ASYMPTOTIC PROPERTIES OF DISORDERED SYSTEMS
Jiaming Xia
A DISSERTATION

in

Mathematics

Presented to the Faculties of the University of Pennsylvania
in
Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2022
Supervisor of Dissertation Co-Supervisor of Dissertation
Jian Ding Robin Pemantle
Professor of Mathematics Professor of Mathematics

Graduate Group Chairperson

Ron Donagi, Professor of Mathematics

Dissertation Committee

Xin Sun, Assistant Professor of Mathematics



ABSTRACT

ASYMPTOTIC PROPERTIES OF DISORDERED SYSTEMS
Jiaming Xia
Jian Ding

Robin Pemantle

This thesis considers asymptotic behaviors of high-dimensional disordered systems, including
Ising model and mean-field spin glass models. We first study the decay rate of correlations
in the two-dimensional random field Ising model (RFIM). Second, we study the limit free

energy of disordered systems.

For RFIM, we are interested in the two-dimensional case where the external field is of i.i.d
centered Gaussian variables. We show that under nonnegative temperature, the effect of
boundary conditions on the magnetization in a finite box decays exponentially in the side

length of the box.

On the side of mean-field models, we use the Hamilton-Jacobi equation (HJE) approach,
initiated by Jean-Christophe Mourrat, to characterize limiting free energy in many models
from statistical inference problems and mean-field spin glass models. We now investigate
infinite-dimensional models including many spin glass models and inference problems where
the rank of the signal matrix increases as n is sent to infinity. We give an intrinsic meaning
to the Hamilton—Jacobi equation arising from mean-field spin glass models in the viscosity
sense, and establish the corresponding well-posedness. This will shed more light on the

mysterious Parisi formula as the limit of free energy in the Sherrington—Kirkpatrick model.
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CHAPTER 1

INTRODUCTION

1.1. Random Field Ising Model

Ising model is a mathematical model of ferromagnetism, the two-dimensional version of
which can be described as follows. For some integer N, let Ay be a centered box with
side length 2N. On each vertex v € Ay of the square lattice is placed a magnetic spin o,
which takes value +1 or —1. The collection of states {oy}yen, is called a configuration.
Additionally, we are given a collection {hy }yen, of independent Gaussian random variables
with zero mean and variance €2 at each vertex, serving as a random external field imposing
on each vertex. Here, we are dealing with Gaussian disorder N'(0,£?) where € > 0 can be

arbitrarily small so that disorder is arbitrarily weak.

We are interested in the effect of spins in the boundary dAy on the spin o, at the center as
N increases. For each configuration o, its energy, also called the RFIM Hamiltonian, with
external field {hy},ea, and plus (respectively, minus) boundary condition, where spins on

OAp are all +1 (respectively, —1), is given by

Hi(o*) = — Z Ouoy £ Z ou -+ Z ouhy |,

u~v; UVEAN u~v; uEAN; VEOAN uEAN

where u ~ v means u and v are neighboring. Note that the first sum accounts for the
neighboring interaction: neighboring spins with the same sign contribute lower energy. The
second sum is the effect from the boundary and third the external field. The Ising measure,
quenched on the external field {h, }yea, with plus (respectively, minus) boundary condition,

is defined such that for all ¢ € {—1, 1}~
e—BHE(o)

+
o) = —E where 7= = 20/6{7171}AN6

—BHE (")

There are two sources of randomness here. To clarify, we use notations P and E for the



randomness with respect to the external field {h,}yea,; and we denote the Ising measures

and their expectations by u* and ()t

Under zero temperature, the Ising measure is supported on the unique configuration, also
known as the ground state, that minimizes the corresponding RFIM Hamiltonian. Denote

AN+ the ground state with plus (respectively, minus) boundary condition under zero

by o
temperature. Therefore, in this case the only randomness comes from the external field.

Our zero temperature result is the following theorem.

Theorem 1.1.1. For any € > 0, there is c. > 0 such that P{Jé\N’Jr # oré\N’_} <cotemelN

forall N > 1.

By first proving in this simplified case, some of the key ideas, including the crucial appli-
cation of [1], can be more transparent. To give a brief sketch of the proof, we reformulate

Theorem 1.1.1. For v € Ay, we define

o A _
+, ifohN Tt =gl =

AN _ o A An,—

o= =, oMt =N T = 1,
0, ifU{)\N’Jr:landaf}N’*:—l.

By monotonicity (c.f. [3, Section 2.2]), ¢M¥ is well-defined for all v € Ay. Theorem 1.1.1

v

can be restated as
my < ¢ e for ¢ = ¢(e) > 0, where my = P(EMN = 0). (1.1.1)
For any A C Z?, we can analogously define ¢4 by replacing Ay with A. Let CA = {v € A :

5;)4 = 0}, meaning that C# is the collection of disagreements.

In particular, my is decreasing in N, so we only consider N = 2" for n > 1. Clearly, for
any v € CA, there exists a path in C* joining v and A, suggesting percolation properties of

CA. Indeed, a key step in our proof is the following proposition on the lower bound on the



length exponent for geodesics in CA~. For any A C Z2, we denote by da(-,-) the intrinsic

distance on A. Let da(A1, A2) = mingea,na,yed.na da(z,y).

Proposition. There exist « = ae) > 1, k = k(g) > 0 such that for all N > 1

P(deay (OAN/4,0AN)2) < N®) < ke N

The proof of this proposition relies on [1]|, which requires the next lemma. For any rectangle
A C R?, let £4 be the length of the longer side and let A€ be the square box concentric
with A, of side length 32¢4 and with sides parallel to axes. For a set C C Z2, we use
Cross(A4,C) to denote the event that there exists a path vp,...,vx € ANC connecting the
two shorter sides of A (that is, vg, v are of f-distances less than 1 respectively from the

two shorter sides of A).

Lemma. There exists £y and 6 > 0 such that the following holds for any N > 1. For any
k > 1 and any rectangles Ay, ..., A C {v € R%: |v|oo < N/2}, each with the ratio between

the lengths of the longer and shorter sides at least 100, such that
o U< la, <N/32 foralll <i<k and
° AIl‘arge7 e ,A};arge are disjoint,

we have P(NF_, Cross(A;,CM)) < (1 —0)*.

Although the authors of [1] treated random curves in R?, the main capacity analysis can be
copied in the discrete case, and the connection between the capacity and the box-counting
dimension is straightforward (c.f. [50, Lemma 2.3|). With the lemma above, we can apply

[1, Theorem 1.3] to deduce that for some o = a(e) > 1,
P(ClCAN (8AN/4,8AN/2) < Na) —0as N — 0.

Then by a standard percolation argument to be shown later, we can enhance the probability



decay to the exponential decay, proving (1.1.1).

In the case of positive temperatures, our proof follows the framework as in the zero tem-
perature case. However, major obstacles emerge due to the randomness of Ising measures
under positive temperatures. In order to overcome these obstacles and to avoid further
complications, we need new ideas to delicately treat the couplings of Ising measures. The

following theorem is our result for all nonnegative temperatures.

Theorem. For any e >0, T € [0,00), there exists ¢ = c(e,T) > 0 such that
E((0o) Ayt — (oday.—) < te™N for all N > 1,

where (-)py + denotes the expectation with respect to the Ising measures.

In other words, the effect on the center spin from the boundary N away decays exponentially
as N — oo. The result can be understood in the context of the general Imry-Ma [78|
phenomenon stating that introducing arbitrarily weak disorder rounds off any first order
phase transition in two-dimensional systems. It was previously known [4, 5] that such effect
decays. The decay rate was previously proven to be polynomial [35, 3|, and exponential
for large disorder € [26, 64, 31|. Our result rigorously settled the long-standing debate

[70, 29, 51| on whether the decay rate could be polynomial when ¢ is small.

In spite of that our proof is seemingly related to the Mandelbrot percolation analogy pre-
sented in [3, Appendix BJ, our proof method is different from all of [5, 35, 3, 26, 64, 31].
The works [4, 5] treated a wide class of distributions for disorder, while [35, 3] and our work
deal with Gaussian disorder. The main features of Gaussian distributions used in our work
include the simple formula for the change of measure and linear decompositions for Gaussian
process. In addition, the analysis in [5, 3| extends to the case with finite-range interactions.
Though we expect our framework to be useful in the finite-range case, the lack of planar

duality presents non-trivial obstacles in extending the framework.



During submission of our work, a paper [2] proving the same result was completed. Its
proof was inspired by our zero temperature proof, using [1] as a crucial tool. In terms of
the basic intuition, both proofs harness the fluctuation of the sum of the random field in
a box to compare to the influence of the boundary condition, which could trace back to
[4, 5], and both apply [1] to disagreement percolation in a crucial manner. However, the two
approaches are also very different in at least two important aspects: (1) we employ first mo-
ment analysis by exploiting perturbations of the random field, while |2], similar to [3], relies
on concentration/anti-concentration type of analysis, which uses second-moment computa-
tions; (2) at positive temperatures, we employ a certain monotone coupling between Ising
measures with different boundary conditions, whereas inspired by [107, 115], the authors of
[2] extend the Ising model continuously into the metric graph allowing them to study spin

correlations via disagreement percolation for two independent samples.

For 2D RFIM, one can further determine the correlation length, which is the critical size of
the box where the influence of random field is comparable to that of the boundary condition.
The correlation length has been found in [53] at zero temperature and an upper bound at
positive temperatures. A recent work [55] found the lower bound correlation length at low
temperatures that scales as in [53] for 2D RFIM. Future research interests are in studying

other spin glass models and their correlation length in dimension two and higher.
1.2. Free energy of mean-field disordered systems

Unlike the Ising model where the interaction is between neighboring spins, a mean-field
model averages over interactions with every spin. Many models in spin glasses and statistical

inference fall into this category.

A simple mean-field model is the statistical inference problem of rank-one symmetric matrix
estimation. Let R"-valued random vector X be an unknown signal and n X n matrix W be

some additional noise. For ¢ > 0 interpreted as the signal-to-noise ratio (SNR), we observe

Y = \/?XXT +W (1.2.1)
n



where —= is a proper scaling. The inference task is to recover X from the noisy observation

vn
Y.

We assume that W consists of i.i.d. standard Gaussian entries. By Bayes’ law, the distribu-
tion of X conditioned on Y is a Gibbs measure proportional to eH"(t’x;Y)PX(dx) where Px
is the law of X and H,(t,z;Y) is called the Hamiltonian. We are interested in the limit, as

n — oo, of the average of the free energy
1 .
F.(t) = log/eH(t’x’Y)PX(dx), (1.2.2)
n

and we use the notation F,(t) = EF,(t). The Hamilton-Jacobi equation (HJE) approach
initiated in [95] starts by enriching the model via adding an simple linear observation pa-

rameterized by h > 0. The associated enriched free energy F,(t, h) is related to the original

one by F,(t,0) = Fp(t).

One main reason of studying this topic is because the limit of the free energy is related,
via a simple additive relation, to an important information-theoretical quantity: the mutual
information I(X;Y), heuristically measuring the dependence between the unknown signal X
and the observation Y. Computing the limit of %I (X;Y) as n — oo allows one to determine
the critical value ¢, of SNR beyond which the inference task is theoretically impossible. The
definition of the critical value, also known as the information theoretic threshold, is given

by

tc:inf{t>0: lim M
n

n—o0

is analytic in (¢, oo)} .

To see the relation between the free energy and the mutual information, we first define

) B PX,Y(X, Y)
[(X:Y)=E [l"g PX<X>P<Y>] /

where Pxy(X,Y), Px(X) and Py (Y) are the joint law of (X,Y’), the law of X and the



law of Y, respectively. We also assume that Py y(X,Y), Px(X) and Py (Y) are absolutely

continuous with respect to the Lebesgue measure and can be identified with their densities.

By setting Py |x(y|z) = Px,v(z,y)/Px(x), we have Py (y) = [ Py|x(y|z)Px(z)dz and

n n

IO5Y) _ L flog Pyx(V1)] - 2 [mg [ Prx(¥le) P oz (1.23)

Recall that W consists of i.i.d. standard Gaussian entries, so we can compute that

Then, the first term on the right hand side of (1.2.3) is —5(1 4 log 27) and the second term

is
—EF, + iIE|Y|2 + Mogor = —EF, + LE|XXT|2 +2(1 +log 2)
"o g OBAT T TR T o0 2 L

where F,, is the free energy as in (1.2.2) with Hamiltonian

t t
H,(t,z;Y)=Y " (\/;.%'.%'T> — %lwaP.

We therefore have the relation

I(X3Y)

t
=—-EF,+ —E|XXT
n n+2n2 | .

implying that it suffices to identify the limit of [EF}, as n — oo to understand the asymptotics
of I(X:Y).

We start with the high-dimensional limit of the free energy of finite-rank matrix tensor

products. Fix K,p € N and let PX be the law of X € R™¥ where n € N. For any fixed



L € N, we observe

[ 2t
Y = ?X@)pA + W E RanL, (124)
n

where t > 0 is the SNR; ® is the Kronecker product; A € RE"*L; and W € R™*L is the

noise matrix consisting of i.i.d. standard Gaussian entries.

We briefly discuss the generality of this model and how it relates to other inference matrix
product models. The models of the second order products are widely studied. The spiked
Wishart model is given by Y = \/%XlXQT + W, which is investigated in works including
[90, 14, 12, 79, 86, 36]. When X; = Xo, this becomes the spiked Wigner model, studied
in [82, 52, 95, 94]. A generalization of these spiked matrix models can be seen in the
study of community detection problems and the stochastic block models. The community
detection problem in certain settings is asymptotically equivalent to Y = \/%X BXT+W
where B is the community interaction matrix (see [104]). More generally, the community
detection with several correlated networks is asymptotically equivalent to the multiview
spiked matrix model Y; = \/%XBZXT + Wy for Il = 1,2,...,L where each B; models one
network (see [87, 88]). All the examples of second order models can be represented in
Y = \/%X ®2,/S + W where S is positive semidefinite. They can be seen as special cases

of (1.2.4) for p = 2.

By Bayes’ rule, we can compute in a straightforward fashion that the original Hamiltonian
H? and original free energy F? of (1.2.4). By introducing an additional variable h, we enrich
the Hamiltonian and its corresponding free energy to be Hy, (¢, h) and F,(t, h), respectively.

The goal is to compare lim,,_, o EF, (¢, h) with the solution of the HJE

(Ouf —H(Vf)) (t,h) =0, ¥(t,h) € Ry x SK,



where
H(q) := (AAT) - ¢®F, VqeSE,

and Sf is the set of K x K positive semi-definite matrices.

In [39], we bound the limit from above by the unique solution to the HJE displayed above.
If in addition we assume H is convex by choosing particular A and p, then we can identify

the limit with the solution.

Theorem. Let p € N. Suppose that F,(0,-) pointwise converges to some function ¥ and
assume concentration of F,, Then for any H of the form above, there is a unique Lipschitz

viscosity solution f to the HJE with f(0,-) =, and

limsup Fy(t,h) < f(t,h), Y(t,h) € Ry x SE.

N—oo

IfH is convex, then a corresponding lower bound holds and thus we have the following identity

lim F,(t,h) = f(t,h), V(t,h)€ Ry xSE.

n— o0
Later in [37], we improve the result that for any nonlinearity and any order p, we can identify
the limit with a variational formula. To be more precise, our result is the following.

Theorem. Suppose that F,(0,-) pointwise converges to some C1 function 1) and assume
local uniform concentration of F,,. Then for every (t,h) € [0,00) X Si{, the limit of the free

energy can be written in terms of a variational formula, namely

lim Fy(t,h) = sup inf {h"-(h—R')+ (k) +tH(R")}.

n—oo h”GSi{ h’ESf

Note that the assumption that ¢ is of class C! can be omitted for certain nonlinearity H,



such as convex H. However, this assumption may be required if we consider arbitrary A and

p.

Another line of research using the classical interpolation method and the new adaptive
interpolation method introduced in 12, 13] includes |10, 82, 12, 90, 14, 79, 86, 82, 87, 104,
103, 83, 85, 65]. Our approach appears to be more versatile, as we are able to treat the
most general setting in the inference of matrix tensor products [37], and even models with

multiple layers [40].

More specifically, there are two major advantages of the HJE approach. The first advantage
is that it only requires one side bound, while the interpolation method requires convexity of
the nonlinearity and concentration property. Another advantage is that the HJE approach
works as a black box, meaning that if we feed in the convergence and concentration of
Fn(0,), it spits out Fy converging to the unique solution to the HJE. This feature of black

box enables us to apply the HJE approach to multi-layer generalized linear models.

In order to study HJE on more general spaces, we need a convex analysis result on Fenchel-
Moreau identities [38]. On the Hilbert space H with inner product (-, -), the classical Fenchel-
Moreau identity is f = f** for convex f : H — (—o00, 00| satisfying a few additional regularity

conditions. The convex conjugate is given by

f*(z) =sup{(y, =) — f(y)}, VzeH,

yeH

where it is worth noting that the supremum is taken over the entire space H.

On the other hand, it is well-known (c.f. [105, Theorem 12.4]) that on the cone [0, c0)?
in RY, if f:[0,00)¢ — (—00,00] is convex with extra assumptions and nondecreasing with

respect to the partial order induced by the cone, namely

fx) > fly), ifa—yel0,00)

10



then we have f = f**. The monotone conjugate is defined by

fa)y= swp {{y,z)— fy)} Vael0,00)
y€[0,00)4

where the inner product is the standard one in R%. Compared with the convex conjugate,
the supremum in this monotone conjugate is taken over the cone. In [36], a version of the
Fenchel-Moreau identity on S7 is needed to verify that the unique solution to a certain
HJE with spatial variables in S} admits a variational formula. On S7, [36, Proposition B.1]
proves that f = f** holds if f : ST — (—o0,00] is convex with some usual regularity

assumptions and is nondecreasing in the sense that

f@) > fy), fr—yes].

Accordingly, here * stands for the monotone conjugate with respect to S given by

f*(x) = sup {(y,x) — f(y)}, VzeSi

yESﬁ

In this case, the inner product is the Frobenius inner product for matrices and S’ can be

viewed as a cone in S™.

It is thus natural to pursue a generalization to an arbitrary cone C in a Hilbert space H. In
other words, we want to show for proper, lower semicontinuous and convex f : C — (—o0, 00|

which is also nondecreasing in the sense that

11



the identity f = f** holds. Here % stands for

[fy) = Slelg{<z,y> - f(2)}, Vye CY, and

(@) = sup {(y, ) — [*(y)}, VzeCl,
yecv

where CV is the dual cone of C.

The generality pursued in our work is motivated by the study of HJE arising in mean-field
disordered systems [95, 94, 92, 96, 93, 36|, where the solution is defined on a set, which can
often be identified with a cone, and is expected to be nondecreasing with respect to the

cone.

With this useful tool in hand, we go back to apply the HJE approach to more general
spaces. Now let us briefly describe the multi-layer generalized linear model. For n € N, fix
any L € N as the number of layers. For each | € {0,1,2,...,L}, let n; = ny(n) € N be the
dimension of the signal at the [-th layer. We assume that ng = n and lim,,_, % =q; >0,

for some oy > 0.

Starting with X(© = X where X € R” is the original signal with law Px, we iteratively
define, for each [ € {1,..., L},

ni—1
) 1 0) 3= 40 ,
x® = Yoenxy U AV ), vi<i<n,
J SOl<\/mk:1 kN k J> Js M

where each ¢; is measurable for some fixed k; € N independent of n; (A;l))lgjgnl is a sequence
of independent R¥-valued random vectors with law P,u; and each ®(" is a random matrix

consisting of independent standard Gaussians.

For 8 > 0, the observable is given by

ve=/px" 4z
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where Z is an ny-dimensional standard Gaussian vector. The inference task is to recover X
based on the knowledge of Y°, (¢)1<i<z, and (®1);<r. Once again we can compute its

free energy Fg | . by Bayes’ rule straightforwardly.

To state the main result of this model, we further need to define that for every [ €

{0,1,...,L} and n € N,
1 2
pn=——E|XO|".
ny(n)
It can be shown that the following limit exists lim, . p1,, = p; for some p; > 0. Set
Uo(r) = ]Elog/ReTX”"’l‘*"/;Zi”“_;’Cl2dPX1 (x1), VreRy,

where Z is standard Gaussian. Then for every [ € {1,...,L}, p > 0 and h = (hy,hg) €

[0, p] x R4, set

W (h;p)

= Elog

/Ph2, V 901(\/ WVi+vp—hW, A ) +Zl’\/7V1+ p— h1w) d Py, (w),
where Vi, W1, Z; are independent standard Gaussians and
ing ()
Pryi(ylz) = / e_%ly_\/g“’l(z’“ll )|2dPA(z) (a@) , VYy,z€R.
RF 1

We can now state our main result, in which we identify the limit of the free energy with a

variational formula.

Theorem. Under mild assumptions, it holds that

lim EFﬂLn =sup inf sup inf ---sup mf oL (ﬁ Y y(L);z(l), e ,Z(L)>

n—00 2@y - y=b @)y

13



where sup,q) is taken over 200 € Ry x [0, ES P inf, ) is taken over yW € [0, p_1] x Ry,

and

o <ﬁ;y(1>,._. YOI ,z<L>)

=ar¥p (yiL),ﬁ; PL—1> Z oV, (y1 s pza) + %o <y§1)>

+Z(—y() 20 4 20 >+§L:all<1+pz ).

=1 A-1 =2

Now, we study the limit free energy of mean-field spin glass models. The goals are first
giving it an intrinsic meaning and then establishing the well-posedness. We interpret the
inverse temperature t as the temporal variable and enrich the model by introducing a random
magnetic field with a parameter g as the spacial variable. As before, we want to compare

the enriched free energy with solutions to a certain Cauchy problem of a HJE.

The equations in question are originally defined on the set of monotone probability measures.

A probability measure p on S¥, which is now seen as a cone, is said to be monotone, if
P{a-X<a X' andb-X >b-X'} =0, Va,beSE

where X and X’ are i.i.d. with the law pu. Note that in the case K = 1, every probability
measure on R is monotone. For fixed K € N, let P~ be the set of monotone probability

measures on Sf .

When ¢ is convex, the solution is defined by a version of the Hopf-Lax formula in [92, 98],
which proves it equivalent to the Parisi’s formula proposed in [101] and rigorously verified
in |72, 111] (see also [100, 99, 112, 113]). When the solution is defined as limits of finite-
dimensional approximations as in [96, 93], the solution is shown to be an upper bound for

the limiting free energy of models in a wide class.

The first notion of solutions has a ad hoc nature, whereas the second notion manifests its

14



extrinsic nature. This motivates us to seek an intrinsic definition of solutions.

Formally, the equation is of the following form:

<atf -/ f(f%f)dg) (t,9)=0, onRyxP/

where ¢ is R-valued on RE*X_ Our result can be formally stated as

Theorem. Under certain admissible assumptions on & and the initial condition 1 in mean-
field spin glass models, there is a unique viscosity solution f of the Cauchy problem of the

HJE displayed above. Moreover,
1. f is the limit of viscosity solutions of finite-dimensional approximations of the HJE;
2. f is given by a Hopf-Lax formula if € is convex on SE ;
3. f is given by a Hopf formula if v is convex.

We start with making sense of 0,f. We restrict P~ to 732/ , the set of monotone measures
with finite second moments, and equipped with the 2-Wasserstein metric. Heuristically,
0,f(t, 0) describes the asymptotic behavior of f(t,7)— f(¢, 0) as ¥ tends to p in the Wasser-
stein metric. Fortunately, 732/‘ can be isometrically embedded onto a closed convex cone in
an L? space that has empty interior but generates the L? space. Via this isometry, O, f can
be understood in the sense of the Fréchet derivative. Therefore, we can interpret the HJE

above as a special case of the following HJE
of—HVf)=0, onR; xC,

where C is a closed convex cone in a separable Hilbert space H, and H is a general nonlin-

earity.

One obstacle comes from the lack of local compactness in infinite dimensions. Another

important issue is to figure out a suitable boundary condition. To treat these problems, we

15



exploit the fact that H is nondecreasing along the dual cone of C in the spin glass setting.
Given this condition, we do not need to prescribe any additional condition (e.g. Neumann

or Dirichlet) on the boundary, and thus only need the HJE to be satisfied.
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CHAPTER 2

EXPONENTIAL DECAY OF CORRELATIONS IN THE TWO-DIMENSIONAL

RANDOM FIELD ISING MODEL

This chapter is essentially borrowed from [54], joint with Jian Ding.

Abstract. We study the random field Ising model on Z? where the external field is given
by i.i.d. Gaussian variables with mean zero and positive variance. We show that the effect
of boundary conditions on the magnetization in a finite box decays exponentially in the

distance to the boundary.
2.1. Introduction

For v € Z2, let h, be ii.d. Gaussian variables with mean zero and variance €2 > 0.
We consider the random field Ising model (RFIM) with external field {h, : v € Z*} at
temperature 7 = 1/8 € [0,00). For N > 1, let Ay = {v € Z? : |v|o < N} be a
box in Z? centered at the origin o and of side length 2N. For any set A C Z?2, define
OA = {v e Z*\A:u~ vforsomeu € A} (where u ~ v if [u — v|; = 1). The RFIM
Hamiltonian H*N'* on the configuration space {—1,1}*~¥ with plus (respectively, minus)

boundary condition and external field {h, : v € Ay} is defined to be

HAN’i(U) = —( Z Ou0y £ Z Oy + Z O’uhu) for o € {—1, 1}AN .

u~v,UuVEA N u~v,uEA N ,VEIAN N u€EAN
(2.1.1)
(In the preceding summation, each unordered pair u ~ v only appears once.) Quenched on
the external field {h,}, the Ising measure with plus boundary condition (respectively minus

boundary condition) is defined such that for all ¢ € {—1,1}*~ (throughout the paper the

temperature is fixed, and thus we suppress the dependence on § in all notations)

—BHAN % (q) ,
P NE () = c , where ZANF = Z e BHMNE(0)) (2.1.2)

ZAN,j:
a'e{-1,1} N
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Note that ¥ F is a random measure which itself depends on {h,}. To be clear of the two
different sources of randomness, we use P and E to refer to the probability measure with

AN7

respect to the external field {h,}; and we use u*~-* for the Ising measures and use {-)

pANE

to denote the expectations with respect to the Ising measures.

Theorem 2.1.1. For any ¢ > 0,T € [0,00), there exists ¢ = c¢(e,T) > 0 such that

E((00) jan+ = (00) yan—) < cte™N for all N > 1.

This result lies under the umbrella of the general Imry—Ma [78] phenomenon, which states
that in two-dimensional systems any first order transition is rounded off upon the intro-
duction of arbitrarily weak static, or quenched, disorder in the parameter conjugate to the
corresponding extensive quantity. In the particular case of the RFIM, it was shown in
[4, 5] that the effect of the boundary conditions on magnetization at distance N decays
to 0 as N — oo for all non-negative temperatures and arbitrarily weak quenched disorder
(this also implies the uniqueness of the Gibbs state). The decay rate was then improved to
1/y/loglog N in [35] and to 1/N7 (for some v > 0) in [3|. In the presence of strong disorder
it has been shown that there is an exponential decay [26, 64, 31| (see also [3, Appendix
A]). The main remaining challenge is to decide whether the decay rate is exponential when
the disorder is weak. In fact, there have been debates even among physicists as to whether
there exists a regime where the decay rate is polynomial, and weak supporting arguments
have been made in both directions |70, 29, 51]—in particular in [51] an argument was made
for polynomial decay at zero temperature for a certain choice of disorder. Theorem 2.1.1
provides a complete answer to this question when the random field consists of i.i.d. Gaussian

variables.

The two-dimensional behavior of the RFIM is drastically different from that for dimensions
three and higher: it was shown in [77] that at zero temperature the effect on the local

quenched magnetization of the boundary conditions at distance N does not vanish in N
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in the presence of weak disorder, and later an analogous result was proved in [30] at low
temperatures. A heuristic explanation behind the different behaviors is as follows: in d
dimensions the fluctuation of the random field in a box of side length N is of order N%2,
whereas boundary condition effect is of order N¢~! (thus, in two dimensions the fluctuation
of the random field in a box is of the same order as the size of the boundary, while in three
dimensions and above the fluctuation of the random field is substantially smaller than the

size of the boundary).

Our proof method is different from all of |5, 35, 3| (and different from [26, 64, 31]), except
that in the heuristic level our proof seems to be related to the Mandelbrot percolation
analogy presented in [3, Appendix B|. The works [4, 5] treated a wide class of distributions
for disorder, while [35, 3] and this paper work with Gaussian disorder. The main features of
Gaussian distributions used in this paper are the simple formula for the change of measure
(see (2.2.12)) and linear decompositions for Gaussian process (see (2.2.21)). In addition, we
remark that the analysis in [5, 3] extends to the case with finite-range interactions. While
we expect our framework to be useful in analyzing the finite-range case, the lack of planar

duality seems to present some non-trivial obstacle (see Remark 2.2.3).

The rest of the paper consists of two sections. In Section 2.2, we prove Theorem 2.1.1 in the
special case of T'= 0. In our opinion, this is a significant simplification of the general case
but still captures the core challenge of the problem. We hope that some of the key ideas
(e.g., the crucial application of [1]) can be more transparent by first presenting the proof in
this simplified case. In Section 2.3, we then present the proof for the case of T' > 0. While
the proof naturally shares the key insights with the case for T' = 0, it seems to us that there
are significant additional obstacles. As a result, the proof is not presented as an extension
of the zero-temperature case. Instead, we present an almost self-contained proof, but omit

details at times when they are merely adaption of arguments in Section 2.2.

Our (shared) notations in Sections 2.2 and 2.3 are consistent with each other, and a few

notations in Section 2.3 are natural extensions of those in Section 2.2. However, for clarity
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of exposition, we will recall or re-explain all notations in Section 2.3.

Concurrent work. During the submission of this paper, a paper [2] which proved the
same result was completed. The proof of |2] was inspired by the proof at zero temperature
in this paper (for the crucial application of [1]). Both proofs share the basic intuition of
“using the fluctuation of the sum of the random field in a box to fight the influence of the
boundary condition” (which went back to [4, 5]) and both apply [1] to disagreement per-
colation in a crucial manner. However, the two approaches seem to be rather different in
at least the following two important aspects: (1) This paper employs first moment analysis
via various perturbations of the random field, and the paper [2] (similar to [3]) relies on
concentration /anti-concentration type of analysis (which in particular uses second-moment
computations); (2) At positive temperatures, this paper employs a certain monotone cou-
pling (adaptive admissible coupling as in Definition 2.3.9) between Ising measures with
different boundary conditions, and the paper [2| considers a continuous extension of the
Ising model into the metric graph which allows to study spin correlations via disagreement

percolation for two independent samples (inspired by [107, 115]).
2.2. Exponential decay at zero temperature

At zero temperature, p’v-t (and respectively AN '~) is supported on the minimizer of
(2.1.1), which is known as the ground state and is unique with probability 1. We denote

ANt the ground state with respect to the plus-boundary condition and by o*~:~ the

by o
ground state with respect to the minus-boundary condition. Therefore, for T' = 0 we have
the simplification that the only randomness is from the P-measure. Thus, Theorem 2.1.1 for

T = 0 can then be simplified as follows.

Theorem 2.2.1. For any € > 0, there exists ¢ = c(e) > 0 such that P(oa™"" #£ oiV7) <

cte N for all N > 1.
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2.2.1. Outline of the proof

We first reformulate Theorem 2.2.1. For v € Ay, we define

+, ifO'{}N’—i_:O'q])\N’_:l,

A . _

W =9, oV T =T = 1, (2.2.1)
0, ifo{,\N’—’_:landaf}N’_:—l.

+

By monotonicity (c.f. [3, Section 2.2]), the case of 5" = —1 and o5¥'~ = 1 cannot occur,

so MV is well-defined for all v € Ay. Theorem 2.2.1 can be restated as

my < ¢ te N for ¢ = ¢(e) > 0, where my = P(EM =0). (2.2.2)

For any A C Z?, we can analogously define ¢4 by replacing Ay with A in (2.1.1) and (2.2.1).
Let C4 = {v € A: ¢4 =0} (that is, C4 is the collection of disagreements). Monotonicity

(see [3, (2.7)]) implies that
c¢BnB' P provided that B' C B. (2.2.3)

In particular, this implies that my is decreasing in N, so we need only consider N = 2™ for
n > 1. Clearly, for any v € C4, there exists a path in C* joining v and A. This suggests
consideration of percolation properties of C4. Indeed, a key step in our proof for (2.2.2) is the
following proposition on the lower bound on the length exponent for geodesics (i.e., shortest
paths) in CA~. For any A C Z2, we denote by d4(,-) the intrinsic distance on A, i.e., the
graph distance on the induced subgraph on A. Let da(A1, A2) = mingea,nayea.na da(z,y)

(with the convention that min () = c0).

Proposition 2.2.2. There exist « = a(e) > 1, k = k() > 0 such that for all N > 1

P(doay (OAN/4,0AN/2) S N¥) < ke M. (2.2.4)
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Remark 2.2.3. The “only” place where our proof breaks in extending to the finite range case
is to verify Proposition 2.2.2 (and its analogue at positive temperatures, Proposition 2.3.1).
The exact points where the extension of the proof encounters issues depend somewhat on
exact formulations for sub-lemmas. For instance, at zero temperature one can try to prove a
version of Lemma 2.2.8 sticking to nearest neighbor crossings, then for lack of planar duality
there are issues both in the proof of Lemma 2.2.8 (more specifically in Case 1) and in the
proof of (2.2.6) which applies Lemma 2.2.8. Of course one can also try to prove a stronger

version of Lemma 2.2.8 (which suffices to prove (2.2.6)), but this may be hard.

The proof of Proposition 2.2.2 will rely on [1], which takes the next lemma as input. For any
rectangle A C R? (whose sides are not necessarily parallel to the axes), let 4 be the length
of the longer side and let AM#r8¢ be (the lattice points of) the square box concentric with A,
of side length 32¢4 and with sides parallel to axes. In addition, define the aspect ratio of A to
be the ratio between the lengths of the longer and shorter sides. For a (random) set C C Z2,
we use Cross(A4, C) to denote the event that there exists a path vy, ..., v € ANC connecting
the two shorter sides of A (that is, vg, vy are of f-distances less than 1 respectively from

the two shorter sides of A).

Lemma 2.2.4. Write a = 100. There ezists by = lo(e) and § = §(e) > 0 such that the
following holds for any N > 1. For any k > 1 and any rectangles A,..., A C {v € R?:
[V < N/2} with aspect ratios at least a such that (a) by < La, < N/32 for all1 <i <k

L L L
and (b) AT, AL are disjoint, we have

]P’(ﬂf:lCross(Ai,CAN)) <(1- 5)"C )

(Actually, the authors of [1] treated random curves in R?. However, the main capacity anal-
ysis can be copied in the discrete case, and the connection between the capacity and the box-

counting dimension is straightforward (c.f. [50, Lemma 2.3|).) Armed with Lemma 2.2.4,
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we can apply [1, Theorem 1.3] to deduce that for some o = a(e) > 1,
P(dCAN (8AN/4,8AN/2) < Na) —0as N — 0. (2.2.5)

By a standard percolation argument (Lemma 2.2.10) which we will explain later, we can

enhance the probability decay in (2.2.5) and prove (2.2.4).

By (2.2.3), the random set C*N N A is stochastically dominated by CA™ M A as long as
Alarge C A Moreover, it is obvious that CAT™ for 1 < ¢ < k are mutually independent, as
long as the sets A?arge for 1 < ¢ < k are disjoint. Therefore, in order to prove Lemma 2.2.4,

it suffices to show that for any rectangle A with aspect ratio at least a = 100 we have

]P’(Cross(A,CALargc)) <1—0 where § =d(e) > 0. (2.2.6)

Both the proof of (2.2.6) and the application of (2.2.4) rely on a perturbative analysis, which

is another key feature of our proof. Roughly speaking, the logic is as follows:

e We first consider the perturbation by increasing the field by an amount of order 1/N,
and use this to show that the probability for a 0-valued contour surrounding an annulus

is strictly bounded away from 1.
e Based on this property, we prove (2.2.6), which then implies (2.2.4).

e Given (2.2.4), we then show that increasing the field by an amount of order 1/N® (recall
that o > 1 is from Proposition 2.2.2 and thus the perturbation here is 1/N* < 1/N)
will most likely change the 0’s to +’s. Based on this, we prove polynomial decay for

my with large power, which can then be enhanced to exponential decay.

For compactness of exposition, the actual implementation will differ slightly from the above

plan:
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e We first prove a general perturbation result (Lemma 2.2.5) in Section 2.2.2, where the

size of perturbation is related to the intrinsic distance on CAV,

e In Section 2.2.3, we apply Lemma 2.2.5 by bounding d,ay from below by the ;-
distance and correspondingly setting the perturbation amount to 1/N, thereby proving

Lemma 2.2.8. As a consequence, we verify (2.2.6).

e In Section 2.2.4, we apply Lemma 2.2.5 again by applying a lower bound on dyay from
Proposition 2.2.2. This allows us to derive Lemma 2.2.11. As a consequence, we prove
in Lemma 2.2.14 polynomial decay for my with large power, which is then enhanced

to exponential decay by a standard argument.
2.2.2. A perturbative analysis

We first introduce some notation. For A C Z?, we set hy = ZUGA hy. For A,B C 7Z?, we
denote by E(A, B) = {(u,v) : u ~v,u € A,v € B}. Note that we treat (u,v) as an ordered
edge. For simplicity, we will only consider N = 2" for n > 10. Let Ay = Ay \ Ay be an
annulus. Define {E&N) :v € An} to be a perturbation of the original field parameterized by
A > 0, as follows:

V) = hy + A forve Ay . (2.2.7)

We will use ﬁAN’i(a), it gAN, CAN to denote the corresponding tilde versions of
HAN ’i(a), oAt AN CAN pespectively, i.e., defined analogously but with respect to the
field {711(,N)} In addition, define C2V = CAY N €AV (so C2V is the intersection of disagree-
ments with respect to the original and the perturbed field; in informal discussions we will

) . A .
refer to vertices in C,V as disagreements t00).

Lemma 2.2.5. Consider K,A > 0. Define {R(,N) cv € Ax} as in (2.2.7). The following

two conditions cannot hold simultaneously:
(a) doan (OAN/4; OAN 2) = K

() 1C2Y 1 Ayyal - A > BIC 1 Aol
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Proof. Suppose otherwise both (a) and (b) hold. Let B = {v € Ayys : dC*AN (OAN/4,v) =
k}, for k =1,..., K. Note that By C cAn N Ay forall 1 <k < K by (a). It is obvious
that the By’s are disjoint from each other, and thus there exists a minimal value k, such
that

B, | < K7HCM N Ayl (2.2.8)

Let

S =(CM NAnu)UU;_ ' By,

and for 7 € {—,0,+}, define

9(8,7) = {(u,v) € B(S,5°) : £} = 7} and §(S,7) = {(u,0) € E(S, 5 : ¥ =7}
(2.2.9)
Note that for any v € Ay with €% = 0 we have oo™ = 1. Since &M =0 for v € S (which

implies that oo™+ =1 for v € S),
hs +19(S,+)| = |9(S, =) +19(5,0)[ = 0, (2.2.10)

because if (2.2.10) does not hold, then HA:F(¢') < HAF(oAN+) where o’ is obtained

AN?

from o~ by flipping its value on S, thus contradicting the minimality of HAN- (o),

In addition, by monotonicity (with respect to the external field), we have g(S,0) C g(S,0)U

g(S,+), 9(S,+) € g(S,+), and thus
1905, +H)[ = 19(S, +)[ = [9(5,0) \ g(5,0)[ .

Similarly, we have g(S, —) C g(S,—) and g(5,0) C ¢g(S,—) U g(S,0), and thus
905, =) = 19(5; =) = [9(5,0) \ g(S5,0)[ -

By our definition of By’s, we see that g(S,0) N g(S,0) = E(S, By, ). Therefore, (2.2.10) and
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the preceding two displays imply that

B 1158, 4] — 1305, )] — (35,00 = 2 + 1g(S, )] — [9(S, —)]

> |S|A = 8|By,| >0,

where the last inequality follows from (b) and (2.2.8). The preceding inequality implies
HM=(0") < HM=(52v:7) where ¢’ is obtained from ¥~ by flipping its value on S.

This contradicts the minimality of HAN (M), completing the proof of the lemma. [

Lemma 2.2.6. For any x, > 0 forv € Ay, let ﬁgN)

= hy + xy for v € Ax (we will use
ﬁAN’i(a), FhNE EAN  CAN 4o denote the corresponding ™ versions of HAN’:t(O'), oANE
EAN CAN ). Then with probability 1, for any v € CM N CAN there is a path in CMN N CAN

joining v and OAy.

Proof. The proof is similar to that of Lemma 2.2.5, and in a way it is the case of K = oo

there.

Suppose that the claim is not true. Then take v € CA¥ NCAN (for which the claim fails), and
let S be the connected component in CA¥ N CAN that contains v (thus S is not neighboring
OAN). Define g(S,7) as in (2.2.9) and define §(S,7) = {{u,v) € E(S,5°) : M = 71} .

Similar to (2.2.10), we have that
In our case, ¢(5,0) U g(S,+) C g(S,+) and g(S,0) U (S, —) C g(S,—). Therefore,

R 41908, )] - 13(S, —)

—19(5,0)[ = hs +|g(S, +)| = l9(S, =) + 19(S,0)[ = 0.

The preceding inequality implies that HAN~(¢') < HM >~ (54 ~) where o’ is obtained
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from &A~~ by flipping its value on S. This happens with probability 0 since the ground

state is unique with probability 1. O

2.2.3. Proof of Proposition 2.2.2

In this section, we will set K = K(N) = N/4, and A = A(N) = ~/N for an absolute
constant v > 0 to be selected, and we consider h¥) as in (2.2.7). In this case Condition
(a) in Lemma 2.2.5 holds trivially. For convenience, we use Py to denote the probability
measure with respect to the field {h, : v € Ay} and use Py to denote the probability

measure with respect to {ESJN) tv e An}
Lemma 2.2.7. Recall that ¢ is the variance parameter for the field {h,}. For any p > 0,
there exists ¢ = c(e,p,y) > 0 such that for any event En with IF’N(EN) > p, we have that

IPN(EN) =c.

