map

look like? If (xij) is a point on Amp
k
∼= U , we have that its Wronskian is a degree mp

polynomial of the form

Wr (ẽp+1(x), . . . , ẽp+m(x)) (t) =

mp∑
i=0

hit
i.

This is by definition a point [h0 : . . . : hmp] in projective space. In order to take

the affine chart Y we must divide out by hmp, which we know to be non-zero

by Remark 6.3.21 since W lies on X. Moreover since we picked the ep+i’s to be
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monic, we know exactly what hmp is! By only picking out the highest degree

terms in the Wronskian, we can observe that hmp is the coefficient on the mono-

mial Wr (tp, tp+1, . . . , tm+p−1), which is well-defined over k via our hypothesis that

(m + p − 1)! is invertible over k. It is well-known that this is the Vandermonde

V (p, p+1, . . . ,m+p−1) (BD10, Lemma 1), and a simple induction argument shows

that this is equal to
∏m−1

i=1 i!. We will now compare the local section σ to the Wronski

map. In order to do this, we must first introduce some notation.

Notation 6.3.23. We define the following maps from Amp
k to itself:

• By abuse of notation, denote by Vm,p : Amp
k → Amp

k the map which multiplies

each coordinate by the scalar
∏m−1

i=1 i!.

• Denote by evs : Amp
k → Amp

k the map which sends a tuple (a0, . . . , am+p−1),

viewed as a polynomial g(t) =
∑mp−1

i=0 ait
i to the tuple (g(s1), . . . , g(smp)).

• Finally, denote by trs the translation map

trs : Amp
k → Amp

k

(x1, . . . , xmp) 7→
(
x1 + Vm,ps

mp
1 , . . . , xmp + Vm,ps

mp
mp

)
.

Lemma 6.3.24. Let W ∈ X, and let U be an open cell parametrized around X,
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determined by a monomial basis as above. Then the following diagram commutes:

V|U

U Amp
k

Y Amp Amp

⊕mp
i=1(ẽp+1∧···∧ẽm+p)σ|U

Wr|U

Vm,p
evs

trs

Proof. Fix e1, . . . , emp as desired, and begin with a point (xij) on the affine space U .

Let its Wronski be written as

Wr (ẽp+1(x), . . . , ẽp+m(x)) =

mp∑
i=0

hit
i,

where we have that hmp =
∏m−1

i=1 i! as above. Landing in Y , we have that (xi,j) is

mapped to the mp-tuple (
h0
hmp

, . . . ,
hmp−1

hmp

)
.

Applying the map Vm,p, we multiply each factor through by hmp (which we remark

is a constant which is independent of (xij)), which clears denominators and maps us

to

(h0, h1, . . . , hmp−1) .

Applying the evaluation map evs, we arrive at(
mp−1∑
i=0

his
i
1,

mp−1∑
i=0

his
i
2, . . . ,

mp−1∑
i=0

his
i
mp

)
.
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Finally applying our translation map, we obtain(
mp∑
i=0

his
i
1, . . . ,

mp∑
i=0

his
i
mp

)
= (Wr (ẽp+1(x), . . . , ẽp+m(x)) (s1), . . . ,Wr (ẽp+1(x), . . . , ẽp+m(x)) (smp)) .

However we remark that by Proposition 6.3.19 this is exactly what we obtain by

applying σ to the point (xij) and trivializing V over U .

Remark 6.3.25. The global A1-degree of the map Vm,p is
〈(∏m−1

i=1 i!
)mp〉

, since

we are simply multiplying the scalar
∏m−1

i=1 i! into each of the mp coordinates. The

global degree of the translation map trs is just ⟨1⟩, since translation is A1-homotopic

to the identity.

Lemma 6.3.26. The global A1-degree of the evaluation map evs1,...,smp is precisely

degA
1

ev(s1,...,smp) = ⟨V (s)⟩ ,

where V (s) := V (s1, . . . , smp) denotes the Vandermonde determinant. As a result,

since this is a rank one element of GW(k), this is the local A1-degree at any root of

ev(s1,...,smp).

