
1. Given real numbers a, b, c, d, consider the differential equation E(a, b, c, d) given
by y′′ + (a sinx− 3)y′ + (bex + 2)y + c cosx = d.

(a) Find the set S of all (a, b, c, d) ∈ R4 such that the solutions to the dif-
ferential equation E(a, b, c, d) form a real vector space V (a, b, c, d) under
addition and scalar multiplication of functions.

(b) Pick some (a, b, c, d) ∈ S (your choice), and find a basis for the vector
space V (a, b, c, d).

Explain your assertions.

Solution. (a) The differential equation E(a, b, c, d) is linear, and is homoge-
neous if and only if c = d = 0. So S = {(a, b, c, d) ∈ R4 | c = d = 0}.
(b) Take (0, 0, 0, 0) ∈ S. Here V (0, 0, 0, 0) is the set of solutions to the differ-
ential equation y′′ − 3y′ + 2y = 0. This is a constant coefficient homogeneous
linear differential equation, and a basis for the solutions is given by {ex, e2x},
since r = 1, 2 are the solutions to the polynomial equation r2 − 3r + 2 = 0.

2. (a) Give an example of a non-abelian group G, generated by two elements g, h,
such that the center of G is non-trivial.

(b) Show that no such example can exist if one additionally requires that g is
in the center of G.

Solution. (a) We can take G to be the dihedral group of order 8, generated
by g, h subject to the relations g4 = 1, h2 = 1, gh = hg−1. This is non-abelian,
but g2 is in the center.

(b) If G is generated by g, h, and if g is in the center of G, then every element
can be written in the form gihj for i, j integers, by commuting g past h. One
then has (gihj)(gi

′
hj

′
) = gi+i′hj+j′ = (gi

′
hj

′
)(gihj), again commuting g past h.

So the group is abelian.

3. Let f(x) = 1/x for x 6= 0. On which of the following intervals is the function f
uniformly continuous? Explain your assertions.

(i) 1 ≤ x ≤ 2.

(ii) 1 < x < 2.

(iii) 0 < x < 1.

1



Solution. (i) A continuous function is uniformly continuous on any closed
interval [a, b], so f is uniformly continuous on [1, 2].

(ii) A function that is uniformly continuous on a set S is also uniformly contin-
uous on each subset of S, and so f is uniformly continuous on (1, 2).

(iii) The function f is not uniformly continuous on (0, 1). To see this, take
ε = 1. For any δ > 0, let δ̄ = min(1/2, δ), and take x1 = δ̄/2 and x2 = δ̄.
Then |x1 − x2| = δ̄/2 < δ, but |f(x1)− f(x2)| = 1/δ̄ > 1 = ε. This contradicts
uniform continuity.

4. For each of the following either give an example of a real square matrix M with
the given properties or explain why none exists:

(a) M is not similar over R to an upper triangular matrix.

(b) M is similar over R to an upper triangular matrix but is not similar over
R to a diagonal matrix.

(c) M is not similar over C to an upper triangular matrix.

(d) M is similar over C to an upper triangular matrix but is not similar over
C to a diagonal matrix.

Solution. (a) We can take M to be the rotation matrix

(
0 −1
1 0

)
. It is not

similar to a real triangular matrix since it has no real eigenvalues.

(b) We can take M to be the triangular matrix

(
1 1
0 1

)
. This is not similar to

a diagonal matrix since its eigenvalues are both equal to 1 but M is not similar
to the identity matrix.

(c) This does not exist: every square matrix is similar to an upper triangular
matrix over an algebraically closed field.

(d) We can take M to be the triangular matrix

(
1 1
0 1

)
, by the same reasoning

as in part (b).

5. Let f(x) = x2 + 2y2 − 2xy + 2x, let D be the closed disc x2 + y2 ≤ 10, and let
D′ be the interior of D.

(a) Does the restriction of f to D achieve a maximum? (I.e., is there a point
(a, b) ∈ D such that f(a, b) ≥ f(x, y) for all (x, y) ∈ D?) Similarly, does
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it achieve a minimum on D? Justify your assertions. (You are not asked
to find the maximum and minimum if you assert that they exist.)

(b) Does the restriction of f to D′ achieve a maximum, and does it achieve
a minimum? If it does, find where the maximum (resp. minimum) is
achieved. Justify your assertions.

Solution. (a) The function f is continuous (being a polynomial), and the
closed disc D is compact (being closed and bounded in R2); so f achieves both
a maximum and a minimum on D.

(b) Any maximum or minimum of f on the open set D′ will be a relative
maximum or minimum, and so will be at a critical point of f . The critical
points of f in R2 occur where fx = fy = 0; and here fx = 2x − 2y + 2,
fy = 4y − 2x. So the unique critical point is at (x, y) = (−2,−1) ∈ D′. Since
fxx = 2, fxy = −2, and fyy = 4, we have fxxfyy − f 2

xy > 0 and fxx > 0, so this
point is a relative minimum by the second derivative test. In fact, the graph of
f is a paraboloid, and its unique critical point on R2 is its unique extremum.
So f has a minimum on D′ at (−2,−1) and it has no maximum on D′.

6. Let f(x, y) = exy
5

+ x10 + cos(y2), let g = ∂f/∂x, and let h = ∂f/∂y. Let
C be the path in the plane from the origin to the point (1, 0) given by the
portion of the graph of y = sin3(πx) over the interval 0 ≤ x ≤ 1. Evaluate´
C
g dx + h dy. Explain your computations. [Hint: This does not require a

brute force calculation of the integral.]