Proof. There exists a constant C' > 0 such that ]TDN(’%E\]X,) — A|AN]|| = CeN) < p/2. Thus
we have

Py(En; |BYY) — A|An|| < CeN) > p/2. (2.2.11)
Also, by a straightforward Gaussian computation, we see that

(N
AR — AlAy))

e2

A2
EN _expf - }exp{i!;\fv‘} (2.2.12)

dPy
and thus there exists ¢ = ¢(¢) > 0 such that

dP ~
= > ¢ provided that ]hE\N) — A|AN|| < CeN.

dP N N

Combined with (2.2.11), this completes the proof of the lemma. O

For any annulus A, we denote by Crossparq(A,C) the event that there is a contour in C

which separates the inner and outer boundaries of A, and by Crosscasy(A,C) the event that
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there is a path in C which connects the inner and outer boundaries of A.

Lemma 2.2.8. There exists 6 = §(g) > 0 such that

min{P(Crosshara (An/s \ Anyaz, C*V)), P(Crosseasy (An /s \ An/z2,C*V))}

<1-=9 forall N > 32.

Proof. We first provide a brief discussion on the outline of the proof. We refer to the disagree-
ments on A3y with plus/minus boundary conditions posed on JAy/g as the “enhanced”
disagreements (the word enhanced is chosen since the enhanced disagreements stochasti-
cally dominate the disagreements with boundary conditions on dA by monotonicity of the
Ising model). Note that the set of disagreements in AN/2 is stochastically dominated by
the union of a constant number of copies of enhanced disagreements, which are independent
of the enhanced disagreements in Ap/3;. Therefore, with positive probability the number
of enhanced disagreements in A3, is larger than (up to a constant factor) the number of
disagreements in Ap/o (see (2.2.14)). On this event, (modulo a caveat) by Lemma 2.2.5 at
least one of the enhanced disagreements is not a disagreement when considering boundary
conditions on JA — this yields the desired statement as incorporated in Case 1 below.
In Case 2, we tighten the argument by addressing the caveat which is the scenario that the

enhanced disagreement is empty (this is relatively simple).

We are now ready to carry out the formal proof. We can write Ay /o = U;_; A; where each
A; is a box of side length N/16 (so a copy of Ayy/32) and 7 > 16 is a fixed integer (while it is
conventional to choose A;’s as disjoint boxes, the disjointness is not used in the proof). For
a box A, denoting by AP as the concentric box of A whose side length is 4¢4. We have

that (see Figure 2.1)
A?ig NAyss = @ and A?ig CAyforalll <z<r. (2.2.13)
For any A C Ay, let C" be defined as €4 but replacing {h, : v € A} by {ES,N) cv e A}
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(note that ¢z i different from CMV/2, which is defined with respect to 7Y/ 2)). Write
_ Big
cA=cA nc*. Write X, = |C:>4i NA;| and X = |C'</>\N/8 N Anysa|- Clearly, X;’s and X are
identically distributed and by (2.2.13) X;’s are independent of X (but X;’s are not mutually
independent). Let 0 = inf{z : P(X < z) > 1—1/2r}. Thus,
P(X > max X;, X > 0) > P(X > 0)P(max X; <0) > 1/4r. (2.2.14)

IENAN Y 1<i<r

The rest of the proof divides into two cases.

] L OAyy - tee
; ‘/ aAN/S e :
B oy, S~
,,,,,,,, E «—0Ayy2 E
= = I

Figure 2.1: Hlustration for the geometric setup of the proof for Lemma 2.7. In the picture
on the left we cover Ay/y by a collection of translated copies of Apy/ss (the grey boxes) —
we only draw out a few copies for an illustration. Note that the (4-times) enlargements
of translated copies (while overlapping among themselves) are all disjoint with Ay/s. The

. . . . A
picture on the right illustrates the scenario in Case 1: for some v € Co, V* \ CM, we draw
its component with the same ¢*¥-value and this component necessarily goes out of A N/8:

Case 1: 0 > 0. Let & = {|Cf>\N/8 N Anyse| = rHCMY N Anjel} N {|Cf>\N/8 N Anysa| > 0}
By (2.2.3) and (2.2.13), we have |CAV N Ansal < 32— Xi. Combined with (2.2.14), it gives
that P(E£) > 1/4r. Setting v = 1007, we get that |C<’3N/8 NAn/s2| - A > 16K L|c2v n Anol
on £. By Lemma 2.2.5, on £ there is at least one vertex v € Cé\N/S N Apnyze but v & Ay So
either v & CAV or v ¢ CMV on €. Assume that v ¢ CM and the other case can be treated

similarly.
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We will use the following property: for any connected set A, u ¢ C* if and only if there
exists a connected set A C A with u € A such that 2 = + for all w € A or {24 = — for all
w € A. The “if” direction of the property follows from (2.2.3). For the “only if” direction,
we assume without loss that &' = + and let A be the connected component containing u
where the fA—value is +. Note O’{f}’i = —1 for all w € 9A and a{f}’* =1 for all w € A. This

implies that £2 = + for all w € A.

By the preceding property, there exists a connected set A C Ay with v € A such that 5{3 =+
for all w € A or 4 = — for all w € A (see Figure 2.1 for an illustration). In addition, A
cannot be contained in Ay g since otherwise it contradicts v € CcA~/s. By planar duality,
this implies that on &, either Crosspara(Anys \AN/32,CAN) or Crosspard(Anys \ An/s2; C~AN)

does not occur (the second case corresponds to the case when v & 2 ). Therefore,

P((Crosshara(An/s \ Anya, C4))) + P((Crosspara (Anss \ Anysa, CM))%) > P(E) > 1/4r .

Combined with Lemma 2.2.7, this completes the proof of the lemma.

Case 2: § = 0. Applying a simple union bound (by using 16 copies of A /35 to cover Apys,
and a derivation similar to \CﬁN NAn/2| < D25 Xi) we get that P(C,ﬁ\N NAnsg =0) >1/2.
We assume without loss that P(Crosseasy(Any/s \ AN/32,CAN)) > 3/4 (otherwise there is

nothing further to prove), and thus
P(CI'OSSeasy(AN/g \ AN/32,CAN) and Ci\N N AN/S = (D) > 1/4 .

On the event Crosseasy (An/s\An/32, CM) and Ci\NﬁAN/g = (), the easy crossing (joining two
boundaries of Ay/s \ An/32) in CAN becomes an easy crossing with §~AN -values +. Thus, by
planar duality, it prevents existence of a contour surrounding A /32 in (An/g\ Anys2) NCAN

Therefore,

P((Crossnard (Anys \ Anyza, C*))) > 1/4.
Combined with Lemma 2.2.7, this completes the proof of the lemma. O
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Proof of (2.2.6). Let N = min{2" : 22 > /,4}. By our assumption on A, it is clear that
we can position four copies A1, Aa, Az, A4 of A by translation or rotation by 90 degrees so

that (see the left of Figure 2.2)
o Ay, Az, A3, Ay C© Anyg \ Anyso
e The union of any crossings through Ay, Ao, A3, A4 in their longer directions surrounds
Anyza.
o Ay C AF™E for 1 <i < 4.

Set p = P(Cross(A,CA™*)) (note that p depends on the dimension of A and also the
orientation of A). By rotation symmetry and (2.2.3) we see that P(Cross(4;,CV)) >
Large

P(Cross(A;,C%" ")) = p. In what follows, we denote A = Ansg \ Anyzo. Then, by

P(Cross(A;,C*)) > p and a simple union bound, we get that
P(Crosspard (A, CAV)) = P(Ni, Cross(A4;, CMV)) > 1 —4(1 — p). (2.2.15)

Similarly, we can arrange two copies A,, Ay of A obtained by translation and rotation by

90 degrees such that Ay C AIgarge, Ai;arge and that the union of any two crossings through

A{;arge,AIgarge in the longer direction connects the two boundaries of A (see the right of

Figure 2.2). This implies that
P(Crosseasy (A, C*¥)) = P(Cross(Ag, CAV) N Cross(Ap, C*¥)) > 1-2(1 —p).  (2.2.16)

Combined with (2.2.15) and Lemma 2.2.8, it yields that p < 1 — J for some § = §(g) > 0 as

required. O

The following standard lemma will be applied several times below. Before presenting the

lemma, we first provide a definition.

Definition 2.2.9. Divide Ay into disjoint boxes of side lengths N’ < N where N’ = 27’ for
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some n’ > 1, and denote by B(N, N’) the collection of such boxes. Consider a percolation
process on B(N, N'), where each box B € B(N, N') is regarded open or closed randomly.
For C,p > 0, we say that the percolation process satisfies the (N, N’, C, p)-condition if for

each B € B(N, N'), there exists an event Ep such that
e On E%, B is closed.
e P(Ep) < p for each B.

o If mingep, yeB; [ — yloo = CN' for all 1 < i < j < k, then the events Ep,, ..., Ep,

are mutually independent.

Furthermore, we say two boxes By, By are adjacent if ming, e, z,eB, |21 — Z2|oo < 1, and

we say a collection of boxes is a lattice animal if these boxes form a connected graph.

Lemma 2.2.10. For any C > 0, there exists p > 0 such that for all N and N' < N and
any percolation process on B(N,N',C,p) satisfying the (N, N', C, p)-condition, we have
P(there exists a lattice animal of open bozes on B(N, N') of size at least k) < (%)22_]“.

Proof. On the one hand, the number of lattice animals of size exactly k is bounded by
(%)282’€ (the bound comes from first choosing a starting box, and then encoding the lattice
animal by a surrounding contour on B(N, N’) of length 2k). On the other hand, for any k
such boxes, we can extract a sub-collection of ck boxes (here ¢ > 0 is a constant that depends
only on C) such that the pairwise distances of boxes in this sub-collection are at least CN';
hence the probability that all these k boxes are open is at most p*. The proof of the lemma
is then completed by a simple union bound, employing the (N, N, C, p)-condition. O
Proof of Proposition 2.2.2. Let N' = Nl_(al;OlATlo), where « is as in (2.2.5). For each
B € B(N,N'), we say B is open if d , praree (0B, OB'%ee) L (N)®, where B¢ is the box con-

centric with B of doubled side length and B¢ (as we recall) is a concentric box of B with
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N
e

Figure 2.2: On both left and right, the three concentric square boxes are Ay, Ay/g and
A3 respectively. On the left, the four rectangles are Ay, A2, A3, A4 and on the right the
two rectangles are Ag, Ap.

side length 32¢p. By (2.2.5), we see that this percolation process satisfies the (N, N’, 64, p)-

condition where p — 0 as N — oo. Now, in order that dpay (OAn s, OAnse) < (N')%, there

must exist an open lattice animal on B(IN, N') of size at least %. Applying Lemma 2.2.10
completes the proof of Proposition 2.2.2 (since (a(1 — (%5t A 15)) > 1). O

2.2.4. Proof of Theorem 2.2.1

In this subsection, we will show that the probability for {o € cAN } has a polynomial decay
with large power (Lemma 2.2.14), which then yields Theorem 2.2.1 by a standard application
of Lemma 2.2.10. In order to prove Lemma 2.2.14, we first provide a bound on the probability

for {o € C2¥} (Lemma 2.2.11), whose proof crucially relies on Proposition 2.2.2.

Let @ > 1 be as in Proposition 2.2.2 (note that we can assume without loss that o < 2).

Let /1/a < o’ < 1 (and thus we have a(a’)? > 1).

Lemma 2.2.11. For N° > 16, set A = (N°)=)? and let h™) be defined as in (2.2.7)
for N < N°. Write m$ = m$,(N°®) =P(o € CANY. Then there exists C = C(g) > 0 such

that m%. < C(N®)75.
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Remark 2.2.12. (1) In this lemma, regardless of the size of the box under consideration, the
amount of perturbation A in our field L) only depends on N°. This is crucial for (2.2.18)
below. (2) Since a(a/)? > 1, we have that A < 1/N? (this is crucial for getting a large power
in the polynomial bound as in Lemma 2.2.14). (3) Since our perturbation A = (N¢)~(@")?
applies to all N < N° when N is very small in comparison of N° the perturbation is possibly
too mild and thus we may not have a good control on chv, However, this is not a problem

because in the proof below we will only consider N > (N°)® (for which the perturbation is

still significant).

Proof. Write K = (N°®)®'. We claim it suffices to show that there exists Ny = Np(e) such
that for N® > Ny

17/

miy < K™ 2 m3, for (N°) < N < N°. (2.2.17)

Indeed, since K = (N°)*’| we can deduce from (2.2.17) by recursion that m$., < e~¢1o8N °)?

for some constant ¢ > 0, which yields the claimed bound in the lemma (with room to spare).

We now turn to the proof of (2.2.17). Suppose that (2.2.17) fails for some (N°)* < N < N°.

Since Ay C v+ Agy for all v € Ay and v+ Ayjp C Ay for all v € Ayys, by (2.2.3) we see

N2
E’C:}N N AN/4‘ P> 37m§N and E‘C:}N N AN/2’ < N2m§>\7/2 . (2218)

Together with the assumption that (2.2.17) fails, this yields that

’
—a

EICAN M Ayl > 327 K~ 5 EICAY N Ay sl
Since |C£N N A4l and |C>13N N Anyz| are integer-valued and are at most N2, the preceding
inequality implies that (recall that o/ > 1//a > 1/v/2)

1
32N3 "~

1—

P(ICM N Anyal > 647 K~ 27 |CIY N Aya) >
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Now, set Ng = Ny(e) sufficiently large so that

1—o’

" 8 /
>k te Mand 6471 K2 > KA for all N > (No)* . (2.2.19)

106 N3
Therefore, by Proposition 2.2.2; there is a positive probability such that

1—a’

CAY N Ayya| > 647 K~ 27 |CAY 0 Ay o] and doan (OANy3,0AN2) > K .

In particular, there exists at least one instance for the two events in the preceding display
to occur simultaneously. This contradicts Lemma 2.2.5, thus completing the proof of the

lemma. O

In the proof of Lemma 2.2.14 below, it is important for us to have independence between
different scales. To this end, it is useful to consider a perturbation which only occurs in an
annulus. In order to make a difference in notation from the previous perturbation (which
occurs in a whole box), for A(/N) > 0 we define (we emphasize the dependence of A on N
in the notation here since later in Lemma 2.2.14 we will consider perturbations for different

N’s simultaneously)

. hy +A(N)  forve Anv\ An/g,
R & (2.2.20)

hy for v € Anyy -

We then define CAV similar to CAN but with respect to the field {ﬁf)\[ :v € Ay}. Further,
let CAV = ¢Av CAv (so CAV s a version of Ci\N, but it replaces CAV with CMV in its

definition).

Lemma 2.2.13. Let A(N) = (N/4)~*)* and define {iAh(,N) :v € ANy} asin (2.2.20). Then

there exists C = C(e) > 0 such that P(o € CAV) < CN5.

Proof. For v € A9, let B, be a translated copy of Ay, centered at v. Thus, for all
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u € B, we have hY) = hy + (N/4)=@)* " Recall m?v/4(N/4) as in Lemma 2.2.11. By

(2.2.3) and Lemma 2.2.11,
P(v € CMY) < my,(N/4) <CN S,

Hence, P(OA /o neiv # () < C N5 by a simple union bound. Combined with Lemma 2.2.6
(and the simple observation that o cannot be connected to A by a path in CAN if A Ny2nN

Ci\ N =), this completes the proof of the lemma. O
Lemma 2.2.14. There exists C = C(e) > 0 such that my < CN 3.

Proof. A rough intuition behind the proof is as follows: the random field in each dyadic
annulus has probability close to 1 to stop the event {o € chv } from occurring and thus
altogether we get a polynomial upper bound with large power. In order to formalize the
proof, we will apply Lemma 2.2.13 and employ a careful analysis to justify the “independence”

among different scales.

Without loss of generality, let us only consider N = 4" for some n > 1. For each such N,
define {}\LS,N) v € Ay} as in (2.2.20) with A(N) = (N/4)~@)* Let B, = {0 ¢ Cf“z} and
E = No.on<e<nFr. (Note that there is no containment relation among the events Ej’s, since
each event depends on a different perturbation.) By Lemma 2.2.13, we see that P(E€) <
CN~3 for some C = C(¢) > 0 (whose value may be adjusted later in the proof). Write

Ap = Ay \ Age—1. For 0.9n < 0 < n, let Fp =o(hy : v € Aye) and write
ho = (|2e]) " hay, + gy for v € Ay, (2.2.21)

where {g, : v € 2} is a mean-zero Gaussian process independent of hyg, and {g, : v € A}
for 0.9n < ¢ < n are mutually independent (note that g,’s are linear combinations of a
Gaussian process and their means and covariances can be easily computed). Let F; be

the o-field which contains every event in F; that is independent of hg, (so in particular
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Fo C ]-}f 11 C Fir+1). By monotonicity, there exists an interval I, measurable with respect

to F, such that conditioned on F; we have o € CMat if and only if hy, € Ip. Let I be the

24| -42(")?

maximal sub-interval of I; which shares the upper endpoint and with length |Ij| < PCULT

By our definition of Ey, we see from (2.2.21) that conditioned on F, we have {o € C*+¢} N Ey

only if hyg, € I;. Thus, for 0.9n < ¢ < n,
P({o € CM¢}y N Ey | F)) < P(hy, € 1)).

Combined with the fact that Var(hg,) = €%|2,|, this gives that

C

A /

Since {0 € CA"}NE =} 4, ({0 € CP4¢}NEy) and since {0 € C*4¢} N By is Fy-measurable
(and thus is Fj, ;-measurable), we deduce that P({o € CA¥} N E) < CN~3. Combined with

the fact that P(E¢) < CN 3, it completes the proof of the lemma. O

Proof of Theorem 2.2.1. Let Ny = Ny(g) be chosen later. For B € B(N, Ny), we say B is
open if cB™** N p # (). Clearly, this percolation process satisfies the (N, Ny, 4, p)-condition

where
p=PCP"™ N B #0) < N¢mp, 2 < CNyt for C = C(e) > 0. (2.2.22)

(The last transition above follows from Lemma 2.2.14.) In addition, we note that in order
for o € C*V | it is necessary that there exists an open lattice animal on B € B(N, Ny) with
size at least ﬁ. Now, choosing Ny sufficiently large (so that p is sufficiently small, by

(2.2.22)) and applying Lemma 2.2.10 completes the proof. O

2.3. Exponential decay at positive temperatures

In this section, we prove Theorem 2.1.1 for the case of T > 0. Our proof method follows the

basic framework presented in Section 2.2 for the case of T' = 0, which applies the result in

37



[1] in a crucial way. However, there seem to be significant additional obstacles due to the
randomness of Ising measures at positive temperatures. For T = 0, it suffices to consider
the ground state which is unique with probability 1, and thus ground states with different
boundary conditions and external fields are naturally coupled together. In the case of T' > 0,
on the one hand we try to carry out our analysis with validity for all reasonable (e.g., for all
monotone couplings) couplings of Ising measures whenever possible (see Section 2.3.1); on
the other hand it seems necessary to construct a coupling with some desirable properties in
order to apply [1] (see Section 2.3.2). Both of these require some new ideas as well as some

delicate treatment.

Organization for the rest of this section is as follows. In Section 2.3.1, we verify the hy-
pothesis in [1| via a perturbation argument and thereby prove that under any monotone
coupling for Ising spins with plus/minus boundary conditions, the intrinsic distance for the
induced graph on vertices with disagreements has dimension strictly larger than 1. The proof
method is inspired by that of Proposition 2.2.2, but the implementation is largely different
with new tricks involved. In Section 2.3.2, we introduce the notion of adaptive admissible
coupling and a multi-scale construction of an adaptive admissible coupling is then given in
Section 2.3.3. In Section 2.3.3, we then introduce another perturbation argument, using
which we analyze our adaptive admissible coupling in Section 2.3.3 and prove a crucial es-
timate in Lemma 2.3.17. In Section 2.3.4, we provide the proof of Theorem 2.1.1 for T' > 0,
which requires to employ an admissible coupling such that the disagreement percolates to

the boundary.
2.3.1. Intrinsic distance on disagreements via a perturbation argument

For any A C Z?, we continue to denote by d4(-,-) the intrinsic distance on A, i.e., the

AN7

graph distance on the induced subgraph on A. Let o*¥* be spins sampled according to

AN:

pAoE - We will continue to use repeatedly the standard monotonicity properties of the

Ising model with respect to external fields and boundary conditions (c.f. [3, Section 2.2]

An,t (

for detailed discussions). Let 7 be a monotone coupling of that is, under 7 we have

38



oMot > oM7) and let
CAN = CANT — (4 e Ay : oBNT > ghvimy (2.3.1)

(Note that 7 depends on the random field A.) In addition, denote by P& 7 the joint measure
of the external fields and the spin configurations (similar notations also apply below). The

following proposition is the major goal of this section.

Proposition 2.3.1. There exist « = (e, B) > 1, k = k(e, ) > 0 such that the following
holds. For all 0 < ¢ < 1, there exists Ng = Nyl(e, 8,¢) such that for all N > Ny and

1 < Ny < No < N/2 with No — N1 = N€ the following holds for all monotone coupling m of

An,£.
I

P ® m(doay (OAN,, OAN,) < (Ng — Np)®) < v te ™. (2.3.2)

Remark 2.3.2. (1) The preceding proposition is analogous to Proposition 2.2.2. In the
present case, it is crucial that the result holds for all monotone couplings (note that the
intrinsic distance may depend on the coupling), so that we can apply it to couplings which

we construct later.

(2) In Proposition 2.3.1, we introduce parameters Ny, No (as opposed to N3 = N/4 and
Ny = N/2 in Proposition 2.2.2) for convenience of later applications. The condition that
Ny — N1 > NF€is just to ensure that the decay in probability absorbs the number of choices
for starting and ending points of the shortest path. This slight extension does not introduce

complication to the proof.

The proof of Proposition 2.3.1 again crucially relies on the result of [1]. In order to apply
[1], the following lemma (analogous to Lemma 2.2.8) is a key ingredient. For any annulus

A and C C Z2, we continue to denote by Crosspaq(A,C) the event that there is a contour
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in C which separates the inner and outer boundaries of A. Let

gi = Ei = CI’OSShard(AN/g \ AN/327 {U S AN : O',L/}\N’:t = :l:]_}) . (233)

Lemma 2.3.3. There exists 6 = (e, ) > 0 such that for all N > 32

min{P ® "V (EY), P(X (o) panee = (00N )y ) > 107°N)} <14,

’UGAN/g

In particular, P ® 7(Crosspard (Any/g \ AN/32,CAN)) < 1 =6 for all monotone coupling © of

AN, £
pEN

Remark 2.3.4. By Lemma 2.3.3, either of the following holds: (i) with positive probability
the plus-spins with respect to the plus boundary condition does not separate the boundaries
of an annulus (this is a stronger than what was proved in Case 1 in the proof of Lemma 2.2.8);
(ii) with positive probability the expected number of disagreements (averaged over the Ising
measures) is small (this corresponds to Case 2 in the proof of Lemma 2.2.8). Assuming either
property, we are able to derive a uniform bound on crossing probabilities for disagreements

under any monotone coupling.

After establishing exponential decay, then it is clear that Property (ii) holds. In addition, we
know that with overwhelming probability away from the boundary the spin configurations
with plus and minus boundary conditions agree with each other. Therefore, by symmetry

and planar duality we see that Property (i) also holds.
A perturbative analysis

Before proving Lemma 2.3.3, we need some preparational work on a certain perturbative
analysis. This is analogous to Lemma 2.2.5, which has been applied twice in the case of
T = 0: in the proof of Lemma 2.2.8 and the proof of Lemma 2.2.11. For T" > 0, it is
more complicated and thus we provide two separate versions of perturbative analysis, both

of which are proved via keeping track of the free energy. The first version is presented in
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Lemma 2.3.5 in the present section (for the application in Lemma 2.3.3), and the second

version is presented in Section 2.3.3 (for the application in Lemma 2.3.17).

For any set A C Z? and a configuration 7 € {—1,1}%}, analogous to (2.1.1) we can define

the Hamiltonian on A with boundary condition 7 and external field {h,} by:

HM (o) = —( Z ouoy + Z OuTy + Z ouhy) for o € {~1,1}* . (2.3.4)
u~v,u,vEA u~v,uENVEIA u€EA

We can then analogously define the Ising measure p™7 by assigning probability to o €

{-1, 1}A proportional to e #H A7), In addition, we define the corresponding log-partition-

function (it is the negative of the free energy; in our analysis, it seems cleaner to work with

the log-partition-function so not to be confused by the negative sign)

FA’Tzllog( ST ey, (2.3.5)
B oce{-1,1}A

For simplicity, we will only consider N = 2" for n > 10. For A >0, A’ > 0and 0 <t < 1,

we will consider the following perturbed field in this section (which is increasing in t):

hy + A/, f e AN\ Apnss,
ORI YOTNE A orv € An A Awge (2.3.6)

hv+tA, fOI"U EAN/S

(We draw the reader’s attention to that ¢ appeared in the definition of hq(,t) only for v € Ay/s,

and that h(O) # h if A’ > 0. The perturbation in (2.3.6) is more subtle than that in (2.2.7),
for the reason that we wish to take advantage of (2.3.17) below later with a judicious choice
of A’) Let p*V5t be Ising measures with plus/minus boundary conditions and external

field {th) : v € Ay}. In addition, let HAN*? be the corresponding Hamiltonians, let

AN7

FANEt be the corresponding log-partition-functions, and let ¢~ ®* be spin configurations

sampled according to Nt
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For notation convenience, for any set I' C Z?2, let Sr be the collection of vertices which
are not in I' and are separated by I' from oo on Z2 (i.e., the collection of vertices that are

enclosed by T').

Let S C An be a subset which contains Ay/g and let I' = 95 (thus we have S C Sr). For
any 7 € {—1,1}', we denote by p>7 the Ising measure on S with boundary condition 7 and
external field {hgt) v € S}. In addition, let H57 be the Hamiltonian for the corresponding
Ising spin, and let 57! be the corresponding log-partition-function. Also, we let %7 be
the spin configuration sampled according to p*™*. For later applications, it would be useful

to consider the log-partition-function restricted to a subset of configurations. To this end,

we define
Fomh =2 log (Y e b ) for @ C {~1,1}%. (2.3.7)
€N
In addition, for any measure u*™t, we define us’ " to be a measure such that

ufft( )= (MS’T’t(Q))_l,uS’T’t(U) foroc € Q.

(We draw readers’ attention to that *7™(Q) is the total measure of Q under p>7* and thus

is a number, and that ,uS’T’t is the measure ;™ conditioned on the occurrence of 2.) For
convenience, we let JSTt be the spin configuration sampled according to uSTt. Further,
define (note that below we sum over v € A /32 as opposed to v € S)
St S,rit
my™ =Y o) s (2.3.8)

'UGAN/SQ

For notation convenience, we write m>7t = mg” if Q={-1,1}°. Wesay Q C {-1,1}"is

an increasing set if o € Q implies that ¢’ € Q provided ¢’ > o, and we say  is a decreasing
set if Q¢ is an increasing set. In what follows, we consider 7+,7= € {—1,1}!" such that

Tt >,

Lemma 2.3.5. Quench on the external field {h,}. We have that for any increasing set
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QF C{-1,1}° and any decreasing set Q= C {—1,1}7

! ot — _ 1 - - _
A /0 (mgi " —mgT Nt <8 (7 7)) = 5(logu® TOQY) +log 5T (QT))
vel

Proof. The proof is done via keeping track of the change on the difference of log-partition-
functions with respect to different boundary conditions when we perturb the external field.
In Step 1, we bound such difference from above by the number of disagreements on boundary
conditions; in Step 2 we bound such difference from below by the expected number of
disagreements, with a caveat that we use the notion of “restricted” log-partition-functions
as in (2.3.7); in Step 3, we address the caveat by linking the two notions of log-partition-

functions.

Step 1. We will prove (below the equality is obvious since 71 > 77)

(FSTHI_pST 1) _(FSTHO_pST 0) < 16 4{v € T : 7 £ 7} = 8 (rf-7,). (2.3.9)
vell

(Here we use #A to denote the cardinality of A for a finite set A. We switch from the
more compact notation |A| to #A in this section, as we wish to avoid somewhat awkward
notation when | is followed by another | which means “conditioned on”.) Since each vertex

has 4 neighbors in Z2, a straightforward computation gives that

FS,TJr,l _ FS,T7,1 —

_ HS,T+,1
l log ZU e P @ < l log eS,B-#{UEF:T,T#Tv_}
B Zo' e_/gHS,T*,l(U) 5
<8 -#{vel:rf£7,}.
Similarly, we have that F57 0 — FS770 > _g.4fy e I': 7t % 7, }. This proves (2.3.9).

Step 2. We will prove

1
(FSr RS Y (BT O~ FS7 % > A /O (M3 — STt (2.3.10)
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We write
S’ +71 S7 _71 S7 +70 S: _70 Sv +71 S7 +70 S» _71 S: _70
(Fol " —Fy" )= (Fgl "—Fy" ") =(Fyl " —Fyl U)—(FyT T —F;7 7). (2.3.11)

Thus, we get that

+ STt
1 dFszT 7t 1 dF T
+ + + -1 — —
FOT - FST 70—/ ——t, FST N FST ’0—/ —= gt (23.12)
0 t 0 dt
S,‘r+,t S, Tt
1 ot . S’T+7t dF97 J— S77_7t
Since —4— = Z’UEAN/g Alogy, >#g’l+’t and —4— = ZUEAN/g Aoy~ , >ug’1_’” we see
dFS,T"",t dFS,T_,t
QO+ Q- > A S,rtt S, — A S,rHt A S,t7 0t
dt - dt = Z (<UQ+U ) st — <UQ—U ) se—i) = Moy  —AMg_
T Moy T Po-
”L)GAN/SQ

where the inequality follows from the fact that

+ + - ST
<O‘€’I U’t> St = <af’7 ’t>usﬁ+,t > (05’7 ’t>us,777t > (UQ’_T U’t> s.—q forallves.
) MQ+ ’ MQ*

In the preceding display, the first and the third inequalities follow from FKG inequality [63]
and the second inequality follows from monotonicity. Combined with (2.3.12) and (2.3.11),
it yields (2.3.10).

Step 3. From definitions as in (2.3.5) and (2.3.7), we see that
o+

1
FS’T+’1 - FS,T+71 — _B log MS,T+,1(Q+)7 (2313)

and similar equalities hold for other combinations of boundary conditions, external fields

and QF.

Combining (2.3.9), (2.3.10) and (2.3.13), we complete the proof of the lemma. O
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A lower bound on the intrinsic distance

Denote by Vo* = {v € S : 0, = £1} for S C Ay and o € {—1,1}°. For any S D Ayys,

define
0t =0%8) = {o e {-1,1}°: Crosspard (Anys \AN/32,VJ¢) occurs }. (2.3.14)

We see that Q% is an increasing set and Q~ is a decreasing set. For A C A C Z? and
o € {—1,1}", we denote by o4 the restriction of ¢ on A. Let r» > 0 be a constant chosen

later. Recall (2.3.6). Let A = % and A’ = t*A for 0 < t* < 1 to be chosen.

Lemma 2.3.6. For any p,r > 0, there exists ¢ = ¢(e,p,r,3) > 0 such that for any event
En with IP’({hS,t) :v € An} € En) = p for some 0 < t,t* < 1, we have that P({h, : v €

AN} € En) > c.

Proof. The proof is an adaption of Lemma 2.2.7 except for minimal notation change, and

thus we omit further details. O

Proof of Lemma 2.3.3. The proof shares similarity with that of Lemma 2.2.8, but the present
proof is substantially more involved. We first provide a heuristic outline of the proof, and
we will not be precise on notations or unimportant constants in this informal description.
The statement will follow immediately if the probability for existence of a plus contour with
respect to plus boundary condition is strictly less than 1, and thus we suppose otherwise
(formally, we suppose (2.3.15) below). We wish to compare the number of disagreements
in Ay/3p with that in Apy/. To this end, it will be useful to consider the “enhanced”
disagreements in A3z (that is, when we pose plus and minus boundary conditions on
OA /g instead of OAn; the word “enhanced” is chosen because by monotonicity the enhanced
disagreements stochastically dominate the original disagreements). We now compare the

enhanced disagreements in Ay 3, and disagreements in Ay, in both directions.

e The “<” direction (Step 1 below): This is where plus (minus) contours come into
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play. Conditioned on existence of plus and minus contours, the disagreements in A /39
stochastically dominate the enhanced disagreements. In addition, by Lemma 2.3.5, the
number of disagreements in A /3 is upper bounded by that in Ay, (up to an additive
term that is related to the probability of existence of plus/minus contours, which we
will address later). Altogether, we get that the number of enhanced disagreements in

A ny32 is upper bounded by the number of disagreements in Ay, (see (2.3.25)).

e The “>” direction (Step 2 below): The set of disagreements in Ay/y is dominated
by a union of constant copies of enhanced disagreements in Apy/3p, where the number
of disagreements in all these copies are independent of the enhanced disagreements in
Any32 (but not of each other). This implies that with positive probability, the number
of enhanced disagreements in A /3, is larger (up to a constant factor) than the number

of disagreements in Ay/o (see (2.3.29)).

Now, if we choose the constants appropriately, we will see that the preceding two scenarios
will occur simultaneously with positive probability, which yield bounds in two directions that
“almost” contradict each other. These events can only happen concurrently if the logarithmic
term we ignored earlier (which becomes % in (2.3.25)) plays a significant role. But this can
happen only when the typical number of enhanced disagreements is at most of order IV, in

which case an application of Markov’s inequality (see (2.3.21)) yields the desired lemma.

We next carry out the proof formally, where we slightly shuffle the order of arguments: we
first show that if the typical number of enhanced disagreements is at most of order N (see
(2.3.18)), then the lemma holds. Next, we prove (2.3.18) (which is the main challenge) by

contradiction, via the aforementioned two directional comparisons.

For convenience of notation, write

Si’t = CI‘OSSth(AN/g \ AN/327 VUAN’th’i) .
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We suppose that

min {P @ gV HHET) P MV HET)Y > 1 — 10710, (2.3.15)

0<t<1

Otherwise Lemma 2.3.3 follows from Lemma 2.3.6 (since under any monotone coupling we
have Crosspard(Anys \ AN/32,CAN) C &F N &y, where £X is defined in (2.3.3)). We remark
that by monotonicity the preceding inequality is equivalent to min{P @ p*~+0(£+9) P

MAN,f,l((c/‘f,l)} >1-— 7,.7410710'

Let £ = {pVH0(£H0) > 99/100} N {pA¥—1(E71) > 99/100} be an event measurable

with respect to the Gaussian field. By (2.3.15), we see that
P(E*) >1-10"271. (2.3.16)
Let ¢t* € [0, 1] be such that
inf{f : P(mAvsHt — Ayt > 0) <1/2r) = 6%, (2.3.17)
where 0* = mingcs<; inf{# : P(mAv/sHt — mfas—t > ) <1/2r} . We claim that
0* <107 IN. (2.3.18)

We first show that (2.3.18) implies the lemma. For any box A, let AB#% be the concentric
box of A with side length 4 times that of A. Let r be a large enough constant so that we can
write Ay/g = Uj_1 Ai, where A; is a copy of A3 and A;’s are disjoint such that A?ig CAn

for 1 <4 < r. By monotonicity, we see that for each 1 <i < r

B(S (o) ae = (02078 () > 6%)
’UEAZ'

ABiE | ADE — t* -
SB(YL (00) e = o0 ) o) >0 < 207
VEA;
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where the last inequality holds due to our choice of t* as in (2.3.17) and A" = t*A (thus

hi(,t*) = hy, + A’ for v € Ay). Hence, a simple union bound gives that

(2.3.19)

N | —

P( Z (<O—T/1\N’+7t*>MAN,+,t* o <0—1])\N7_7t*>MAN,—,t*) < ?”9*) >
UEAN/S

By Lemma 2.3.6, we get that

P( Z (<0'{)\N’+>MAN,+ - <O'£N7_>NAN,—) >rf")<1—0ford=0d(s,8,7r) >0. (2.3.20)

vEAN/8

A An,— .
Note that 2(#(CM N Ansg))m = EveAN/8(<UUN’+>NAN,+ — {ov™"7),,ax.~) on each instance

An.E Therefore, on each instance of

of the Gaussian field for any monotone coupling 7 of u
Gaussian field (which occurs with probability at least d) such that ZUGAN/8(<O-{}N’+>MAN7+ —

<0'1/;\N’_>MAN,—) < rf*, we apply Markov’s inequality and get that

7 (Crosshara(Anys \ Anyaz, CMY)) < w(#(CMY N Ayys) > 8 <

where the last inequality follows from (2.3.18). This implies that P ® m(Crosspara(An/s \

An/32, CM)) <1 —6/2, completing the proof of Lemma 2.3.3 (combined with (2.3.20)).

It remains to prove (2.3.18). Suppose that (2.3.18) does not hold. We will derive a contra-

diction, using the following two steps.

Step 1. We refer to Figure 2.3 for an illustration of geometric setup in this step. Fix
N/4 <k < N/2. Write S = Ay, and I' = 0S. We first quench on the Gaussian field and also

condition on

(et = 7% and (6™ 0 = 77 where 75 € {~1,1} and 77 > 7. (2.3.22)
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— aAN/4 — 6AN/4

0An/s

«— 6AN/2

Figure 2.3: Illustrations for geometric setup in Step 1 of Lemma 2.3.3. The picture on the
left illustrates the setup for derivation of (2.3.23), where we bound disagreements in the
grey square by disagreements on dAy (the larger dot-line boundary). The picture on the
right illustrates the setup for derivation of (2.3.24): by FKG conditioned on plus (respec-
tively minus) contour (drawn in dots in the picture) the magnetization on the grey box is
pushed up (respectively down); this allows us to compare the disagreements and enhanced
disagreements.

Applying Lemma 2.3.5, we get that (recall QF = Q*(S) as in (2.3.14))

1
_ 1 _
A/O (mg’fr’t — mg’f Nt < 82:(75r -7, ) — B(logus’7+’0(9+) + log %7 ’1((2_)) )
(2.3.23)
—+
Conditioned on o57"t € QF let € C V77 "+ 0 (An/g \ Anyz2) be the outmost contour

+
which surrounds Ajyy3,. Note that € = T is measurable with respect to {af T e

S,T+,t)

St/ }. Thus, by monotonicity of Ising model we see that (o conditioned on € =

Any32

I stochastically dominates (o™*n/8+t) A similar analysis applies to (o7 )

Any32- Any32-

Combined with (2.3.23), it yields that

1
1 _
A/ (mAnsstt _mANys =t dt < 82:(7;r -7, ) — B(log ,LLS’T+’0(Q+) + log pu57 Q).
0 vel
(2.3.24)
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Define & 4 = {77 : 57 0(Q") > 3/4} and - = {7~ : p&™ () > 3/4}. Thus,

MAN,+,0(5+,0) — MAN,+,0(5+,0 | (UANHr,O)F c 51_‘7+)‘UJAN7+70((O-AN7+70)F c 5F7+)

+ MAN,+,O(5+,O ’ (O_ANnL,O)F € gF,+)MAN7+’O((O'AN7+’O)F g 5F,+)

N

PO (A0 e gp ) 4 3 A (A0 L g )

Since pANH0(£+0) > 99/100 on £*, it gives that pVFO0((e*H+0) € & 1) > 3/4 and
thus by monotonicity N1 ((¢®¥ 1) € & 1) > 3/4 (note & 4 is an increasing set).
Similarly, we get p ¥ =0((c*V =0 € & ) > 3/4 on £*. Consider an arbitrary monotone

coupling 7p of A1 and p~—0 restricted to I'. Then we see that on £*
mr(€r4,-) =3 +2 —1=1 where &py _ = {(e* TN e &py, (0O e &p Y.

Averaging (2.3.24) over the conditioning of (2.3.22) but restricted to the event &p 4 _, we

get that on £*

/ AN/87+t AN/& )t dt<82 AN,+1 AN, 7)]]‘8F+ >7|'F+2/ﬁ
vel

Since 7t is a monotone coupling, we thus obtain that on £*

A 1
/ (mAN/S,‘ht _ mAN/S’_’t)dt < 82<0-1/)\N7+71 _ sz)\N7—,0>ﬂ_F +2/8
0

2
vel

—82 AN’+1 pAN L T (U{)\N’_’D>MAN,7,0)+2/5.

vell

Summing over N/4 < k < N/2, we deduce that on £*

N NA [t
] Z AN,+ 1 ANl — <01/)\N,*70>#ANﬁ70) + = > / (mAN/8»+7t _ mAN/S’f’t)dt.
0

’UG.AN/Q
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Step 2. For N > 2, recall that Ay = Ax \ Ay/p is an annulus. Adjust the value of r if
necessary so that we can write Ay = Uj_;A;, where A; is a copy of Ay/3; and A;’s are

disjoint such that
AP® C AN\ Aygs forall 1<i<r. (2.3.26)

(The geometric setup here is similar to that in the proof of Lemma 2.2.8; see the left picture

of Figure 2.1 for an illustration.) By monotonicity, we see that for each 1 < i < r

P(Y - (o0 payen = (0070 g —0) > 607)
VEA;

AP ) i
<SP (o) e, — (00 ) e ) > 67)
vEA; i B

= P(mAN/87+7t* — mAN/Sv_vt* > 9*) < 1/27,"

where the equality holds due to (2.3.26) and A’ = t*A (note that WY = hy+ A for v € AN\

Anyg and for all 0 <t < 1), and in addition the last inequality holds due to (2.3.17). Thus,

a simple union bound gives that the event {ZUEAN/Q (<O-’L/}\N’+71>MAN7+’1 _ <UQI)\N777O>MAN,—,O) <

76"} contains an event €4, , which is measurable with respect to {h, : v & Ay/g} such that

P(Eay,,) = 1/2. (2.3.27)

Furthermore, let 7 = {1 <t < 1: m™vsHt —mhnss—t > g*} By (2.3.17) we have E|T| >
1/2r where |T| is the Lebesgue measure of 7. Since |7| < 1, we have P(|T| > 1/4r) > 1/4r.

Therefore,

1
P( / (mAn/stt st > 0% Jar) > 1/4r . (2.3.28)
0

Combined with (2.3.27), this yields that

P(E%) > 1/8r (2.3.29)
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where £° is the event such that

1 *
0
/ (mAvett — s =g > o7 @)™ Y (o™ v = (@00 av0)
0 " UGAN/Q

Suppose (2.3.18) does not hold. Then by (2.3.25) and the preceding display, the events £*
and £° are mutually exclusive. But by (2.3.16) and (2.3.29), we have P(E*) + P(E°) > 1,

arriving at a contradiction. O

Proof of Proposition 2.3.1. The proof of Proposition 2.3.1 at this point is highly similar to
that of Proposition 2.2.2. As a result, we only provide a sketch emphasizing the additional

subtleties.

Let m be an arbitrary monotone coupling of u*¥* and let CA¥ = CAN™ be defined as in

(2.3.1).