Proof. Let ev(s1,...,smp) = (ev1, . . . , evmp), and let (a0, . . . , amp−1) correspond to a0 +

a1t+ . . .+ amp−1t
mp−1 + tmp. Then we can see

∂evj
∂ai

= si−1
j .

Lemma 6.3.27. Let s1, . . . , smp be distinct, and let Φ(t) =
∏mp

i=1(t − si). For any
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[W ] ∈Wr−1(Φ(t)), we have that

indWσ =

〈
V (s) ·

(
m−1∏
i=1

i!

)mp〉
· degA1

W Wr.

Proof. The proof follows from applying the local degree to the commutative diagram

in Lemma 6.3.24, and deferring to the computation in Lemma 6.3.26.

An explicit formula for indWσ at any simple root will be provided in Section 6.4.

Lemma 6.3.28. If V is relatively orientable, then its Euler class e(V) ∈ GW(k) is

an integer multiple of the hyperbolic element H.

For a proof of this lemma, see (Lev20, 4.3) as well as the discussion in (SW21,

Section 4).

Theorem 6.3.29. Let m and p be even. Then the A1-degree of the Wronski map

computed on the big open cell X is

degA
1

Wr|X =
d(m, p)

2
H.

Proof. Let s1, . . . , smp be distinct, and let V (s) = V (s1, . . . , smp) denote their Van-

dermonde determinant. Via Lemma 6.3.27 the degree of the Wronski is precisely

degA
1

Wr =
∑

W∈Z(Wr)

degA
1

W Wr =

〈
V (s) ·

(
m−1∏
i=1

i!

)mp〉 ∑
W∈Z(σ)

indWσ

=

〈
V (s) ·

(
m−1∏
i=1

i!

)mp〉
e(V , σ).
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By Lemma 6.3.28, the Euler class is a multiple of H, and since we know the rank of

the bilinear form degA
1

Wr in the case where m and p are both even via the classical

computation of Schubert, we can determine which integer multiple of the hyperbolic

element it must be.

Finally we remark that the choice of orientation of an affine patch is well-defined

up to a square class in the ground field (this is precisely the issue we see in (EG02)

where the Brouwer degree of the Wronski is well-defined up to a sign). Since the

degree produced here is hyperbolic, this ambiguity vanishes, since ⟨a⟩H = H for any

a ∈ k×.

This global count unifies the real and complex degrees of the Wronski map into

one computation in these parities — that is, we recover the complex degree by taking

the rank of this form, and the real degree by taking the signature. Contained within

the local degree of the Wronski map is further geometric information, which we can

now explore.

6.4 A formula for the local index

In this section we will provide a formula for the local degree degA
1

W Wr, when the

Wronski map has a simple root at the point W . To parametrize an affine open cell

aroundW , we first fix a basis e1, . . . , em+p of km+p−1[t] so thatW = span {ep+1, . . . , em+p}.
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Let ϕk denote the dual basis element to ek. We may then rewrite the covectors

σℓ,1, . . . , σℓ,m in this dual basis. That is, for any 1 ≤ j ≤ m, we write

σℓ,j :=

m+p∑
k=1

e
(j−1)
k (sℓ)ϕk, (6.4.1)

It is easy to see by acting on ek by σℓ,j, that e
(j−1)
k (sℓ) will be the coefficient on ϕk.

By Equation 6.2.1, we have that span {σℓ,1, . . . , σℓ,m} = Fm(sℓ), thus by a forgivable

abuse of notation we refer to the matrix of coefficients of these vectors as Fm(sℓ):

Fm(sℓ) =



e1(sℓ) e′1(sℓ) · · · e
(m−1)
1 (sℓ)

e2(sℓ) e′2(sℓ) · · · e
(m−1)
2 (sℓ)

...
...

. . .
...

em+p(sℓ) e′m+p(sℓ) · · · e
(m−1)
m+p (sℓ)


=

(
coeffs of σℓ,1 · · · coeffs of σℓ,m

)
.