Solution. Since g dx + h dy = df = ∇f · dr, the value of the line integral
depends only on the endpoints, and is equal to f(1, 0)− f(0, 0) = (1 + 1 + 1)−
(1 + 0 + 1) = 1. (Alternatively, we may apply Green’s Theorem to the region
R lying below C and above the x-axis. Since gy = fxy = fyx = hx, it follows
that

´
∂R
g dx+h dy = 0. So

´
C
g dx+h dy is equal to the integral along the line

segment [0, 1], which is
´ 1
x=0

d
dx
f(x, 0) dx = f(x, 0)|1x=0 = 3− 2 = 1.)
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7. Let f : R→ R be a continuous function, with graph Γ.

(a) Show that {(x, y) | y > f(x)} is an open subset of R2.

(b) Show that the complement of Γ in R2 is disconnected.

Solution. (a) Suppose that (a, b) lies in the given set S. Thus c := b−f(a) > 0.
By continuity there exists ε > 0 such that f(x) < f(a)+ c

2
= b− c

2
for |x−a| < ε.

So the open rectangle (a− ε, a+ ε)× (b− c
2
, b+ c

2
) is an open neighborhood of

(a, b) in S. Hence S is open.

(b) By replacing f by −f in part (a), we also have that the set of points S ′

lying below the graph is open. The complement of the graph is thus the disjoint
union of the two open sets S, S ′, and so it is disconnected.

8. Let V be the span of the four vectors (1,−1, 0, 1), (2,−1, 1, 6), (−1, 2, 1, 3),
(1, 0, 1, 5) in R4. With respect to the usual inner product on R4, find an orthog-
onal basis of V , and find the point on V closest to (1, 1, 1, 1).

Solution. Using row reduction we get
1 −1 0 1
2 −1 1 6
−1 2 1 3
1 0 1 5

→


1 −1 0 1
0 1 1 4
0 1 1 4
0 1 1 4

→


1 −1 0 1
0 1 1 4
0 0 0 0
0 0 0 0


and so a basis for V is given by v = (1,−1, 0, 1), w = (0, 1, 1, 4). Now apply
Gram-Schmidt to get an orthogonal basis of V : v1 = v = (1,−1, 0, 1), v2 =
w − v·w

v·v v = (0, 1, 1, 4)− (1,−1, 0, 1) = (−1, 2, 1, 3).

The closest point to z = (1, 1, 1, 1) on V is the orthogonal projection of z
onto V . Using the orthogonal basis v1, v2 of V , we find that this point is
(1, 1, 1, 1)− 1

3
(1,−1, 0, 1)− 5

15
(−1, 2, 1, 3) = (1, 2

3
, 2
3
, −1

3
).

9. Let {an} be a sequence of real numbers. For each of the following, give either
a proof or a counter-example:

(a) If
∑∞

n=1 an is convergent but not absolutely convergent, then
∑∞

n=1 nan is
divergent.

(b) If
∑∞

n=1 an is convergent but not absolutely convergent, then
∑∞

n=1 n
2an is

divergent.
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Solution. (a) This is false. For example let an = (−1)n 1
n log(n+1)

. Then
∑∞

n=1 an
is convergent (by the alternating series test), and is not absolutely convergent
(by the integral test). But

∑∞
n=1 nan is convergent (by the alternating series

test).

(b) This is true: If instead
∑∞

n=1 n
2an is convergent, then the terms approach

0, and so are bounded; so there is a constant C > 0 such that |n2an| < C,
or equivalently |an| < C/n2, for all n. But then

∑∞
n=1 an would be absolutely

convergent by comparison with
∑∞

n=1C/n
2.

10. (a) Show that if m is a maximal ideal in Q[x], then Q[x]/m is a field extension
of Q of finite degree.

(b) Conversely, show that if K is a field extension of Q of finite degree, then
K is isomorphic to Q[x]/m for some maximal ideal m of Q[x].

Solution. (a) Since Q[x] is a PID, m = (f) for some f(x) ∈ Q[x]; and f is
irreducible since m is maximal. Let n be the degree of f . Then Q[x]/m =
Q[x]/(f) is a field because m is maximal; and it has degree n over Q, being a
Q-vector space with basis 1, x, . . . , xn−1.

(b) Since Q has characteristic zero, the extension K/Q is separable. By the
primitive element theorem, the finite separable field extension K is generated
over Q by a single element α. Let f(x) ∈ Q[x] be the minimal polynomial of α
over Q. Then f generates the kernel of the surjective homomorphism Q[x]→ K
given by g(x) 7→ g(α), and so K is isomorphic to Q[x]/(f). Since K is a field,
the ideal (f) is maximal. So K is isomorphic to Q[x]/m with m = (f) a maximal
ideal.

11. Let f(x) be a differentiable function on the real line such that f(0) = 0 and
f ′(0) = 1. Prove directly, from the definition of the derivative, that there exists
a positive real number c such that f(x) > 0 for all x with 0 < x < c.

Solution. We are given that 1 = f ′(0) = limh→0 f(h)/h, so there exists c > 0

such that all x with 0 < x < c satisfy |f(x)
x
− 1| < 1/2. Hence these x satisfy

f(x)/x > 1/2; i.e., f(x) > x/2 > 0.

12. Let v, w be elements of a finite dimensional real vector space V . Prove that there
is a linear transformation T : V → R2 such that T (v) = (1, 0) and T (w) = (0, 1)
if and only if v, w are linearly independent vectors.
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Solution. If there is such a linear transformation T , and if a, b ∈ R are not
both 0, then T (av+ bw) = aT (v) + bT (w) = (a, b) 6= (0, 0). Hence av+ bw 6= 0.
This shows that v, w are linearly independent.

Conversely, if v, w are linearly independent, then there is a basis v1, v2, . . . , vn of
V with v1 = v and v2 = w. We can define a linear transformation T : V → R2

by taking v to (1, 0), taking w to (0, 1), and taking the other basis vectors to 0.
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