For any rectangle A C R? (whose sides are not necessarily parallel to the axes), recall that
{4 is the length of the longer side and A™"8¢ is the square box concentric with A and of side
length 32¢4. In addition, the aspect ratio of A is the ratio between the lengths of the longer
and shorter sides. Consider an arbitrary rectangle A with aspect ratio at least a = 100. For
a (random) set C C Z?, we continue to use Cross(A,C) to denote the event that there exists
a path vy, ..., v € ANC connecting the two shorter sides of A. For any monotone coupling
A of P AMEE (below we denote CA™™ = {v € Alarse . gAML+ S GAVE Yy der
A" we can adapt the proof of (2.2.15) and deduce that (write N’ = min{2" : 272 >

l4}, and recall £ as in Lemma 2.3.3)
arge Large
PeutvH(Er)>1-4(1-P® A (Cross(A,VUA ’ )
>1-41-P® AL (Cross(4, CALarge))) ,

ALarge’+

where the second inequality follows from the fact Cross(A, CA""™) C Cross(A4, V° ).
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In addition, by a similar derivation of (2.3.21),

PerA ™™ (Cross(A, CA"™)) < P@ ad™™ (#(CA™™ N A) > 14/2)

Ao+ Apnr,— _
< SUHP(Dpeny, (007 ) s = (003 7) a0 =) > 1073N).

N[

Therefore, by Lemma 2.3.3,
P® WALarge(Cross(A,CALarge)) <1—6 where § =d(g,8) > 0. (2.3.30)

It is crucial that (2.3.30) holds uniformly for all possible monotone couplings A" Note
that the probability for Cross(A, CA¥™) could potentially depend on the location of A, either
due to different influences from the boundary at different locations or different coupling
mechanisms chosen at different location. However, thanks to (2.3.30), all these probabilities
have a uniform upper bound which is strictly less than 1. In addition, by monotonicity
of the Ising model, for a collection of rectangles that are well-separated, the corresponding
crossing events can be dominated by independent events which have probabilities strictly
less than 1. Next, we complete the proof of Proposition 2.3.1 by utilizing this intuition.
For any k > 1 and any rectangles Aq,..., A C {v € R? : |v| < N/2} with aspect ratios
at least a such that (a) £y < £a, < N/32 for all 1 < i < k and (b) A} ... A are

Large
disjoint, we see that under any coupling = of u*¥-* | there exist sets C4i * such that

Large
o CAi

. . Large
is sampled according to some monotone coupling of pdi" =+,

o CANT N A C A A; (by monotonicity of Ising model with respect to boundary
conditions).
o ,uAiLargevi’s are mutually independent (as they only depend on {h, : v € A%arge} re-

spectively).
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Therefore, by (2.3.30),

Large
P ® m(NF_, Cross(A;, CA™ ")) < (1= 8)F.

This proves an analogue of Lemma 2.2.4, which verifies the hypothesis required in order to

apply [1]. The remaining proof is merely an adaption of Proposition 2.2.2 and thus we omit

further details. O

2.3.2. Admissible coupling and adaptive admissible coupling

In Sections 2.3.2 and 2.3.3, we wish to prove an analogue of Lemma 2.2.11. In the case for
T > 0, it seems quite a bit more challenging as the choice of the coupling for various Ising
measures plays a role, which seems to be subtle in light of Remark 2.3.8 below. To address
the issue, we consider a general class of couplings for various Ising measures (i.e., adaptive
admissible couplings) in this section. In Section 2.3.3, we describe a particular construction
of adaptive admissible coupling, which is suited for the multi-scale analysis (the multi-
scale analysis is a more complicated version of the proof for Lemma 2.2.11) presented in

Section 2.3.3.

For k > 1, we consider deterministic boundary conditions and external fields (7(9, {hgi) :
v € A}) where 70 € {—1,1}92 for 1 < i < k (these will be fixed throughout this section).

We define the partial order < by
i <7 if 7@ <70 and D < RO (2.3.31)

We say that (¢™),...,0®)) (for o ... ¢®) € {~1,1}") is an admissible configuration if
0@ < 0@ for all i < j. Denote by X the collection of all admissible configurations. For

A C A, write (0(1), ... ,a(k))A for the restriction of (0(1), .. ,o(k)) on A.

Definition 2.3.7. For each 1 < i < k, let u(® be the Ising measure on A with boundary

condition 7(9 and external field h(?). We say that a measure 7 is an admissible coupling of
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p o ) if 1 ois supported on ¥ and its marginal distributions agree with p(9)’s.

Remark 2.3.8. Ideally, it would be great if there would exist an admissible coupling 7 which
satisfies the Markov field property. Or, it would also be great if there would exist an
admissible coupling 7 which satisfies a weak version of Markov field property, such that

for any I' € A the measure 77(0(32 €| (eW,...,6®)p) is the Ising measure on Sp with

boundary condition O'gg,r and external field {hq()i) : v € St}. However, such coupling does
not exist as we can see from the following simple example. Let us consider Ising measures
on a line segment with no external field and plus/minus boundary conditions on one end
(denoted as u). Suppose that there exists an admissible coupling 7 (in this case a monotone
coupling) with weak Markov field property. Then conditioned on the event that the two
spins disagree at the other end of the line (denoted as v), we claim that the spins from the
two Ising measures have to disagree on every vertex on the line, thereby violating the weak
Markov property. In order to verify the claim, we suppose the claim fails and let w be the
first vertex (from u) where the two spins agree with each other. Conditioned on spins from

u to w, the two marginals at v are the same (by the weak Markov property) and thus have

to agree in a monotone coupling.

In light of Remark 2.3.8, we will seek for admissible couplings with a desirable property
even weaker than the weak Markov field property. To this end, we will explore the spins
using certain “adaptive” algorithm and then we will argue that the marginal measures on the
unexplored region remain to be Ising measures. This motivates us to consider the adaptive
admissible coupling (see Definition 2.3.9 below). Let =, = {(c®,...,¢®)) e {-1,1}F :
o < ol for all i < j}. For 6y, ...,60 which are measures on {—1, 1}, we say that 6y,. .., 6y
are admissible if 6;(1) < 6;(1) for all i < j. In this case, let § be the monotone coupling
of 01,...,0,. That is, 6 is the joint measure of (o1, ...,0%), which is defined in terms of a

uniform variable U on [0, 1] such that

o; =—11if and only if U < 1 —6,(1).
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Clearly, 6 is supported on = and its marginals are 61, ...,6;. In addition, # is consistent,

ie.,

The projection of § onto the first (k — 1) spins is the monotone coupling for 61,...,0;_1 .
(2.3.32)
In order to define adaptive admissible couplings, we make use of exploration procedures. An
exploration procedure can be encoded by a family of deterministic maps {fy : V C A,V #
A} where fy is a mapping that maps an admissible configuration on V' to a vertex in A\ V.
That is to say, if we have explored a set V' C A and the spin configuration on V is given by

(cM,...,6®))y, then the next vertex we will explore is fy ((c™®,...,a®))y).

Definition 2.3.9. For each exploration procedure { fy }, we associate an admissible coupling
in the following manner. Let Vo = @. For t > 1, let v; = fy, ,((c™M,...,0®)y, ). Let
Vi, = Vi1 U {vy}. Quenched on the realization of {V;_1,(¢™M,...,0®))y, |}, for 1 <i<k
let Ql(t)(:tl) = pu® (01(,? = +1] J](jt)_l). Let #®) be the monotone coupling of Qgt), e ,«9,(:),
and we sample (0(1), . ,o(k))vt according to 6. We repeat this procedure until ¢ = #A.
We let 7 be the measure on (0(1), ey O'(k)) at the end of the procedure. In addition, we say
that a random set V is a stopping set if {V =V, = V;} (for any deterministic V; C A) is

measurable with respect to {(c™®, ... a®))y)}.

Remark 2.3.10. In the study of spin models, it is common to use an exploration procedure
to discover certain observables (such as interfaces) associated with spin configurations. Of-
ten times, an instance of spin configurations is sampled a priori (which is usually sampled
according to a Gibbs measure) and then the exploration procedure is performed on this
instance. That being said, it is not uncommon to construct a measure as the exploration
process evolves. Definition 2.3.9 is one example of such constructions, where the spin config-
uration is sampled as the exploration procedure evolves and more importantly the measure

on spin configurations depends on the exploration procedure.

Lemma 2.3.11. For each exploration procedure, the measure w given in Definition 2.5.9 is
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a well-defined admissible coupling. In addition, for any stopping set V, given the realiza-

tion of V and (0(1), . ,a(k))p, the conditional measure of w restricted on V¢ has marginals

corresponding to Ising measures on V¢ with boundary condition Ugejc and external field

{hﬁi) tv e VL

Proof. The measure 7 is well-defined since we can inductively verify that for t =0,1,2, ...,

the sequence 9?), . ,9,(:) is admissible and thus (0(1), .. 7U(k))vt+1 is admissible. To prove

the second part of the statement, it suffices to show that for each 1 <7 < k and 1 <t < #A,

m(omy,, € 1M, o™y Vea =Vi) =uD6l,, e lol) ). (2333)

We prove (2.3.33) by induction for t = #A,...,1. It is obvious from Definition 2.3.9 that

(2.3.33) holds for ¢t = #A. Suppose (2.3.33) holds for ¢, we then deduce for ¢t — 1 that

(4)

ﬂ-(O—A\(Vt—QU{Ut—l}) € .’0—1()7;;)71 ==+l ‘ (U(l)v s 7U(k))Vt72v Vieg = Vt—2)

=100l = £ o)) Xm0 R gy €100t = 1),

This implies that W(GERW_Q €| (6W,...,a®)y, L Vo = Vio) = /‘(i)(az(\ii\/;_g € |
08372), thereby completing the proof by induction. O

In what follows, we refer to 7 as in Definition 2.3.9 as an adaptive admissible coupling. In
addition, we will always define adaptive admissible couplings by presenting an exploration
procedure and then consider the associated admissible coupling given in Definition 2.3.9.
For convenience of exposition, we usually describe an exploration procedure in words rather

than specifying the maps { fy }.
2.3.3. A multi-scale analysis via another perturbation argument

Let a > 1 be as in Proposition 2.3.1. Let /1/a < o/ < 1. Let Ny = Ny(¢, 3) be a large

/)2

number to be chosen. For each N > Ny (of the form 4"), set A = A(N) = N~)" In the
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rest of the paper, we consider the following perturbation:

- hy + A, forveAy\Ayu,
hN) = / (2.3.34)

hy, for v e Ayyy-

We denote by z*~+* the Ising measures on Ay with respect to plus/minus boundary condi-
tions and external field {E(,N) :v € Ay}, and denote by A% the spins sampled according

AN,*E

to 1 In this whole section except in (2.3.45) and (2.3.46), we will quench on the

realization of {h,} and thus the external field is viewed as deterministic.
A construction of an adaptive admissible coupling

We will define the following adaptive admissible coupling mp, for pAvE and At Ac-
cording to Definition 2.3.9, in order to specify 7y, we only need to specify the exploration
procedure (i.e., the order of vertices in which we sample the spins), as described as fol-

lows. Throughout the procedure, we let CAN be the collection of vertices v which have been

sampled such that 09 Nt af,\ N> and 5{} Nt 57/} N7 We first sample spins at vertices
on OAp for k=N —-—1,N —-2,..., % For vertices on dAp, for concreteness we sample in

clockwise order starting from the right top corner. Next, let K = [N*®] and ¢ = L%Nl_o‘lj.
A comment on the order of the scales chosen: the exploration procedure below contains /¢
phases, and in every phase we consider an annulus where the inner and outer boundaries
have Euclidean distance N and thus by Proposition 2.3.1 typically have intrinsic distance
> K > N. This is why we can hope to gain a contraction when comparing the number of

disagreements on an annulus to that on its neighboring (larger) annulus (see (2.3.47) below).

We now turn to the description of the exploration procedure. For each 1 < j < £ our
construction employs the following procedure which we refer to as Phase j (see Figure 2.4

for an illustration). Let N = & — (j — )N

o We set Aj9 = 0AN ﬂCi\N, Vio = An \ Ay, and for k =0,1,..., K, we inductively

employ the following procedure (which we refer to as stage). At the beginning of Stage
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k+1, we first set A; 11 =0 and Vj 1 = V.

— If Ajx = 0 (which we denote as event & 1, 3), we sample the unexplored vertices
in Ay in a prefixed order (which can be arbitrary) and stop our procedure. Oth-
erwise, we explore all the neighbors of A (in a certain prefixed order, which
can be arbitrary) which are in Ays \ Vj (that is, vertices which have not been

explored) and sample the spins at these vertices. We also put these vertices into

Viks1-

— If a newly sampled vertex is in Ay, o (we denote this as event &, 4, where
the subscript d suggests an event related to the intrinsic distance), we sample the
unexplored vertices in Ay in a prefixed order (which can be arbitrary) and stop
our procedure. Otherwise, if a newly sampled vertex ends up in Ci\ N then we add
it to Ajpy1. (For k > 1, it is clear that A records all the vertices in Apv that
are of d AN -distance k to Ay’ and Vjj, records all the explored vertices up to

Stage k.)

e Sample the unexplored vertices in Ans \ Ay, _yo in a prefixed order (which can be

arbitrary).

Finally, if the procedure is not yet stopped after £ phases, we sample the unexplored vertices

in Ay in a prefixed order (which can be arbitrary).

Remark 2.3.12. (1) Later in the analysis, when we refer to sets such as A;, Vj; we mean
to use their values at the end of our procedure. (2) Note that in the preceding procedure,
unless some event of the form &, ¢ or £ 1 4 occurred, the exploration in all the £ phases is
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Figure 2.4: Nlustration for Phase j of the construction in Section 2.3.3. The inside square
is Ay _ yor» Whose size has been reduced in the picture for better demonstration. On lattice

points, empty indicates an unexplored vertex, an open circle indicates a vertex in cAv , and
a solid disk indicates a vertex not in C2¥. The top-left illustrates the beginning of Phase j,
where vertices on JA s have been explored (vertices outside have been explored too but we
did not draw); the top-right illustrates the middle of Phase j (here k = 5); the bottom-left
picture illustrates event &; ;¢ (here k = 8); the bottom right event illustrates &j 4 (here
k=12).

Another perturbation argument

We use fIAN’i, ﬁAN’i, FANE to denote tilde versions of HANE FANE gANE e defined

analogously but with respect to the field {ﬁgN)} defined as in (2.3.34). Without further
1

notice, we will always consider measures where we couple all these Ising spins together.

Thus, in particular, C*N and CAN are defined in the same probability space and we can then

define CQN = CAN N oAV,

We need some preparation before presenting our perturbative analysis. Suppose that V is a
stopping set (see Definition 2.3.9) obtained when constructing 7, ,, described in Section 2.3.3.

Let 7},. be the restriction of s, to V°. (We use prime in the notation 7{,. as we wish to
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save mye for later use.) By Lemma 2.3.11 and our definition of 7y, we see that =,

ANAEY gpe, (MY F) 5pe. Thus, we may denote

depends on (%), (7AV:F)y, only through (o
by (UVC’("AN ’i)ave,&vvc’(EAN ’i)avc) the spin configurations sampled according to 7}, with
corresponding boundary conditions on 0V°¢. Thus,

(0B oV Bove) (GANE GVEENFove)) has law 7, - (2.3.35)
In what follows, we will mainly consider the measure 7},. For clarity of exposition, we

quench on the realization of V = V. Let S = V¢ and I' = 95 (thus we have S C St).

Further, we quench on the values of (¢*¥®)p, (V) by

(oM E)p = 75, (G F)p =75 | where 75,7 € {-1,1}. (2.3.36)

For v € T' (in fact, any v € Ay), by admissibility there are only six possible values for

(r.5,7,,7.5,7,) as shown in Table 2.1. For each such possible spin value, we will define a

~ ot 2 " L .
“hat” version (77,7, ,7, ,7, ), where the definition is given in Table 2.2. Note that the hat
version is a modification of the original spin value, and we emphasize the change in Table 2.2
by circling out the modifications. We will explain why we introduced the hat version of the

spin on I' after a number of definitions. From Tables 2.1 and 2.2, we see that
TP > T 2T 27 7 =7 2t T =7 =7, (2.3.37)

~ =+ . . .
From a notation point of view, despite the fact that 7% = 7 , we still differentiate these

+

two notations because our mental picture is that the boundary conditions 7= are matched

~ ~
to external field {h,} and the boundary conditions 7 are matched to external field {hS,N)}.

Recall that 7 is the admissible coupling for Ising measures with boundary conditions
and external fields ((75)r, {hy}), ((75)r, {Eq(}N)}), where the order of sampling vertex is

given by that of m,, conditioned on spin configurations on the stopping set V = V.
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Table 2.2: The hat version of the spins on I
Table 2.1: Original spins on I’

type T, T, ?: 7

[wpe &~ A A a1 1 1 -1
a. -1 -1 -1 -1

b. —1 —1 41 -1 . 1 -1 @ !

c -1 -1 +1 +1 ocC. @ @ 41 41

d. b 7l b ol d 1 1 1 Al
e +1 -1 +1 +1

f 11 —1 +f1 -1 oc. +1 @ +1  +1

f. +1 -1 +1 -1

In addition, we can extend 7y to an adaptive admissible coupling 7g for Ising measures

with boundary conditions and external fields ((5)r, {ho}), (F5)r, {AVD), (FH)r, {ho}),
&

(7

~+
+ ~gz=t =t ~gZ
Let (O.S,T ’O.S,T 703,7— ,O'S’T )

), {ESN)}), where the order of sampling vertices is determined by the coupling 7.
be the spin configuration sampled according to mg (note
that we use the tilde symbol on o to emphasize the dependence on the external field
{EQN)}; similarly for H and F below). By (2.3.32), we see that the projection of mg onto
(US’Ti, 555i) has measure 7. As a result, we will simply use 7g in what follows. We also
let HS7Ti,fIS’Fi,HS’?i,fIS’$i denote Hamiltonians for corresponding Ising spins. Simi-
larly, we denote by F' S’Ti7 F Sﬁi, F S’?i, F 7 the log-partition-functions of corresponding

Ising measures. Define

St _ R S _
c>" ={veS:o)7 =107 =-1}

. 597+ 2+ o=t + =t L ~amt ot
and similarly define C57 ,C%7,C%7 . Define CITTT = ¢STE ST and €27 T =

CSF ST

Now we have necessary notations to explain the reason for introducing the hat version of the
spins on I'. We wish to bound #(C2¥ NSN (AN\Any4)) in terms of #(C2VAT). One way to
achieve this is to track the increment for the difference between the log-partition-functions
with plus and minus boundary conditions when the external field is perturbed. We see that

on the one hand, the increment for the difference between log-partition-functions can be
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bounded from below in terms of #(C2Y NS N (Ay \ Anyy)) (see Lemma 2.3.15); and on
the other hand such increment can be bounded from above by the number of disagreements
for spins on I' with respect to the plus and minus boundary conditions. However, when
approaching the upper bound, the spin values of Type b, ¢, e as in Table 2.1 will also
contribute to the upper bound despite the fact that they do not belong to cAvAT. To
address this, we introduce the hat version of the spins, which are in agreement except on
CM AT, A crucial feature as we will show in Lemma 2.3.13, is that under the admissible
coupling wg we have Cf o C Cf fi?i. Therefore, the intended lower bound on the

increment for the difference between log-partition-functions is still valid for the hat version.

Another crucial feature of the hat version of the spin is that

~ ~ =+ o~ ==
wel:rf=7=1,7 =7, =-1}={vel: 7 =7, =1,7, =7, = -1}
. - (2.3.38)
={vel: 7 =17, =-1}y={vel:7, =1,7, = —1}.
o : SrEFE _ LSFEF
Lemma 2.3.13. Under the admissible coupling wg, we have Cy C Cs .
+ ot ~ - ~
Proof. For u € I , we have af’TJr — 55’T+ —land 007 =557 = 1. By (2.3.37)
. . St St gl SF~ _ ~SF
and the admissible coupling, we see that oy > oy = 1; similarly, oy < oy

~1. So u € C57". In addition, by (2.3.37) and the admissible coupling, we see that
_g=t o= e aa— ~ ~t ~t =E
57 > 00T =1 similarly, 557 = 5,7 = —1. Sou € C% . Thus, u € C37 7 as

required. O

i ~.
Corollary 2.3.14. Under the admissible coupling mg, we have o & coT I provided that

AT =0,

~ >t o . 7+ 2F
Proof. If CA¥ NT' = (), we have 7% =7~ =7 =7 , in which case we have C>7 7 =)

~+ :::t
and in particular o ¢ c2™" . Combined with Lemma 2.3.13, this completes the proof of

the corollary. O
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Lemma 2.3.15. We have that

P ~ ot ~ ~ —
2AFHCITT N (AN \ Ayja))hms < (FST = FST ) — (FST7 — pST7) (2.3.39)

<16#{v el :7F =7 =177 =7, = —1}. (2.3.40)

v v

Proof. The proof of the lemma shares some similarity to that of Lemma 2.3.5. However, we

give a self-contained proof here in order for clarity of exposition.

We first prove (2.3.40). A straightforward computation gives that

~ o=+
—BHST (o) =t =
_ l log Zo € _ < l log 68ﬁv#{v€F:TU+;£TU }

FST_ psiE _
BT e BHST ()

<8 -#{vel:7 £7,}.

Similarly, 37" — F$7 > —8.#{v e ' : 7t # 7, }. Combined with (2.3.38), this proves

(2.3.40).

Now we turn to prove (2.3.39). We write
=SFT . msFE SFt pSF =SFT psEt =SFE L pSF
(F>T —F>T )= (F>" —F>" )= (F>"T —F>" )= (F>T —F>7 ). (2.3.41)

For 0 <t < 1, define

hy + tA, fOI“UGAN\AN/4,

v

hy, for v € Anyy.

~ ~ 2y
Let FS7" be the log-partition-function on S with boundary condition 7+ (note that 7 =
~ -~ -~ -~ ~o=t
71 by (2.3.37)) and external field {hl(,t)}. In particular, FS7"0 = pS7" apnd FS751 = ST

Similar notations apply for F'S7 t. Thus, we get that

S _ L gpS7tit P . 1L gpS7 it
ST _ pSTt :/ Tdt’ FST  _ pST :/ Tdt, (2.3.43)
0 0
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Denote by o ST spins sampled according to Ising measures with boundary conditions 7+

and external field {E(t)}. In addition, for any fixed ¢, we let g be the admissible coupling
SFE (

extended from wg by also incorporating the spins o again, the order of sampling vertex

is given by that of wg). Therefore, we see

dFSTTt gt AdFST it .
T — A Z <O-U,7' ’t>7rs,t and T = A Z <a T ’t>7rs,t’
vESN(AN\AN/4) vESN(AN\AN/4)

Combined with (2.3.43) and (2.3.41), it yields that

=+ =— ~ ~ 1 ~ ~
(P57 —FST)=(PSTT—FST) =2 | AlH{w € SN Axya) 057 £ 0T 1Y) .

(2.3.44)
- . S7t SFtt _ ~SFT

For any v € S and ¢t € (0,1), by admissible coupling we have o < oy < oy
and 05’?7 < of’?i’t < 5{?’? . Therefore, {v € SN (An \ Anys) : af’?Jr’t # 057?,7@ D

PR
Cf’Ti’T N (An \ Anys4). Combined with (2.3.44), this completes the proof of (2.3.39). [

Corollary 2.3.16. Conditioned on the realization of the stopping set V =V, let S = V¢
and I' = 3S. Then we have

AFC SN (AN N\ Awya)) | (@™ F, 5 F)y ) < 8T NCM Y.

Proof. Quench on the realization of (¢A¥* GANF)r as in (2.3.36). By Lemmas 2.3.13 and

2.3.15,
+ 7+ ~ =+ ~ B
A<#(Cfﬂ— N (AN\AN/4))>7FS < 8#{@ el: ;_ =Ty = 1?7—1) =Ty = _1}
=8#{vel :r =7 =17, =7, = -1},

where the equality follows from (2.3.38). Combined with (2.3.35), this completes the proof

of the corollary. O
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Analysis of the adaptive admissible coupling

We now analyze the adaptive admissible coupling ma,. Recall that ¢ = Li]\f 1_O‘IJ and
K = |[N®|, and define Dy to be the event (measurable with respect to the Gaussian field)

by
. —20
DN = {FAN(I%QK dCAN (8AN/2_jNa/,8AN/2_(]._1)NQ/) g K) 2 N } . (2345)
By Proposition 2.3.1 and a simple Markov’s inequality, we see that for C' = C(e,3) > 0
P(Dy) < CN~2. (2.3.46)

In what follows, we quench on the Gaussian field at which Dy does not occur.

Lemma 2.3.17. We have that my (0 € CAVY < CN710 op DS, for C =C(e, ) > 0.

Proof. For 1 < j </, 1<k < K, let o, &rd Viks Ajr be defined as in Section 2.3.3.

J
Foreach 1 <j </, let ;g = ngl Ule & 1o and define

m = (#(CN O (Ao onyve \ Anjomjve))lee, Dy -

By Corollary 2.3.14, it suffices to prove that m; < 2N~19. To this end, it suffices to prove

that for N > Nog = Ny(e, 5) (where Ny is to be selected)
miy <107°m5+ N0 forall1<j<0—1. (2.3.47)
Let £ q = ngl Ule Ei k- Since ma L (Ejq) < CN~20 on DY, it suffices to show that
(#CM N (A sver \Ayja_ (e D Les, Les Jmy o < 1070m5 (2.3.48)

Fix 1 < j</{ Forl<k < K, write 6j,<k,@ = 5j_1,@ U Ulegjﬂ-’@ and & <pag = Ej—1qU
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Ulegj,i,d. Thus, we can deduce that

A<#(C$N N (AN/ijNa/ \AN/Zf(jJrl)Na'))]lgﬁgk,@ ]lg;gk’d | (O-AN’:taaANi)Vj,k%TAN
A An,t =AN,*
- ﬂgf,gk,w ﬂgﬁsk,dA<#(C* M (AN/2—J'N“/ \AN/Z—(J'H)N““')) HCa )VJF’V>“N

S8H#HAj - Nge_ g

(&
3,<k,0 " “j,<k,d’

where the equality holds since £; <1, ¢ and &; <k 4 are measurable with respect to

(oDt EfAN’i)Vj’k, and the inequality is obtained by applying Corollary 2.3.16 with V' =V} ;.
(note that A o ina N Vi = 0 on the event &5y ;). Averaging over the conditioning in
the preceding display and recalling that &;_1 9 C & g C &jp and &) <p.a C & 4, we deduce

that
A#CM N (AN/z—jNa’ \AN/Q—(j-i—l)ND‘,))ﬂ5;’®ﬂ5;7d>7rAN < (8#A ﬂgf—l,wﬂgﬁ<k,d>7rAN :

. A . .
Since Zszl H#HAj g Lee , , < #(CNN (AN/2_(j_1)Na/ \Ay /o jner)), summing the preceding
display over 1 < k < K yields (2.3.48) (recall that AK = N~@)*| Neo' | > 105 if N > N,

for large enough Np). This completes the proof of the lemma. O

2.3.4. Proof of Theorem 2.1.1 for positive temperature

We continue to consider hY) defined as in (2.3.34), and let p~*E gANE 74 be defined
as in Section 2.3.3. For § > 0, let Q5 C [—1, 1] be the collection of multiples of ¢, and for
q € Qs define & N tO be an event measurable with respect to the Gaussian field by (the

tilde symbol only applies on the minus version below)
Exng = L0 ) an 2 046, (G)N ) pan - < g — 6} (2.3.49)

By admissibility, on the event & y = we have (0 € CA¥) > 6. Combined with Lemma

2.3.17 and (2.3.46), it yields that

P(E;nq) = O(NT1/5). (2.3.50)
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(Throughout, O(1) hides a constant that may depend on (g, 3).) Next, we define
Eong = oo™ ) awt 2 4+ 0,(05%7) an- < g — 6} (2.3.51)
By monotonicity, we thus have

807]\/'7(1 g 507]\/'/’(1 and g;k,N,q g g;,N’,q for all N/ < N. (2352)

Lemma 2.3.18. Let 6 = N—3/3. There exists C = C(g, 8) > 0 such that P(E, n,4) < CN~°

for all g € Q5.

Proof. While the proof of the lemma is similar to that of Lemma 2.2.14, we nevertheless

provide a self-contained proof for clarity of exposition.

For A C Z?, we set ha = >, _ 4 hy. Without loss of generality, let us only consider N = 4"

vEA
for some n > 1, and for 1 < ¢ < n, we define {%542) v € Ay} oas in (2.3.34). Write

Ap = Aye \ Age—1. For 0.9n < £ < n, let Fy =o0(hy : v € Ay) and write
ho = (#2A) " hy, + g, for v € Ay, (2.3.53)

where {g, : v € 2} is a mean-zero Gaussian process independent of hg, and {g, : v €

2} for 0.9n < ¢ < n are mutually independent. Let F, be the o-field which contains

every event in Fy that is independent of hg, (so in particular 7, C F; ; C Fpy1). Write
- A An,— :

&« = Uogn<t<n€ 4o, By monotonicity of <UON7+>uAN,+ and (oo™ ) Ay~ With respect

to the external field, there exists an interval I, measurable with respect to F; such that

conditioned on F, we have &, 4o , occurs if and only if hg, € Ip. Let Ij be the maximal

q

sub-interval of I, which shares the upper endpoint and |Ij| < % (here |Ij| denotes the

length of the interval I;). By definition in (2.3.49) and (2.3.34), we see from (2.3.53) that
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conditioned on F; we have that &, 4 , N (£

o4l q)C occurs only if hy, € I). Thus,

P(Eoat,g N (ES 42 ) | Fy) < P(hy, € Ij), for 0.9n <L < n.

Combined with the fact that Var(hgy,) = e2#2,, this gives that for C = C(e, ) > 0 (whose

value may be adjusted below)

C

P(Eparq N (Eg4eg)" | F7) < IR

By (2.3.52), we have & ng NES = Ni_gg,(Epaes N (5:;4@ q)c), Since (&, 4¢+ N (EX 10 q)c) is

o

Fe-measurable (and thus is F, -measurable), we deduce that (recalling a(/)? > 1)
P(EngNES) K ONTE.

By (2.3.50), we have P(£,) < CN~5. Combined with the preceding display, this completes

the proof of the lemma. O

Define &, n to be an event measurable with respect to the Gaussian field by
A An,— -
gO,N = {<O-ON’+>MAN’+ - <UO i >MAN’_ 2 N 3} ‘ (2354)

Since £, v C Uges€o,N,g With 0 = N—3/3, we get from Lemma 2.3.18 that P(&on) =
O(N~3). Thus,

E({o0™ ) an s = (00 ) pan-) < 2P(Eon) + E(Leg (057 ) yanr = {00V ) yan)

=O(N73). (2.3.55)

Remark 2.3.19. In Lemma 2.3.18, we work with &, y 4 other than &, x, for the reason that
we do not have the property that £, y occurs if and only if hg,,, is in a certain interval (but

the property holds for &, n4).
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AN:E and consider

In order to prove Theorem 2.1.1, we will consider a monotone coupling of
CA = {v € Ay : o™ T > oIV 7} We wish to have that {o € CAV} occurs only if o is
connected to Ay in CA~. However, as we have seen in Remark 2.3.8, this property does not

An:% (For instance if we build an adaptive admissible

hold for all monotone couplings of p
coupling by first sampling the spin at o and then the rest of the spins, then it is possible to get
a configuration where the spin disagrees at o but there exists a contour surrounding o where
all spins agree on this contour). In order to address this issue, we will construct an adaptive
admissible coupling 7, such that this percolation property holds. Our construction is

similar to that in Section 2.3.3 in a way that we explore CAV in a breadth first search order.

But our construction now is much simpler as we no longer need to consider multiple phases.

By Definition 2.3.9, in order to define 75, we only need to specify the order of vertices in
which we sample the spins, as described as follows. Throughout the procedure, we let CA¥
be the collection of vertices v which have been sampled and satisfy 0{,\ Nt UQ/} N7 We set

Ap = 0AN and for £k =0,1,2,..., we inductively employ the following procedure (which we

refer to as stage).

o At stage k + 1, first set Agyq; = 0. If Ay = (), we sample the unexplored vertices in
A in an (arbitrary) prefixed order and stop our procedure. Otherwise, we explore all
the unexplored neighbors of Ay (in a certain arbitrary prefixed order) and sample the

spins at these vertices.
e For each newly sampled vertex, if it is in C*V then we add it to Aj41.

Lemma 2.3.20. Under the coupling Ta,, 0 € CAN only if 0 is connected to DAy in COV.

Proof. Let k. be the first k such that A, = (. If o has been explored by the end of
Stage (ks — 1), we see that o is connected to Ay in CAN¥. Otherwise, denote Vi, the
collection of explored vertices at the end of Stage (k). If o was explored in Stage ki,
then o & CAv (since Ag, = 0). If o was not explored by the end of Stage k*, we see that

oMVt and oM~ agree on dVy¢ , and thus they will have to agree with each other on V¢ by
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AN7+

Lemma 2.3.11 (this is because oy and o™~

have the same conditional marginal for all
v € V¢ and thus have to agree with each other in an admissible coupling). This in particular

implies that o & CAV, completing the proof of the lemma. O

Proof of Theorem 2.1.1: T'> 0. Consider the adaptive admissible coupling 7, . We will
use the fact that P, (v € CMV) = %E(<U{)\N’+>MAN,+ - <0'11}N7_>#AN,7) for all v € An. Let
No = Ny(g, B) be chosen later. For any box B, recall that B¢ is the box concentric with

B of doubled side length. For B € B(N, Ny), we say B is open if CAN N B # (). In order to

Blarge —+

analyze this percolation process, we say a box B is exceptional if 3 ({0 )uBlargg 4=
large __ _ . .
<Uf = )MBlarge,,) > N, 1/2 (so exceptional is a property measurable with respect to {h, :

v € B'ree}). By (2.3.55) and monotonicity,

. . 1/2 large large __ —1/2
P(B is exceptional) < NO/ Z E((cB3™" 7+>#Blargc’+ — (a8 >uBlargcyi) = O(N, Y ).
vEB
Recall Definition 2.2.9. We see that the exceptional boxes on B(N, Ny) form a percolation
process which satisfies the (N, Ny, 4, p)-condition with p = O(N51/2). In addition, for any
box B which is not exceptional, denoting by Fp the o-field generated by spin configurations

outside B''8¢ we see from monotonicity that

—_ . large large __ —1/2
7TAN (B 1S Open ‘ fB) < Z(<U1}B & ’+>MBlarge’+ - <O',UB ® ’ >MBlarge77) = O(NO / ) .
veDB

Altogether, this implies that the collection of open boxes forms a percolation process which
also satisfies the (N, Ny, 4, p)-condition with p = O(No_l/g). By Lemma 2.3.20, in order for
o € CM | it is necessary that there exists an open lattice animal on B € B(N, Np) with
size at least %. Now, choosing Ny sufficiently large (so that p is sufficiently small) and

applying Lemma 2.2.10 yields that

P@7ay(0€CM) <cle™ for ¢ = c(e, B) > 0,
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completing the proof of the theorem. O
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CHAPTER 3

HAMILTON—JACOBI EQUATIONS FOR INFERENCE OF MATRIX TENSOR

PRODUCTS

This chapter is essentially borrowed from [39], joint with Hong-Bin Chen.

Abstract. We study the high-dimensional limit of the free energy associated with the infer-
ence problem of finite-rank matrix tensor products. In general, we bound the limit from
above by the unique solution to a certain Hamilton—Jacobi equation. Under additional as-
sumptions on the nonlinearity in the equation which is determined explicitly by the model,
we identify the limit with the solution. Two notions of solutions, weak solutions and vis-
cosity solutions, are considered, each of which has its own advantages and requires different
treatments. For concreteness, we apply our results to a model with i.i.d. entries and sym-
metric interactions. In particular, for the first order and even order tensor products, we
identify the limit and obtain estimates on convergence rates; for other odd orders, upper

bounds are obtained.
3.1. Introduction

Tensor factorizations or tensor decompositions play important roles in numerous applica-
tions. In this work, we study the inference problem of estimating tensor products of matrices.
Let us first describe the model we are concerned with. Fix K € N and let PJ{,( be the law of

X € RV*E where N € N will be sent to co. For a fixed L € N, we observe

2t
Y = WX@)ZDA—FWERNPXL. (3.1.1)

where t > 0 is interpreted as the signal-to-noise ratio; ® is the Kronecker product (hence
X®p ¢ RNVNPXEPY. A ¢ RE"XL g a deterministic matrix; and W € RN"*E consists of

independent standard Gaussian entries.

The inference task is to recover the information of X based on the observation of Y. Hence,
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we investigate the law of X conditioned on observing Y. Bayes’ rule gives that, for any

bounded measurable ¢ : RV*X — R, we have

< g(x)et ) PX(dz)
E[g(0)|y] = fem g0 T
Jrvxw €78 PR (dx)

Here the Hamiltonian associated with this model is given by

2t
Np—1

t
Np—1

HY(t,z) = (z®PA) Y — |2%P A2, (3.1.2)

Throughout this paper, the dot product between two tensors, matrices or vectors of the
same size is the entry-wise inner product. We denote by | - | the associated norm. The goal
is to understand the high-dimensional limit as N — oo of the free energy

1 °
EFy () = +-Elog /]R - X (t2) pX(da).

We briefly discuss the generality of the model (3.1.1) and its relation to other models in-
volving the inference of matrix products. Among the ones widely studied are the models
concerning the second order products. The inference problem of nonsymmetric matrices
(or the spiked Wishart model) is given by Y = \/%XlXQT + W. Works investigating this
model include [90, 14, 12, 79, 86, 36]. When X; = X3, this becomes the inference problem
of symmetric matrices (or the spiked Wigner model), which is studied in [82, 52, 95, 94].
A generalization of these spiked matrix models can be seen in the study of community
detection problems and the stochastic block models. In certain settings, the community
detection problem is asymptotically equivalent to Y = \/%X BXT + W where B is deter-
ministic and models the community interactions (see [104]). More generally, the community
detection with several correlated networks is asymptotically equivalent to the multiview
spiked matrix model Y; = \/%XBlXT + Wi for I = 1,2,..., L where each B; reflects one

network (see [87, 88]). All of these second order models can be represented in the form of
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Y = \/%X ®2,/S + W where S is a positive semidefinite matrix. This model is studied in
[103], and its equivalence to the models above is discussed in more details therein. Hence, the
models so far mentioned can be seen as special cases of (3.1.1) for p = 2. In Appendix 3.8,
we will demonstrate the representation of the nonsymmetric matrix inference problem into
the form of (3.1.1). Higher order cases (p > 2) include ¥ = %X@’p + W with vector
X e RV in[12,95], and Y = \/%22:1 X2P +W with each vector X; € RY in [83]. The

model (3.2.16) studied in [85] and considered in Section 3.2.3 as a special case also belongs

to this class. Again, they can be viewed as special cases of (3.1.1).

Recently, the powerful method of adaptive interpolations was introduced in [12]. This
technique and its improvements have been employed in works including [11, 86, 103]. In
this work, we follow the approach via Hamilton—Jacobi equations set forth in [95, 94, 92,
98, 96, 93|. Let Fn(t,h) be the free energy corresponding to an enriched version of the
Hamiltonian (3.1.2). Here h is an additional variable and the original free energy satisfies
F}(t) = Fn(t,0). We seek to compare the limit of EFy(t,h) as N — oo with the solution

of the following Hamilton—Jacobi equation

(Oef —H(Vf))(t, k) =0.

Here the nonlinearity H is given by a simple formula (3.2.6) in terms of the interaction matrix
A in (3.1.1). To make sense of solutions of this equation and the convergence, two notions
have been explored. The notion of viscosity solutions of Hamilton—Jacobi equations was
initially adopted to study convergence of free energies in [95] and later the notion of weak
solutions was taken in [94|. Viscosity solutions are in general heavier to handle. Bounds
from two sides require different treatments, and often one side is much easier than the other
and requires weaker assumptions. The convergence happens in the local L{°L° topology
while it takes considerable effort to obtain convergence rates. On the other hand, weak
solutions are simpler and it is easier to obtain estimates on convergence rates, although the

convergence takes place in local LfOL,ll. It can be upgraded to estimates in L{°L7° by giving

75



up some powers (see Remark 3.2.4). A more detailed comparison of these two notions of

solutions can be found in [94, Section 2|.

We utilize both notions in this work. For any interaction matrix A (equivalently, for any H of
the form (3.2.6)), we obtain an upper bound on the limit of the free energy in Theorem 3.2.2
via viscosity solutions. This theorem also gives the corresponding lower bound under an
additional assumption that H is convex. Employing weak solutions as in Theorem 3.2.1, we
obtain convergence and estimates on convergence rates under an assumption on H which is

weaker than convexity.

We emphasize that, different from the usual approach in statistical mechanics, the existence
of a variational formula for the limit of free energies is not a priori needed in our approach.
Instead, the existence of solutions to the Hamilton—Jacobi equation is sufficient. In the weak
solution approach, we prove the existence in a straightforward manner by verifying that the
free energies form a Cauchy sequence. For viscosity solutions, there are classical tools to
ensure existence. Here, we prove that the Hopf formula is a viscosity solution as a useful

fact (see Remark 3.2.5), and simply use this to furnish the existence for convenience.

The rest of the paper is organized as follows. We describe the setting and state main results
in Section 3.2. We apply these results to a special case where X has i.i.d. entries and the in-
teraction is symmetric in Section 3.2.3. In Section 3.3, we show that the free energy satisfies
an approximate Hamilton—Jacobi equation and collect some basic results of the derivatives
of the free energy. Section 3.4 gives the precise definition of weak solutions and the unique-
ness of solutions. In Section 3.5, we show the convergence of the free energy to a weak
solution, and finish the proof of Theorem 3.2.1. The definition of viscosity solutions and the
corresponding well-posedness results are in Section 3.6. The ensuing Section 3.7 studies the
convergence of the free energy to the viscosity solution and proves Theorem 3.2.2. A special
version of the Fenchel-Moreau biconjugation theorem on the set of positive semidefinite

matrices is needed to analyze the Hopf formula. It is stated and proved in Appendix 3.9.
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3.2. Setting and Main results

3.2.1. Setting

We assume that the random matrix X € RV*K in (3.1.1) satisfies
| X| < VNK. (3.2.1)

For convenience, we use the shorthand notation
T=a%A, VreRVK, (3.2.2)

We enrich the Hamiltonian (3.1.2) by introducing

2 _ e
7'% . —_ 'r
NPl NPt (3.2.3)
+V2h - (2TY) — h- (2Tx).

HN(t, h, JI) =

Here Y = Xv/2h + Z, where h € SE, the set of K x K (symmetric) positive semi-definite
matrices, and entries of Z € RV*K are independent standard Gaussian variables. This
Hamiltonian Hy is associated with the law of X conditioned on observing both Y and Y.