(6.4.2)

We will define the following notation to identify a distinguished minor of this matrix.

Namely we want to take minors consisting of all the bottom m rows except one, and

one row from higher in the matrix. Explicitly, let 1 ≤ γ ≤ m and 1 ≤ k ≤ p. Then

we denote by α(γ, κ) the multiindex

α(γ, k) := {k, p+ 1, . . . , p+ γ − 1, p+ γ + 1, . . . , p+m} .
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In particular this gives us zα(γ,k)(Fm(sℓ)),which is the α(γ, k)th Plücker coordinate

of Fm(sℓ):

zα(γ,k)(Fm(sℓ)) = det



ek(sℓ) e′k(sℓ) · · · e
(m−1)
k (sℓ)

ep+1(sℓ) e′p+1(sℓ) · · · e
(m−1)
p+1 (sℓ)

ep+2(sℓ) e′p+2(sℓ) · · · e
(m−1)
p+2 (sℓ)

...
...

. . .
...

ep+γ−1(sℓ) e′p+γ−1(sℓ) · · · e
(m−1)
p+γ−1(sℓ)

ep+γ+1(sℓ) e′p+γ+1(sℓ) · · · e
(m−1)
p+γ+1(sℓ)

...
...

. . .
...

em+p(sℓ) e′m+p(sℓ) · · · e
(m−1)
m+p (sℓ)


= Wr (ek, ep+1, . . . , êp+γ, . . . , em+p) (sℓ).

We recall that the fiber of the Wronski map over
∏mp

i=1(t − si) counts the number

of m-planes meeting Ep(s1), . . . , Ep(smp) non-trivially. Here we can state a new

geometric interpretation for the local index of the Wronski — namely it picks up

a determinantal relation between distinguished Plücker coordinates of the planes

Fm(si) (under duality these can be considered as distinguished Plücker coordinates

of the Ep(si)’s). We remark that while our computation of the global degree of

the Wronski only held when m and p were both even, the following result holds

in all parities and over arbitrary fields, subject to the ongoing assumption that
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(m+ p− 1)!−1 ∈ k.

Theorem 6.4.3. Let W be a simple preimage of the Wronski map in the fiber

Wr−1 (
∏mp

i=1(t− si)), and let e1, . . . , emp be a basis chosen so thatW = span {ep+1, . . . , em+p}.

Then we have that

degA
1

W Wr = ⟨C · detB⟩ ,

where C is the global constant

C = V (s1, . . . , smp)

(
m−1∏
i=1

i!

)mp

(−1)m(m−1)p/2,

where V (s1, . . . , smp) is the Vandermonde determinant of the si’s, and B is the mp×

mp-matrix defined by

B =



zα(1,1)(Fm(s1)) zα(1,1)(Fm(s2)) · · · zα(1,1)(F (smp))

zα(1,2)(Fm(s1)) zα(1,2)(Fm(s2)) · · · zα(1,2)(F (smp))

...
...

. . .
...

zα(1,p)(Fm(s1)) zα(1,p)(Fm(s2)) · · · zα(1,p)(F (smp))

zα(2,1)(Fm(s1)) zα(2,1)(Fm(s2)) · · · zα(2,1)(F (smp))

...
...

. . .
...

zα(2,p)(Fm(s1)) zα(2,p)(Fm(s2)) · · · zα(2,p)(F (smp))

...
...

. . .
...

zα(m,p)(Fm(s1)) zα(m,p)(Fm(s2)) · · · zα(m,p)(F (smp))



,
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where these Plücker coordinates are written in the basis {ϕi}.