The corresponding free energy is given by

—log / Hn (tho) pX(dz). (3.2.4)
RNXK
Let Fy(t,h) = EFy(t, h) be its expectation.

Set Ry = [0,00). We consider the Hamilton—Jacobi equation

of —H(Vf) =0, inRy xSE (3.2.5)
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where H : Si{ — R is given by
H(q) = (AAT) - ¢®F, VgqeSk. (3.2.6)

3.2.2. Main results

To state the results, we need more notation. Let us introduce
SEy={hesk: | <M} (3.2.7)

We also denote the set of K x K symmetric matrices by S&, and the set of K x K symmetric

positive definite matrices by Sff 4. For N € Nand M > 0, we define

1
_ 2
Kun = <E sup |Fy — FW) , (3.2.8)
(t,h)e[O,M]xSi{M
and for any function ¢ : Sf — R,
Lymn= sup |Fn(0,h)—1p(h). (3.2.9)

K
hesk

The quantity K/ n measures the concentration of Fy. Many tools are available to estimate
this. In view of (3.2.3) and (3.2.4), we can recast (0, h) as the free energy corresponding
to a decoupled system (inference of X based on the observation of Y with Y in (3.2.3)).

Hence, Ly N is also a relatively simple object to analyze.

Throughout, the gradient V is taken in the space variable h € S_If (sometimes written
as x € Sf ). To avoid confusion when multiple V are present, we specifically denote the

differential of H by DH. We identify S¥ with REK(K+1)/2 in an isometric way (see (3.4.1)) and

endow it with the Lebesgue measure. Let A be the set of real-valued nondecreasing, Lipschitz
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and convex functions on Si{ . Here a function v : Sff — R is said to be nondecreasing provided
u(a) > u(b), ifa—beSk. (3.2.10)

We define
Ay={pea: V- (DH(V9)) >0}, (3.2.11)

where the inequality is understood in the sense of distribution, namely [ DH(V¢)-Vn <0,

for all nonnegative smooth function 1 compactly supported on Sf ey

Before stating the theorems, we comment that the assumptions imposed in them are three-
fold. The first part is on the concentration, namely, the quantity Kpsn. The second part
is on F(0,-) or Ly m,N, which is about the convergence of the free energy in the afore-
mentioned decoupled system. The third part is on H (equivalently on A due to (3.2.6)) or,

further, on Ay.
Theorem 3.2.1. Let p € N. Suppose

° supM217NeN(ICM,N/M5) < oo for some B > 0, and imy_,oo Kprv = 0 for each

M>1;
e there is a function 1 : Sff — R such that limy_oo Ly pm,n = 0 for each M > 1;
o Ay is conver and Fy(t,-) € An for allt >0 and N € N.

Then there is a unique weak solution f to (3.2.5) with f(0,-) = 1, and there is a constant
C > 0 such that the following holds for all M > 1 and all N € N:

04 / [Pt ) = 1t W|dh < CM® (EWCMJV + N+ (’CCM,N/Mﬁ)%>,
te[0,M] Sf,M

(3.2.12)
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where o = 7K(I§+1) + % + 1.

Theorem 3.2.2. Let p € N. Suppose that there is 1) : Sff — R such that Fn(0,-) converges

to ¢ pointwise, and that for each M > 0 we have
lim Kyn = 0. (3.2.13)
N—o0

Then, for any H of the form (3.2.6), there is a unique Lipschitz viscosity solution f to (3.2.5)
with f(0,-) =1, and

limsup Fy(t,h) < f(t,h), Y(t,h) € Ry x SE.

N—oo

If, in addition, H is convez, then a corresponding lower bound holds and thus

Jim Fn(t,h) = f(t,h), Y(t,h) € Ry x SE.
—00

The proofs of Theorem 3.2.1 and Theorem 3.2.2 are in Section 3.5 and Section 3.6, respec-

tively.

Remark 3.2.3 (Conditions on Ay). When ¢ is smooth, we can compute that V- (DH(V¢)) =
D?H(V¢) - V2¢ where D?H is the Hessian of H. Lemma 3.4.5 will show that if H is convex,
then the conditions on Ay in Theorem 3.2.1, namely, the convexity of Ay and Fy(t,-) € Ay,

are satisfied.

Note that when p < 2, D?H is constant and in this case Ay is always convex. Hence, the
only condition to check is that Fy(t,-) € An. In Appendix 3.8, we demonstrate a special
model of (3.1.1) with p = 2 where this condition is satisfied but H is not convex. This model
is equivalent to the nonsymmetric matrix inference problem considered in [90, 14, 12, 79,

86, 36).

It seems that the conditions on Ay are not satisfied by the model (3.2.16) for odd p > 1.
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The explicit expression of D?H in this model is computed in (3.4.8). We believe that this
issue is closely related to a similar difficulty in the adaptive interpolation approach to the

same model with odd p, which is discussed in [85, Section 7].

Remark 3.2.4 (Local uniform convergence). The local L°LL convergence in Theorem 3.2.1
can be upgraded to local L{°L2°. Let £ be a smooth function supported on —Sf’l, and
satisfy 0 < ¢ < 1 and [€ > 0. For e € (0,1), let & () = e KE+D/2¢(c=1g). Then, for

every Lipschitz ¢ : S_If — R, we have

191l e (516

$ o) SMgxéellpogr )+ 19— 9% &l )
< Ce KRR gl i+ Cellgluip.

By (3.3.8), we know F(t,-) is Lipschitz uniformly in N and ¢, and thus f(¢,-) is also
Lipschitz. Replace g in the above by Fy(t,-) — f(t,-), apply Theorem 3.2.1 and optimize

the above display over ¢ to see convergence in local L{°L°.

Remark 3.2.5 (Variational formulae). Under the assumptions on % in the two theorems, we
can show that v is Lipschitz, convex and nondecreasing in the sense that Vi € Sf . By
the pointwise convergence Fn(0,-) — v and (3.3.8), (3.3.10), (3.3.12), and the pointwise
convergence Fn(0,-) — 1, we can see that 1 is Lipschitz in the two theorems above.
Proposition 3.6.6 will show that f in Theorem 3.2.2 can be represented by the following

variational formula

f(t,z) = sup inf {z-(z—y)+¢(y)+tH(z)}, V(t,z)e Ry x sK. (3.2.14)
€Sk yesy

When H is convex, comparing Theorem 3.2.1 with Theorem 3.2.2 in view of Remark 3.2.4,
we can see that the unique weak solution f coincides with the viscosity solution pointwise,
and thus also admits the representation (3.2.14). For general H, we believe weak solutions

are still of the form (3.2.14). The relatively difficult part is to verify that (3.2.14) satisfies
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(2) of Definition 3.4.1.

Remark 3.2.6 (Possibility for weaker assumptions on H). Let us point out key inequalities,
where the assumptions on H are used. If these inequalities still hold in certain models, then

our results should still be valid there.

The conditions on Ay in Theorem 3.2.1 are used to obtain the inequality (3.4.4) in the
proof of Lemma 3.4.3, which is further used to prove the uniqueness of weak solutions
(Proposition 3.4.2), and the convergence to the unique weak solution (Proposition 3.5.1 and
Proposition 3.5.2). In fact, uniqueness and convergence are still valid if the right-hand side
of (3.4.4) is replaced by a negative constant depending locally on the temporal and spacial
variables. However, the convergence rate can be much worse (logarithmic in N), because the

absolute value of this constant will appear in the exponential factor of Gronwall’s lemma.

The convexity assumption in the second assertion of Theorem 3.2.2 is only used to apply
Jensen’s inequality to derive (3.7.28) in the proof of that the limit of F is a viscosity

supersolution.
3.2.3. Special case

We apply Theorem 3.2.1 and Theorem 3.2.2 to an i.i.d. case. Let P be a probability distri-

bution in RE supported on {z € RE : |2| < V/K}. For each N € N, let the row vectors of

X, namely X1.,Xa. ,..., Xy, be i.id. with law P. Set L = 1 and consider A € RE"*!
given by
L ifp=go=--=Jp
Ay =
0, otherwise.

Here, we used the multi-index notation

j = (j17j27 ce. )jp) S {17 e 7K}p' (3215)
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Explicitly, (3.1.1) now becomes

2% L
TR | PR

j=1ln=1
and (3.2.6) becomes
K
H(Q)_ Z (q]j/) ’ qGSf
3=

NP, (3.2.16)

(3.2.17)

Using (3.2.4) and the fact that rows of X are i.i.d., we can see F(0,-) = F(0,-), for all

N € N. Setting ¢ = F1(0,), we clearly have Ly v = 0 for all M and N. Estimate on

K, is given in Lemma 3.10.1. When p = 1 or p is even, Lemma 3.4.5 shows that the

assumptions on Ay in Theorem 3.2.1 are satisfied. Applying the main results, we have the

following corollary.

Corollary 3.2.7. In the special case described above, let f be given by (3.2.14) with ¢ =

F1(0,-). Then for all p € N, we have

limsup Fy(t,h) < f(t,h), V(t,h) € Ry x SE.

N—oo

If p is even or p =1, then there is C' > 0 such that, for all M > 1 and N € N,

sup / F(t,h) — f(t,)]dh < CM
SK

te[0,M] JST 5,

K(K+1)+3 1
2

This model (3.2.16) has also been investigated in [85] and similar convergence results for

even orders were established. Although the convergence for odd orders remains open, we

are able to obtain an upper bound for the limit of free energy.
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3.3. Approximate Hamilton—Jacobi equations

The goal of this section is to show that F y satisfies an approximate Hamilton—Jacobi equa-
tion, as summarized in Proposition 3.3.1 below. There is a considerable overlap between
results in this section and [94, Section 3|, which follows the approach of [9]. To simplify
our presentation, whenever similar arguments are available in |94, Section 3|, we shall only

demonstrate key steps and refer to [94, Section 3| for more detailed computations.

Proposition 3.3.1 (Approximate Hamilton—Jacobi equations). There ezists C > 0 such

that for every N = 1 and uniformly over Ry X Sff,
_ _ — 1 —
0,Fy —H(VFy)|* < Cr(h)N~5 (AFN + |h7Y)) ¥ + CE|VFy — VFx|*.
Here k is the condition number of h € Sf given by

h|h=Y,  ifhesK,,
k(h) = BIAT, - ih e Siy (3.3.1)

+00 otherwise.

3.3.1. Proof of Proposition 3.3.1

We start by proving the following identity
_ — 1
O Fn—H(VFy) = ~r (E (H(z"2)) —H(E (zTa") )>. (3.3.2)
Proof of (3.3.2). Let us first compute ,F y and VF . Indeed, from (3.2.4), we can compute

1 2 _ = 1 |z|?
atFN(t7 h) = N WIE - X+ 2Np—1tx -W - Np—1 , (333)

and, for a € S¥,

1

a-VEy(t,h) =~ <2a (2TX) + V2D yz(a) - (+7Z) —a- (m)> . (3.3.4)
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Here D s is the differential of the square-root function at h € Sf .. More precisely, for

h e Sf+ and a € Sk, we have

D i(a) = lim (VA +2a — V).

Using the Gaussian integration by parts (c.f. [94, Lemma 3.3|) and the Nishimori identity
(c.f. [94, Section 3.1]), we can get from (3.3.3) that

— 1 o
OFN = 7B (z-2). (3.3.5)

Here 2’ is an independent copy (or replica) of & with respect to the Gibbs measure (-).

To compute VF , we refer to the derivation of [94, (3.17)]. The object T therein is X in our
notation, and our Fy(t,h) corresponds to Fi(t,2h) there. Hence |94, (3.17)] is equivalent

to VFy = %E (x7X). A further application of the Nishimori identity yields
_ 1 )
VFy = E (zTa'). (3.3.6)

By (3.2.2) and (3.2.6), we have z - ' = H(2T2’). This along with (3.3.5), (3.3.6) and (3.2.6)
implies (3.3.2). O

Now, to prove Proposition 3.3.1, we only need to estimate the right hand side of (3.3.2).

Using (3.2.6) and (3.2.1), we get

‘IE (H(z"2)) — H(E (z72") )] < CE <](m')®p — (E{a"2') )®p\>

< CNPE <‘xTx’ —-E <xT$’> ‘> ,
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Jensen’s inequality gives
[E(H@™)) ~ HE ()| < NP2 (loma! ~E (7o) 7).
We need the following estimate
—E(Ja7a ~E (a7} [) < Ch()N—H (AT + 1Y) + CE|VEy - VEu [

This is exactly [94, (3.18)], and we shall omit the derivation here. The above two displays

and (3.3.2) gives the desired result.
3.3.2. Estimates of derivatives

We finish this section by collecting useful results in Lemma 3.3.2 and (7.5.2). Recall A €

RE"XL and W € RVY"*L, We define

|[WAT|| = sup {(WAT) (1 ®y2®---®yp)} (3.3.7)

Y1,Y2, o, YypESN L
where SYX~1 denotes the unit sphere in RV,

Lemma 3.3.2. There exists a constant C' > 0 such that the following estimates hold uni-

formly over Ry x Sff for every N € N:

0 Fn| + |[VEN| < C, (3.3.8)
1
HWATII) < \leh‘1|2>
OFN| < C|l1+ , and |VFy|<C(14+ —— ). 3.3.9
ol <1+ 2 VN P (3:39)
Everywhere in Ry x Sf, we have
O F N >0, VFy €Sk, (3.3.10)
OPFpn > 0. (3.3.11)
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Moreover, for every a € SK, we have

a-Via-VFy) >0, (3.3.12)
ClaP|Z|[h~"2
a-Va-VFy) 2 ——————. 3.3.13
(o V) o (3313
Proof of (3.3.8). It follows easily from (3.2.1), (3.3.5) and (3.3.6). O

Proof of (3.3.9). In view of (3.3.7), we have
‘(x&”A) -W‘ - ‘(WAT) : (ﬂp)) < |WAT|[|2]P.

In addition, it can be seen from (3.2.2) that |z| < C|x|P. Using these, (3.3.3) and (3.2.1),

‘&tFN(t,h)‘ < <W’JL‘HX| +4/ Qth+1‘(ZE‘®pA) W’ —|—m|x’ >

we have

Cl[w AT < IIWAT!>
<C+—F—7—+C=C(1+ .
VNt VNt

For the second estimate in (3.3.9), we need the following estimate

—1,L
1D sz(a)] < Cla||h™ 2. (3.3.14)

Its proof can be seen from the derivation of (94, (3.7)]. Insert a = g?& € S¥ into (3.3.4)

and then use (3.3.14) to see

P C|hY)2 1 2|12
Fyl<({ =|2"X|+ ———|27Z| + —|aT < 14+ ——FF-.
|V Fy| <N‘x |+ N |2 }+N|ﬂs x| Ccl1+ N

Proof of (3.3.11). Recall (3.3.5). Using (3.2.3), we differentiate 9, F y one more time in ¢ to
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see

_ L 2 _ . ~ _ - »
NPO?Fy = IE<(:U -7 (Npl (z+2 —22") - X — (\x|2 + @2 — 2|:U”]2)

N1

@7 -2 W),

1
_i_i
2NP-1t

Using the symmetry between replicas, the Nishimori identity and the Gaussian integration

by parts, we can compute

NQ”‘laffN = 2E<(f 5’)(5 7 — 25.5/14_%//_5///»

=2E ) (<ifi,k37j,1>2 — 2(TixTj0) Tip) (Tia) + Fin) (5J,Z>2) > 0.
3.

This gives (3.3.11). O

Proof of (3.3.10). By the independence of the replica a’ from z, we can rewrite (3.3.5) as
WFn = E((Z) - (Z)) and rewrite (3.3.6) as VFy = +E (z)7 (z). Then, (3.3.10) clearly
follows. O

Proof of (3.3.12). For a € S¥, we can compute
Na-V(a-VFy)=E <(a . a:Tac’)2> —2E((a-272')(a-2T2")) + E(a- xTx/>2 .

The details of this computation can be seen from the derivation of [94, (3.27)]. Expand the

right hand side of the above display to get

/ / / 1 / " n
E E A Qmn <$ki96kj$lm$zn = 201 Ty Tym Ty, + xkixijlmxln>

i’j?k7m7n7l

where 2/, ", 2" are replicas of  with respect to the measure (). Then, (3.3.12) follows if

we can show the above is nonnegative. Use the independence and write T = = — () to see
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that the above display is equal to

E Y aijamn(<xk:i$lm> (TrjTin) — 2 (TkiTim) (Trj) (Tin) + (Thi) (Tim) <$kj><$ln>>

i7j7k7m7n7l

=E Z aijamn< (ThiZim) (TrjTin) — (Trilim) (Trj) <1‘ln>>-

i?j7k7m7n7l

Notice that since a € S¥, we can replace i and m by j and n, respectively, in the second

term inside the last pair of parentheses. So the above becomes

E Z aijamn< (Thi%im) (TkjTin) — (Tkilim) (Tki) (Tim) )

/L‘?j’k7m7n7l
=E Z Q5 Qmn <§k25§lm> <§k]£ln> =E Z Qi Gmn <(EET5§/)U (%\Ta:\/)mn>
i,j,k,m,n,l ivjvkvman

—E{(a-777)?) > 0.

Proof of (3.3.13). By (3.3.4), we can compute

a-V(a-VFEn(t,h))

= %(<(H§v(a, h,x))2> — (Hy(a,h, $)>2) - % <\/§Df/ﬁ(a, a) -xTZ> . (3.3.15)

where

Hy(a,h,z) = \@D\/E(a) 2'Z4+2a-2"X —a- 2Tz,

and, for every h € Sﬁr and a,b € SK,

Df/ﬁ(a, b) = lime! (D\/m(a) — D\/ﬁ(a)).

e—0
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Recognizing a variance term in (3.3.15) and using (3.2.1), we have

121

a-V(a-VFEx(t,h)) = —C‘Df/ﬁ(a,a) T

The display 94, (3.38)] states
1,3
D%, (a, )| < ClaPIh~ 3.
Combining this with the previous display, we obtain (3.3.13). O

Lastly, we state an elementary lemma characterizing Sff .

Lemma 3.3.3. Let a € SX, Then, a € Sf if and only if a-b > 0 for every b € Sf.

Proof. If a € S¥, then for any b € S we have a-b = tr(y/avbVby/a) > 0. For the
other direction, by choosing an orthonormal basis, we may assume « is diagonal. Testing by

b € SK, we can show that all diagonal entries in a are nonnegative and thus a € Sf . O

3.4. Weak solutions of Hamilton—Jacobi equations

In this section, we study the Hamilton—Jacobi equation (3.2.5) through the perspective
of weak solutions. Precise definitions of weak solutions will be stated and uniqueness of

solutions is given in Proposition 3.4.2.

We identify S¥ isometrically with RE(5+1/2 yia the orthonormal basis {€”}1<;<j<x given

by, for m,n € {1,2,..., K},

(6 ])mn = <]17,] + 2]1275j>]l{m,n}:{z,]} (341)

Here 1 stands for the indicator function. Naturally, we endow S¥ with the Lebesgue measure

on RE(E+1/2 Recall the definition of Ay in (3.2.11).
Definition 3.4.1. A function f: Ry x S¥ — R is a weak solution to (3.2.5) if
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1. f is Lipschitz and satisfies (3.2.5) almost everywhere;
2. f(t,-) € Ay for all t > 0.

Proposition 3.4.2 (Uniqueness). Under the assumption that Ay is convex, there is at most

one weak solution to (3.2.5).
3.4.1. Proof of Proposition 3.4.2

The idea of proof is classical and can be seen in [56, 80, 81]. See also [25] and [60, Section

3.3.3]. The following lemma will also be used later. Recall the definitions of Sf,M in (3.2.7).

Lemma 3.4.3. Assume that Ay is convex. For M > 0,7 > 1,17 € (0,1), define
_ gk K

with R = Sup{|DH(p)\ i p € Sf}M}. Let ¢ : R — Ry be any smooth function. Then,
the following holds for all choices of M,T,n,¢, and for every pair f,g € An satisfying

| fllLip, 19l nip < M :

d

GO < [ (¢ -ow)anan, vep

where

J(t) = i o(f = 9)(t, h)dh,

r= (8tf - H(Vf)) - (&:g - H(Vg))-

Proof. Let us set w = f — g and v = ¢(w). We proceed in steps.

Step 1. We study the relations which w and v satisfy. Since f and g are weak solutions, we
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have
ow=H(Vf)—H(\Vg)+r=0b-Vw+r
where the function b is given by

1
b:/ DH(sV [+ (1 —s)Vg)ds.
0

Here DH is the gradient of H while V is taking derivatives in the spacial variable h. Then,

we also have

O =b-Vov+ ¢ (w)r. (3.4.3)

Step 2. We introduce a family of mollifiers. Let & : RE(E+D/2 5 R, be smooth, be

supported on —Sf’l, and satisfy [& =1. For € € (0,1), set

¢ = 6—K(K+1)/2§<;>‘

3

Define b. by the convolution

be(t,h) = (b(t, ) = &) (h) = / bt b — B (W)l

Recall the definition of Ay in (3.2.11). Since Ay is assumed to be convex and f,g € Ay
are weak solutions, by the definition of b, we must have V - b > 0 in the distribution sense.

Then, it is easy to see that

Vb >0 (3.4.4)
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holds pointwise everywhere. We finish this step by proving
b. € SK. (3.4.5)
This follows from the next lemma, which will also be used later.
Lemma 3.4.4. For H given in (3.2.6), its differential DH € SK everywhere.
Proof. For simplicity, we write S = AAT € Si{p. Let a,q € S¥, then we can compute that
a-DH(q) = pS - sym(a ® ¢*"7").
Here sym denotes the symmetrization of tensors given by
5ym<bl @by ® - ®bp) = ;,Zba(l) ® by(2) @+ @ bg(p),
o

where the summation is taken over all permutations. Since § € S_pr, to show a - DH(g) > 0

it suffices to show a @ ¢®P~! € Slfp. We only need to check
u'(a® q®p_1)u >0, VYueRE"

Index u € RE” as (u;); with i in the form of (3.2.15). Writing 1 = (ia, i3, . .. ,ip), let us
compute
u' (a & q®p71)u = Z U§ (a ® q®p71)i’ju‘i = Z uil’f@ihjl(q@p*l)ﬁujl <
ij

7j
Lj

= tr(uTauq®p_1) = tr(\/&uq(@p_luT\/a) > 0.

Here, we used the fact that ¢¥P~! is positive semi-definite, which can be proved by iterating
the above arguments. Therefore, we can conclude that a - DH > 0 for every a € S¥, which

by Lemma 3.3.3 implies DH € SE. O
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Step 3. We study J(¢) which can be written as J(t) = th v(t,). On Ry x SE, the equation

(3.4.3) can be expressed as
v = div(vb:) — vV - b + (b —be) - Vv + ¢ (w)r. (3.4.6)
In addition to D, we set
Iy =0D:N{|z| = R(T —t)}.

Using (3.4.6) and integration by parts, we can compute

d
—J(t) = 8U—R/v
3’ b r,

:/Ft(n-bg—R)v+/aDt\Ft(n-bE)v—|—/Dtv(—V-bE)+/Dt(b—b€)-Vv (3.4.7)

+ [ ¢(w)r,
Dy

where n stands for the outer normal vector, and the integrations are only carried out in the
spacial variable. We treat the integrals in (3.4.7) individually. By the definitions of b, and
&, we can see |bs| < R. Hence, the first integral is nonpositive. Due to (3.4.5) and the fact
that —n € S¥ on 9D, \ Iy, the second integral is also nonpositive. In view of (3.4.4), the
third integral is again nonpositive, while the last one is o.(1). Therefore, taking ¢ — 0, we

conclude that %J(t) < th ¢ (w)|v| as desired.

Proof of Proposition 3.4.2. Let f and g be two weak solutions to (3.2.5) with f(0,-) = ¢(0,-).
Let M = || f||rip V ||g||Lip- For each § > 0, we have || f(,-) —g(6,-)||oc < MJ. Let ¢ : R — R
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be a smooth function and satisfy

#(z) =0, if |z| < M,

(z) >0, otherwise.

Applying Lemma 3.4.3 to f, g, M, ¢ described above, and any choice of T, 7, we have J(t) <

J(0) for t € [6,T]. But our choice of ¢ implies that

J(0) = i ¢(f = 9)(6,h)dh = 0.

Since J(t) is nonnegative, we must have J(¢) = 0 for all ¢t € [§,T]. This together with the

definition of ¢ guarantees that
|f(t,h) —g(t,h)| < Mo, Vhe Dy, VtelsT)].

Recall the definition of Dy in (3.4.2) which depends on T and 7. Sending § — 0, n — 0 and

T — 0o, we conclude that f = g.

3.4.2. Assumptions on Ay

Lastly, we show that assumptions on Ay in Theorem 3.2.1 are satisfied when H is convex

and in the special case considered in Section 3.2.3 for p =1 or p even.

Lemma 3.4.5. If H is convex, then Ay is conver and contains Fy(t,-) for all t and N.
In the special case where H is given in (3.2.17) and p = 1 or p is even, we have that H is

CONVeET.

Proof. Note that, if ¢ : Sf — R is smooth, then we have

V- (DH(V¢)) = D*H(V¢) - V2.
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If H is convex, a sufficient condition for the above to be nonnegative is the convexity of
¢. Recall that convexity is required in the definition of A given above (3.2.11). Hence, by
regularizing functions in A, we can see Ay = A when H is convex. It is also clear that A is
convex. Due to (3.3.8), (3.3.10), and (3.3.12), we have Fy(t,-) € A for all t and N. This

completes the proof of the first part of the lemma.

Now, let H be given in (3.2.17). By computing the limit of e~!(H(q + ca) — H(q)), we can
see a - DH(q) = pa - ¢°"~! where o denotes the Hadamard product. Differentiate one more

time to get

a-D(a-DH)(q) = p(p — 1)(a*?) - (¢°7?) (3.4.8)

for all @ € S¥ and ¢ € Sff . If p =1 or p is even, this quantity is nonnegative. Hence the

convexity of H follows. O

3.5. Convergence to the weak solution

The goal of this section is to prove Theorem 3.2.1. The plan is to first prove the convergence
of Fy assuming the existence of a weak solution f to (3.2.5) with f(0,-) = . Next, we
prove the existence of solutions by using a similar argument. We adopt this plan because
notation is much simpler in the first part, and the two parts are independent. Theorem 3.2.1
follows from Proposition 3.5.1 and Proposition 3.5.2 proved in Section 3.5.1 and Section 3.5.2,

respectively.
3.5.1. Convergence when assuming existence of solutions
Let us assume f is a weak solution to (3.2.5) satisfying f(0,-) = 1. We want to show that

Fn converges to f as N — oo. The goal can be summarized as follows.

Proposition 3.5.1. In addition to the assumptions in Theorem 3.2.1, we assume that there
is a unique weak solution f to (3.2.5) with f(0,-) = 1. Then, there is C > 0 such that
(3.2.12) holds for all M > 1 and all N € N.
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Proof. Step 1. For N € N, we set
ry = 0 Fn —H(VFy). (3.5.1)
For § > 0, define ¢5 : R — [0, 00) by
ds(s) = (6 + 577, (3.5.2)

which serves as a smooth approximation of the absolute value. Since Fy is Lipschitz uni-
formly in N due to (3.3.8), we can set M = || f||lLip V subyen |F n|lLip- Then, we apply

Lemma 3.4.3 to Fy, f, M, ¢s, and any choice of T,n to see that

%J(s(t) < /Dt ¢5(Fn — f)|rn| < /Dt Irn|, Vte[0,T], (3.5.3)
where
50) = [ os(Fx = 1)t h)an (35.4)
Dy

for Dy given in (3.4.2). Also recall the definition of R in Lemma 3.4.3.

Step 2. We estimate [, [rn|. Due to the definition of ry in (3.5.1), Proposition 3.3.1 gives

an upper bound for |ry|?. Hence, writing
v=K(K+1)/2, (3.5.5)

we have

1
gCTW(Ni/ m(h)(AFN+C\h1|)idh+/ E\VFN—VFN\2dh>2.
Dt Dt

(3.5.6)
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Here and henceforth, we absorb the constant R in the definition of D; in (3.4.2) into the
constant C'. To bound the first integral in (3.5.6), recall the definition of (k) in (3.3.1), use

the definition of D; and invoke Holder’s inequality to see

— 1 _ 4
/ k(h)(AFy + C|h~Y)Tdh < Cy~'T|Dy|3 </ AFN + \h1\>
Dt Dt
In view of (3.3.8), using integration by parts, we have

AFN < cT 1.
Dy

The integral [}, |h] is bounded by Cn~'T7. Therefore, we obtain

/ k(h)(AFy + Clh~Y)1dh < = iT1,
Dy

To avoid heavy notation, let us write

KRt n

K= T8

L=LyRrrn (3.5.7)

Here, f3 is given in the assumption of Theorem 3.2.1. For the last integral in (3.5.6), we will

show in Step 4 that
E/ |V(Fn — FN)\Q < CT iy ek, (3.5.8)
Dy

These estimates imply that

BV1 3

1
/ ry] < CTE mE (NE 4 2. (3.5.9)
Dy

Step 3. We estimate Js(t), extend the integration from over D; to S£ R(T—1) (defined in
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(3.2.7)), and conclude the result. Use (3.5.9) and (3.5.3) to see

1
J5(t) < J5(0) + CTn ™3 (N75 +K2), te[0,T), (3.5.10)
where we set
V1
a:’y—l—%—i—l. (3.5.11)

Recall definitions (3.2.9), (3.5.2) and (3.5.4). Hence, for t = 0, we have

lim J5(0) = / |Fn(0,h) = f(0,h)|dh < CTL.
6—0 Do

Sending § — 0 in (3.5.10) and using the above display, we derive that

N

)).

sup / ‘FN(t,h)—f(t,h)‘dhgCTa<£+n_%(N_é+K
t€[0,T] J Dy

Due to (3.3.8) and the fact that Fx(0,0) = 0, we have |Fy(¢,h)| < C(t + |h|) uniformly
in N. By Fn(0,0) = 0 and the assumption on v in Theorem 3.2.1, we can see 1(0) = 0.
Since f(0,-) = ¢ and the definition of weak solutions requires f to be Lipschitz, we have
|f(t,h)] < C(t + |h|). In addition, the measure of the set SfR(T_t) \ D; is bounded by

CT"~'n. Hence, we have

sup / ‘FN(t,h) — f(t, h)‘dh < sup / CT < CTn,
te0,T1JSE pip_ 1y \Dt te[0,T] JSK pop ) \De

Therefore, we obtain

sup / |Fn(t,h) — f(t, h)|dh < CT® (n f Lk +E%)),
S

tel0,T1ISE pip

Let us now specify T" and 7. We set T" proportional to M to ensure [0, M] x SfM C{(t,h):

RIS

_1
te[0,T], hesk )}. Inserting this 7" and n = (N*§ +K2)

L R(T—t into the above display to
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see

— 2
sup / |En(t,h) — f(t,h)|dh < CM*(L + N-1i +K7). (3.5.12)
SK

tel0,M] JSE

Recall the notation (3.5.5), (3.5.7) and (3.5.11). This gives the desired result (3.2.12).

Step 4. To complete the proof, it remains to verify (3.5.8). Integrating by parts, we have

/ IV(FN—FN)IQZ/ (FN—FN)V(FN—FN)'II—/ (FN—FN)A(FN—FN)
Dy 0Dy Dy

<1y ~ Pl o, ) (/w V(Ey — Fy) +/ A(Fy —FN)\>,

t t

(3.5.13)

Let us estimate the last integral. The lower bound (3.3.12) shows AF > 0, and the lower

bound (3.3.13) implies that
AFy +CN™2(Z||h7Y2 > 0.
These yield

/}A<FN_FN>;</ AFy| +|AFy|
Dt Dt

< CT'N™ 27 2|Z| +/ (AFy + AFy).
Dy

Applying integration by parts to the last integral and using (3.3.8) and (3.3.9), we can see

that

/ (AFy + AFy) </ VEy| + |VFy| < CT7 (1 + N~ 3n732)).
Dt 8Dt

This display also serves as a bound for the first integral in (3.5.13). Insert the above two
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displays into (3.5.13) to get
= 12 ~ —= _3 _1
V(= Fn) < OTEN = File o seryssr 2 (14 N72121).
t

Recall (3.2.8) and (3.5.7). Take expectations on both sides of this inequality and invoke the

Cauchy—Schwarz inequality to conclude (3.5.8).

3.5.2. Existence of weak solutions
To complete the proof of Theorem 3.2.1, we need the following existence result.
Proposition 3.5.2. Under the assumptions in Theorem 3.2.1, there is a unique weak solu-

tion f to (3.2.5) with f(0,-) =1.

Proof. The uniqueness part follows from Proposition 3.4.2. Hence, we only need to prove the
existence. We first show that (Fy)yen is a Cauchy sequence in the local uniform topology

and then verify that the limit is a weak solution.

Step 1. We show that the sequence (Fx)yen is Cauchy. We proceed similarly as in the
previous subsection. Recall the definition of ry in (3.5.1) and ¢; in (3.5.2). Let N, N" € N.

Now, setting M = supyep ||[Fn||Lip and applying Lemma 3.4.3 to Fy and Fn/, we obtain

d

—J5(t) < / ¢5(Fn — Fnr)lrn — | < / lrn| + ||
dt D: D:

where

s(t) = [ on(Fx = Fw)t, )

The rest follows exactly the same procedure after (3.5.4) in the previous section. The only

difference is that we have more terms due to the presence of F v, but they are treated in
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the same way as for F'y. Similar to (3.5.12), one can see that eventually we obtain

sup / |FN(75, h) — F i (t, h)\dh < CM® (ﬁwchvN + N-I 4 (K:CM,N/Mﬁ)%
tefo,M] J ¥

M

_ 1
+LyormN + N+ (KCM,N'/Mﬂ)%)‘

Hence, by the assumption of Theorem 3.2.1 on the decay of Ky n and Ly arn, we know
that (Fn)nen is Cauchy in local L{°L}. Due to the argument in Remark 3.2.4, we can

upgrade this to (Fy)nen being Cauchy in local LPLy°. Let us denote the limit by f.

Step 2. We verify that f is a weak condition by checking that each property listed in
Definition 3.4.1 is satisfied by f and that f(0,-) = .

Firstly, we verify that f is Lipschitz and satisfies the initial condition. Since Fy is Lipschitz
uniformly in N due to (3.3.8), we can conclude that f is Lipschitz. Due to the assumption

lmy o0 Ly v = 0, we have f(0,-) = .

Next, we show that f(¢,-) € Ay for every ¢ > 0. By (3.3.11) and (3.3.12), we have that both
Fx and f are convex in the temporal variable and convex in the spacial variable. It is well
known that convexity implies convergence of derivatives at each point of differentiability.
The Lipschitzness of f and Rademacher’s theorem imply that f is differentiable almost
everywhere (a.e.). Hence, we can deduce that (9;, V)Fx converges to (9, V)f pointwise

a.e. Since Fn(t,-) € Ap for every t and N, the claim can be verified by passing to the limit.

Lastly, we show that f satisfies (3.2.5) a.e. Since F is Lipschitz uniformly in N due to
(3.3.8) and H is continuous, the bounded convergence theorem implies that, for any compact

B C Sf+ and t a.e.,

/ ‘atf “H(VH)|(t, h)dh = nlggo/ ’atFN —H(VEW)|(t, h)dn.
B B

We want to show that the right hand side is zero. Recall the definition of D; in (3.4.2). By
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choosing 7" and § in D; suitably, we can ensure B C D;. Then, by (3.5.1), (3.5.9) and the
assumption limy_,oc K7,y = 0 in the statement of Theorem 3.2.1, we conclude that the
right hand side of the above display is zero. Since B and t are arbitrary, we conclude that

of —H(Vf)=0 a.e.

3.6. Viscosity solutions of Hamilton—Jacobi equations

In this section, we give the precise definition of viscosity solutions. After that, we prove the
comparison principle which ensures the uniqueness of solutions. In addition, we verify that
the Hopf formula is a solution. Classical references include [60, 42]. See also [15, 84]. Here,

we follow the approach in [96].

A function f: Ry x SK — R is said to be nondecreasing if f(¢,x) — f(¢,2’) > 0 whenever
t >t andz—a’ € SE. A function 1 : S§ — R is said to be nondecreasing if ¥(z) - (z') > 0

whenever x — 2’ € Sf )
Definition 3.6.1.

1. A nondecreasing Lipschitz function f : Ry X Sf — R is a viscosity subsolution to
(3.2.5) if for every (t,z) € (0,00) x S¥ and every smooth ¢ : (0,00) x S¥ — R such

that f — ¢ has a local maximum at (¢, z), we have

(O —H(V9))(t,z) <0, ifxeSE,,

qu(t,x)ESi(, ifxeSf\Sﬁr.

2. A nondecreasing Lipschitz function f : R4 X Sf — R is a viscosity supersolution to

(3.2.5) if for every (t,z) € (0,00) x S¥ and every smooth ¢ : (0,00) x S¥ — R such
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that f — ¢ has a local minimum at (¢, x), we have

(06 —H(V))(t,z) >0, if x € SK,,

do(t,r) —infH(q) >0, ifxeSF\SK,,

where the infimum is taken over all ¢ € (Va(t, z) + SE) NSE and g < || f||Lip-

3. A nondecreasing Lipschitz function f: Ry x S¥ — R is a viscosity solution to (3.2.5)

if f is both a viscosity subsolution and supersolution.

Remark 3.6.2. The restriction |¢| < || f||Lip under the infimum in Definition 3.6.1 (2) can be
replaced by |g| < || f||Lip + ¢ for any ¢ > 0. Indeed, since f is assumed to be Lipschitz, we
can always restrict H to the set {g € S¥ : |g| < ¢/} without altering the equation (3.2.5)
as long as ¢ > || f||Lip- Aside from this heuristic, one can straightforwardly check that the

choice of ¢ does not affect the results in this and the next sections.

Remark 3.6.3. The only properties of H used in this section are the positivity H > 0, local
Lipschitzness as in (3.6.6) and nondecreasingness given by Lemma 3.4.4. The following two

propositions are still valid for general H satisfying these three properties.

Remark 3.6.4. It is easy to see that, in Definition 3.6.1, replacing the phrases “local maxi-
mum” and “local minimum” by “strict local maximum” and “strict local minimum”, respec-

tively, yields an equivalent definition.

Proposition 3.6.5 (Comparison principle). If u is a subsolution and v is a supersolution

to (3.2.5), then

sup (u—wv)= sup (u—v).
Ry xS {0} xSk

Proposition 3.6.6 (Hopf formula). Suppose 1 : Sf — R is convex, Lipschitz and nonde-

creasing. Let f be given in (3.2.14). Then f is a viscosity solution to (3.2.5) with initial
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condition f(0,-) = 1.
3.6.1. Proof of Proposition 3.6.5

Let us argue by contradiction and assume

sup (u—wv)> sup (u—0v). (3.6.1)
R4 xSK {0} xSk

We start by modifying u. For ¢ € (0,1) to be specified later, we set

u(t,x) = u(t,z) + etr(z) — Cet, V(t,r) € Ry x SE

where tr stands for the trace. Let I be the K x K identity matrix. By choosing C' large and

then € small, we can ensure that, if u. — ¢ attains a local maximum at (¢, x), we have

(Orp —H(V))(t,x) < —2¢, ifxe Sﬁr

(3.6.2)
(Vo —el)(t,x) € SK, if z € SK\ SK,.
Since u(t, -) in nondecreasing for each t, we also have
ue(t,x +y) —uc(t,z) > etr(y), ye€ Sﬁ_{. (3.6.3)

With e sufficiently small chosen, (3.6.1) still holds with u replaced by u.. Next, we replace

Ue by ue — Ti_t, where § is chosen small enough and 7' > 1 is chosen large enough by (3.6.1)

to ensure that
sup (ue —v) > sup (us —v). (3.6.4)
[0,T) xS% {0} xSk

Also, note that (3.6.2) still holds. In addition, we have, for every M > 0,

lim sup Ue = —00. (3.6.5)
=0 [T—n,T) XSE,M
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Next, we introduce some parameters and auxiliary functions. By the formula for H in (3.2.6),

there is a constant Cy such that
IH(a) — H(b)| < Cula —b|(|a| + )P, Va,be SE. (3.6.6)
Let
L=1+|lullip+ lvllLip. K =Cu(4L)P~1. (3.6.7)
Due to the definition of u., the following holds for all (¢,z) € [0,T) x S¥,
ue(t,x) < C + Lz, |Vue(t,z)|| < L. (3.6.8)
By (3.6.4), there is (£,%) such that
(ue —v)(t,Z) > sup (ue —v). (3.6.9)
{0} xSK
Let us set
9 1 -
R=([z]*+1)2 + Kt.
Take x : R — R, to be a smooth function satisfying

(r=1y<x(r)<re, X()<1, VreR, (3.6.10)

where the positive sign in the subscript indicates taking the positive part. The function y

can be viewed as a smoothed version of 7 — r. Define n: [0,T) x S§¥ — R by

n(t, ) :2LX((|xy2+1)% +Kt—R). (3.6.11)
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We claim

sup (ue —v—mn)= sup (us:—v—mn). (3.6.12)
[0,7) xSk {0} xS%

On the other hand, due to (3.6.9) and the definitions of R and 7, we have

sup (ue —v—1) > (ue —v)(£,7) > sup (u—v) > sup (v —v—1),
[0,T)xSEK {0} xsK {0}xSK

which contradicts (3.6.12). Hence, the proof is complete once the claim (3.6.12) is verified.
Proof of (3.6.12)

Again we argue by contradiction and assume

sup (ue —v—mn)> sup (us—v—mn). (3.6.13)
[0,T)xS% {0} xSk

We are going to employ the classical trick of “doubling the variables”. For a € (0,1), we

introduce
U (t,z,t,2") = us(t,x) —v(t, 2') — g (t,z, t',2'), Vte[0,T), t' >0, z,2' € Sf.
where

1
bolt,x, t' 2') = %(u — 2+ |z — 2/ ?) + n(t,z).

Step 1. We show that there exists a maximizer (to,Zq,t,,x,) of ¥,, and they converge

as a — 0. To start, we seek an upper bound for ¥,. The nondecreasingness of v gives
—v(t,z) < —v(0,0). The definition of n in (3.6.11) shows n(t,z) > 2L(|z| + Kt — R — 1).

Using these and the first inequality in (3.6.8), we have
1
U, (t,z,t,2") < C — Llz| - 2—(# — ')+ |z —2']?) — 2K Lt.
a
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Here and henceforth, we absorb L, K and R into C. Now, one can see the existence of a

maximizer (to,Za,th, 2, ). Then, we have
U, (to, Tas th, zh) = U,(0,0,0,0) = u:(0,0) — v(0,0).

Combine the above two displays to see that, for all & < 1, these points (to, Za, th, x},) lie in

a bounded set and

lta —th|? + |za — 2> < Cov.

o

By passing to a subsequence, we can assume there is to and x¢ such that t,,t,, — to and

Toy Th, — xg as a — 0.

In view of (3.6.5), we must have tg < T. The maximality of (ta, Za,t), 2, ) yields

(ue —v —n)(to,z0) < sup (us —v—n)
[0,T)xSK

< \I’a(ta, Lo, t:)u ‘/L':y) < uE(tOH IL‘Q) - U(t/ou :E:y) - 77(75047 1:04)'
Take o — 0 and use the continuity of u., v and 7 to see

(ue —v— n) (to, o) = sup (us—v—mn).
[0,T)xSEK

By (3.6.13), we must have ¢y > 0. Henceforth, we fix a sufficiently small « so that ¢,,t,, > 0.

Step 2. For this fixed «, note that

(t,z) = uc(t,z) —v(th, x)) — dalt, z,t,,2) (3.6.14)
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has a local maximum at (¢,,x,). We argue that

zq € SE,. (3.6.15)
Otherwise, there is y € Sf with |y| = 1 such that

Y- Tq =0. (3.6.16)

Under this assumption, we want to derive a contradiction to the fact that the maximum is

achieved (tq,xq). For 6 > 0, using (3.6.3), we can see

Ue(ta, Ta + 0Y) — dalta, Ta + 5yat:)m$:)¢) - (us(tm Ta) — ¢a(taa$aatixa xix))

> edtr(y) ! (25y (wo — L) + (52) - (n(tmxa + dy) — n(ta,ma)>. (3.6.17)

 2a
The definition of 7 in (3.6.11) allows us to compute

Vi(t,z) = ——— 2Ly <(|$|2 +1)2 4+ Lt — R). (3.6.18)
(jaf? + 1)

By (3.6.16), we have y - Vn(tq, o) = 0. This along with Taylor’s theorem implies
N(ta, Ta 4+ 0Y) — N(ta, 2a) = O(5?).
Apply this, (3.6.16) and y - 2, > 0 to see that (3.6.17) is bounded below by
edtr(y) — O(6%).

Since € > 0 and tr(y) > 0, this is strictly positive for § small. This contradicts the fact that

(3.6.14) achieves a local maximum at (t,, ). By contradiction, we must have (3.6.15).
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Using this, (3.6.2), and the maximality of (3.6.14) at (f4, z), We obtain

1 1
&(ta —tL) +0mn(ta, za) —H (a(xa — )+ Vn(ta,xa)) < —2e. (3.6.19)

Step 3. Still for this fixed «, the function
(t,2) = vt 2") — uc(ta, Ta) + da(ta, Ta,t', ')

attains a local minimum at (t,,z),). Note that —Vu¢a(ta,Za,t',2') = (zq — 2/). We

claim that there is a € Sff such that

1

a— —(vq — ) €SE, (3.6.20)
(8%
la| < [|v]lLip, (3.6.21)
1
o (ta —to) —H(a) > —=. (3.6.22)

If 2/, € SE, , then by setting a = 1 (zq —2,), we clearly have (3.6.20). In this case, the local

minimum is achieved at an interior point z/,. Since v is nondecreasing, we can see é(wa -
z},) € SK and thus a € S¥. Then (3.6.22) follows from the definition of supersolutions. If
v(t),,-) is differentiable at 2, then the minimality at 2/, implies 1(zo — 2},) = Vo(tl,, z),)
and hence (3.6.21) holds. If 2/, is not a point of differentiability, then (3.6.21) still holds by

a regularizing argument.

If 2}, ¢ SK,, namely 2/, € S \ SK, then the existence of a and (3.6.20)-(3.6.22) directly

follow from the boundary condition in the definition of supersolutions.

Step 4. We compare (3.6.19) with (3.6.22) to derive a contradiction. To start, we derive
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some estimates. For simplicity, we write
b=Vn(te, za).

Recall the definition of the constant L in (3.6.7). Due to (3.6.18) and the second inequality
in (3.6.10), we get |b| < 2L. By (3.6.21), we have |a| < L. These along with (3.6.6) yield

IH(a + b) — H(a)| < Chlb|(4L)P~".
Using the definition of 7 in (3.6.11), we can see
O (ta, 2a) 2 K[Vi(ta, ta)| = K[b].
The above two displays together with the definition of K in (3.6.7) imply
0n(ta, o) —H(a+b) +H(a) > 0. (3.6.23)

On the other hand, from (3.6.19) and (3.6.20), using the monotonicity of H in Lemma 3.4.4,

we have
1
&(ta —ty,) + On(ta, zo) — H(a + b) < —2e.
Subtract (3.6.22) from the above display to obtain
On(ta,xo) —H(a+b) +H(a) < —¢.

This contradicts (3.6.23) and thus the proof of (3.6.12) is complete.
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3.6.2. Proof of Proposition 3.6.6

Let us rewrite the Hopf formula (3.2.14) as

f(t,z) = 8%13{{2 cx — 1 (2) + tH(2)} (3.6.24)
= (V" = tH)"(2). (3.6.25)

Here the superscript * denotes the Fenchel transformation over S¥, namely,

u*(z) = sup {y -z —u(y)}, VoeSE. (3.6.26)
yESf

We check the following in order: nondecreasingness, initial condition, semigroup property
(or dynamic programming principle), Lipschitzness, f being a subsolution, and f being a

supersolution.
Nondecreasingness

Since the supremum in (3.6.24) is taken over Sf, it is clear from Lemma 3.3.3 that f(¢,-)
is nondecreasing. By the formula of H in (3.2.6) and the Schur product theorem, we have
H(z) > 0 for all z € S¥. Hence, from the formula (3.2.14), we can see f is also nondecreasing
in t.

Verification of the initial condition

The desired identity

Y(z) = sup inf {z-(z—y)+(2)} =™ (z), VaeSE.

zesk yest

follows from a version of Fenchel-Moreau identity stated in Proposition 3.9.1
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Semigroup property

Let f be given in (3.6.24). We want to show, for all s > 0,

flt+s,2)=sup inf {z-(z—y)+ ft,y) +sH(z)},
zeSfyeSf

or, in a more compact form,
flt+s,-) = (f(t,-) —sH)". (3.6.27)
In view of the Hopf formula (3.6.25), this is equivalent to
(" = (t+s)H)" = (" —tH)™ — sH)". (3.6.28)

From the definition of the Fenchel transform (3.6.26), it can be seen that, for any wu,

koK

u™* < u. (3.6.29)

Since the Fenchel transform is order-reversing, (3.6.29) implies that

*

(" —tH)™ — sH)" > (¥* — (t + s)H)". (3.6.30)

To see the other direction, we use (3.6.29) to get

S t Kok
e —— (Y — (¢t H < Y* —tH.
i+s? +t+s(¢ (t+a)H)™ <y

For any w, it can be readily checked that u* is convex and lower semi-continuous. Using the
argument in Section 3.6.2, we can deduce that u* is non-decreasing. Hence the left hand

side of the above display satisfies the condition in Proposition 3.9.1. Therefore, taking the
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Fenchel transform twice in the above display and applying Proposition 3.9.1, we have

S % t * *% * *k
s s (T G eH) T <@ )™

Reorder terms and then use (3.6.29) to see

(% = (¢4 s)H)™ = (" — tH)™ < ((¢* —tH)™ - w*) < —sH.

~| »

This immediately gives
(%" — (t+5)H)™ < (¥ — tH)™ — sH.
Taking the Fenchel transform on both sides and invoking Proposition 3.9.1, we have
(V% — (t+s)H)" = (0" — tH)™ — sH)™.

Here, we also used the order-reversing property of the Fenchel transform. This together with

(3.6.30) verifies (3.6.28).
Lipschitzness

Since 9 is Lipschitz, we have 1*(z) = oo outside the compact set {z € SE : |2| < [|¢||Lip}-
This together with (3.6.24) implies that for each = € S, there is z € S¥ with |z] < ||¢||Lip

such that
ft,z) =z -z —¢*(2) + tH(2).
This yields that, for any 2’ € S¥,

flt2) = ft,2") <z (x —2) < [[Plluiplz — 2.
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By symmetry, we conclude that f is Lipschitz in x, and the Lipschitz coefficient is uniform

in t.

To show the Lipschitzness in ¢, we fix any = € Sf . Then, we have, for some z € Sf with

2] < (19 llLip,
flt2) =22 —¥"(2) + tH(z) < f(t',2) + (t = t)H(2)

s+ i s HE).

lz[<[1¥lLip

Again by symmetry, the Lipschitzness in t is obtained, and its coefficient is independent of

T.
The Hopf formula is a subsolution

Let ¢ : (0,00) x S¥ — R be smooth. Suppose f — ¢ achieves a local maximum at (t,z) €
(0,00) x Sff . Since ) is Lipschitz, we can see ¥* is infinite outside a compact set. Hence,

by (3.6.24), there is 7 € S¥ such that

ft, ) =7z -z —¢*(Z) + tH(Z).

For the case x € Sﬁ, by (3.6.24), we have, for s € [0,t] and h € S¥ sufficiently small,
f(t,z) < f(t—s,x+h) —Z-h+ sH(Z).
By the assumption on ¢, we have
ft=s,z+h)—o(t—s,x+h) < f(t,z) — o(t,x).
for small s € [0,¢] and small h € SK. Combine the above two inequalities to get

o(t,x) — ot —s,x+ h) < —Z-h+ sH(Z). (3.6.31)
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Set s = 0 and vary h to see
z =Vo(t, ). (3.6.32)
Then, we set h =0 in (3.6.31), take s — 0 and insert (3.6.32) to obtain

Bib(t, z) — H(Vo(t,z)) < 0.

If z € S§\ SK,, then (3.6.31) still holds for h € S¥. Set s = 0 and vary h, we can see

a-Vé(t,z) > a7z for all a € SE. Since z € S¥, Lemma 3.3.3 implies that Ve(t,z) € S¥.
The Hopf formula is a supersolution

The idea of proof in this part can be seen in [84, Proof of Proposition 1|. Let (¢,z) €
(0,00) x Sf be a local minimum point for f — ¢. Due to (3.6.24), f is convex in both

variables. Since S is also convex, we have, for all (¢/,z') € (0,00) x S¥ and all A € [0, 1],

(2 = () > T (F(E+AE = 0,2 + M@ = 2)) = f(t,2).

>| =

For any fixed (¢, 2) and sufficiently small ), the assumption that f — ¢ has a local minimum

at (t,z) gives
FE+AE =),z +MNa' —2)) — f(t,2) = d(t+ Al —t),z+ A2’ — ) — o(t, 2).
Using the above two displays and setting A — 0, we obtain
ft )= flt,z) =rt' —t) + (Vo(t, 2)) - (2' — 2) (3.6.33)
where

r = 0p(t, x). (3.6.34)
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Before proceeding, we make a digression to convex analysis. Most of the definitions and
results we need are given in Appendix 3.9. For each fixed ¢ > 0, it can be seen from (3.6.24)
that f(¢,-) is convex. Setting ¢’ = ¢ in (3.6.33), we have V¢(t,x) € df(t, z) which stands for
the subdifferential of f(¢,-) at x. Its definition is given in (7.3.2). Invoking Lemma 3.9.6,

we can express
Vo(t,z) =a+b (3.6.35)

where b € n(z), the outer normal cone at x, defined in (3.9.2); and a belongs to the closed
convex hull of limit points of the form lim, o, Vf(¢, z,) where lim, o z, = = and f(¢,-)

is differentiable at each x,,. Since f is nondecreasing and Lipschitz, we have
a €Sk, la| < [|f|Lip- (3.6.36)

By the definition of n(z) and Lemma 3.3.3, it can seen that —b € S§. This along with

(3.6.35) implies
a € Vo(t,z) + SE. (3.6.37)

By Lemma 3.9.6, the definition of a and an easy observation that 0 € n(x), we can deduce

that a € 0f(t, ), which due to the definition of subdifferential in (7.3.2) further implies
ft, 2"y = ft,z) =2 a- (2 —2), Va'e Sf.
Set 2/ = x in (3.6.33) and use the above display to get

ft 2y = ft,x) =r(t' —t)+a- (2’ —x), V' >0, 2" €SK. (3.6.38)
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Now, we return to the proof. For each s > 0, we define
ns(@') = f(t,x) —rs+a- (2’ —x), Vo' eSE.
Setting ¢ =t — s in (3.6.38), for s € [0, ], we have
f(t—s,2") = ns(a’), Va' eSK.

Applying the order-reversing property of the Fenchel transform twice, we obtain from the

above display that
(£ (t—s,) —sH)" = (nf —sH)™.
Due to the semigroup property (3.6.27), this yields
F(t.) > (= sH), Vs e 01,
By (3.6.36) and the definition of the Fenchel transform in (3.6.26), the above yields
ft,z) > a-x—ni(a)+ sH(a).
On the other hand, using the definition of 7,, we can compute
ni(a) = —f(t,x) +rs+a-x.
Combine the above two displays with (3.6.34) and that these hold for all s € [0, ] to see

(0r¢ — H(a))(t,z) = 0.

If z € SE,, then (3.6.36), (3.6.37) and the nondecreasingness of H in Lemma 3.4.4 imply
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H(a) > H(Ve(t,x)). If z € S\ SE,, then those same ingredients yield H(a) > inf H(q)
where the infimum is described in (2) in Definition 3.6.1. These along with the above display

verify that f is a supersolution.
3.7. Convergence to the viscosity solution

The goal of this section is to prove Theorem 3.2.2. We first state the main result of this

section and deduce Theorem 3.2.2 from it.

Proposition 3.7.1. Under the assumptions in Theorem 3.2.2, suppose that a subsequence
of (Fn)Nen converges locally uniformly to some function f : Ry x S[f — R. Then, f is a
viscosity subsolution to (3.2.5) with f(0,-) = . IfH is convex, then f is also a supersolution

and thus the unique viscosity solution to (3.2.5).

Remark 3.7.2. In fact, any subsequential limit f of (F)yen satisfies the following: if f — ¢
achieves a strict local maximum at (¢,z) € (0,00) x S¥, for a smooth function ¢, then it

holds that

(916 — H(V9)) (1, %) =0,
which is stronger than Definition 3.6.1 (1).

Proof of Theorem 3.2.2. By (3.3.12), (3.3.8), (3.3.10) and the assumption that F (0, -) con-
verges to i pointwise, we have that v is convex, Lipschitz and nondecreasing. Hence, Propo-
sition 3.6.6 implies that there is a Lipschitz viscosity solution f to the Hamilton—Jacobi

equation (3.2.5) with f(0,-) = . Proposition 3.6.5 ensures the uniqueness.

Since Fny(0,0) = 0 for all N and (Fy)n>1 is Lipschitz uniformly in N due to (3.3.8), the
Arzela—Ascoli theorem guarantees that any subsequence of (Fy)n>1 has a further subse-
quence that converges in the local uniform topology to some function g. In addition, we
can see that g is Lipschitz. The assumption on 1 in Theorem 3.2.2 ensures that g(0,-) = 1.

Proposition 3.7.1 implies that g is a viscosity subsolution to (3.2.5). The upper bound
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in Theorem 3.2.2 then follows from Proposition 3.6.5. When H is convex, using similar

arguments, we can obtain an lower bound. O

We prove the subsolution part of Proposition 3.7.1 and Remark 3.7.2 in Section 3.7.1 and

the supersolution part of Proposition 3.7.1 in Section 3.7.2.
3.7.1. The limit is a subsolution

To lighten notation, we assume F converges to f locally uniformly. We want to show f
is subsolution to (3.2.5). We recall Remark 3.6.4 and assumes that f — ¢ achieves a strict

local maximum at (¢, h) € (0,00) x S¥ for some smooth function ¢.

First, we consider the case where h € Sf \ Sf 4. Then, there is a sequence ((tN, hN)) NeN

in (0,00) x SK such that (ty,hn) converges to (¢, h) and Fx — ¢ has a local maximum at
(tn,hn). Note that a+ hy € SK for all a € SK. So, we can differentiate Fy — ¢ along any

direction a € S¥ to see
a-V(Fy—¢)(ty.hy) <0, VaeSE.
In view of (3.3.10), this implies
a-Vo(ty,hy) >0, VaeSE.

Setting N — oo, by Lemma 3.3.3, we have V¢(t, h) € Sff, verifying the boundary condition

for subsolutions.

Now, we study the case where h € Sf +. In the following, the constant C is allowed to
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depend on t, h, f, ¢. We set

M= (tVIA) + 1, (3.7.1)
Y= K(K +1)/2, (3.7.2)
. (3.7.3)

o 1
on = [[Fn — f”iOO([O,M}XSfyM)

where Ky n is defined in (3.2.8) and Sf,M is given in (3.2.7). By the convergence of Fy to

f and the assumption (3.2.13), we have limy_,, dy = 0. Let us introduce
Gt 1) = ¢t W) + |t —t]> + |h — h?. (3.7.4)

It is immediate that f — ¢ has a local maximum at (¢,h). Due to (3.7.3), for all (#,h') €

[0, M] x S ;. we have

(FN - ¢)(t/7h/) < (f - qb)(t,a h,) - |t, - t|2 - |h/ - h‘Q + 5;1V7

(Fn — ¢)(t,h) = (f — ¢)(t,h) — 3.

Since Fy converges locally uniformly to f, for N large, there is a sequence of (ty,hy) in

(0,00) x Sf+, at which F'y — ¢ attains a local maximum, and which converges to (¢, h).
From the above display and the fact that f — ¢ attains a local maximum at (¢,h), we can

deduce that
Ity —t)* + |hn — h|* < 26%,. (3.7.5)
By the definition of (¢, hy), we also have

W(Fn—9¢)(tn,hn) =0, V(Fy—¢)(tn,hn)=0. (3.7.6)
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We want to apply Proposition 3.3.1. However the concentration estimate we have is for

Fy — Fy not for V(Fy — Fy). Therefore, we need to do a local average by introducing

Dy =5S%;., (3.7.7)

Gt 1) = | Dy| ! / T, h)dh". (3.7.9)
h'+Dpn

It is clear that G'x converges locally uniformly to f. Hence, there is (t/y, hy) € (0, 00) x Sff n
converging to (¢, h) such that Gy — ¢ has a local maximum at (t'y, Wy). Consequently, we

have

Oy (GN - (Z)) (th¢ h/N) =0, v(CTYN - ¢) (tEVa h?\f) =0, (379)

a- V(a V(Gy - 5))(7:’% Wy) <0, VaeSK. (3.7.10)
Repeating the argument in the derivation of (3.7.5) yields

[ty —t|? + |Wy — h|? < 20%. (3.7.11)

We need the following estimates:

_ 2
/ E)VFN - VFN‘ (th, B)dR < OO, (3.7.12)
hy+DN
_ 2
/ ‘VFN(t’N, ) — VG (y, h’N)‘ dh' < Oo7H (3.7.13)
h’N+DN

From the definition of H in (3.2.6), we can see that |H(a) — H(b)| < C|a — b|(|a| V |b])P~* for

all a,b € SK. By this, Jensen’s inequality and (3.7.13), we have

‘ |DN|—1/ H(VEN(ty, 1'))dh — H(VGN (¢ ,h’N))‘
h/N—i-DN
) i (3.7.14)
_ 2 1
gC(!DN\l/ ’VFN(t’N,h’)—VGN(t’N,h’N)‘ dh’> < 063
h9V+DN
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Here, we used the following fact due to (3.7.2) and (3.7.7)
|Dn| = Cd},.

Recall the definition of  in (3.3.1). Due to h € S§,, (3.7.7) and (3.7.11), we know that
k(h') < C for all W € by + Dy and N large. Take average of (O,F y — H(VEN))(ty, 1)

over h'y + Dy, and use Proposition 3.3.1 and (3.7.14) to see

1
%G — H(VG) |(t. i) < O3
1
Lo N1 ][ (AFy(t, 1) +1)1dn’ + ][ ]E‘VFN ~ VFN‘ (ty, h')dn’

where fh,N = |Dn|! fh}V+DN' By Jensen’s inequality, (3.7.8) and (3.7.10), we have

+Dn

=

1
Fo o @Fw )+ 1)t < (AGx( i) +1)" <
hy+Dn
The above two displays along with (3.7.12) give
1 1
‘(%GN — H(VGy) \(ﬂv, hiy) < c(a;v + N’§>.
Using (3.7.11) and (3.7.9), and sending N to co, we obtain

816 — H(V)(t, h) = 0.

Due to (3.7.4), the derivatives of ¢ coincide with those of ¢ at (¢, k). This finishes the core

of the verification of that f is a subsolution and the claim in Remark 3.7.2.

To complete the proof, we derive (3.7.12) and (3.7.13).

Proof of (3.7.12). For any smooth ¢ : Sff — R and any D C Sf with Lipschitz boundary,
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integration by parts gives

/[)IVQIQZ/aDng-n/DgAg, (3.7.15)

where n is the outer normal on 0D. To lighten our notation, the time variable is always

evaluated at t/y in this proof. Apply (3.7.15) to get
2 _
/ VBN = VEN| < IIEy = Pl +v)
h;\ﬁ”DN

X </ \VFN—VFNM—/ yAFN—AFN\). (3.7.16)
A(h'\+Dn) hiy+Dy

By limy_ o0 by = h (due to (3.7.11)), h € SE, and (3.7.7), we have |W'~!| < C for all
h' € by + Dy for large N, Using this, (3.3.12) and (3.3.13), we get, for all A’ € by, + D,

‘AFN - AFN} < AFNy + AFyN + CN*%yzy,
Applying this and integration by parts to obtain

/ |AFy — AFy| < C64N"2|Z] +/
hy+Dn

‘VFN’ + |[VFn.
d(hy+Dn)

Then, using this display, (3.3.8) and (3.3.9), we can bound the two integrals in (3.7.16) by
057\,_1(1 + N3 |Z]). As a result, by taking expectations and invoking the Cauchy—Schwarz

inequality in (3.7.16), we obtain

N

2 B _
E/ )VFN - VFN’ <08 1(E||FN = FNllioo(thN)) . (3.7.17)
hy+Dn

Recall that the time variable is evaluated at t/y. By (3.7.1), (3.7.11) and (3.7.7), we have
{t'y} x (Wy + Dn) C [0, M] x SfM for large N. Hence, the desired result (3.7.12) follows
from (3.7.3) and the definition (3.2.8).
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Proof of (3.7.13). To prepare, we start by showing that, for A’ satisfying |’ — hy| < C71,
Fy(tn,h) — Fn(ty,hy) — (W — hy) - VEN(tn, hy)| < C|W — hy|?. (3.7.18)

By Taylor expansion, we have

Fn(tn, b)) — Fn(tn,hn) = (W — hn) - VEN(EN, hy)
1 B (3.7.19)
+ / (1-— T)D;%/,hNFN(tN, hy + (b — hy)r)dr
0

where we write
DiFy=a-V(a-VFy), VaeSk.

A similar equation also holds with F replaced by qz~5 Take the difference of these two

equations and use (3.7.6) and the fact that Fy — ¢ has a local maximum at (¢y, hy) to see

1
/ (1-— T)D]?L/_hNFN(tNa hyn + (B’ — hy)r)dr
0

1 ~
< [ U= Dyt + = By
0

Since 5 has locally bounded derivatives, by the above display and (3.3.12), there is C' such
that the following holds for all b’ with |h' — hy| < C!

1
1—r)D3,_, Fn(tn,hy + (B = hy)r)dr| < C|0 — hy|?.
h'—hyn
0

Inserting this into (3.7.19) gives (3.7.18).

Now, we are ready to prove (3.7.13). Let us set

gn (W) = Fx(ty, b') = Fn(ty, hy) = (0" = Bly) - VG (Ey, Hy)-
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Note that, to probe (3.7.13), it is sufficient to estimate [,, Dy |Vgn|?. Using (3.3.8) and
N

(3.7.8), we can see

IVGN (', W) <C, Vi, R, (3.7.20)

|Vgn(R')| < C, VR €hy+ Dy. (3.7.21)

Apply (3.7.15) to gy to obtain

/ Van|? < ||9N||L°°(h’N+DN)</ |Vgn| +/ ’AQN‘)-
hiN—‘rDN 6(h’N+DN) 4 +Dy

N

By (3.7.21), the first integral on the left is bounded by 057\,_1. Since Agn = AFN(ty, ),
by (3.3.12), we can see |Agy| = Agn. Integrating by parts and applying (3.7.21) again,
we deduce that the last integral in the above display is also bounded by 057\,71. Hence, we

arrive at

[ 19 < 8 vl v (37.22)
NTDN

It remains to estimate ||gn||Loc(ny, +Dy)- We want to compare gy with
To start, using (3.7.8), we can compute, for all a,t’, ',

0 VG, 1) = D] / o VENE ' + h)dR
Dy

— Dy /6 Fa(t',h +h")a - nS(dh") (3.7.23)
Dy

where in the last equality we used integration by parts and S denotes the surface measure
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on 0Dy. Now, we estimate

(W — hy) - VG (ty, hy) — (W — Bly) - VG (! ,h’N)‘ (3.7.24)
< |hy = By||[ VG (tn, hy)| + ‘(h/ — ) - (VGN(tN,hN) — VG (ty, h/zv)) ‘

The first term after the inequality sign is bounded by |hn — hy| due to (3.7.20). Using

(3.3.8) and (3.7.23), we can bound the second term by
Dl [ (1t =t oy = Biy]) I = Biy| < Cltae = |+ Clly = iy,
Dy

for all ' € W)y + Dy . Hence, we conclude that (3.7.24) is bounded by the right hand of the

above display with a larger constant. This along with (3.3.8) implies that

9Nl ooy +Dy) < Clen — tv| + Clhy — hly|

+ sup ‘FN(tN,h/) —FN@N,hN) — (h/—hN) -VGN(tN,hN) .
Weh+Dy

By (3.7.18) and the definition of Dy in (3.7.7), the supremum above can be bounded by

C((SN + ’hN — h?\f )2

+ sup ‘(h/—hN)~VFN(tN,hN)—(h/—hN)-VGN(tN,hN)}.
heh/y+Dn

We claim that

sup  |(h — hn) - VEN(tn, hy) — (W — hy) - VG (tn, hy)| < Oy (3.7.25)
h'eh’y+Dn

This along with (3.7.5) and (3.7.11) implies that [[gn||Leeny+Dy) < C6%. Plug this into
(3.7.22), and we obtain (3.7.13).
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To complete the proof, we verify the claim (3.7.25). Using integration by parts, we can see

(K —hy) - VFN(tn, hy) = |DN|_1/

<h” VFy(ty, hN))(h’ — hy) - nS(dR").
0D N

Using the formula (3.7.23) and faDN c¢-n = 0 for any constant vector ¢, we can also get

(' —hn)-VGN(tn, hy) =

DA™ [ (Pt i +17) = P o)) (= hi) - nS(@").
0Dy

Taking the difference of the above two equations and using (3.7.18), we can see the left hand

side of (3.7.25) is bounded by

C  sup On|h — hn| < Con (0N + |hn — hiyl).
h'eh’y+Dn

Now, (3.7.25) follows from (3.7.5) and (3.7.11).

3.7.2. The limit is a supersolution when H is convex

Under the additional assumption that H is convex, we show that any subsequential limit
of F is a supersolution. For simplicity of notation, we again assume the entire sequence
(Fn)nen converges locally uniformly to f. We recall Remark 3.6.4 and assume that f — ¢
achieves a strict local minimum at (¢,h) € (0,00) x S¥. Recall M from (3.7.1). Let us

redefine

2
oN = maX{N_%,IC]%N}, (3.7.26)
Dy =6nT+Sf5,

Gt 1) = |Dn| ! / Fa(t, k")dh", (1) € Ry x SK. (3.7.27)
h'+Dpn
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Note that in the definition of G, the integration is over a region away from h’ to avoid the
singularity present in the right hand side of the estimate in Proposition 3.3.1. It is clear
that G converges locally uniformly to f. Then, there is a sequence (ty, hn) € (0,00) x SK
such that limy_,o(tn, hy) = (t,h) and Gy — ¢ has a local minimum at (txy,hy). Since
H is convex, we integrate both sides of the inequality in Proposition 3.3.1 and use Jensen’s

inequality to see

(atFN - H(vFN)) (tn, h)dR
%

—1 - 2
> ¢ ][ [n | (AFy + (K1) 5w +][ E‘VFN - VFN) (3.7.28)
hn+Dpn N1 hny+Dpn

(0:G —H(VON) ) (b, ) > ][

hn+Dyn

where f, = |Dy|™" [, . p, and the time variable is evaluated at ¢y in (3.7.28).

Let us estimate the integrals in (3.7.28). The definition of Dy implies that
WY <oyt VA € hy + Dy. (3.7.29)
Integrate by parts and use (3.3.8) to see

AFN(tN,h/)dh/ < ’DN‘_I/ }VFN(tN7~)’ < 05]}1

AGN (i, hxv) :][ d(hn+Dn)
N N

hny+Dpn
The above two displays together with Jensen’s inequality and (3.7.26) implies that
_ 1
][ N R (AT (b, B + 1Y) T
hn+Dn

1

1
< CON7isy! <AGN(tN, hy) + 5N1> < O (3.7.30)

To estimate the last integral in (3.7.28), we use the same argument in the proof of (3.7.12).
The only difference is that since now it is possible that h € Sff \ Sf .+, the singularity in the

estimate (3.3.9) takes effect. Due to (3.7.29), compared with (3.7.17), there is an additional
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O

N

. For N large, we have

1

(BIENY = Pl 0m))

3
2

2 _
E/ VEy - VEx| < Coy
hn+Dyn

_3
< C6L 2Ky n < CO55, (3.7.31)
N s N

where we used (3.2.8) and (3.7.1) in the penultimate inequality, and (3.7.26) in the last

inequality. Inserting (3.7.30) and (3.7.31) into (3.7.28), we obtain
1
(Gy = H(VGN) ) (tn . h) > ~C65,. (3.7.32)

First suppose that there are infinitely many (¢, hy) with hy € Sﬁ_( 1. Since first derivatives
of G coincides with ¢ at those (tn,hn), by taking N — oo and using the smoothness of

¢, we obtain from (3.7.32) that

(atqs - H(v¢>)> (t,h) > 0. (3.7.33)

If there are infinitely many (ty,hn) with hy € S\ SE, | then we must have h € SK\ SE,.
Due to t € (0,00) and limy_,o ty = t, for large N, we have t € (0,00). Since Gy — ¢ has

a local minimum at (ty, hy), we have

(OGN — 0¢®) (tn, hn) = 0, (3.7.34)

(VGN — Vo) (tn, hn) € SE. (3.7.35)

We also used Lemma 3.3.3 in deriving (3.7.35). By the definition of G in (3.7.27), the
nondecreasingness of Fy in (3.3.10), and the uniform Lipschitzness of Fy in (3.3.8), we

have, for all N € N,

VGN (S Sﬁf, ’VGN’ < HFNHLip < C, (3.7.36)
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where the last constant C is absolute. In addition, due to (3.3.12), Gx is convex in the

second variable, which yields
y-VGN(tN,hN) <GN(tN,hN+y)—GN(tN,hN), VyES’j_(.

Let a be any subsequential limit of (VGN(tN, hN)) Replace y by ynv = VGn(tn, hy)

in the above display and use limy_,o(tn, hy) = (t, }]:)ejrlld the local uniform convergence of
Gy towards f to see
la? < f(t,h+a) = f(t,h).
The Lipschitzness of f implies
la] < [|f|Lip- (3.7.37)
We extract a subsequence from (VGN(L‘N, hN))NeN’ along which

lim inf H (VGn(tn, hn))

is achieved. Denote by a the further subsequential limit of this minimizing sequence. By

this and the continuity of H, we obtain

liminf H(VGn (tn, hn)) = H(a). (3.7.38)
N—o00
Due to (3.7.35), (3.7.36) and limyx_oo(tn, hy) = (¢, h), we also have

a—Vo(t,h)esk, aeSE. (3.7.39)

Recall the quantity inf H(q) for the boundary condition in (2) of Definition 3.6.1. By (3.7.37)
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and (3.7.39), we have
H(a) > inf H(q).
Use this, (3.7.34), (3.7.38) and (3.7.32) to get

(00— nfH(@)) () > lim AG(ty, hx) — H(a)
== J\;gnoo 8tGN(tN, hN) - l}\l}ilélof H (VGN(tN, hN)>

> limsup (@GN — H(VGN)>(tN, hy) = 0.

N—oo

This along with (3.7.33) completes our verification that f is a supersolution.
3.8. Nonsymmetric matrix inference

The goal of this appendix is to demonstrate a case where H is not convex, yet the assumptions
on Ay in Theorem 3.2.1 are satisfied. Let X; and X3 be two random vectors in RV. The

task is to infer the nonsymmetric matrix X;XJ from the noisy observation
}@:¢%XJQ+WERMW. (3.8.1)
Let X = diag(X1, X5) € R2V*2. We can compute
X ® X =diag(X; ® X1, X1 ® Xa, X2 ® X1, Xo® Xy) € RIVX4,

Let A = (0,1,0,0) € R*. Then note that the non-zero entries of (X ® X)A are those from
X1 ® Xo, which are exactly the entries of X1XJ. As observed in [103], the model (3.8.1) is

equivalent to the model

Y = | X524 4 W e RV
N 9

which is a special case of (3.1.1).
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By the formula of H in (3.2.6), we can compute H(q) = ¢q11¢22 and thus DH(q) = diag(g22, q11)
for all g € Sa_. Recall the set A defined above (3.2.11). Then for smooth ¢ € A, using the

basis (3.4.1), we can obtain
V -DH(Ve) = 2! - V(e*? - Vo).

Hence, formally, Ay consists of those ¢ € A whose second order derivative as on the left of
the above is nonnegative. By standard arguments involving test functions, we can see Ay
is indeed convex. Then, we show F'y(t,-) € Ap for all ¢t and all N. In the proof of (3.3.12),

we used [94, (3.27)] to compute a - V(a - VFy). A slight modification of [94, (3.27)] gives

=E((a-2T2')(b-272")) = 2E((a - 27a’) (b - 272")) + E(a-2T2") (b 2Ta'),

for a,b € S%.. By the definition of X in this model, under the Gibbs measure (-), we can
write x = diag(z1, z2) with z1, 29 € RV, Replace a and b by ell and e22 respectively in the

above display to see Ne!l - V(e?2. Fy) is given by

E{(21-2)) (w2 x5)) — 2E (@1 - @) (z2 - ) ) + E (1 - ) (@2 - 2h)

“EY <<x1,mx2,n>2—2<xl,mx2,n> (1) 220 + (21,m) <x2,n>2> >0

m,n=1

This shows that the assumptions on Ay in Theorem 3.2.1 are satisfied despite the fact that

H is not convex in this case.
3.9. Fenchel-Moreau identity

The goal is to prove the following version of the Fenchel-Moreau identity on Sff . More gen-
eral versions on self-dual cones in possibly infinite dimensional Hilbert spaces can be seen in
[38]. Here, for completeness, we prove this using arguments more specific to matrices. Recall

the Fenchel transformation over Sff defined in (3.6.26), and the sense of nondecreasingness
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in (3.2.10).

Proposition 3.9.1 (Fenchel-Moreau identity). Let u : Sff — (—00,400] be a function
not identically equal to +o0o. Then, u** = u if and only if u is convex, l.s.c. (lower semi-

continuous), and nondecreasing.

It is easy to see that v* is convex and l.s.c. for any function v. In addition by Lemma 3.3.3,
we can see that v* is also nondecreasing. Hence, to prove Proposition 3.9.1, it suffices to

show the following.

Lemma 3.9.2. If u:SE — (—oo,+00] is conves, Ls.c., nondecreasing and not identically

400, then u** = u.

The rest of this section is devoted to proving Lemma 3.9.2. Henceforth, we assume that u
satisfies the condition imposed in this lemma.

3.9.1. Preliminaries

We introduce some notation and classical results. We extend u to SK =~ RK(K+1)/2 py
setting the value outside Sff to be 0o. Denote by ® the usual conjugate with the sup over

S, The extension of u gives u® = u*. By the regular Fenchel-Moreau theorem, we have

u(z) = sup {y -z —u*(y)}, Va e SK.
yeSK

We want to show, whenever x € Sf , the sup above can be taken over Sf .

Denote by Q = domu = {z € S¥ : wu(z) < 40} the effective domain of u. For any A C SK|
intA, clA, bd A and conv stand for the interior, closure, boundary, and convex hull of A,

respectively. For each y € S¥, we define the subdifferential of u at z by

du(y) ={z €S : w(y) > uly)+z- (¥ —y), vy’ e S*}. (3.9.1)
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The outer normal cone to Q at y € S¥ is given by
ny)={zeS%: 2. (y —y) <0, ¥/ € Q}. (3.9.2)
Define
D = {z € Q: wuis differentiable at x}.

For a € SX and v € R, we define the affine function L, by Lo, (2) =a-x +v.

We recall some useful lemmas, all of which are classical.

Lemma 3.9.3. For a conver set A, if y € cl A and y' € int A, then Ay + (1 — \)y’ € intA
for all A € [0,1).

Lemma 3.9.4. Let x € Sﬁ_( and y € Q. For every a € (0,1), set zo = (1 — a)z + ay. Then

limy 0 u(zq) = u(x).
Lemma 3.9.5. The set intQ\ D has Lebesque measure zero.
Lemma 3.9.6. IfintQ # 0, then
du(y) = cl (conv A(y)) +n(y), Vye€Q,
where A(y) is the set of all limits of sequences (Vu(yn))zo:l with imy, oo Yp = y and y, € D
for all n.

Lemma 3.9.7. If Ou(y) NSE £ 0, then u**(y) = u(y).

Lemma 3.9.8. For every z € SK, we have u™*(x) = sup Lo, (z), where the supremum is

taken over the set {Lq, : a € Sﬁ_{, veR, Lg, <u}.

Lemma 3.9.3, 3.9.6, and 3.9.7 can be derived from [105, Theorem 6.1, 25.6, and 23.5 |,

respectively. Lemma 3.9.4 is borrowed from [23, Proposition 9.14|. The density claim in
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Lemma 3.9.5 follows from [105, Theorem 25.5]. The idea to verify the boundedness assertion
can be seen in the proof of [74, Proposition 6.2.2 in Chapter D]. Lemma 3.9.8 can be verified

using the definitions of «** and sup L, (+).

In Section 3.9.2, we prove Lemma 3.9.2 under an additional assumption that intQ # (). We

consider the case intQ = () in Section 3.9.3.
3.9.2. Case 1: nonempty interior

Assuming intQ # (), we want to show that the identity u** = u holds for all x € Sf . We

proceed in steps and show this identity holds on cl {2 and then on Sf .
Analysis on cl ()

At every = € D, due to the nondecreasingness of u, we have a - Vu(z) > 0 for all a € S¥.
Then, Lemma 3.3.3 implies Vu(z) € Si( at every x € D. By Lemma 3.9.7, we conclude

uw*(x) = u(x) for all x € D.

Now for each € cl (2, since int €2 is convex and nonempty, by Lemma 3.9.5 and an argument
using Fubini’s theorem, we can see that there is 2’ €  such that zo = (1 — @)z + oz’ € D
for every a € (0,1). Since both u** and u are convex and l.s.c., Lemma 3.9.4 implies that

u*(z) = u(x) for all x € clQ.
Analysis on Sff

Let « € S§ \ clQ. Hence, we have u(x) = co. Define

N =sup{\ € [0,400) : Az € clQ}.

By = & clQ, 0 € clQ and the convexity of cl 2, we must have

N <1 (3.9.3)

Set ' = Nz. Tt is clear that 2’ € clQ) and satisfies (3.9.4). The definition of A" also ensures

x' & intQ. There are two cases, either 2/ € Q or not.
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When 2z’ ¢ Q, by u** = u on clQ and Lemma 3.9.8, there is a sequence of affine functions
(Lapwn )2y such that a, € S, u > Ly, ,, for all n and u(z’) = lim,_,e0 La, v, (2') = oc0.

By the definition of 2’ and (3.9.3), we can see

La7L7VTL (.’1:) = Lan,l’n (wl) + (]‘ - )\I)an Y 2 La7L7Vn (x/)

Hence, we also have u(z) = lim;,,—,o0 La,, 1, (z) = 00. This together with Lemma 3.9.8 shows

u** = u at this x.

Now, we turn to the case where 2’ € . We need the next lemma.
Lemma 3.9.9. For every x € bdQ satisfying

Ax €cl VA>T, (3.9.4)

we have (n(z) NSE)\ {0} # 0.

Since 2’ satisfies (3.9.4), this lemma implies that there is 2 € n(2/) N S¥ with 2 # 0. The

definition (3.9.2) yields

z-(y—2') <0, Vyeq. (3.9.5)

Since we clearly have 0 € 2, we have z - 2/ > 0. We claim that actually

2.2’ > 0. (3.9.6)

Otherwise, we have z - 2’ = 0. Since there is ¢ € intQ C Sf—&-’ we can see that there is
€ > 0 sufficiently small such that o —ez € Sff . The nondecreasingness of u yields ez € €.
Replacing y by ez in (3.9.5) and using z - 2’ = 0, we have £|z|?> < 0, contradicting z # 0.

Hence, we have (3.9.6).

By v™ = wu on cl and Lemma 3.9.8, we can find an affine function L, , with a € Sf such
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that u > Ly ,. Now, for each p > 0, define

*Cp = La-i—pz7 v—pz-x'-

Due to (3.9.5), we can see

Lo(y) = Law(y) +pz - (y—2') < Lap(y) Suly), Vye
Since u = oo outside (2, we thus have £, < u. On the other hand, we can compute
Ly(x) = Loy(z) +pz- (v —2') = Loy (x) + p(N 1 = 1)z - 2.

By (3.9.3) and (3.9.6), we have lim, ,o £,(z) = 0o = u(x). By Lemma 3.9.8, this shows
that v = w holds at = € Sf \ clQ. Together with previous results, we conclude that

u*™ = u holds on S¥ under the assumption int 2 # 0.

To complete the proof of Lemma 3.9.2 under the additional assumption int # (), it remains

to prove Lemma 3.9.9.

Proof of Lemma 3.9.9. Fix x € Q \ intQ satisfying (3.9.4).

Step 1. We show that for every Euclidean ball B C S¥ centered at z, there is T € Sff +Nbd Q.
By (3.9.4), there is some A > 1 such that 2’ = Az € B\ clQ. By intQ # ) and Lemma 3.9.3,

there is z” € BNintQ C SE,. For p € [0,1], set

z,=pz' +(1—p)a" € B.