Proof. Since Z(σ) = Z(Wr), we may suppose that σ has a simple zero at the top

point W = span {ep+1, . . . , em+p} ∈ Grk(m,m+ p), and rewrite the covectors of σ in

the associated cobasis, as in Equation 6.4.1. Then we have an affine coordinate chart

U around W , and we can trivialize V over U by direct sums of ϕ̃p+1 ∧ · · · ∧ ϕ̃m+p We

then obtain functions F1, . . . , Fmp on U defined by

∧mj=1σℓ,j = Fℓ · ϕ̃p+1 ∧ · · · ∧ ϕ̃m+p. (6.4.4)

The Fi’s are local representations of σ in the chart U , centered around W . As

W is a simple zero, then in order to compute indWσ it suffices to compute the

partial derivatives of the functions Fi at the origin of U (which is the point W =

ep+1 ∧ · · · ∧ em+p). By the definition of the moving basis in Equation 6.3.2, we have

a change of basis formula2

ϕk =


ϕ̃k +

∑m
n=1 xn,kϕ̃p+n 1 ≤ k ≤ p

ϕ̃k p+ 1 ≤ k ≤ m+ p.

(6.4.5)

For any fixed ℓ, we may then write

m∧
j=1

σℓ,j =
m∧
j=1

(
m+p∑
k=1

e
(j−1)
k (sℓ)ϕk

)

=
m∧
j=1

(
p∑

k=1

e
(j−1)
k (sℓ)

(
ϕ̃k +

m∑
n=1

xn,kϕ̃p+n

)
+

m+p∑
q=p+1

e(i−1)
q (sℓ)ϕ̃q

)
.

(6.4.6)

2By allowing ϕi to act on ẽj , we get the coefficient of ϕ̃j in ϕi.

247



Since we will be evaluating this at ep ∧ · · · ∧ em+p−1 we only need to worry about

terms which are of the form ϕ̃p+1 ∧ · · · ∧ ϕ̃m+p−1. In particular we can forget about

the ϕ̃k terms for 1 ≤ k ≤ p, and we obtain

m∧
j=1

(
p∑

k=1

e
(j−1)
k (sℓ)

(
m∑
n=1

xn,kϕ̃p+n

)
+

m+p∑
k=p+1

e
(i−1)
k (sℓ)ϕ̃k

)

=
m∧
j=1

(
p∑

k=1

m+p∑
n=p+1

e
(j−1)
k (sℓ)xn−p,kϕ̃n +

m+p∑
q=p+1

e(j−1)
q (sℓ)ϕ̃q

)

=
m∧
j=1

(
m+p∑
n=p+1

(
e(j−1)
n (sℓ) +

p∑
k=1

e
(j−1)
k (sℓ)xn−p,k

)
ϕ̃n

)

=det(C) · ϕ̃p+1 ∧ · · · ∧ ϕ̃m+p,

(6.4.7)

where Cj,γ is the coefficient on ϕ̃p+γ in the jth exterior power above. Explicitly,

Cj,γ = e
(j−1)
p+γ (sℓ) +

p∑
k=1

e
(j−1)
k (sℓ)xγ,k.

Since we will evaluate partials at the origin, we only need to pick out linear terms in

the xγ,k’s, so we can forget higher order terms as well as constant terms. Thus, we

see that

det(C) =
∑
σ∈Sm

sgn(σ)
m∏
γ=1

(
e
(σ(γ)−1)
p+γ (sℓ) +

p∑
k=1

e
(σ(γ)−1)
k (sℓ)xγ,k

)
.

For a fixed xγ,k the constant coefficient on xγ,k is

∂Fℓ
∂xγ,k

∣∣∣∣
0

=
∑
σ∈Sm

sgn(σ)e
(σ(γ)−1)
k (sℓ)

∏
1≤a≤m
a̸=γ

e
(σ(a)−1)
p+a (sℓ), (6.4.8)
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and we can recognize this as a Plücker coordinate!

∂Fℓ
∂xγ,k

∣∣∣∣
0

= Wr(ep+1, . . . , ep+γ−1, ek, ep+γ+1, . . . , em+p)(sℓ)

= (−1)γ−1Wr (ek, ep+1, . . . , êp+γ, . . . , em+p) (sℓ)

= (−1)γ−1zα(γ,k) (Fm(sℓ)) .