Set pg =sup{p € [0,1] : z, € intQ}. We can see z,, lies in the closure but not the interior
of ©, and thus z,, € BNbd . In addition, since 2’ ¢ cl 2, we must have py < 1 and hence

zp, € SK, due to 2” € SK,. We conclude that z,, € BNSE, Nbd is the point Z we want.
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Step 2. By the construction above, we can find a sequence (x,,)72 ; such that z,, € Sf L Nbd Q2

and lim,, o x, = . We want to show n(z,) C Sf using the following lemma.
Lemma 3.9.10. Ify € S¥, Nbd, then n(y) C S¥.

Proof. Since y € bd 2, using intQ # () and Lemma 3.9.3, we can find y. € intQ such that

lye — y| < & for each £ > 0. By this and y € SX, there are &9,y > 0 such that
K
y5—50IES+, 66(0,50).
This further implies that there is § > 0 such that
K K . .
ye —a €S}, Vee (0,e0) ,Va €SI satisfying |a] < 4.

Since u is nondecreasing and y. € €2, we have y. — a € ) for any a described above. Let

z € n(y). The definition (3.9.2) yields z - (y. —a — y) < 0 and thus
z-a > —|z|e.

Sending ¢ — 0 and varying a, we conclude using Lemma 3.3.3 that z € Sf .

This lemma immediately implies that n(z,) C S¥. For each n, pick z, € n(z,) N SE with
|zn] = 1. By extracting a subsequence, we may assume lim, _,~ 2z, = 2z for some z € Sf

satisfying |z| = 1. Since z, € n(x,), we have
K
Zn - (y—xp) <0, YyeST.

Set n — 00, recall that lim,, oo 2, = 2, and we obtain z - (y — ) < 0 for all y € SX. This

proves Lemma 3.9.9.
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3.9.3. Case 2: empty interior

To complete the proof of Lemma 3.9.2, let us investigate the situation where int Q = (). The

case {2 = {0} is easy to handle. So, we assume intQ = () and Q\ {0} # 0. Set
J = max{rank(z) : = € Q}, (3.9.7)
where rank(z) is the rank of the matrix x. By Q\ {0} # 0, we have J > 1.

Step 1. We show J < K. Otherwise, there is x €  with rank(z) = K. Hence, we have
S Sﬁr. Therefore, there is § > 0 such that z —y € Sﬁr, for all y € Sf with |y| < 6. This

contradicts the assumption that int Q = (.

For each n € N, we denote the n x n zero matrix by 0,. Fix any z € Q with rank(z) =
J. Without loss of generality, by an orthogonal transformation, we may assume z =

diag()q,)\g, R ,)\J,OK,J), where )\j >0 for all 1 <j< .

Step 2. We show that for every y € €, there is y° € Si such that

y = diag(y°, 0x—). (3.9.8)

Otherwise, there is y € Q with y;; # 0 for some ¢« > J or j > J. Since y € Sf is
positive semidefinite, we must have y;; > 0 for some ¢ > J. By reordering, we assume
i = J + 1. Note that this reordering preserves x. We want to show rank(z + y) > J. Let
Y= (Yijh<ij<s+1 € S_‘frl be a portion of y, and ¥ be similarly defined. It suffices to show

rank(z +y) = J + 1. We further reduce this to verifying ¥ + y € Si‘f and thus showing
vI(Z+7y)v>0 (3.9.9)

for all v € R7*1\ {0}.
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First, we consider the case where v; # 0 for some 1 < j < J. Since Z = diag(A1,...,As,0)
and each )\; is positive, we have vTzv = Z}‘]:1 )\jvjz- > 0, verifying (3.9.9). Now, suppose
vj=0foralll <j<J. Duetove R7*1\ {0}, we must have vy 1 # 0. Since Yj+1,7+41 > 0,

we obtain vTyv = yJ+1’]+1’l}3+1 > 0. In conclusion, (3.9.9) holds.

Therefore, rank(Z + y) = J + 1, and thus rank(z + y) > J. By the convexity of 2, we see
that %(m + y) € Q. But this contradicts (3.9.7). Hence, by contradiction, y is of the form
(3.9.8) for all y € Q.

Step 3. We apply the result in the previous section. Define
C = {diag(y°,0x—J) : y° € S]} CSk.

By the result from Step 2, we have Q@ C C. Identifying C with S7, we can view u as a
map from S7 to (—oo,00]. By (3.9.7), the interior of (2 relative to S7 is nonempty. Hence,

applying the result for case with nonempty interior, comparing with v** = u, we have

u(z) = ilellc){z -z —u*(2)}, Vzecl. (3.9.10)

Since u > u**, we have v** = u on C.

Step 4. To complete the proof, we show that u** = u holds on Sff \ C. Let us set z =
diag{0;, Ix_;} where Ifc_; is the (K — J) x (K — J) identity matrix. Fix any z € SK \ C.
Due to x & C, there is some ¢ > J or j > J such that z;; # 0. Since x is positive semidefinite,

we must have x;; > 0 for some ¢ > J. Therefore, we get
z-x>0. (3.9.11)

By (3.9.10), there is an affine function L, with a € C C Sf such that u > Ly, on C. Now,
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for every p > 0, we define

,Cp == La+pz,1/-

By the definition of z, we can compute

Ly(y)=Lay(y) +2-y=Lap(y) <uly), YyeC.

Since u = oo outside C, we then get £, < u. On the other hand, (3.9.11) implies that

'Cp(x) = La,,,(y) +pz-y

converges to co as p — 0o. Then, Lemma 3.9.7 implies v™* = u at = € Sf \ C.
3.10. Concentration in the special case

In this appendix, we prove a concentration result assuming X has i.i.d. and bounded entries.
The following lemma works for any fixed interaction matrix A € RE"*% in (3.1.1). Recall

the definition of ICps x in (3.2.8).

Lemma 3.10.1. Assume that X consists of i.i.d. entries and |X;;| < 1 for all i and j.

Then, there is C' > 0 such that the following holds for all M > 1 and n € N,
Kun < CNfé (M + \/IOgN).

3.10.1. Proof of Lemma 3.10.1

The plan is to first obtain an estimate of EeNNIEN=FnI* for small A > 0 pointwise at each

(t,h) €0, M] x Sf’M. Then, we use an e-net argument to bound

N N|Fy—F : : :
ESUp(t,h)e[o, M]xsK ,, € IFN=FN| The desired result follows from Jensen’s inequality.
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Pointwise estimate

Let (¢,h) € [0, M] x SE ;. Denote by G = (W, Z) the Gaussian vector consisting of all
Gaussian random variables in Fy. We also write Eg, Ex as the expectation integrating
over (G, X, respectively. Let A > 0 be chosen later. Using the Cauchy—Schwarz inequality,

we have

EeMFN—FN\ < E(6)‘|FN_EXFN|e>\‘EXFN_]EX,GFN|)

1 1
_ <E62A|FN—EXFN\) 2 <E€2A\EXFN—EX,GFN|) z (3.10.1)

To treat the last term, we will use the Gaussian concentration inequality. Let us use the

multi-index notation (3.2.15). By (3.2.3) and (3.2.4), we can compute

K
1 2t 1
ow, Fny = ~V =T (T3), Oz,Fn= N Z (v Qh)kj (Ti) -
k=1

Here 7 is defined in (3.2.2). Therefore, by (3.2.1), we have

N K
IVaFn> = 0w N> + > ) 10z, Fal?

i i=1 j=1
2t

= oo (B 7)o+ agh - {aTal) < OMN

N2
Invoking [27, Theorem 5.5], we obtain
EgeMExFn—Ex.cFnl  (ONMNT! (3.10.2)

Then, we treat the first two terms in (3.10.1). Let us first compute Ox,; Fiv. By (3.2.4), we

can compute
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Due to the boundedness assumption |X;.| < VK (and thus |z;.| < /K under the distribu-

tion (-)), we can verify
|Vx, Fn| <CMN.

Using the boundedness again and [27, Theorem 6.2| (see the penultimate display in its

proof), we obtain

Ex NPV ExFn| < 0pCA?MPN7! (3.10.3)

In conclusion, (3.10.1), (3.10.2) and (3.10.3), with X replaced by A\vV/N, yield
Ee/\\/mFN*FN\ < Cec,\QM{
Then, [116, Proposition 2.5.2] implies that, for A sufficiently small,

EeN NIEN=FNI* < 0@ M2, (3.10.4)

Application of an e-net argument

The goal is to upgrade (3.10.4) to a bound on ESUp(t,h)e[o,M]xSfMe/\QNIFN_FNP- The

estimates (3.3.8) and (3.3.9) imply that, for |t — /| + |h — /| < 1,
[Pt h) = En (', 1)) < C(14+ N=3(IWAT|| +2)) ) (1t = ¢15 + |n - ]3).
For ¢ € (0, 1], viewing SfM as a subset of REE+1/2 we introduce the e-net

A, = {e,2¢,3¢c.. YHEE+D/2 A ([0, M] x S{M).
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Hence, for \ small, we have

2 o2

(t,h)elo,M]xSk

s Eewp (C)‘QE(\/NJF [WAT|| + \Z‘)2> sup eV NEN-Fnl?
(t,h)EA

1
2 = 2
< <Eexp (C)\2E(\/N + |[WAT|| + ]Z])2)> (E sup 62)‘2N|FNFN|2) (3.10.5)
(tvh)eAE

where we used the Cauchy-Schwarz inequality in the second inequality. Since |A;| <

(M /&) +EE+D/2 ysing the union bound and (3.10.4), we have,

1

— 2

(E sup 62)‘2N|FN_FN|2> SC(M/E)CeCVMQ, A eR. (3.10.6)
(t,h)EA

Set e = C~'N~1in (3.10.5) with C therein, and use (3.10.6) to see

2 =2

(t,h)€l0,M]xS% 5,

N|=

< O(MN)CelNM? [Eexp </\2(1 +NTI([WAT| + ]Z\))2>] .
We claim that, for small A > 0,
Eexp (A2(1+ N“3(|WAT| +|2))*) < C. (3.10.7)
This immediately gives

2 T2 2772
E sup AN INENE < O(MN)C M
(t,h)€l0,M]xSK ,,

145



Finally, using Jensen’s inequality, we conclude that

E sup |FN — FN|2 < )\_2N_1 ]og (E sup e>\2N|FN—FN?>
(ER)E0.MIXSE ) (t,h)€[0,M]xSE

< CN~YHM? +1log N),

as desired. The proof will be complete once (3.10.7) is verified.
Proof of (3.10.7)

We want to bound exponential moments of ||[WAT||? and |Z|?. Using the fact that Z is

standard Gaussian in RV, we have, for \ small,

EeNN 2P < C. (3.10.8)

Now, we turn to bound EeN*NTHIWATI® For each € > 0, there is a finite set B C SVK—-1
such that for each y € SNK~1 there is 2z € B satisfying |y — 2| < e. In addition, the size of B
is bounded by VX for some constant a > 0 depending only on €. The construction of B is
classical and can be seen, for instance, in [116, Corollary 4.2.13]. Using the property of B,

we can see that for each (y1, y2, ... yp) € (SVE"L)P there is (21, 22, ... 2p) € BP such that
(WAT) - (11 ®y2 @ ®yp) = (WAT) - (21 ® 22 @ -+ © )| < pe|| WAT|.
By this and fixing ¢ = %, from the definition (3.3.7), we obtain
WAT| <2  sup (WA (21028 ®z).

(21,22, ... 2p)EBP

Note that (WAT) - (21 ® 22 ® --- ® ) is a centered Gaussian with variance bounded by a

constant C' depending only on A. Therefore, there is v > 0 such that

IP’{(WAT) (1 ®20® Q2 = t} < 2e7.
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Combine the above two displays and apply the union bound to see

K\ N
NN-LWAT|? aP
BN WA >t}<2( tc)

for some constant ¢ > 0 that absorbs A and ~. Writing b = a%, we have, for N large,

00 oo cN
NN WAT|? :/ ]P,{6>\21\7—1HWATI|2 > 1)t < b-l-/ 9 b dt = b+ 271)’
0 b t cN —1

which is bounded uniformly for large N. This and (3.10.8) imply (3.10.7).
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CHAPTER 4

STATISTICAL INFERENCE OF FINITE-RANK TENSORS

This chapter is essentially borrowed from [37], joint with Jean-Christophe Mourrat and
Hong-Bin Chen.

Abstract. We consider a general statistical inference model of finite-rank tensor products.
For any interaction structure and any order of tensor products, we identify the limit free
energy of the model in terms of a variational formula. Our approach consists of showing
first that the limit free energy must be the viscosity solution to a certain Hamilton-Jacobi

equation.
4.1. Introduction
4.1.1. Setting

Let K,L,p € N and A € RE"*L which will be kept fixed throughout the paper. For every

N €N, t > 0 and a random matrix X € RY*E we consider the inference task of recovering

[ 2t
Y = Np_1X®PA+W € RVN*L, (4.1.1)

RNPXL

X from the observation of

where ® denotes the tensor product of matrices, and W € , independent of the
randomness of X, consists of independent standard Gaussian entries (we view X®P as an
NP-by-KP matrix). Throughout, the dot product between two vectors or matrices of the

same size is the entry-wise inner product. The associated norm is denoted by |- |. For

convenience of analysis, we assume that the random matrix X almost surely satisfies

| X| < VNK. (4.1.2)

For instance, (4.1.2) is satisfied if every entry of X has its absolute value bounded by 1. We

denote the law of X by P]ff . Using Bayes’ rule, the law of X conditioned on observing Y is
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the measure proportional to efZ%(t:) dPK,( (x), where the Hamiltonian H&; is

. 2t t
HN(t,ZU> = W(.f@p/l) -Y — W‘.’I:@pAF

The associated free energy is given by

o 1 (tyx
Fy(t) == Nlog/RNXKeHN(t’ ) APy ().

The mutual information I(X,Y) between X and Y is an important information-theoretical
quantity, which is equal to EF5(t) up to a simple additive term. Computing the limit of
the mutual information as N — oo allows one to determine the critical value of ¢ below
which the inference task is theoretically impossible. Therefore, the limit of EFR (¢) is the
central object of investigation in many inference models. For more details, we refer to the

discussion in [10].

In order to analyze this model, we start by enriching the system by adding an additional
observation Y = Xv/2h + Z for h € SE, where Sf is the set of K x K symmetric positive
semi-definite matrices, and Z € RV*K  independent of all other sources of randomness
previously introduced, consists of i.i.d. standard Gaussian entries. Then, the law of X
conditioned on observing ¥ and Y is a Gibbs measure proportional to e/~ (t’h"’”)dPﬁ,{ (x)

with Hamiltonian
Hy(t,h,x) = Hy(t,x) + V2h - (2TY) — h - (27z).
The corresponding free energy is

Fn(t,h) = Jblog/ efntha) api¥ (2). (4.1.3)

RN XK

We also set F'y = EFy. Note that the initial free energy satisfies Fy(t) = Fn(¢,0). We let
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H: Sf — R be the mapping such that, for every q € Sf,
H(q) := (AAT) - ¢®P. (4.1.4)

Our main result is the identification of the limit free energy, for any given choice of interaction

matrix A and p € N.

Theorem 4.1.1. In addition to (4.1.2), suppose that
° (FN(O, '))NeN converges pointwise to some C' function 1 : Sf_( = R;
o limy_, E|Fy —FNHQOO(D) =0 for every compact D C [0,00) x S¥.

Then, for every (t,h) € [0,00) x SK, we have

Jim Fyn(t,h) = sup inf {h"-(h—H)+p(h')+tH(R")}. (4.1.5)

st WSk

Remark 4.1.2. The above convergence can be improved into convergence in the local uniform

topology by using that F is Lipschitz uniformly over N (see Lemma 4.2.1).

We briefly comment on the hypotheses of the theorem. One can see that Fy(0,-) is the
free energy associated with a decoupled system where the only observation Y is linear in X.
Therefore, in many cases, the limit of Fn(0,-) can be computed straightforwardly. In
particular, if PJ%( is the N-fold tensor product of a fixed probability measure on RX, then
Fn(0,-) in fact does not depend on N, and is C'. The next assumption can be rephrased
as local uniform concentration of Fj. Again, this condition is straightforward to verify in
many models, with standard tools available: see for instance [39, Lemma C.1| for the case

when the rows of X are i.i.d. and bounded.

Among our assumptions, perhaps the only surprising one is the requirement that 1 be of
class C'. For certain choices of the nonlinearity H, such as when H is convex, this assumption

is not necessary (see for instance [39]). However, when considering arbitrary choices of A
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and p as we do here, this assumption may be required. In a simpler setting, we illustrate

the usefulness of this assumption in Remark 4.6.3.
4.1.2. Related works

Many inference models can be viewed as special cases of (4.1.1). Indeed, one could argue
that essentially any “fully-connected” inference problem will have the form of (4.1.1) for
some suitable choice of A and p. Among them, the models where the limit free energy
has been studied include the spiked Wigner model [10, 82, 12, 95, 94|, the spiked Wishart
model [90, 14, 79, 86, 36|, the stochastic block model (or community detection problem)
[82, 87, 104], the inference of second order matrix tensor products [103], and the inference of
higher order vector tensor products [83, 12, 95]. The model closest to (4.1.1) is the inference
of finite-rank even-order tensor products studied in [85]. The case of tensors of odd order
was left open there, see [85, Section 7|. In Section 4.5.2, we apply our main result to this
model, for tensor products of arbitrary order (p € N). For a more detailed discussion on

these models, we refer to the introduction in [39].

Many of the results mentioned above were obtained by the powerful method of adaptive in-
terpolation introduced in [12, 13] and refined in subsequent works. In [103], a novel extension
using interpolation paths parameterized by order-preserving positive semi-definite matrices
was employed to completely describe the limit in the general second order tensor products
model. The order-preserving property ([103, Proposition 4]) has a similar counterpart that

plays a crucial role in this work (Lemma 4.2.2 and Proposition 4.4.7).

The approach taken up in the present paper is based instead on identifying the limit free
energy as the viscosity solution to a certain Hamilton-Jacobi equation. This alternative
approach was introduced in [95, 94|, and can also inform the analysis of spin glass models

[92, 98, 96, 93|; related considerations also appeared in the physics literature |69, 71, 22, 21].

The setting of the present paper is identical to that of [39], in which partial results were

obtained. There, for general interaction matrix A and order p, only an upper bound on
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the limit free energy could be proved; a complete identification of this limit could only be
obtained for particular choices of A and p. Here, we close this gap and cover all cases in a

unified approach.

Compared with [39], the main novelty of the present paper is that we will rely on a different
method for the identification of the viscosity solution. This method relies crucially on
the fact that the functions under consideration are conver. We explain this new uniqueness
criterion in the simpler context of Hamilton-Jacobi equations on [0, 00) x R? in the appendix.
The gist of our work is then to extend this criterion to Hamilton-Jacobi equations posed on
[0, 00) X Sf, and then to verify that any possible limit of the free energy does satisfy this

criterion.

The rest of the paper is organized as follows. In Section 4.2, we present basic properties
of Fy. In particular, we record that F is convex, nondecreasing, and has nondecreasing
gradients. In Section 4.3, we recall basic facts of convex analysis and prove some useful
results in preparation for the study of the Hamilton-Jacobi equation. Using these, we prove
a convenient criterion for identifying viscosity solutions in Section 4.4. Lastly, Section 4.5

contains the proof of Theorem 4.1.1 and an application to the model (4.5.7).
Acknowledgements
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4.2. Properties of the free energy

In this section, we study basic properties of F'y. We start by introducing notation.

For any measurable g : RV*X — R™ for some m € N, we denote by (g(x)) the expectation
of g, coordinatewise, with respect to the Gibbs measure proportional to e &) dPg (),
which can also be written as (g(x)) = E[g(X)]Y,Y] for Y and Y introduced in the previous

section. Note that the dependence of (-) on ¢, h is suppressed from the notation when there

is no confusion. Within the bracket (-), we denote by 2/, 2", 2" independent copies of z,
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which are called replicas of x. The transpose operator on matrices is denoted by superscript

T

In addition to Sf , we denote by S¥ and Sﬁ_{ 4, the set of K x K symmetric matrices, and
symmetric positive definite matrices, respectively. We view SX as an ambient linear space for
Sf and Sf 1. By choosing an orthonormal basis with respect to the entry-wise dot product,
we can identify S¥ with RE(E+1)/2 jsometrically. Therefore, differentiation makes sense on
S as the usual one on Euclidean spaces. Naturally, we also identify the dual space of S¥
with itself. For a function g : [0,00) x SK — R which is differentiable at (#', k'), we denote
by d:g(t',h') € R its derivative with respect to the first variable, and by Vg(t', ') € S¥ the

gradient with respect to the second variable.

Using the expression (4.1.3), we can compute that

OFx = 1o (1% A 2/ A4) = L E[(2%PA) - (4 4)] (4.2.1)
VFy = %E (a2} = %E ()T ()] (4.2.2)

This computation involves the Nishimori identity, the Gaussian integration by parts, and
the independence of replicas with respect to the Gibbs measure. For details, we refer to [39,

(3.5)-(3.6)]. Recalling the definition of H in (4.1.4), we obtain that Fy satisfies
— — 1
Fx — H(TFx) = o (E(HT2) - H(EET)) )

and the right-hand side is expected to be small when N is large. Hence, F'y can be viewed

to approximately satisfy the Hamilton-Jacobi equation
Of —H(Vf)=0 in[0,00) x SE. (4.2.3)

This is the key insight for the Hamilton-Jacobi equation approach. Later, we will show that

indeed Fy converges to the unique solution to (4.2.3); and then that this solution admits
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the variational representation appearing on the right side of (4.1.5).

In the remaining two subsections, we collect useful properties of derivatives of F'y and prove

that Fy is convex.
4.2.1. Derivatives of free energy

We record basic results on the derivatives of Fy.

Lemma 4.2.1. For each N € N, the function Fy is C' and the following holds:

sup (0, V)Fn|(t, h) < oo;
NEN, (t,h)€[0,00) xSK

(0, V)Fn(t,h) €[0,00) x SE, VN €N, (t,h) € [0,00) x SE.
Proof. 1t follows from (4.2.1) and (4.2.2), along with the assumption (4.1.2). O

The first display in Lemma 4.2.1 ensures that Fy is Lipschitz uniformly in N. The second
display indicates that (9;, V)Fy is “nonnegative” in the sense of the following partial orders.

On S¥ and on R x S¥, we declare

h1 < hy < ho — hy € SK; (4.2.4)

(tl, hl) < (tQ,hQ) <~ (tg, hg) — (tl, h1> S [0,00) X Sﬁf (4.2.5)
As a consequence of Lemma 4.2.1 and the mean value theorem, we have that
F'y is nondecreasing, VN (4.2.6)

in the sense given in (4.2.5).

The next result shows that (9, V)F y is “nondecreasing”.
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Lemma 4.2.2. For each N € N, for every (t1,h1) < (t2, h2), it holds that
(ata V)FN (t17 h’l) < (ata V)FN (t27 h2)
Proof. For k= 1,2, we set

Y, 1= ( %X@@PAJFW,“ X\/Qhk—i—Zk)

where Wy, and Zj, consist of i.i.d. standard Gaussian random variables. For k = 1, 2, denoting

(-) evaluated at (tx, hy) by (), we have

(9(x))), = Elg(X) | V3] (4.2.7)

for any measurable function g satisfying E|g(X)| < oo. For any matrix y, we write c(y) :=

yTy. Note that c(X®PA) € REXL and ¢(X) € REXK, Then, we have
o, V)F h) =E (- X®PA Lex
(O, V) En (tr, he) = E | tre (« V) ~ < (&) )

Hence, it suffices to show that, for any measurable g satisfying E|g(X)| < oo,

Ec((9(X))) SEc((g9(X)),)- (4.2.8)

Indeed, in view of the previous display, the desired result follows from taking g to be g(q) =

g®PA and then the identity map.

To compare the two sides in (4.2.8), we introduce

2ty — 2t
Y = ( 22 2L NP AL W, X /2Ry — 2hy + Z’) ,

Np-1

where W’ and Z’ have i.i.d. standard Gaussian entries, independent of randomness previously

155



introduced. We claim that

d

E[g(X) |Y2] = E[g(X) | Y1, Y], (4.2.9)

where the equality holds in the sense of probability distributions. Temporarily assuming
this, and using that E[g(X)|Y1] = E[E[g(X)|Y1,Y’]| V1], we can verify, analogously to a

bias-variance decomposition, that
Ec(E[g(X)|Y1,Y’]) = Ec(E[g(X) | Y1,Y’] - E[g(X) | Y1]) + Ec(E[g(X) | Y1]).
Since the first term on the right is a positive semi-definite matrix, we get that
Ec(E[g(X)[Y1,Y"]) > Ec(E[g(X) 1))

In view of (4.2.7) and (4.2.9), this yields (4.2.8) and thus the desired result.

It remains to prove (4.2.9). The quantities on both sides can be written as integrations of
f with respect to Gibbs measures with a common reference measure Pi (the law of X).
Hence, it suffices to compare the Hamiltonians. The Hamiltonian for the left-hand side can

be computed to be

2t . ,
NT:(x(gpA) (XPPA) + W@’U@"A) V2t W — NTzfl’x®pA|2

+2hy - (27X) + (Z2+/2h2) - — hy - (2Tx),
while the Hamiltonian for the right-hand side is

2t 1 t
szl (z®PA) - (X®PA) + — (z®PA) - (\/EWl + mwl> _ Np2_1 ‘:L,®pA|2

+2hg - (27X) + (Zlﬂ+ Z'\/2hy — th) ~x —hy - (2T).
Since Wy, Wo, W', Z1, Zs, Z' all consist of i.i.d. standard Gaussian entries, we can conclude
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that the two Hamiltonians have the same distribution, which implies (4.2.9). O

4.2.2. Convexity

In this subsection, we show the following.

Lemma 4.2.3. For each N € N, the function Fy : [0,00) x Sff — R is convex.

Proof. We want to show that for every (s,a) € R x S¥ and every (¢, h) € [0, 00) x S¥,

(Sat +a- V)2FN(I§, h) > 0.

For brevity, we set y = 4/ Ng,la@pA and similarly for replicas of . We can compute that

— 252
528152FN(t,h) = W}E<(y . y/)(y . y/ _ 2y X y// +y// . y///)>’

— 2
s@t(a . VFN(t, h)) = NSE <(a . LZZTJ}/)(y . y/ o 2y . yll + y// . y///)> ,

— 2
(a-V)*Fy(t,h) = NE ((a-2Ta")(a-2Ta" —2a- 272" +a - 2"T2")) .

Again, this computation uses the Nishimori identity and the Gaussian integration by parts.
Details for deriving the third identity above can be seen in the derivation of [94, (3.27)].
The two other identities can be computed by following the same procedure. Let I be the
identity matrix of the same size as yTy'. Setting b = diag(a, sI), z = diag(z,y) and similarly
for replicas, we have b- 272" = sy -y’ + a - 272’ (where the matrix product is carried out
prior to the dot product). In this notation, adding the above identities together and using

the symmetry between replicas, we have

(O +a- V)QFN(t, h) = %E ((b-2T2")> = 2(b-2T)(b- 2T2") + (b- 2T2')(b- 2"T2""))

= %E <(b ®b) - (sz’ ® 272 — 22T(2") @ 2T() + (2)T(z") @ (z>T(z'>)> :
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Writing Z = z — (z) and similarly for replicas, we obtain that the above is equal to

%E <(b ®b)- (ZTE’ ®2'Z —Z7{(z) ® ?T<Z’>) > :

Since b is symmetric, we can see that
(bab) - ZT{Z)@zT{)) = (bab) ({2 (2)T2).
Using the symmetry between replicas, we conclude from the above three displays that

(50, +a- V) Fy(t,h) = %E (beb- (77 e7)) >0

4.3. Some results of convex analysis

As mentioned above, our approach to proving Theorem 4.1.1 relies on the identification of
the limit of Fy as the unique viscosity solution to (4.2.3). The uniqueness criterion we
will use for this purpose is inspired by that described in Appendix 4.6. Compared with
the setting explored there, equation (4.2.3) poses additional difficulties that are caused by
the fact that the domain Sf of the “space” variable has a boundary. This is compounded
by the fact that the relevant order on Sf is not total. The main purpose of this section
is to demonstrate Proposition 4.3.9, which states that, despite this, the subgradient of a
nondecreasing convex function with nondecreasing gradients always has a maximal element
(and this maximal element has further good properties). This proposition will be particularly

handy in Section 4.4.
4.3.1. Preliminaries

We start by recalling basic definitions and results from convex analysis. Since we need
results for both functions defined on S and functions on [0, 00) x S¥, we consider a slightly

more general setting in this subsection and specialize into these two spaces when needed.
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Let 7 be a finite-dimensional Hilbert space. The associated inner product is denoted by a
dot product, and the norm by | - |. Since # can be isometrically identified with a Euclidean
space, the usual notion of differentiability for any function u : 5 — R still makes sense.
If w is differentiable at © € ., we denote by Du(x) its differential at . We also identify
A with its dual and thus Du(z) € 4. For the purpose of this work, the space 7 will be
taken to be either R x S¥ or SX and, correspondingly, D will be taken to be either (9;, V)

or V.

Let u : # — RU {o0} be a convex function. We define its subdifferential at = € J# by
Bu(z) := {y e u@)>ulz)+y- (@ — 1), Vo' € jf} (4.3.1)
The effective domain of v is
domu = {x € S : u(x) < co}.

The function u is called proper if domwu # (). The outer normal cone to a subset . C 7

at x € JZ is given by

ny(z):={yeH: y (2’ —x) <0, Vo' € 7}. (4.3.2)

The following result characterizes the subdifferential as the sum of the outer normal cone
and the set of accumulation points of differentials at nearby differentiable points; we refer

to [105, Theorem 25.6] for a proof.

Lemma 4.3.1. Let u: 7 — RU{oo} be a proper lower semi-continuous convex function

such that domu has nonempty interior. Then, for every x € 2,

Ju(z) = cl(conv S) + ngom (7).

159



where S is the set of all limits of sequences of the form (Du(xl)) N such that u s differen-

%

tiable at x; and lim;_,o T; = T.
Note that when x is in the interior of dom u, we have ngom(x) = {0}.

We also record two classical results which, while not relevant to the proof of Proposition 4.3.9,
will be useful later on. The first one characterizes the subdifferential of the sum of two convex
functions, assuming that one of them is differentiable for simplicity. The second one states
a correspondence between elements of the subdifferential at a point and smooth functions

that “touch the convex function from below”.

Lemma 4.3.2. Let u : A — R U {oo} be a proper lower semi-continuous convez func-
tion such that domw has nonempty interior. Let v : & — R be convex and differentiable

everywhere. Set u' = u +v. Then, domu = domu’ and, for every x € domu, it holds that
ou' (z) = Ou(z) + {Dv(z)}.

Proof. The first claim is obvious due to the finiteness of v. To see the second claim, we
start by noting that due to domu = domu/, the outer normal cone to domu is the same as
the outer normal cone to domu’ at every point. The differentiability of v implies that v’ is
differentiable at some point 2’ if and only if u is also differentiable at z’. Hence, the second

claim follows from Lemma 4.3.1. O

Lemma 4.3.3. Let u: 5 — RU {oo} be convex. Then, p € du(z) for some x if and only

if there exists a smooth function ¢ : 7 — R such that uw — ¢ achieves its minimum at x and

Dg¢(x) = p.

Proof. Assuming p € du(x), we can deduce from the definition of subdifferential that u — ¢

achieves its minimum at z for ¢ : y — p-y. Now, let us assume the converse. The convexity
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of u implies that

w(z') —u(z) > <’LL(£U + Az’ — ) — u(x)), vz', VA € (0,1].

Using the minimality of u — ¢ at x and the differentiability of ¢ at x, we can obtain D¢(x) €
Ou(z) by sending A — 0. O

To apply these results to the study of solutions to (4.2.3), we make the following remark.

Remark 4.3.4. Any convex function f : [0, 00) x Sf — R can be extended in a standard way
to a convex function f : R x SK — RU {oo} by setting f = f on [0,00) x SK and f = oo
elsewhere. Note that f is proper and its effective domain is [0, 00) x S which has nonempty
interior. If f is continuous, then f is lower semi-continuous. In the following, we do not
distinguish between f and its standard extension. Then, the notions and results discussed
above can be applied to f by setting s# = R x SX and D = (0, V). Similar treatments can

be taken for any convex function 1 : S{f — R.

Finally, since we will work with functions defined on Sff and [0,00) X Sf , we record these

two simple lemmas.
Lemma 4.3.5. For every a € S, we have a € Sf if and only if a-b >0 for allb € Sf.

Lemma 4.3.6. For everyt >0 and x € S§, we have ngx (z) C —SE and D) o0)xSK (t,z) C

—([0,00) x SY).

The first lemma is an application of the diagonalizability of real symmetric matrices (see
e.g. |94, Lemma 2.2|), and the second lemma is a consequence of the first lemma and the
definition of outer normal cones in (4.3.2).

4.3.2. Nondecreasing gradients

The key result of this subsection is Proposition 4.3.9. To state it, it is convenient to introduce

the following definitions. Recall the partial orders defined in (4.2.4) and (4.2.5).
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Definition 4.3.7 (Nondecreasingness). A real-valued function g defined on S or [0, 00) x

SE is said to be nondecreasing if g(y1) < g(y2) whenever y; < yo.

Definition 4.3.8 (Nondecreasing gradients). A Lipschitz function f : [0,00) x S§¥ — R
is said to have nondecreasing gradients if, for every (¢1,z1) and (t2,z2) that are points of

differentiability of f and satisfy (t1,21) < (t2,2), it holds that

(O, V) f(t1,21) < (O, V) f(t2, 72). (4.3.3)

Recall that, by Rademacher’s theorem, a Lipschitz function is differentiable almost every-

where. Here is the main result of this section.

Proposition 4.3.9. Suppose that f : [0,00) X Si{ — R is nondecreasing, Lipschitz, conver,
and has nondecreasing gradients. Then, for every (t,z) € [0,00) x SK, there exists (b, q) €

Af (t,z) N [0,00) x SK such that |(b,q)| < || fllLip and

for every (a,p) € 0f(t,x), (a,p) < (b,q). (4.3.4)

In addition, if f satisfies (4.2.3) on a dense set, then (b, q) can be chosen to satisfy b—H(q) =
0.

Remark 4.3.10. In the statement of Proposition 4.3.9, the precise interpretation of the phrase

that f satisfies (4.2.3) on a dense set is that the set
{(t,z) € (0,00) x S§, : fis differentiable at (¢,z) and (3;f — H(V[)) (t,z) =0}

is dense in [0, 00) X Sf . We point out that one could equivalently replace this condition by the
condition that f satisfies (4.2.3) at every point of differentiability in (0, 00) x Sf +- Indeed,
one direction of this equivalence is immediate, since every Lipschitz function is differentiable
almost everywhere. Conversely, if (¢,x) € (0, 00) X Sf  is a point of differentiability of f, one

can find a sequence of points (¢, z,,) that converge to (¢, x) and such that (4.2.3) is satisfied
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at (t,, r,). Then every subsequential limit of (0 f, V.f)(tn, xs), say (a,p) € R x SK | satisfies
a —H(p) = 0, and one can check that (a,p) € Of(t,z). But since f is differentiable at (¢, z)
and (¢, z) is in the interior (implying that the outer normal cone is {0}), the subdifferential

Of(t,x) is the singleton {(0:, V) f(t,z)}.

Proof of Proposition 4.3.9. Let (t,z) € [0,00) x SK. We start by fixing some (so,y0) €

(0,00) x SK, such that |(so,y0)| = 1. Note that
(t, ) + A(s0,%0) € [0,00) x S5, VA>0.

Since f is differentiable a.e. on [0, 00) X Sff , we can find a sequence (%o ;, 2o ;);jen of differ-

entiable points such that
’(t07j, .ToJ) — ((t, .’E) +j_1(80,y0))‘ < j_z, Vj e N. (435)

If, in addition, f satisfies (4.2.3) on a dense set, then clearly we can choose (toj,%0,j)jen
from that set. Since f is Lipschitz, by passing to a subsequence, we may assume that
lim;_00(0¢, V) f (0,5, %0,j) exists. Denote this limit by (b, ¢). By Lemma 4.3.1, we know that
(b,q) € Of(t,x). It is clear that |(b,q)| < ||f|lLip- Since f is nondecreasing, we also have
that (b, q) € [0,00) x SE. Continuity of H implies that b — H(q) = 0 if f satisfies (4.2.3) on

a dense set. It remains to show (4.3.4).

We apply Lemma 4.3.1 to the standard extension of f (see Remark 4.3.4). Note that
dom f = [0,00) X Sf. Let S be the corresponding set at (t,x) in this lemma. Then, due
to this and Lemma 4.3.6, for each (a,p) € df(t,z), there is (a’,p’) € cl(conv.S) such that
(a,p) < (d’,p'). Therefore, it suffices to prove (4.3.4) for (a,p) € cl(conv S). In fact, since
the condition on (a,p) in (4.3.4) is stable under convex combinations and passage to the

limit, it suffices to show (4.3.4) for every (a,p) € S.

Let (a,p) € S. By definition of S, there exists a sequence ((¢;,x;))ien converging to (¢, x)
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such that

lim (0, V) f(ti, ;) = (a,p). (4.3.6)

71— 00

Due to our choice of (sp,90), we can see that for sufficiently large j there is i(j) € N such

that
(ti, zi) < (toj,o,5), Vi=i(j). (4.3.7)
Indeed, since (sg,yo) is strictly positive, there is C' > 0 such that
CH(d', )| < (@) - (s0,90) < Cl(a, )], V(d',p') €[0,00) x SE.

. K
By this and (4.3.5), we have that, for every a € [0,00) x ST,

1 1 ,7 1 1
a- ((t05:205) = (1)~ -(snn) ) > -2 Gsoew) — 572l > ol (55— 7 ).

The right-hand side is nonnegative for sufficiently large j. Lemma 4.3.5 thus implies that

1
(507y0)'

(toj> o) — (t,x) = %

On the other hand, similar arguments yield that, for sufficiently large ¢ (in terms of j),

(t’hxi) - (t, x) < !

27].(807 yO)

The two previous displays justify (4.3.7). Using (4.3.6), (4.3.7) and the property (4.3.3), by

first sending ¢ — oo and then j — oo, we obtain that

(a‘vp) < hm (8t7 V)f(t(),]7 1‘0,]‘) = (b7 q)v

J]—00

as desired. O
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4.4. Viscosity solutions

In this section, we study the Hamilton-Jacobi equation (4.2.3). First, we give the precise
definition of viscosity solutions. Then, we recall the uniqueness and existence of viscosity
solutions ensured by the comparison principle and the fact that the Hopf formula gives
a viscosity solution. We next turn to the main goal of this section, which is to prove
Proposition 4.4.7. This proposition provides us with a convenient sufficient condition for
checking whether a function is the unique viscosity solution. This is instrumental in our

proof of the convergence of the free energy in Section 4.5.
Recall that the notion of nondecreasing functions was introduced in Definition 4.3.7.
Definition 4.4.1 (Viscosity solutions).

1. A nondecreasing Lipschitz function f : [0,00) x SK — R is a viscosity subsolution to
(4.2.3) if for every (t,h) € (0,00) x S¥ and every smooth ¢ : (0,00) x S¥ — R such

that f — ¢ has a local maximum at (¢, h), we have

(0 — H(V))(t,h) <0, if heSK,,

Vé(t, h) € SK, if h e SK\SK,.

2. A nondecreasing Lipschitz function f : [0,00) x Sf — R is a viscosity supersolution
to (4.2.3) if for every (¢, h) € (0,00) x S& and every smooth ¢ : (0,00) x S¥ — R such

that f — ¢ has a local minimum at (¢, h), we have

(B —H(V@))(t,h) >0,  if heSk,,

Oip(t,h) —infH(q) >0, , ifheSK\SK,

where the infimum is taken over all ¢ € (Vo(t, h) +S§) NSE and |q] < || f||Lip-

3. A nondecreasing Lipschitz function f : [0, 00) xSE — R is a viscosity solution to (4.2.3)
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if f is both a viscosity subsolution and supersolution.

Remarks 4.4.3 and 4.4.4 below aim to provide a somewhat more intuitive understanding of

Definition 4.4.1. Before doing so, we record the following observation.

Lemma 4.4.2. The function H : Sf — R given in (4.1.4) is nondecreasing.

Proof. Let a,b € Slf be such that a < b. Recalling that the tensor product of two positive
semidefinite matrices is positive semidefinite, see for instance [117, Theorem 7.20|, one can
show by induction on p that a® < b®P. Since AAT € SX” we can use Lemma 4.3.5 to

obtain that H(a) < H(b), as desired. O

Remark 4.4.3. Given a nondecreasing Lipschitz function f, define the extension of H by

H(p) := inf{H(q) tq=p,qeSE g < ||fHLip}, Vp € SK. (4.4.1)

As usual, the infimum over an empty set is understood to be co. Note that H : SX —
R U {oco} is lower semi-continuous and agrees with H on S due to Lemma 4.4.2. Then,
Definition 4.4.1 (2) can be reformulated as follows: f is a viscosity supersolution if for every
(t,h) € (0,00) x SK and every smooth ¢ : (0, 00) x SK such that f — ¢ has a local minimum

at (t,h), we have
(0ep —H(V))(t, h) > 0.

Note that, in this formulation, we do not need to distinguish between h € Sf L and h €

SE\SEL

Remark 4.4.4. Further simplifications of boundary conditions can be made. After the sub-
mission of this paper, [41] considers solutions defined to satisfy the equation in the viscosity
sense everywhere including the boundary without any additional boundary condition im-

posed. Under this definition, the comparison principle and the existence of solutions still
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hold. Moreover, the solution admits a representation by the Hopf-Lax formula given the
convexity of the nonlinearity, or the Hopf formula given the convexity of the initial condition.
All properties needed in this work are still satisfied. One can work with this definition, and

the main results in this work are still valid.

Let us briefly describe the simplification. Due to Lipschitzness of Fp uniformly in N
(Lemma 4.2.1), we can work with a regularized nonlinearity H"# : SE — R which coincides
with H on a ball intersected with SE with sufficiently large radius. In a similar way as in [41,
Lemma 4.2|, H™€ can be constructed to be Lipschitz and nondecreasing. Then, we extend

H'es to
Ho(p) := inf {H"&(q) : ¢ > p, g € SE'}, WpeSK.

One can check, similarly as in [41, Lemma 4.4], that H®* is Lipschitz and and nondecreasing,.