In particular by Remark 6.3.5 we have that (−1)γzα(γ,k)(Fm(sℓ)) is the (γ, k)th affine

coordinate of the plane Fm(sℓ). Varying over all (γ, k) and ℓ, we obtain the local

index as

indWσ =

〈
det

(
∂Fℓ
∂xγ,k

)
(γ,k),ℓ

〉

=
〈
det(−1)γ−1

(
zα(γ,k)(Fm(sℓ))

)
(γ,k),ℓ

〉
.

As γ and k vary, we can pull a (−1)γ−1 out of p different rows, where γ is varying

from 1 to m. So we have to pull out (−1)p(
∑m

γ=1 γ−1) = (−1)m(m−1)p/2. This is the

coefficient on (−1) we are seeing in the constant for C. Finally by Lemma 6.3.27

we have that the local degree of the Wronski and the index of σ agree up to these

Vandermonde constants.

Reality check 6.4.9. In (SW21, Proposition 9), the authors demonstrated a formula

for the local index of an analogous section in the specific case where m = 2 and

p = n−1 for n odd. For the section σ = ⊕2n−2
i=1 αi∧βi, they expressed αi =

∑
j αi,jϕj
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and βi =
∑

j bi,jϕj, and demonstrated that the local index at W = en ∧ en+1 is given

by (both in their notation and in the notation from this paper):

indWσ =

〈
det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · (ai,1bi,n+1 − ai,n+1bi,1) · · ·

...

· · · (ai,jbi,n+1 − ai,n+1bi,j) · · ·

...

· · · (ai,n−1bi,n+1 − ai,n+1bi,n−1) · · ·

· · · (ai,nbi,1 − ai,1bi,n) · · ·

...

· · · (ai,nbi,j − ai,jbi,n) · · ·

...

· · · (ai,nbi,n−1 − ai,n−1bi,n) · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〉

We note that each of the entries in the ith column of this matrix B is obtained by

taking the matrix

 ai,n bi,n

ai,n+1 bi,n+1

, swapping out a row for something suitable (as in

our construction above), and then taking a determinant. Rewriting this local index

250



in the notation from this paper, we can see that it takes the following form:

indWσ =

〈
det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· · · zα(1,1)(F2(si)) · · ·

...

· · · zα(1,j)(F2(si) · · ·

...

· · · zα(1,n−1)(F2(si)) · · ·

· · · (−1)zα(2,1)(F2(si)) · · ·

...

· · · (−1)zα(2,j)(F2(si)) · · ·

...

· · · (−1)zα(2,n−1)(F2(si)) · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〉
.

6.4.1 Maximally inflected curves

Given an m-plane W = span {f1, . . . , fm} with Wronskian Wr(f1, . . . , fm)(t) =∏mp
i=1(t−si), we can consider it as a rational curve ϕ : P1 → Pm−1, given by mapping

t 7→ [f1(t) : . . . : fm(t)]. The statement that the Wronskian vanishes at si is equiva-

lent to the statement that the vectors ϕ(s), ϕ′(s), . . . , ϕm−1(s) do not span Pm−1 at

time t = si (c.f. (Sot11; KS03)). Equivalently one says that the curve ramifies or

inflects at time si. The degree of the Wronski map then admits another interpre-

tation: it counts how many rational curves of degree ≤ m + p − 1 have prescribed
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inflection at times t = s1, . . . , smp. With our refined local index in hand, we can

ask the following question: How does the local degree degA
1

W Wr of the Wronski map

relate to the topology (or geometry) of the associated rational curve ϕ?

We don’t claim any general answer to this question. Indeed studying topological

constraints on inflected curves is a difficult problem in general. In the case when

m = 3 and p = 1, 2, 3, we are looking at planar cubics, quartics, and quintics,

respectively. Kharlamov and Sottile (KS03) have studied real inflection data in

this setting (by the Shapiro–Shapiro conjecture, when the inflection points are real,

the rational curve will be real as well). We can present some very preliminary

observations that tie our local degree to their work.