Then, the conditions for viscosity subsolutions and supersolutions can be replaced by

(819 — HZ (V) (¢, h) <0,

(Op — H* (V) (8. h) > 0,

respectively, without the need to distinguish between h € Sf \ Sf yand h € Sf . The key

property needed for this simplification in [41] is the monotonicity of the nonlinearity.

We turn to the well-posedness of equation (4.2.3). We first state a comparison principle,
which ensures in particular that there is at most one viscosity solution with a given initial

condition.

Proposition 4.4.5 (Comparison principle). If u is a subsolution and v is a supersolution
to (4.2.3), then

sup (u—wv)= sup (u—v).
[0,00) xS {0}xsf
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For suitable initial conditions, the viscosity solution admits the following variational repre-

sentation.
Proposition 4.4.6 (Hopf formula). Let 1 : Sf — R be converx, Lipschitz and nondecreasing,
and let f be given by

f(t,h) == sup inf {A"-(h—K)+¢(R)+tH(R")}, V(t,h) € [0,00) x SE.

huegi( h’ng
Then, the function f is a viscosity solution to (4.2.3) with initial condition f(0,-) = 1.
For the proofs of these two propositions, we refer to |39, Section 6].

In the remainder of this section, for convenience, we will use x, y as spatial variables in place
of h, which should not be confused with the notation for random variables under the Gibbs

measure (-) in Section 4.2.
4.4.1. Identification criterion

The following result gives a convenient criterion for a function to be a viscosity solution.

Proposition 4.4.7. Let f : [0,00) X Sf — R be nondecreasing, Lipschitz, convezx, and have
nondecreasing gradients. Suppose that 1 = f(0,-) is C! and that f satisfies (4.2.3) on a

dense subset. Then, f is a viscosity solution to (4.2.3) with initial condition .

For the reader’s convenience, the idea for the proof of this proposition is also presented
in the simpler setting of Hamilton-Jacobi equations on [0,00) x R? in Appendix 4.6. Two
essential ingredients for this argument are the C'' assumption of the initial condition and the
convexity of f. At least in the simpler context explored in Appendix 4.6, both assumptions

are necessary; see in particular Remark 4.6.3 there.

Compared with the Euclidean setting discussed in Appendix 4.6, the existence of the bound-
ary of Sf complicates the arguments. Indeed, in view of Lemma 4.3.1, on the boundary,

the subdifferential contains an additional component from the outer normal cone. There-
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fore, if p € 0¢(y) for a boundary point y, we cannot identify p with Vi (y). The identity
p = Vi(y) is important in Step 2 of the proof of Proposition 4.6.2. It turns out that for
Proposition 4.4.7, a work-around is available by exploiting the assumption that the function

f has nondecreasing gradients.

As preparation for this, we use Proposition 4.3.9 to prove the following lemma. This lemma
can be interpreted as stating that we can always “lift” a subdifferential p € 99 (y) to a
subdifferential (b, p) € 9f(0,y) which is dominated by some (b,p’) € 9f(0,y) satisfying the
Hamilton-Jacobi equation. This lemma is needed due to the presence of boundary. Indeed,
on [0,00) x R?, the existence of such a “lift” is automatic, which can be seen in Step 2 of the

proof of Proposition 4.6.2.

Lemma 4.4.8. Under the assumptions in Proposition 4.4.7, for every y € Sf and every
p € OY(y), there is (b,p') € [0,00) X S}f such that (b,p) € 0f(0,y), p' = p, |(b,P")] < || fllLip
and b —H(p') = 0.

Proof. Since v : Sf — R is C!, by Lemma 4.3.1 and setting p’ = Vi(y), we have
0(y) = {p'} + ngx (y).

This implies that

p=p+n (4.4.2)
for some

n € ngrc (y). (4.4.3)
Due to Lemma 4.3.6, we have —n € Sf, that is,

p<p. (4.4.4)
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The same argument also yields that,
for every ¢ € OY(y), ¢ <p. (4.4.5)
Since f is nondecreasing, we have that, for all (¢, 2') € [0, 00) x Sf ,
f(t'a") = f(0,y) = f(0,2) = £(0,y) = () — (),
which due to the convexity of ¢ implies that (0,p") € 9f(0,y). Let

(b,q) € 9f(0,y) (4.4.6)

be as described in Proposition 4.3.9, for f at the point (0,y). Then, the following properties
hold

(0,p") < (b, 9), (4.4.7)

(6, ¢)] < [|fllLip, b —H(q) =0. (4.4.8)
Since f(0,-) = v, we must have ¢ € 9y (y). Combining (4.4.5) and (4.4.7), we see that
P =q (4.4.9)

We are now ready to conclude. By (4.4.3) and the definition of outer normal in (4.3.2), we

can verify that

This along with Lemma 4.3.1, (4.4.6) and (4.4.9) implies

(b,p" +n) € 0f(0,y).
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The lemma then follows from this display, (4.4.2), (4.4.4), (4.4.8) and (4.4.9). O
We are now ready to prove our criterion for the identification of solutions.

Proof of Proposition 4.4.7. We check that f must be a subsolution to (4.2.3). Let ¢ €
C*°((0,00) x S¥), and (t,z) € (0,00) x S§¥ be such that f— ¢ has a local maximum at (¢, z).

Ifxe Sf \ Sf—&-’ since, for each a € Sf and sufficiently small £ > 0,

0< f(t,x—l—sa)—f(t,a:) < d)(t,;v—I—sa)—gb(t,a:),

we must have a - Vo(t,z) > 0 for all a € Sff. By Lemma 4.3.5, this implies that Vo(t,z) €

Sf. Ifx e Sﬁ, then we have,
F(t,2) = F(t,0) < (¢ — )t 2) + (@ — o) - Vot 2) + o[t/ — t] + o/ — a]).

This implies that the subdifferential 0f(t,z) is the singleton {(9;¢, V@)(t,x)}, and thus
that f is differentiable at (t,z), with (0.f,Vf)(t,x) = (0:p, V)(t,z). Using also Re-

mark 4.3.10, we deduce that

(0ep = H(VQ)) (t,x) = (0ef — H(V))(t,2) =0,

as desired.

Now we want to show that f is a supersolution to (4.2.3). Fix any (¢, z), and any
(a,p) € 0f(t, x). (4.4.10)

Recall Remark 4.4.3 and the extension H defined there. Taking (¢,z) and ¢ as in Defini-

tion 4.4.1 (2), we can use Lemma 4.3.3 to see that (0;¢(t, z), Vo(t,z)) € 0f(t,z). Therefore,
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it suffices to show that
a—H(p) > 0. (4.4.11)

We proceed in four steps.

Step 1. We claim that, for every € > 0, the following infimum

inf (f-(0,y) =y p) (4.4.12)
yESJr

is achieved, where, for every (s,y) € [0,00) x S¥, we have set

fo(s,y) = f(s,9) +eV/1+ [yl

Note that we are working with a slightly different perturbation of f from the one in Step 3
in the proof of Proposition 4.6.2. The purpose is to ensure that the perturbative term
is differentiable everywhere so that Lemma 4.3.2 is applicable. One can verify that y —

\/W is convex, and thus so is f.. By the definition of subdifferentials, we have
F(0,y) = f(t,2) > (a,p) - (~t,y —x), VyeSE,
which implies that
f(0,y) —y-p=e/1+ [y + f(t,z) — (a,p) - (t,z), VyeSE.

Hence, the left-hand side of the inequality above is bounded below and tends to infinity as

ly| tends to infinity. Therefore, a minimizer exists and we denote it by y. € Slf

Step 2. We show

hm ev1+|y]? =0. (4.4.13)
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We first observe that

limsup inf (7(0.y) +ev/ I+ [y ~y-p) = inf (/0.49) ~y-p). (4.4.14)

K
e—0 y€S+ yesy

Indeed, for any § > 0, there is g € Sf such that

f(0,9) =y -p <inf(f(0,y) —y-p) +0/2,

and we can choose € > 0 small enough such that, for every ¢ € (0,2),

f0,7)+ev1+ @2 —7-p <inf(f(0,y) —y-p)+0.

This implies that

limsup inf (£(0,y) +ey/T+]yP —y-p) < inf (F(0.9) =y ),
e—0 y€§f yGSf

and the other direction of the inequality in (4.4.14) is obvious. Since y. achieves the infimum

on the left-hand side of (4.4.14) and also satisfies

£0,y:) —ye -p > inf (f(0,y) —y-p),
yeS+

we conclude that (4.4.13) holds.

Step 3. Let 1. := f-(0,-), so that . = ¢ +e/1+|-|2. Since y. achieves the infimum
in (4.4.12), we have that p € 9¢(y:). Lemma 4.3.2 implies that

€Ye

p=pe+ —e
V1 [yel?

for some p. € 0Y(ye). In particular, we have

Ip—pe| <e. (4.4.15)
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By Lemma 4.4.8 applied to pe, there exists (bs,pl) € [0,00) X Sff such that

(bsape) € 6f(0, y>7 (4.4.16)
pe <pl, pLeSE, [P < IIflluip (4.4.17)
be —H(pl) = 0. (4.4.18)

Step 4. We are now ready to prove (4.4.11). Define h : X — f(A(t,z) + (1 — X)(0,9c))

on [0, 1]. Clearly, h is convex. By (4.4.16), the right derivative of h at 0 satisfies

h,—&—(o) > bat+p5 : (33 - ys)'

On the other hand, due to (4.4.10), the left derivative at 1 satisfies

W_(1)<at+p-(z—ye).

By convexity of h, we must have A/ (0) < A’ (1). This along with (4.4.15) and (4.4.13)

implies that, as € tends to zero,

a > b + o(1).

By (4.4.18), the definition of H in (4.4.1), and (4.4.17), we have that

be = H(pls) 2 ﬁ(pe)'

Using that H is lower semi-continuous and (4.4.15) together with the two previous displays
yields that

a = H(p) + o(1),

and (4.4.11) follows by letting € tend to zero. O
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In the corollary below, we rephrase our criterion for identifying solutions in the following
way: instead of asking for the equation to be valid on a dense subset, we ask that it be
valid at any point at which the candidate function can be touched from above by a smooth
function. As will be seen in the next section, the main advantage to this formulation is
that, by convexity, we automatically benefit from a control on the Hessian of the candidate

function at the contact point.

Corollary 4.4.9. Let f : [0,00) X Sff — R be nondecreasing, Lipschitz, convex, and have
nondecreasing gradients. Suppose that 1 = f(0,-) is C', and that the following property
holds: for every ¢ € C™((0,00) x SE) and (t,z) € (0,00) x SK, such that f — ¢ achieves a

strict local maximum at (t,x), we have

(0rp = H(V))(t, z) = 0.
Then f is a viscosity solution to (4.2.3).

Proof. Let ¢ and (t,z) be as in the statement of the corollary. Since f is convex, we have

that, for any (a,p) € 0f(t,x) and (¢, 2') € (0,00) x S¥,

a(t’ —t)+p- (2 —a) < f(t',2)) — f(t,2)

<Pt x)t' —t) + Vo(t,x) - (2’ —z) +o(|t' —t| + |2' — x).

It then follows that f is differentiable at (¢, x) and the derivatives of f at (¢, x) coincide with
those of ¢. By Proposition 4.4.7 and Remark 4.3.10, it therefore suffices to show that the

set

{(t,m) € (0,00) x S5, : 3¢ € C((0,00) x SE) s.t. (t,2) is a local maximum of f — qb}
(4.4.19)
is dense in [0,00) x SK. (The additional restriction that the local maximum be strict is

easily addressed a posteriori.) Since the closure of (0,00) x SK, is [0,00) x S, it suffices
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to show that the set in (4.4.19) is dense in (0, 00) x S&,. We fix any (t,z) € (0,00) x SK_,

and for every a > 1, we define

Since f is Lipschitz, we can verify that f — ¢, achieves a global maximum at some point
(tasxq). Using the Lipschitzness of f and that (f — ¢a)(ta,za) = (f — ¢a)(t,x), We can

show that there is a constant C' < oo such that for every a > 1,

2lQ

lta —t| + |xa — 2| <

This implies that lima—o0(ta, Ta) = (£, 7). Also, since (¢t,z) € (0,00) x SK,, we have that
(tasza) € (0,00) x SKE, for every sufficiently large o. Hence (tq,za) belongs to the set

in (4.4.19), and we conclude that the set in (4.4.19) is a dense subset of [0,00) x S¥. O

4.5. Convergence and application

The main goal of this section is to prove Theorem 4.1.1, using the tools developed in the

previous section. For illustration, we also apply the theorem to a specific model.
4.5.1. Convergence
In view of Proposition 4.4.6, Theorem 4.1.1 follows from the next theorem.

Theorem 4.5.1. Under the conditions of Theorem 4.1.1, the function Fy converges point-

wise to the unique viscosity solution to (4.2.3) with initial condition .

In order to prove this result, we start by recalling from |39, Proposition 3.1| (cf. also [94,
Proposition 1.2]) that the function Fy satisfies an approximate form of the equation. In

(4.5.1), we implicitly understand that the relevant functions are evaluated at (¢, h) € [0, 00) x

sk

Proposition 4.5.2 (Approximate Hamilton-Jacobi equation). There exists C' < oo such
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that for every N > 1 and uniformly over [0, 00) X Sff,
— — — 1 —
0 Fn — H(VEN)|” < Cr(h)N~3(AFy +|h7'|)% + CE UVFN - VFN\Q] . (45.)
where k is the condition number of h € Sf given by

e d IR e,
+00 otherwise.
Proof of Theorem 4.5.1. Since F is Lipschitz uniformly in N by Lemma 4.2.1, the Arzela-
Ascoli theorem implies that, for every subsequence of (Fy)nen, there is a further subse-
quence converging to some function f in the local uniform topology. It suffices to show that
f is a viscosity solution to (4.2.3) and the uniqueness is ensured by Proposition 4.4.5. For

convenience, we assume that the whole sequence (F'n)nen converges to f.
Lemmas 4.2.1 and 4.2.3 (see also (4.2.6)) ensure that f is nondecreasing, Lipschitz and
convex. Since Fy and f are convex, we have

lim (0;, V)Fn(t, h) = (0, V) f(t, h)

N—o0

at every differentiable point (¢, h) of f (indeed, any limit point of (9;, V) F y (¢, h) must belong
to the subdifferential of f at (¢,h), which is a singleton if f is differentiable at (¢,h)). This
along with Lemma 4.2.2 yields that f has nondecreasing gradients. Let (¢, h) € (0,00) x ¥,
and ¢ € C™((0,00) x S¥) be such that f — ¢ has a strict local maximum at (¢,h). By

Corollary 4.4.9, it suffices to show that
(016 — H(V@)) (t, ) = 0. (45.2)

Since Fy converges locally uniformly to f, there exists (ty,hn) € [0,00) x SE such that

Fy — ¢ has a local maximum at (ty,hy), and (ty,hy) converges to (t,h) as N tends to
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infinity. Since (¢, k) € (0,00) x S§_, each (¢ty,hy) also ultimately belongs to (0,00) x SK
and without loss of generality, we can assume that every (¢y, hy) remains a positive distance

away from the boundary of [0, 00) x S, uniformly over N. Notice that
(&FN - athS)(tN, hN) =0 and (VFN - VQZS)(tN, hN) =0. (453)

Throughout the rest of the proof, we use the letter C' < oo to denote a constant whose value
may change from one occurrence to the next, and is allowed to depend on (¢, h) and ¢. We

decompose the argument into three steps.

Step 1. We show that for every h' € S¥ with [h/| < C~!, we have
0< FN(tN, hn + h/) - FN(tN, hN) —n- VFN(ZL/N, hN) < C’hl|2. (4.5.4)

The first inequality follows from the convexity of F . To derive the second inequality, we

start by writing Taylor’s formula:

Fn(ty,hy + 1) — Fn(ty, hy)

1
=h'"-VFn(tn, hy) +/ (1—s)n' -V (h'-VFnN) (tn,hy + sh')ds.  (4.5.5)
0

The same formula also holds if we substitute F y by ¢ throughout. Since F — ¢ has a local

maximum at (ty, hy), we have for every |h/| < C~! that
Fn(tn,hy +h') = Fn(tn, hn) < ¢(tn, hy + 1) — ¢(tn, hy).
Using also (4.5.3), we obtain that

1 1
/ (1— )W -V (I - VFy) (tn. hy + sh') ds < / (1— )W -V (I - V) (tn. h + sh') ds.
0 0

Since the function ¢ is smooth, the right side of this inequality is bounded by C|h/|?. Using
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(4.5.5) once more, we obtain (4.5.4).

Step 2. Let
D= {(t',l)€[0,00) xSE : [ —t| <C ' and W —h| <C'}.
In this step, we show that
%
E [|VFN - VFNF(LLN,}LN)] <C (E [sup |Fn —FN|2:|> . (4.5.6)
D

We recall from [39, (3.13)] that, for every a € S¥ and (#,h’) € [0,00) x SK such that

|h' — h| < C~1, we have

2]

a-Va-VEy)({t', b)) > —C’|a|2\/ﬁ7

and that Z € RV*X is the matrix of independent standard Gaussians appearing in the
definition of Y (see the second paragraph in Section 4.1.1). Applying Taylor’s formula as in

Step 1, it is readily verified that for every |h'| < C~!, we have

121

Fy(tn,hy + 1) = Fn(tn,hy) + 1 - VEN(tn, hy) — CII| N

Combining this with (4.5.4), we obtain that, for every |n/| < C71,
/ = = 02 Z]
h'(VFN—VFN)(tN,hN)SQSUp‘FN—FN’-l-C“H 1+—.
D

VN

For some deterministic A € [0, C~!] to be determined, we fix the random matrix

W=\ (VFN — V?N) (tN,hN)
‘ (VFN — VFN) (tN,hN)’
so that
_ _ Z|
MVFEN — VFEn|(tn,hy) < 2sup |Fy — F +C)\2<1+|>.
|\VEN N|(tn, hy) Dp! N Nl N
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Squaring this expression and taking the expectation yields

NE [|[VEy — VEN(tn, hy)] < 8E [sup |Fn — FN|2] + CM\'E
D

(-5)

Since E[|Z|*] = NK, choosing A* = E [supp, |Fy — Fn|?] yields (4.5.6).

Step 3. Recall that we assume that E [supp |Fy — Fn|?] tends to zero as N tends to infinity.
By Proposition 4.5.2; (4.5.4), and (4.5.6), we obtain that

lim (0,Fn —H(VFy)) (tn, hy) = 0.

N—o0

Using also (4.5.3) and the fact that the function ¢ is smooth, this yields (4.5.2), and thus

completes the proof. O

4.5.2. Application

We study the model considered in [85], which corresponds to (4.1.1) with L = 1, p € N,
and A € RE?*! given by A; =11if j; = jo = -+ = jp and zero otherwise. Here, we used
the multi-index notation j = (ji1,72,...,4p) € {1,..., K}P. Explicitly, this model can be

expressed as

K p
[ 2t .
Y; - NP—l Z rllXimj + Wi7 1€ {17 e 7N}p7 (457>

Jj=1

where X € RV*K i assumed to have i.i.d. row vectors with norms bounded by v/K almost
surely. Hence, the condition in (4.1.2) is satisfied. For even p, the limit of the free energy
associated with this model has been proved to satisfy a variational formula in [85]. When p
is odd, the situation is more difficult; in [39], it was only proven that the limit is bounded
above by a variational formula. Here, we will apply Theorem 4.1.1 to treat both even and

odd values of p.
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Recall the definition of H in (4.1.4). In this case, the nonlinearity H is given by
K

H@)= > (aew)?. Vgesk. (4.5.8)
k=1

Since row vectors of X are ii.d., we have Fy(0,-) = F1(0,-) for all N € N. Setting

¥ := F1(0,) and using the formula for Fy in (4.1.3), we have

w(h) = Elog |

RIXK

exp <2h (&TX1) +V2h- (2TZ) — h- (a:Tx)>dP($), Vh € S¥,

(4.5.9)

where P is the law of the first row vector X1 . = (X1 x)1<k<k. By Lemma 4.2.1, ¢ is C1. The
concentration condition limy_,o E|| Fn — FNH%oo(D) = 0 for each compact D C [0, 0c0) X Si{

is proved in [39, Lemma C.1|. Hence, the next result follows from Theorem 4.1.1.

Corollary 4.5.3. Under the assumption (4.1.2), in the model described above with p € N,

it holds that, for every (t,h) € [0,00) X Si{,

A}im Fy(t,h) = sup inf {h"-(h—R')+¢(R)+tH(R")},
—00

e WG
for H and v given in (4.5.8) and (4.5.9), respectively.

4.5.3. Simplification of the variational formula

We describe a way of simplifying the formula (4.1.5) under the additional assumption that

the mapping H in (4.1.4) only depends on the diagonal entries of its argument.

We introduce the linear map diag : RX — S¥ defined by diagr = diag(z1,...,rx). Its
adjoint diag* : SX — RX is given by diag*h = (h11,...,hxk) for b € SX. Note that
diag*diag is the identity map on R¥ and diagdiag*h = diag(hi1,. .., hxx) for every h € SK.

The additional assumption on H can be reformulated as

H(q) = H(diagdiag*q), Vg€ Sf. (4.5.10)
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For z,2’ € RX, we write x -2/ = S5 2;a). We set RE = [0,00). Note that diag(R%)

contains exactly the diagonal matrices in Sf . For Fy given in (4.1.3), we want to show

that, under the assumptions of Theorem 4.1.1 and for every ¢t > 0 and x € Rf , we have

lim Fn(t,diagz) = su inf {2" (x —2a') + (diaga’) + tH (diagz”) }. 4.5.11
Jim Fy(t, diagr) b uf o (o —af) o (diga!) +1H (diage”) J. (45.1)
In particular, setting x = 0, we obtain a simpler representation of the limit of the original

free energy FYy.

The proof of this statement can be achieved by working with the following Hamilton—Jacobi

equation:
drg — H(diagVg) =0, on [0,00) x RE. (4.5.12)

The well-posedness of this equation and the representation of the solution by the Hopf for-
mula can be established in a similar way (see [41, Section 2|). A corresponding identification
criterion for solutions, as stated in Proposition 4.4.7, can also be obtained. There, the par-
tial order defining the notion of nondecreasingness, as in (4.2.4) and (4.2.5), is now induced

by the cone ]Rf . Lastly, for any differentiable function ¢ : Slf — R, we can verify that,
Vo8 (z) = diag" Vo(h)|,_gipger 72 € RE,

where (9128 ]Rf — R is given by ¢9%8 = ¢(diag-).

Hence, setting F}j\ifag(t, r) = Fn(t,diagr), and using Proposition 4.5.2 and (4.5.10), we can
see that F(Jj\ifag approximately solves (4.5.12) and that a similar estimate in Proposition 4.5.2
holds for F?\ifag. Then, the same argument as in the proof of Theorem 4.5.1 yields that F?\i,ag
converges to the unique viscosity solution of (4.5.12) with initial condition v (diag-). Due to

the convexity of ¢ (diag- ), the solution admits a representation by the Hopf formula, which

is exactly the right-hand side in (4.5.11).
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As a concrete example inspired by [6], suppose as in the previous subsection that X € RNXK

has i.i.d. row vectors with norm bounded by v/ K, but this time we observe, for each i,j €

{1,...,N} and k € {1,..., K — 1}, the quantity

2t
\/ NXi,ka,k-i-l + Wi ks

where (W j1)ij<N k<rk are independent standard Gaussians, independent of X. This can be

K1)

mapped into our setting by choosingp =2, L=K -1, A € RE*x( given by Ay, =1

if r =k =1—1 and zero otherwise. With this choice of A, the function H takes the form

K-1

H(g) = ) qrk gre1 41 = H(diagdiag™q), Vg e SE.
k=1

We thus obtain that the limit free energy Fy (t) = Fn(t,0) is given by

K-1

lim Fy(t) = sup inf pde8 () —x -2l +t Z TRy o - (4.5.13)
N—o0 m’GRf xeRJr 1

Moreover, under the additional assumption that the coordinates of the vector (Xi k)i1<k<i

are independent, the initial condition 1928 can be decomposed into a sum of functions of

one variable: there exist convex and nondecreasing functions 1,...,%¥x : Ry — R such

that for every « € R,

=

Y o¥w) =Y i)

k=1
(Cases in which different layers have different lengths, say for instance X; , = 0 for every ¢ >
aiN for some fixed oy € (0, 1), can be covered as well, and this translates into multiplying
each 1y, by a suitable scalar.) Under these conditions, the formula (4.5.13) can be further sim-
plified, as we now explain. For each z € RX | we denote by z, = (21,3, ... s T2 (K—1)/2]+1)

and z. = (r2,24,... ,J:Q.LK/QJ) respectively the odd and even coordinates of the vector z,
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and for each k € {1,..., K} and y > 0, we set

Vi (y) = sup(zy — P (x)).

x>0

By [105, Theorem 12.4|, we have that 1;* = 1. Moreover, we can write

K K-1
i;lf{zwk(xk)—x-x'+t2x§€x§f+l} = Z (wk(ajk —."L‘kIL‘k Z Yr(x
k=1 k=1 k odd k even
K-1

!
+1t Z TETri1,
k=1

and observe that the optimization problems over z, and 2/, are separated. We can thus

interchange sup,, and inf, to get that

K-1
i F(t) = sup inf sup { D (Wklwr) —aay) — D vi(ah) +t > xﬁcxﬁcﬂ}
k=1

x! Zo x!
To e k odd k even

= supinf { Z (Vr(zr) — zpal,) + Z Uk (tag_q + ta:}cﬂ)} ,

T
o ¢ k odd k even

using that ¢;* = 3, and with the understanding that xx; = 0. Similar formulas were

first obtained in [6].
4.6. On convex viscosity solutions

The goal of this section is to demonstrate the workings of a convenient uniqueness criterion
for Hamilton-Jacobi equations, in the simpler context of equations posed on [0, c0) X R,
This criterion states that, if the function under consideration is convezx, then we can assert
that it is the viscosity solution of some Hamilton-Jacobi equation as soon as it satisfies
the equation on a dense subset and the initial condition is of class C'. This criterion is

generalized to equations posed on [0,00) x S¥ in Proposition 4.4.7.

Let H : R? — R be a smooth function. We start by recalling the notion of viscosity solutions
to

OWf—H(Vf)=0  on [0,00) x R (4.6.1)
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Definition 4.6.1.

1. A continuous function f : [0,00) x R? — R is a viscosity subsolution to (4.2.3) if for
every (t,h) € (0,00) x R? and every smooth ¢ : (0,00) x R? — R such that f — ¢ has

a local maximum at (¢, h), we have

(0ep — H(V))(t, h) < 0.

2. A continuous function f : [0,00) x R? — R is a viscosity supersolution to (4.2.3) if for
every (t,h) € (0,00) x R? and every smooth ¢ : (0,00) x R? — R such that f — ¢ has

a local minimum at (¢, h), we have

(Oep — H(V))(t, h) > 0.

3. A continuous function f : [0,00) x R? — R is a viscosity solution to (4.2.3) if f is both

a viscosity subsolution and supersolution.
The main goal of this section is to prove the following proposition.

Proposition 4.6.2. Let f : [0,00) x RY — R be Lipschitz and convex. Suppose that f
satisfies (4.6.1) on a dense subset of (0,00) x R, and that the initial condition f(0,-) is C*.

Under these conditions, the function f is a viscosity solution to (4.6.1) with initial condition

f(ov')'

Remark 4.6.3. In Proposition 4.6.2, the assumption that f(0,-) be C! is necessary. Indeed,

notice for instance that

f(t,z) = |z[ -t

is convex and satisfies

af + V=0
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at every point of differentiability of f. However, since the null function is clearly a solution,
the statement that f is also a solution would contradict the maximum principle. Instead,
the viscosity solution to this equation with same initial condition is given by the Hopf-Lax

formula

2
Iy—:c|2>_ BE i e < 2,
At -

(t.2) > inf (\y| ¥
ve |z| — ¢ if |z| > 2t.

Proof of Proposition 4.6.2. Recall the definition of subdifferential in (4.3.1). We decompose

the proof into three steps.

Step 1. We check that f must be a subsolution to (4.6.1). Let ¢ € C°°((0,00) x R%), and

(t,x) € (0,00) x R? be such that f — ¢ has a local maximum at (¢, 2). We then have
ft2) = ft, ) < (' = 8)op(t,x) + (2 — ) - Vo(t, ) + o(|t' —t| + [2" — zI).

This along with the convexity of f implies that the subdifferential df(t,z) is the single-
ton {(0:¢,Vo)(t,x)}, and thus that f is differentiable at (¢,z), with (0.f,Vf)(t,z) =

(0, V)(t, x). Using similar arguments as in Remark 4.3.10, we deduce that

(0r¢ —H(V)) (t,x) = (O.f —H(V)) (t,2) =0,

as desired.

Step 2. In the next two steps, we show that f is a supersolution to (4.6.1). Let (a,p) €

Of(t,z). In view of Lemma 4.3.3, it is sufficient to show that
a—H(p) > 0. (4.6.2)
Since (a, p) € df(t,r) and f is convex, we have for every (t/,z') € [0,00) x R? that

f(t/,.%") > f(t,l') + (t/ - t)a+ (.’L'/ - x) D
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In particular, the mapping y — f(0,y)—y-p is bounded from below. In this step, we assume

that the infimum

ylEand (f(0,y) —y-p) (4.6.3)

is achieved, and we denote by y a point realizing the infimum. By arguing as in Re-
mark 4.3.10, we see that there exists (b,p") € 9f(0,y) such that b — H(p’) = 0. Since f(0,-)
is C! and y realizes (4.6.3), we must have p' = 9, f(0,y) = p, and thus (b, p) € 9f(0,y) with
b—H(p) =0.

Due to the convexity of f, the mapping g : A — f (A(¢t,z) + (1 — A)(0,y)) is convex over the

interval [0, 1]. Since (b,p) € 9f(0,y), the right derivative of g at 0 satisfies

g (0)=bt+p-(z—vy).

Due to (a,p) € 0f(t,x), the left derivative at 1 satisfies

g () <at+p-(z—y).

By convexity of g, we must have ¢/, (0) < ¢/_(1), and thus a > b. Recalling that b—H(p) = 0,

we obtain (4.6.2), as desired.

Step 3. To conclude, there remains to consider the case when the infimum in (4.6.3) is not

achieved. For every € > 0, we consider

inf (f(0,y) +elyl—y-p).
yER4

This infimum is achieved at a point y. € R%, and

IVf(0,5e) —pl <e. (4.6.4)
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Moreover,

limsup inf (f(0,y)+ely|—y-p)= inf (f(0,y) —y-p),
e—0 yeRd yER4

and

£0,92) —ye - p > inf (£(0,y) —y-p),
yeR

so that

lim e|y.| = 0. (4.6.5)
e—0

Following the argument in Step 2, we can find b, € R such that (bs, Vf(0,3:)) € 9f(0,y:)

and b. — H(Vf(0,y:)) = 0. Continuing as in Step 2, we then obtain that
bt +V(0,9:) - (x —y:) < at+p- (x — ye).
Using (4.6.4) and (4.6.5), we deduce that, as ¢ tends to zero,
a > b + o(1).

Recalling that b. — H(V f(0,y:)) = 0, and using again (4.6.4) and the continuity of H, we
obtain (4.6.2). O
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CHAPTER 5

LIMITING FREE ENERGY OF MULTI-LAYER GENERALIZED LINEAR MODELS

This chapter is essentially borrowed from [40], joint with Hong-Bin Chen.

Abstract. We compute the high-dimensional limit of the free energy associated with a multi-
layer generalized linear model. Under certain technical assumptions, we identify the limit
in terms of a variational formula. The approach is to first show that the limit is a solution
to a Hamilton—Jacobi equation whose initial condition is related to the limiting free energy

of a model with one fewer layer. Then, we conclude by an iteration.
5.1. Introduction
5.1.1. Setting

Let us describe the model. For n € N, let X be an R"-valued random vector with distribution
Px, serving as the original signal. Fix any L € N as the number of layers. For [ €
{0,1,2,...,L}, let n; = ny(n) € N be the dimension of the signal at the I-th layer. We

assume that ng = n and

lim 2 = >0, (5.1.1)

n—oo N
for some «; > 0. In particular, we have that ag = 1.
For each | € {1,2,..., L}, let
e ¢;: R x R¥ — R be a measurable function for some fixed k; € N (independent of n);

° (A(-l)

j )i<j<n, be a finite sequence of R¥-valued random vectors, all together with law

Pyw;

e &1 be an n; X nj—1 random matrix with law Py .
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For " > [, we also write

Al — <A(m)> ol — (cp(m)) (5.1.2)

) 9
I<mgl N

and denote their laws by P uiy and Py, respectively.

Starting with X(©) = X we iteratively define, for each I € {1,...,L},

ni—1
1 1 Z 1) v (1— l ,
k=1

Viewing the action of ¢; component-wise, we also write

1
X0 — (mlq,a)Xa—n’ A(l)) . (5.1.3)

For 8 > 0, the observable is given by
ve=/BXxH 4z (5.1.4)

where Z is an ny-dimensional standard Gaussian vector. The inference task is to recover X

based on the knowledge of Y°, (¢;)1<1<1, and L1,

Using (5.1.3) iteratively, we can find a deterministic function (71 such that XU —

Cr1(X, AL @ILL=1)  We introduce the shorthand notation:

L1
2D = ¢y (Cv,a,@[l’Liu) , VzeR" a= (a(l)v e v“(L71)> < H R (5.1.5)
I=1

(L-1)

We emphasize that x is random due to the presence of @11 and also depends on the

input = and a. By Bayes’ rule, the law of (X, AlL~1)) conditioned on (Y°, -2 is given
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1 1
Y° L) (-1 \qp AP
ZE,L,nPB L’”( N x (2)dPyn.0-1)(a)
where
Po,Ln(ylz) = /e_éy_‘/B“OL(Z7“<L))|2dPA<L) (a(L)> , Vy,z € R, (5.1.6)

- 1(I)(L)l'(L_l))dpx(l')dPA[LL_u (a). (5.1.7)

The normalizing factor Zg’ Ln 18 called the partition function. The central object to study

is the free energy

o 1 o
Fgin= 108250 (5.1.8)

To compute the limit of EFE Lo 88 T — 00, We make the following assumptions:

(H1) X has i.i.d. entries, and the law of X7 is supported on [—1, 1], independent of n and

satisfies that Xy = 0 with positive probability;

(H2) for every I € {1,..., L}, ¢; is bounded, not identically zero, and continuously differ-

entiable with bounded derivatives up to the 2'-th order;

(H3) for every | € {1,...,L}, ®® consists of independent standard Gaussian entries, and
(AE-Z))lgjgnl consists of i.i.d. R¥-valued random vectors with a fixed law and bounded

a.s.

To state the main result, we need more definitions. Throughout this work, we set

R, = [0, ). (5.1.9)
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For every [ € {0,1,...,L} and n € N, define
1 2
pin = —E ‘X(l)‘ . (5.1.10)
ng
Due to Lemma 5.5.1 to be proved later, the following limit exists
lim p,, = o (5.1.11)
n—o0

for some p; > 0 with explicit expression. Let Py, be the law of X; and Z] be a standard

Gaussian random variable. Set

Uo(r) = ]Elog/ e tViZim =gl P qpy (1), Wr € Ry (5.1.12)
R

For every l € {1,...,L}, p > 0 and h = (hy, ha) € [0, p] x Ry, define U;(h; p) to be

Elog/ﬁhg,l (\/h:sol (\/EW +p— h1W1,A§Z)> + Z1‘\/HW +p— hlw) dPw, (w),

(5.1.13)
where Vi, W1, Z1 are independent standard Gaussian random variables and
~ ()
Proi(ylz) = / e~ alv—Vhza(ay Fap (agl)> , Vy,z€R. (5.1.14)
RF1 1

Now, we are ready to state the main result.

Theorem 5.1.1. Under assumptions (H1)-(H3), it holds that

lim EFE,L,n =supinf sup inf ---sup H(lf) oL (5, y(l)v T a@/(L)§ 2(1)7 s aZ(L>> (5.1.15)

n—00 (L) y(B) y(z-1) y(L—1) (1) y

where sup, ) is taken over 20 e Ry x [0, %], inf, ) is taken over yO € [0, p_1] xRy,
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and

oL (5;y(1>7... D)L ,Z<L>> (5.1.16)

=ap¥p (ZJEL)aﬁ;PL—l) Z art (yl ¥ );pz—1) + %o (yél)>

L L
+ <—y() 20 + o —— {2 ) + Z . (1 + Pl—lyél)) :

=1 =2

We briefly comment on hypotheses (H1)-(H3).

The nonzero assumptions in (H1) and (H2) are reasonable in the setting of statistical in-
ference where only non-constant signals are interesting. They are also purely technical in
order to ensure that p; in (5.1.11) is nonzero and thus some domain (defined in (5.2.1)) we
work on is non-degenerate. In general, one can always consider a reduced model obtained
from the original one by starting from the first layer after which all layers including itself
contain nonzero signals. Alternatively, small constants can be added to fulfill the nonzero

assumptions, and the effect of these constants are traceable through explicit formulae.

The assumption that X has i.i.d. entries in (H1) and the assumption on the differentiability
of ¢; in (H2) are mainly used in deriving concentration results in Section 5.5. We believe
that results similar to Theorem 5.1.1 are still valid under different or weaker assumptions.
For instance, when X is uniformly distributed on the centered n-sphere with radius /n,
concentration results needed here are expected to hold. The high order of differentiability
in (H2) is needed in an iterative application of the Gaussian integration by parts due to the
presence of multiple layers. We remark that in the 2-layer setting, a careful treatment only
needs ¢ and @9 to be twice continuously differentiable with bounded derivatives, as done
in [65], while (H2) requires 2 to be continuously differentiable up to the fourth order. Since

we are considering general cases, we resort to (H2) for convenience.

On the other hand, many results in this work do not require assumptions as strong as (H1)
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and (H2). Hence, whenever possible, we will instead assume the following, together with

(H3):
(hl) for every n € N, | X| < /n a.s.;

(h2) for every I € {1,...,L}, ¢; is bounded and twice continuously differentiable with

bounded derivatives.
5.1.2. Related works

Generalized linear models are relevant in many fields including signal processing, statistical
learning, and neural networks. Its multi-layer setup models a type of feed-forward neural
network, which captures some of the key features of deep learning. For more details on
these connections, we refer to [11, 65] and references therein. Recent progress in rigorous
studies of information-theoretical aspects of these models have been made using methods
originated from statistical physics. The mutual information of a model, a key quantity in
these investigations, is related to the free energy via a simple additive relation. Therefore,
the high-dimensional limit of the free energy is the central object in these approaches.
Variational formulae for the free energy have been rigorously proven in the one-layer setting

in [11] and the two-layer setting in [65].

The two works just mentioned above employed the powerful adaptive interpolation method
introduced in [12, 13|, which can be seen as an evolution from the classic interpolation
method in statistical physics. This new method has proven to be successful and versatile in

treating many different models and settings [52, 14, 86, 85, 103].

The approach adopted in this work is based on identifying an enriched version of the original
free energy with a solution to a certain Hamilton—Jacobi equation determined by the model.
This approach was first introduced in |95, 94] and has been applied also to the study of spin
glass models [97, 98, 96, 93]. Similar considerations in physics also appeared in [69, 71, 22,
21].

In treating statistical inference problems, two notions of solutions have been considered. One
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is the viscosity solution used in [95, 39, 37|, and the other is the weak solution in [94, 36, 39].
In this paper, we take the latter approach due to the convenience and simplicity in dealing

with boundary conditions under the notion of weak solutions.

Compared with [94, 36, 39], the novelty here lies in an iterative argument to treat the multi-
layer setting. Let us explain this briefly. After enriching the L-layer model and verifying
some concentration results, we can show that the corresponding free energy converges to the
unique solution of a certain Hamilton—Jacobi equation whose initial condition is determined
by the limiting free energy associated with the (L — 1)-layer model. Then, the desired result
naturally follows from an iteration of this result applied to each layer. Apart from this,
different from [94, 36, 39|, the Hamilton—Jacobi equation considered here is defined over a
domain where the range of spacial variables depends on time. Accordingly, treatments used

previously have to be adjusted.

The rest of the paper is organized as follows. In Section 5.2, we enrich the model and derive
that the enriched free energy satisfies an approximate Hamilton—Jacobi equation. We also
record some basic properties of the derivatives of the free energy. In Section 5.3, we give
the definition of weak solutions and prove the existence and uniqueness. In particular, the
existence is furnished by a variational formula known as the Hopf formula. Using these,
we prove the key convergence result of the enriched free energy in Section 5.4, which is
used in an iterative argument to prove Theorem 5.1.1. Lastly, we collect auxiliary results in
Section 5.5, including the convergence in (5.1.11), concentration of the norm of X% and

concentration of the free energy.
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5.2. Approximate Hamilton—Jacobi equations

In this section, we enrich the model and derive that the associated free energy satisfies an

approximate Hamilton—Jacobi equation, which is stated in Proposition 5.2.1. We also record
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basic properties of derivatives of the free energy in Lemma 5.2.2.
5.2.1. Enrichment

Recall the notation Ry in (5.1.9) and p;,, defined in (5.1.10). For p > 0, define

Q= {(t,h1,hg) €RY :hy < p(1 —1t), t < 1} (5.2.1)
where there is no restriction on hy. For (t,h) € Q,, , , define
t
S=/- B X T o /1 V + \/pr1m — L1t — W, (5.2.2)
L1
t
s=4/- D =Y o WV 4 \pr—1m — pr—1al — hiw, (5.2.3)
L—1
Y = /Ber (5,40) + 7, (5.2.4)
Y = /ho XY 4 7/, (5.2.5)

where w € R, (L= g given in (5.1.5), V, W are independent npy-dimensional standard
Gaussian vectors, Z is given in (5.1.4), and Z’ is an ny_;-dimensional standard Gaussian

vector. Due to (5.1.5) and (5.2.3), s depends on (z,w, a, ®HH V),

Recall Pg 1., given in (5.1.6). We introduce the following Hamiltonian

2

h
Hg [ n(z,w,a) =10g Pg 1, (Y]s) + VhaY' - g — ?2 x(L_l)) , (5.2.6)

where z € R”, w € R"., q and z(“~1 are given in (5.1.5). Define the associated partition

function
2o = / efl.L.n @00 q Py (2)d Py (w)d Py, -1 () (5.2.7)

and consider the corresponding free energy
1
Fon=—logZ51n (5.2.8)
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and FB’L,H =EFg 1, where E is over YV, Y", V, PlLL] (recall that 2#(E=1 depends on ®1L—1

as in (5.1.5)). The domain of Fj p,, is §2 defined in (5.2.1).