In the case of quartics, there are five different quartics with six flexes (this five is

the complex degree of the Wronski map whose domain is GrC(2, 5)). The graphs of

these, pulled from (KS03), are included below.3 While the curves look topologically

distinct due to the nodal singularities, it is perhaps more telling to look at the number

of isolated points (real ordinary points with complex conjugate tangent directions).

3One remarks that the three leftmost curves have two flexes at the point of self-intersection.

This is purely an accident, due to the symmetry on the projective line of the prescribed flex points.

In general we shouldn’t expect this to happen, and our computations are not impacted by this

coincidence.
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Curve

# isolated points 2 2 2 3 3

Local A1-index over R +1 +1 +1 −1 −1.

Figure 6.3: Maximally inflected real quartics, (KS03, p. 23)

Welschinger (Wel05) remarked that (−1)#I is a revealing invariant to consider

for planar curves, where I is the set of isolated points. Kass–Levine–Solomon–

Wickelgren have extended this to define an arithmetic Welschinger invariant val-

ued in GW(k) (KLSW22) (see also (Lev18) and (PW21)). We may compute that

Welschinger’s original invariant agrees with the local index of σ following the formula

in Theorem 6.4.3.

Corollary 6.4.10. When (f1 : f2 : f3) defines a real planar quartic, we have that

sgn degA
1

span{f1,f2,f3}Wr = (−1)#I ,

where (−1)#I is Welschinger’s invariant.

It is possible that the arithmetic Welschinger invariant provides a local A1-degree

for the Wronski map, which could potentially shine light on the classification of
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maximally inflected curves in higher degrees and higher dimensions. We plan to

explore this idea in greater detail in a future paper.
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mixed motives, Springer Monographs in Mathematics, Springer, Cham,

2019. MR 3971240 3.1

[CDH20] Ethan Cotterill, Ignacio Darago, and Changho Han, Arithmetic inflec-

tion formulae for linear series on hyperelliptic curves, arXiv preprint

arXiv:2010.01714 (2020). 1

[CF17] Baptiste Calmès and Jean Fasel, Finite Chow–Witt correspondences,

2017. 5.3.4, 5.3.2, 5.5.2, 5.5.13

[CGL22] Ethan Cotterill and Cristhian Garay López, Real inflection points of
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[Him77] G. N. Himšiašvili, The local degree of a smooth mapping, Sakharth. SSR

262



Mecn. Akad. Moambe 85 (1977), no. 2, 309–312. MR 0458467 2.2.1,

4.1.2, 4.4

[Hor05] Jens Hornbostel, A1-representability of Hermitian K-theory and Witt

groups, Topology 44 (2005), no. 3, 661–687. MR 2122220 4.5

[Hoy14] Marc Hoyois, A quadratic refinement of the Grothendieck-Lefschetz-

Verdier trace formula, Algebr. Geom. Topol. 14 (2014), no. 6, 3603–

3658. MR 3302973 2.2.3, 3.1, 3.2.2, 1, 3, 3.2.13, 3.2.2, 3.2.16, 3.3.1,

4.8.2, 5.3.4, 5.5.15

[Hoy15] , From algebraic cobordism to motivic cohomology, J. Reine

Angew. Math. 702 (2015), 173–226. MR 3341470 3.2.9

[Hoy17] , The six operations in equivariant motivic homotopy theory,

Adv. Math. 305 (2017), 197–279. MR 3570135 4

[Hoy21] , The localization theorem for framed motivic spaces, Compos.

Math. 157 (2021), no. 1, 1–11. MR 4215649 5.2

[HS12] Asaf Horev and Jake P Solomon, The open Gromov-Witten-

Welschinger theory of blowups of the projective plane, arXiv preprint

arXiv:1210.4034 (2012). 2.2.18

263



[Ioh82] I. S. Iohvidov, Hankel and Toeplitz matrices and forms, Birkhäuser,
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