PL—1,n

We often make the dependence of Fg 1, on (t,h) € Q,, ,  explicit, and write Fj 1, (t, h).
Comparing with the definitions of Z3 ;  in (5.1.7) and F§ ; , in (5.1.8), we can verify that
2510 = ZpLn(1,0) and Fg ;= Fp1,(1,0) evaluated at ¢ = 1,h = 0. Hence, we view

Fg 1., as the free energy associated with an enriched model. Note that the following holds

EFS 10 =Fp.Ln(1,0). (5.2.9)

Throughout this work, we interpret ¢ as the “temporal variable” and h = (hi, h2) as the
“spacial variable”. Moreover, we use the short hand notation d; = 0Oy, for i« = 1,2, and

denote by V = (91, 02) the gradient operator. Define Hy, : R? — R by

2

Hr(p) = “Pip2- (5.2.10)

Qg
The main goal is to prove the following proposition.

Proposition 5.2.1. Assume (h1), (h2) and (H3) for some L € N. For every § > 0 and
every n € N, the function (t,h) — Fg 1n(t, h) is differentiable in Q,, _,  \{h1 = pr_1,(1—
t)} and there is a constant C such that, for all (t,h) € Qp,_,  \{h1 = pr_1a(1 —1)},

1
2

_ _ 1 _
\6tF,3,L,n —H; (VFB,L,n)} < C<n6§F/3,L7n + E(aQFﬂ7L7n — 82F,3,L,n)2> + ap,

where

=
an <C|nE| —

nr—1

N 1
- 2\ 2 nr—
— pL—l,TL) (E (Fﬁ,L,TL - F,B,LJL) )2 + C ’ L;/l 1 — OCL—l .

(5.2.11)
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This suggests that the limiting Hamilton—-Jacobi equation should be
of —HL(Vf) =0, (5.2.12)

which will be studied in the next section.
5.2.2. Proof of Proposition 5.2.1

Recall P 1, , defined in (5.1.6). For simplicity of notation, we write H = Hg 1., Z = Z3 [ n,
F = Fgrn, P="Pgrnand p = pr_1,. For any measurable function g : R" x R™ X

(T R k) — R, we define

1
<g(l’, w, CL)> = g /g(l‘v w, a’)eH(x’wﬂ)dPX(:’U)dPW(w)dPA[LL*l] (a’)

In other words, (-) is the Gibbs measure with Hamiltonian H and reference measure

dPX (l‘)dPW (’U})dPA[l,L—l] (a) .
Preliminaries

We will repeatedly use two basic tools in our computations: the Gaussian integration by
parts and the Nishimori identity. The simplest form of the Gaussian integration by parts
can be stated as follows. For a standard Gaussian random variable U and a differentiable

function g : R — R satisfying E|¢'(U)| < oo, it holds that
E[Ug(U)] = Eg'(U),

which can be seen easily by rewriting the expectation as an integration with respect to the
Gaussian density and performing the classic integration by parts. For the purpose of this

work, a straightforward extension of the above to standard Gaussian vectors is sufficient.

Using the definition of H and Bayes’ rule, we can see that the law of X, W, AlL=1) condi-
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tioned on Y,Y”, V, ®LL) is given exactly by the Gibbs measure (-), namely,
(9 (w0, ¥" V,800)) =B [g (x, 0, 40470, v,y v, 6l8) |y, v/, v i)

for suitable measurable function g. The above immediately implies the Nishimori identity

that, for suitable g,
E <g (w w,a,Y,Y',V, <I>“’L])> —Eyg (X, w, ALy Y v, qﬂm) .

Independent copies of (z,w,a) with respect to the Gibbs measure are called replicas and
often denoted as (z/,w’,d’), (2", w”,a"), etc. When multiple replicas are present, the above
identity can be extended in a straightforward way allowing us to replace one set of the

replicas by (X, W, A[LL_”), and vice versa. For instance, we have that

E <g (x,w,a,ac’,w', a,Y,Y',V, <I>[1’L])> =E <g (:U,w, a, X, W, A[LL_”,Y, YV, <I>[1’L]>> .

Computation of 0,F

Recall H(z,w,a) in (5.2.6) and let us also write
’ 1 (L-1) ha (L—1) 2
H(z,w,aiy.y) = log Plyls) + Vhay' -al"™) = 22 |27

Hence, we have that H(z,w,a) = H(z,w,a;Y,Y"), and for each fixed z,w,y,y’, the only

randomness of H(x,w,a;y,y’) comes from ®LH (in s and z(5~Y) and V (in s).

We can verify that the conditioned law of (V,Y”) given (®1%1, V) is given by

1 N
((2 )LL /EH($7w7a7y7y)dPX($)dPW(w)dPA[1,L—1] (a)) dydy/, (5.2.13)
T) 2
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where we recall that W is Gaussian. Recall the partition function (5.2.7) and we introduce
2(.y/) = [ MNPy (@)d P (W) Py @)

Then, note that Z = Z(Y,Y’) and the only randomness of Z(y,/) is from ®X and V.

We introduce the shorthand notation

~ 1 . - -
dp,, = Wdy dy' dPx (z) APy (w) dPyp.,.-1) (@) (5.2.14)
TT) 2

which is a measure that integrates y,y’ and all variables with tildes 7, w, a. Using these and

(5.2.8), we can write that

— 1 ey ~
F = E[/eH(x’w’a’y’y)log Z(y,y)dP,,, (5.2.15)
n

where the expectation E is taken over the remaining randomness, namely, ®12 and V.
To lighten the notation further, we write H(~;y,y') = H(Z,w,a;y,y’) and H(—y,y) =

H(z,w,a;y,y").

Due to the dependence of H(Z;y,y’) and Z(y,y’) on t, differentiating F as in (5.2.15) with

respect to t yields that

_ 1 ~ ~ ~yy
OF = nE[/ AP, (9 (i) )9 log 2 (y, )

1
+ ﬁE [(&H(; v, 9 ‘y:y, y’:Y’>:|

=1, 4 II;. (5.2.16)

Here on the second line, the Gibbs measure is the one associated with the Hamiltonian

(5.2.6) and thus only integrates over the variables =, w, a. To evaluate the above, we define

uy(x) = log P(ylx) (5.2.17)
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and denote by Vu, and Au, the gradient and Laplacian of u, with differentiation in z,

respectively. Then, using (5.2.3) and (5.2.6), we can compute that

OH (= y,y') = (9rs) - Vuy(s)

1 1
_1 B(L) p(L—1) _ P ) -V (s). 5.2.18
2<m . T (5:2.18)

We write § and 21 to be s and 2(E=1) | respectively, with z,w,a therein replaced by

T,w,a. Hence, we have that I; is equal to

1 ~ 1 N
—E| [ dP, ., pL)zL=1) _ p @) - Vuy (3)eG¥Y) og Z(y, )|
277/ |:/ Y,y ( tanl ,0(1 — t) — hl y(N) g (y Yy )

Recall that § and H(T;y,y’) depend on ®) and w, and that Z(y,y’) depends on &)
Since w under d]gyvy/ and ®() under E are standard Gaussian vectors, we can obtain by

performing the Gaussian integration by parts with one @ and ®() that

1 -
I; = a;,/n + %E |:Z(y7y,) / dPy,y/dPX (.%')dPW('LU)dPA[l,L—l] (a)
1 ~ _ _ ~. ! . !
(on(L 1) L 1)) (Vaty (3) - Vaay (s)) 90 H )}
.. L vy wn\(1
=a, + -E X -z —Vuy (S) - Vuy(s) |) (5.2.19)
2 nr_1 n
where
1 P L |~z _ 2\ Hyy") !
a,=—E| [ dP,, T p ) (Auy(5) + [Vuy(3)])e log Z(y,y")
2n ’ nr—1
1 1 2
— R K ‘X(L‘l)‘ - p> (Auy (S) + [Vuy (S)|) log Z(Y, Y/)] . (5.2.20)
2n nr_1

Here, in deriving (5.2.19) and (5.2.20), we used (5.2.14) and the observation that replacing

Z,w,a by X, W, AILL=1 in 71D 5 vields X(E—Y S, We claim that II; = 0 and postpone

201



its proof. Then, combining the above gives that

OF = 1E<< ! x=D. J:(L_l)) <1VUY(S) : Vuy(5)>> + ap,.
n

2

Computation of 0, F

Similarly, by (5.2.15), we have that

— 1 ~ - o
OF = nE[/dPy,y' <31H(*;y,y/))€H( w9 log Z(y,y)
1
+ EE [<31H(§ Y, y,) ‘y:y7 y/y/>:|

=1Ip, +1I,.
To compute Ip,, we start with

NH(=y,y") = (815) - Vuy(s)
1

1 1

which gives that

1 ~ 1 1
Iy, = E[/dP /< V-
) P\ Vhy V(L —1t) — Iy
Using Gaussian integration by parts on V and w, we obtain that

1
I
n

1 1 ~
—l—%]E |: /dPyyy/dPX (x)dPW (w)dPA[1,L—1] (a)

Z(y,v')

Vi (3) - vu@xs)emﬂy’wem;y’w}

— LB (Vuy () - Vuy (s) .

2n
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(5.2.21)

(5.2.22)

(5.2.23)

fﬁ) -V (3)e T8 log Z(y, y')} :



Here, in the last equality, we used the same argument as in obtaining (5.2.19). Again, we

claim that II;, = 0 and postpone its proof. This together with the above yields that

OF = %E <iVUy(S) : VUY(S)> : (5.2.24)

Computation of 6, F

Using (5.2.6), (5.2.7) and (5.2.8), we can compute that

1 1 1
F=-(0H = — (ox (L) (L) 2 (L= (L) (D=1
o)) n(@g (x,w,a)) 2n< x + NG x x x )
(5.2.25)
Using Gaussian integration by parts on Z’ and the Nishimori identity, we get that
OF = LE< XD (-1 4 (x@—l) _ $/<L—1>> R (A B o)
2n
1
— —R(xT-1) (L1 2.2
S E(X () (D), (52.26)

(L-1)

where 2/ is a replica of z(X~1) obtained by replacing z, a in (5.1.5) by replicas 2/, @
Deriving the equation

By (5.2.10), (5.2.24) and (5.2.26), we have

HL(VF) %E <1X<L—1> . x(L—1>> E <iV“Y(S) : Vuy(s)>'

nr—
oy _1n

:'1

R HL(VF)].

By (5.2.46) and (5.2.47) both proved later and assumption (5.1.1), the above is bounded by

C|™= — az,_1|. This along with (5.2.21) implies that

nrp—1
— oy .
n

OF ~ HL(VF)| < 5v/bu + 1| +C |
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where

1
by, = Varg.y [ X -x(L_l)] Varg,. [nVuY(S) - Vuy(s)

nr—1

with variances taken with respect to E (-). Then, the desired results follows, once we prove

that
(L—l)‘Q 2\ 2 1
' < (X0 E(F-F)’)’ 2.2
|an|0n<m_1 p) (B(F-7))" (5:2.27)
1
Varg,. |:nVUY(S) : VuY(s)] < C, (5.2.28)
- _
Varg, . [nL 1X<L—1> -x(L_l):| <C <n822F+IE(62F—82F)2). (5.2.29)

To complete the proof, it remains to verify that II; = II;, = 0 and prove the above

assertions.
Evaluating II; and IIj,

Recall the definition of II; in (5.2.16). By the Nishimori identity, we have that
y=Y, y’=Y’} .

1 1 .
I = B (0H (2,0, ;9,4 )ly=v,y=y') = ~E [atH <X7 W, ALE ”””y/) ‘

Using (5.2.18) and the conditional law of (Y,Y”) in (5.2.13) together with the notation d]5y7y/

given in (5.2.14), we obtain that

1
II;, = —FE
2n

1 - P
o) x (=1 _ W | - Vuy (S
<Vmﬂ—1 p(l—1) =M wr (5)

~ ~uy 1 (T — P ~
dp, e y) [ —— ezl _ w | - Vuy(s
/ v (\/tnL—l p(l—t)—hy (%)

~ s 1 _n?
/dPy’y/eH( vy') < )w(L 1)‘ _p> (Auy(§)+ ’Vuy(g)‘Q)

1
= —F
2n

1
= —FE
2n nr—1

where in the third equality we used the Gaussian integration by parts on ®&) and @ (recall

that under d]5y7y/, w is a standard Gaussian vector).
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Due to the definition of u, in (5.2.17), we can compute that

AP(y|s)

2 _

(5.2.30)

where we recall that all derivatives are carried out in the second argument. Hence, we get

that

_ 1 (L-1)|? APY[S)| (1)
Ht_ZnEKnL I‘X ‘ p>E[mX ), s (5.2.31)

In view of the definition of Y in (5.2.4) and the formula for P in (5.1.6), we can see that,
conditioned on X(Z~1 S the law of Y has a Lebesgue density given by (QW)_HTLP(MS),

namely, for any bounded measurable function g,

E [g (Y,X<L—1>,S) ‘X@—U,s} _ 1 / g (y,X<L—1>,S> PUIS)dy.  (5.2.32)

Let us write
nr,
PylS) =D P(ylS) (5.2.33)
j=1
where again the derivatives are in the second argument. We can compute that

273(11\5) = /I‘j (yj,Sj,a§L)> e_%‘y_‘/B‘pL(S’“@))PdPA(L) <a(L)) (5.2.34)

with

0y (v S50”) = 6 ((yg - \/@j)z - 1> () + VB (v - VBes) ¢ (5:235)

where we used the shorthand notation ¢; = @L(Sj,ag.L)), o = @’L(Sj,ag.L)), and ¢} =

@Z(Sj,ag.L)). Recall that ¢; acts component-wise on (S,a"), namely, ¢7(S,aP)) =

(er(S;, a§L)))1<j<nL. Using this and the assumption that (A(»L)

7 N<jgny, are iid. as in (H3),
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we have that

L)\ —1Lljy.— S a2 L
8?73@15) B fFj (yj,Sj,a§ ))6 51¥i—VBer(Sj.a; )| dPA§L> <a§ ))

- (5.2.36)
P(ylS) fe—%\yj—x/BwL(Swg-L))PdpA;L) (a§“>
Using this, (5.2.34) and (5.2.35), we can see that
1 92P(y|S)
7 P(y|S)dy = 0, 5.2.37
@2r)e ) PlS) 15) ( )
1 92P(y|S) OFP(y|S
EP(15) 4Pl )P(y|S)dy =0, i#j (5.2.38)

@2r) % ) PEIS) PylS)
The second equation will be used later. Now, by (5.2.32) and (5.2.37), we have that

2
P2P(Y|S)

=0, Vj 1,...
P(Y|S> ) J G{ ) 7nL}7

‘X(L_l), S

which together with (5.2.31) implies that II; = 0.

It remains to show II;, = 0. Recall the definition of I, in (5.2.22). The Nishimori identity

gives that

1
1T, = ~E [&H (X,W,A“’L’”;y,y’) ‘ . Y(] :
Yy=r,y=

Using (5.2.23) and a similar argument used above, we have that

1
I1,, =

2 P (-

- %E {/ dﬁy’y/ (1 1) (Auy(3) + |Vuy(§)|2 )eH(~;y,y’)] —0

where the second equality follows from the Gaussian integration by parts applied to V and
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Proof of (5.2.27)

Using (5.2.8) and a computation similar to (5.2.30), we rewrite a), in (5.2.20) as

b o) S0

Since II; = 0 as shown above, using the formula (5.2.31), we then have

2| b0 S e

By the Cauchy—Schwarz inequality,

|ay| < % (E <nL11 ’X(L*”’Z —p)>2 (W)QDQ (E (F—F)2>%. (5.2.39)

Now, to prove (5.2.27), it suffices to bound the first expectation on the right.

By (5.2.32), we have that

E

XD g

(AP(Y|S))2

P(Y]S) = 1nL_1 / (ND(y,S)Y P(ylS)dy.

(2m) 2 P(ylS)

Recall the notation (5.2.33). Then, (5.2.38) implies that

. <AP(Y|S)>2

P(Y]S)

X(L*l)’ S]

( yw) P(y]S)dy

Using Jensen’s inequality to the integral in (5.2.36), we have that

2PylS)\ .
e (DY) o Lly—vBer(S.a)?
/<P@& RIS < [ (1) (1.5.0")) e 4P, (a)dy.
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By the boundedness assumption in (h2) and the formula for I'; in (5.2.35), we obtain that

. (AP(Y|S)>2

P(YS)

X(Lil)a S] < CnLa

which implies that

[t ()

Inserting this to (5.2.39) yields (5.2.27).

1 2 2
< CniE < ‘X(L_l)‘ — p) .
nr—1

Proof of (5.2.28)

Recalling the definitions of w in (5.2.17) and P in (5.1.6), we can see that

f (Yj ~ o (Sj’a§L)>> o (Sj’a§L)> 67%|Yﬂ/B¢L(s,a(L>)|2dPA<L) (a(L))
[ealV=vBer(sa™Eqp, ) (a1))

Vuy(s) =

1<j<nt

where ¢’ is the derivative with respect to its first argument. Recall the definition of Y in

(5.2.4). Using the boundedness of ¢y, and its derivatives ensured by (h2), we can see that

[Vuy (s)| < C(y/nr + |Z]). (5.2.40)

This computation also gives that

[Vuy ()| < C(v/nL + 12])

which together with (5.2.40) verifies (5.2.28).
Proof of (5.2.29)

For simplicity, we write

X =xE0  g=glD, (5.2.41)
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Using the formula for 02 F in (5.2.25), we can compute that

nO3F = ((02H(w,w,0))”) — (O2H (z,w,0))* - 423 (7' -7) (5.2.42)
2

Inserting (5.2.25) into the second term on the right and applying the Gaussian integration

by parts to the last term, we obtain that

nosF =E((0:H(z,w,a))?) — n’E(0F)* — —E ER + -l (@) 2, (5.2.43)
where, to get the last term, we also invoked the Nishimori identity. We claim that

B((0:H (w,w,0)?) > (B {(@-7P) + B (P) (5.2.44)
and postpone its proof. Now, insert (5.2.44) into (5.2.43) to see that
nd2F > iE (@ 7)?) — n®E(0:F)°.
By (5.2.26), we have that
Varg, . [X(L‘l) -x(L‘l)} =E(@ 7)) — (E(z - 7))’ =E(@ - 7)%) — 4n? (0 F,)>.

Then, (5.2.29) follows from the above two displays along with (5.1.1).

It remains to derive (5.2.44). Using the expression of 2 H in (5.2.25), we have that

2
E ((92H (z,w, a))?) = E<<2\}E T4T X - ;m?) >

= E<4;L2(Z’ I 4 (- X)P + %|f\4 (5.2.45)
1 , _ 1 ;o =
t o2 D@ X) — (2 D - @ X))
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The first term on the last line can be rewritten as

nL—1
VA _ 1 /
]E<4h2(Z z) >_ > 4h2]E<Zij>

1,7=1

If i # j, the Gaussian integration by parts yields that
1
- E (ZiZjziz;) = B (ziT; (T — @) (T; + T; — 2T;)) -
2
If i = j, we have that

1 / 77T — T) (@i + T, — 27)) + —E (22
h2E<Z ZizT;) = B(Zi%(T; — @) (Ti + T; — 2T7) ) + hQ]E (7).

The above three displays combined give that

E<422 (Z/ 7) > — 3E<|E‘4 . 2|§|2(§.§/) — (f-fl)Q +2(f-fl)(f'f”)> + —E<|l‘| >

Other terms can be computed using the Nishimori identity and the Gaussian integration by

parts. We shall omit the details but only list the results:

Inserting these computations into (5.2.45) yields that

1

E((02H (z,w,a))?) = 1E (- 7))+ %E<(f-f/)2 -z 7)(z-7")+ 41h2E<]a:|2> .
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Apply the Cauchy—Schwarz inequality and the symmetry of replicas to see that
N —— Loy 2 Loy 2 SN
E{z -7')(z -7")) < §E<(CL‘ 7)) + §E (z-7"))=E((z-7)%).

These two displays imply (5.2.44).
5.2.3. Estimates of derivatives
We collect useful properties of derivatives of F@ L and Fg o, in the following lemma.

Lemma 5.2.2. Assume (h1), (h2) and (H3) for some L € N. For every f > 0 and

every n € N, there is a constant C' such that the following holds for all n € N and all

(ta h) € Qpol,n \ {hl = pL—l,n(l - t)},

ONnFs 1, €0,C); (5.2.46)

nF s € |0, 7“‘12’%} C [0, C; (5.2.47)
|02Fp. L0 <C <1 + n—%h;512’|> ; (5.2.48)
0i0;Fg 1, >0, Vi,j=12 (5.2.49)
02F5 10 > —Cn 40y 2|2, (5.2.50)

Let us prove these assertions. Again, for simplicity, we write F' = Fj 1, , in the proofs below.
Proof of (5.2.46)

By (5.2.24) and the Nishimori identity, we can see that

— 1
OF =-E [(Vuy (s))|* > 0.

Due to (5.2.40), it is also bounded.
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Proof of (5.2.47)

The first range follows from the formula for 95F in (5.2.26), the definition of pr_;, in
(5.1.10), the Cauchy—Schwarz inequality and the Nishimori identity. The boundedness is

clear from the observation that there is a constant C such that, a.s.,

‘ x (-1

x(L_l)‘ <COvn (5.2.51)

)

which is ensured by (5.1.1), (hl) and (h2).
Proof of (5.2.48)

In view of (5.2.25), this is valid due to (5.2.51).
Proof of (5.2.49)

We first show that 9;0,F > 0. Recall the formula for 61 F in (5.2.24). Let use write
u = Vuy(s) and U = Vuy(S). We also adopt the notation (5.2.41). Then, we compute

that

8182? = (271)71821@ <ﬂ . U>
= (4n)"'E((m-0) ((hg)‘%Z’ T4+2T-X —T-7)

- (ﬂ-U)((hQ)—%Z’ T +27 - X -7 7).
Perform the Gaussian integration by parts on Z’ to get that

NF = (4n) 'E(u-U)(z-7) - 7+27- X —%-7)

—@w-U)((z+7 —22")- 7 +22 - X -7 -7)).
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Using the Nishimori identity to replace U and X by replicas and invoking the symmetry of

replicas, we arrive at

010,F = (20) 'E((@-7)(z-7) — 2w W)@ ") + (@ )@ 7))

= (2n)"'E| (uz") — (@) @)T|* > 0.

The computation for 93F > 0 is exactly the same with U, above replaced by X,7Z. The
verification of 8%? > 0 follows the same procedure but is computationally more involved.

We refer to the proof of |11, Proposition 18 in its supplementary material| for details.
Proof of (5.2.50)

Notice that the first two terms on the right of formula (5.2.42) for 05F form a variance.

Then, the desired lower bound follows from (5.2.51).
5.3. Weak solutions

We consider the equation (6.1.2) over €, defined in (5.2.1) for some p > 0. We give the
definition of weak solutions, and prove the uniqueness and existence of weak solutions.
Uniqueness is ensured by Proposition 5.3.2. Proposition 5.3.3 furnishes the existence part
by providing a variational formula known as the Hopf formula. After stating these, we prove

the two propositions in the ensuing subsections.

We endow measurable subsets of Euclidean spaces with the Lebesgue measure. In what
follows, the phrase “almost everywhere” or “almost every” (a.e.) is understood with respect
to the Lebesgue measure. We denote by int{2, the interior of 2,. In this section, for

convenience, we also denote the spacial variable by x instead of h.

Definition 5.3.1. For L € N and p > 0, a function f : Q, — R is a weak solution of (6.1.2)

if

1. fis Lipschitz, and 01 f > 0, &2 f € [0, 5] a.e;

2. f satisfies (6.1.2) a.e.;
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3. for all (¢,x) € int), and all sufficiently small A > 0, it holds that

f(t,x+ Xe1r + Xe2) + f(t,z) — f(t,z + Xex) — f(t,x + Ae2) = 0. (5.3.1)

By Rademacher’s theorem, condition (1) implies that f is differentiable a.e. Condition (2)
is understood in the sense that, outside a set with zero measure, f is differentiable and its
derivatives satisfy equation (6.1.2). In (3), {e1, e2} is the standard basis for R2. Condition (3)
can be interpreted as a type of partial convexity. For a smooth radial bump function
¢ : R? — R supported on the unit disk satisfying & € [0, 1] and [ € =1, introduce, for every
e€(0,1),

E(x) =e2¢ (e 'r), VaeR%. (5.3.2)
If f is a weak solution, then condition (3) along with the continuity of f implies that
O (f(t,-) x &) (x) = 0, (5.3.3)
for every (t,x) in
Qe = {t € [O, 1- /2)5] , 21 € [e,p(1—1t) —¢], xg € [a,oo)} , (5.3.4)

where the convolution in (5.3.3) is taken in terms of the spacial variable.
The main results of this section are stated below.

Proposition 5.3.2. Given a Lipschitz function i : [0, p] x Ry — R, there is at most one

weak solution f of (6.1.2) satisfying f(0,-) = .

Proposition 5.3.3. Let ¢ : [0,p] — R and 1 : Ry — R be Lipschitz, nondecreasing and
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convex. In addition, suppose that

Doty € [0, O‘LQ‘”’} . ae (5.3.5)
Define 1 [0, 9] x Ry — R by
Y(z) = P1(z1) + Yo(x2), VYV e€l0,p) x Ry. (5.3.6)
Then, the formula
flt,x) = sup inf {z-(z—y)+9¥(y) +tHL(2)}, VY(t,z)eQ, (53.7)

Z€R+X[O,y] y€[0,p] xR4
gives a weak solution of (6.1.2) satisfying f(0,-) = 1.

The expression in (5.3.7) is known as the Hopf formula [15, 84].
5.3.1. Proof of Proposition 5.3.2

The idea of this proof can be seen in |60, Section 3.3.3]. Let f and g be weak solutions to

(6.1.2). Setting w = f — g, we have that
Ow=Hp(Vf)—Hp(Vg)=b-Vuw
where the vector b is given by
b= L(@zg, nf). (5.3.8)
arp—1

For some smooth function ¢ : Ry — Ry to be chosen later, we set v = ¢(w), which, by the

chain rule, satisfies that

0w =">b-Vu. (5.3.9)
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Then, we regularize b by setting b. = b * & for the mollifier & introduced in (5.3.2), where
we understand that the convolution is taken with respect to the spacial variable. On €, .

given in (5.3.4), the equation (5.3.9) can be rewritten as

0w = div(vb:) — vdivb, + (b —b.) - V. (5.3.10)
Before proceeding further, we need to estimate some terms related to this display.
Definition 5.3.1 (3) and (5.3.3) imply that, for all (¢,z) € Q,,

N0z fo(t, ), 0102g:(t,x) =0,
and thus
divb. >0, V(t,z) € Q.. (5.3.11)

By the definitions of f. and g., we also have that

Vel < 1 flluips Vel < llgllLip- (5.3.12)

Let us fix a constant R to satisfy
R >sup {|VHL(p)| : p € R, |p| < [[fllLip + ll9lluin }- (5.3.13)
Fix any 7 > 0 and define, for ¢ € [0,1 — %n],

Dy = In.p(1 =) =] x [n. R(1 — 1], (5.3.14)
D1 = [, p(1— t) — ] x {R(L = 1)},

oy ={p(1 —1t) —n} x[n,R(1—1)].
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Now, we introduce, for ¢t € [0,1 — %77],

J(t):/D v(t, z)dz.

We emphasize that J depends on 7. Choose ¢ < 7 to ensure that Ute[O,l—%n] ({t}xDy) CQpe.

Using (5.3.10) and integration by parts on the integral of div(vb.), we can compute that

d
—J(t) = 8tv—R/ v—p/ v
de Dy Tyt Fo¢
:/ (n-bg—R)v+/ (n-b: —pv
Fl,t F2,t
+ / (0 b)v +/ o(—divb,) + / (b—1b.)- Vo,
8Dt\Ft Dt Dt

where n stands for the outer normal vector. Then, n = (0,1) on I';; and n = (1,0) on
I'y;. We treat the integrals after the second equality individually. Due to (5.3.8), (5.3.12)
and (5.3.13), the first integral is nonpositive. By Definition 5.3.1 (1) and (5.3.8), the second
integral is nonpositive. Note that on dD; \ 'y, we have —n € Ri. By Definition 5.3.1 (1),
we can infer from the definition of b, that b, € Ri on 0D, \ T'y, which implies that the third
integral is nonpositive. In view of (5.3.11), the fourth integral is again nonpositive. The last

one is 0:(1). Therefore, sending ¢ — 0, we conclude that, for ¢ € [0,1 — %n],

d
—J(t) < 0. 3.1
7/ <0 (5.3.15)

Since w(0,z) = f(0,2) = g(0,z) = 0, we have [[w(4, )]0 < 0([fl|Lip + [lgllLip), for each

0 > 0. Let us choose ¢ = ¢; to satisfy

#s(z) =0,  if [2] < (/| fllLip + lgllLip),

ops(z) >0, otherwise.
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Therefore, due to v = ¢s(w), we have that

J(0) = /D v(6, x)dx = i ¢s(w(d,z))dz = 0.

Since J(t) is nonnegative, (5.3.15) implies that Js(t) = 0 for all t € [§,1 — %77]. This together

with the definition of ¢ guarantees that

2
[f(t,2) = g(t,2)] < O(| flluip +[lgllip), Vo € Dy, ¥t € [57 1- pn} :

Recall the definition of Dy in (5.3.14) which depends on 1. Taking § — 0, n — 0 and

R — 00, we conclude that f = g.
5.3.2. Proof of Proposition 5.3.3

Let us extend 1 to be defined on Ry by setting
¢1($1) = 00, VYV, € R+ \ [0, p]. (5.3.16)

Then, 91 is still convex and nondecreasing. For u : R2 — R U {co}, the Fenchel transfor-

mation is defined by

u*(z) = sup {y - —u(y)}, VoeRi. (5.3.17)
yERi

Hence, we can rewrite the Hopf formula (5.3.7) as

flt,x) = sup inf {z-(z—y)+(y) +tHL(2)}
2€Ry x [0, 2L5 1) YERY
(5.3.18)
= sup {z -z —¢*(2) +tHL(2)}.
2€R4 x[0,7E517)
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We first show that f is indeed finite on Q,. From (5.3.6), it follows that

() = Pi(z1) + ¥5(2), VzeRT, (5.3.19)

where the Fenchel transforms on the right-hand side are for functions defined on R which are
defined analogously to (5.3.17). By the assumption that v; is Lipschitz and nondecreasing,

there is some R > 0 such that
0<Yu(r) =o() <SR(r—7'),  Vrz>v', rr’€[0,p].
Due to the extension in (5.3.16), we have that

Yi(z1) = sup {y1z1 —Y1(y1)}-

y1€[0,]
The above two displays imply that
Vi(z1) = pz1 — i(p), Va1 = R (5.3.20)
On the other hand, due to (5.3.5),
P3(22) =00, Vzp > aL;p. (5.3.21)

Using this, (5.3.19) and the expression of Hy, in (5.2.10), we rewrite (5.3.18) as

226[070‘L2—19 21€R+

f(t,x) = sup {zgxg —15(z2) + sup {zlxl —i(z1) + ojt lzlzg}} . (5.3.22)
| _

We show that the second sup can be restricted to z; € [0, R]. Given (t,x) € ,, we have

that z1 € [0, p(1 — t)] due to the definition of Q, in (5.2.1). This implies that

T+

t _
2—p<0, V(ta)€Qy, ne o,
ay,_1 2
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which together with (5.3.20) shows that

i 2t 2
sup {Zliﬁl —¢i(z1) + 2122} = sup {(xl + 20 — p) 21+ (p)}
z1€[R,00) @L-1 z1€[R,00) o1

t 2t
2= p) Rot () = Ry = () + 2 e

ar—1 L—

< <$1+

In other words, the above sup is achieved at z; = R. Hence, the second sup in (5.3.22) can
be taken over z; € [0, R] and thus the sup in (5.3.18) can be restricted to z belonging to the

compact set

K = [0, R] x [0, O‘L;p} . (5.3.23)

Therefore, due to the easy observation that ¥* is nondecreasing and lower semi-continuous,

we can see that f is finite on §,, and furthermore, for every (¢,z) € Q,,

ft,z) =z -z —¢*(2) +tHL(2), Jz € K. (5.3.24)

In the following, we verify that (5.3.18) is a weak solution by checking the initial condition,
and conditions (1), (2), (3) in Definition 5.3.1.

Initial condition

Using (5.3.19) and (5.3.21), the expression in (5.3.18) at ¢ = 0 becomes

f(0,2) = sup {z -z —¢"(2)} = ™ ().

2
z€RY

Since it is clear from the assumption that the extended 1 is lower semi-continuous, nonde-
creasing and convex, the Fenchel-Moreau biconjugation identity (cf. [105, Theorem 12.4],

and [38, Theorem 2.2| for more general cones) ensures that

Y(x) = ¢*™*(x), VreRi.
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In particular, we have f(0,-) = on €.
Condition (1)

Let (t,x) € Q, and z € K be given by (5.3.24). Using this and (5.3.18) for (#,2') € Q,, we

have
ft,z) — f(t,2") <z (x—2") +Hp(2)(t = t). (5.3.25)

A similar equality holds for some 2’ € K when interchanging (¢, x), (¢, 2’). By the compact-
ness of K, we can see that f is Lipschitz. Due to Rademacher’s theorem, f is differentiable

a.e. Using (5.3.25) and the definition of K in (5.3.23), we can also see that

OéL—lp}

alf S [OaRL 82f € [07 2

a.e.,

which completes the verification of Definition 5.3.1 (1).
Condition (2)

We want to verify that (5.3.18) satisfies (6.1.2) almost everywhere. Let (¢,2) be a point at
which f is differentiable. We can assume that (¢,z) € intQ, C (0,00)3, because otherwise
(t,z) belongs to a set with Lebesgue measure zero. Let z be given by (5.3.24). By this and

(5.3.18), for s € R and h € R? sufficiently small,

ft+s,z+h)— f(t,x) = z-h+sHp(z). (5.3.26)

Set s = 0 and vary h to see that

z=Vf(t,x).

Then, we set h =0 in (5.3.26), vary s and use the above display to obtain

O f(t,2) = HL(V (L, ).
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Condition (3)

Let (t,x) € intQ, and A € R be sufficiently small. Due to (5.3.24), there are z, 2’ such that

flt,x+Xe1) =z (z+ Aer) —¥™(2) + tHL(2),
(5.3.27)

ft,x+ Xex) = 2"+ (x + Neg) — ™ (') + tHL(Z).

Case 1: (z1,22) < (21,25) or (z1,22) > (2], 25). Let us only treat the latter case. The other

case is similar. Using (5.3.18), we have

[tz + Aer + Xe2) = z - (x + Aep + Nea) — Y™ (2) + tHL(2),

ft,x) =2 -2 — ") +tHL(Z).

This along with (5.3.27) implies that the left hand side of (5.3.1) is bounded below by

Az-eg — A2 weg = N(zg — 25) > 0.

Case 2: neither (21, 2z2) < (21, 25) nor (z1,22) > (21, 25). This condition implies that

(21 — 21) (22 — 25) < 0. (5.3.28)

Let Z = (21, 24) and Z’ = (24, 22). By (5.3.18), for each § > 0, there are y,y’ € R? such that

ft, x4+ Xer + Ae2) = Z- (x+ Aep + Ae2 —y) + ¥(y) + tHL(Z) — 6, : )
5.3.29

flt2) 22 (z—y) +9(y) + tHL(Z) — 0.

We set

= (y1,v5), ¥ = (¥1.y2)
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Note that

Zoy+2Z -y —z-y—2 -y =0. (5.3.30)

From (5.3.27), we also have

ft, x4+ Xer) <z (x+Xew —§) +¥(§) + tHL(2),
(5.3.31)

ft,z+Xea) <2/ (z+Xe2a — 7)) +(¥) + tHL(Z).

To get a lower bound for the left hand side of (5.3.1), we start by observing that, due to
(5.3.30),

Zo(@+der+rea—y)+72 - (z—y)—z - (x+Are1 —y) — 2 - (x+ Xe2 — )
=Z+7 —2-2) -G y+7Z v —z2-g—2"G)+ MNe1 + 25— 21 — 2b)

=0.

This along with (5.3.29) and (5.3.31) implies that the left hand side of (5.3.1) can be bounded

from below by

D(y) + ) — (@) — (7)) +t(Ho(2) + HL(Z) — He(z) — HL(2)) — 26.

From (5.3.6), we can see

V() +9(y) — (@) — (@) =0.

Lastly, due to (5.3.28) and the definition of Hy, in (5.2.10), we can compute that

2

ar—1

Hi(Z) + HL(Z) — Hp(2) —HL(¢)) = — (21— 21)(22 — 25) > 0.

The above three displays imply that the left hand side of (5.3.1) is bounded from below by
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—26. The desired result follows by sending § — 0.
5.4. Convergence of the free energy

The goal of this section is to prove Theorem 5.1.1. The key tool is Proposition 5.4.1 stated
below, which ensures the convergence of F@ L given the convergence of F{g} .n(0,-) and
some additional conditions. The object Fﬁijn(O, -) is closely related to the free energy
associated with the (L — 1)-layer model. Hence, an iteration is employed in Section 5.4.1 to

complete the proof of Theorem 5.1.1.
Recall the definition of pr_; 5 in (5.1.10) and of domain Q,, for p > 0, in (5.2.1).

Proposition 5.4.1. Assume (h1), (h2) and (H3) for some L € N. Suppose that the following
holds:

1. the limit (5.1.11) forl = L — 1 exists for some pr,—1 > 0;

2. there is a continuous Vg, : [0, pr—1] X Ry — R such that

lim F@L,n(o, h) = 1/JB’L(h), Vh € [O,pL_l) X R+,

n—oo
and there is a weak solution fg 1 to (6.1.2) on Q,, | satisfying f3.0(0,-) = ¥s.1;

3. there is C' > 0 such that

| x (-] 1 ¢
El[E—— ) | <2, wen
nr— n

4. for every M > 1,

i = 2
A tES[lﬂl,F;L E {HFﬁ,Lm - Fﬂ,L,nHLh“;([O,M]) (t,h1)| = 0.
h1€[07 pol,n(l_t)]
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Then, for every p' € (0,pr—1),

lim F57L7n(t, h) = fﬁ’L(t, h), V(t, h) S Qp/.

n—oo

We restrict to the domain €2,y because the pointwise limit of F@ L,» may not be well-defined

on boundary points of €2 (recall that F@Lm is defined on €2,, , ). The proof of this

PL—1

proposition is postponed to Section 5.4.2.
5.4.1. Iteration

Let us prove Theorem 5.1.1 using Proposition 5.4.1 together with some technical results

postponed to Section 5.5.

Assuming that (H1)—-(H3) hold for the model with Lo layers, then these assumptions au-
tomatically hold for all L € {1,...,Lo}. Hence, for all L € {1,..., Lo}, conditions (1),
(3), (4) in Proposition 5.4.1 are guaranteed to hold by Lemmas 5.5.1, 5.5.2 and 5.5.4, re-
spectively. We will apply Proposition 5.4.1 iteratively to prove Theorem 5.1.1. Recall the
definitions of Fg, ., Yo, ¥;, Fgrn in (5.1.8), (5.1.12), (5.1.13), (5.2.8), respectively, and
also the important relation (5.2.9), which implies that

lim EFj;, = lim Fs.1.(1,0), (5.4.1)

n—oo
whenever one of the limits exists. Also recall the definition of oy in (5.1.1).

Before proceeding, let us record the following result. Comparing the definitions of (5.1.6)
and (5.1.14), and using the fact that A has i.i.d. components due to (H3), we can see

that, for every 8, L, n,

nr
Psrn(ylz) = H Ps.r(yjlz), Yy,z € R"E. (5.4.2)
j=1
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We start with L = 1. Using (5.2.2)-(5.2.8) with L replaced by 1, we can compute that

— 1
Fin(0,h) = - Elog / Pon (YO VALV + /o = ) dPy (w)

h

+ 1Elog/eh2x'm+\/gzl'xz?m'zdPX(:c)
n

where

Y = /B (\/hTV +/pon — W, Au)) + Z,

V,W, Z are independent ni-dimensional standard Gaussian vectors, and Z’ is an
n-dimensional Gaussian vector. By (5.4.2), the definitions of Wg, ¥y in (5.1.12), (5.1.13),
and the fact that X, V, W have i.i.d. entries (see (H1) for the claim about X), the above can

be rewritten as

— n
Fo1n(0.h) = —Wi(h1, 5; pon) + To(ha).

which, by (5.1.1) and (5.1.11), converges pointwise to

YPp,1(h) = ar¥y(hi, B po) + Yo(ha).

The results collected in Lemma 5.2.2 allow us to verify that 1z satisfies all the conditions
imposed in Proposition 5.3.3. Indeed, the above display shows that the decomposition as in
(5.3.6) exists, and both components are Lipschitz, nondecreasing and convex due to (5.2.46),
(5.2.47) and (5.2.49). Moreover, (5.3.5) is ensured by (5.2.47), (5.1.1), (5.1.11). Hence,
Proposition 5.3.3 yields the existence of a weak solution fg; satisfying fz1(0,:) = g1

given by the formula (5.3.7) with L, p, v there replaced by 1, pg, g1, namely,

foa(t,h) = sup inf {20 (= y D) v (y0) + thh (20) ]

z(eRy x[0,2020] y(M€[0,p0] xRy
for every (t,h) € €,,. Inserting the previous display and the formula for Hy in (5.2.10) into

226



the above, and evaluating at (t,h) = (1,0) yield that

i 1) 4. MY _,0 . .1, 2 1. 1)
f,1(1,0) il(ll?;,{llf) {01‘1’1 (y1 ,5,P0>+‘1’0 <y2 ) Yy ez +a021 Zy }

which exactly matches the right-hand side of (5.1.15) for L = 1.

The above discussion also validates condition (2) in Proposition 5.4.1. Therefore, applying

this proposition yields that

nlgglo F5,17n(1, 0) = fg}l (1, 0)

Using (5.4.1), this proves (5.1.15) for L = 1.

Now, we assume that (5.1.15) is verified for L — 1. Using (5.2.2)-(5.2.8), we can compute

that
_ 1
Fp1n(0,h) = ~Elog / Ps.Ln (y@)’\/hlv + mw) dPy (w)
1 1 (L= -
+ nElog/e‘/EY -t 1)_}%2‘1@ I)PdPX(l’)dPA[l,Lfl] (a)
=I+1Iy
where

Y =\ /Bor, (\/HV +\/PL-10 — W, A(L)) + Z.

By (5.4.2) and the definition of ¥y, given in (5.1.13), Iy = LW (h1, B; pr—1,n). Completing

the square, we can rewrite I as
1 / - 1 /
I = —Elog / e~ 2V Vhr VR P (2)d Py (a) + EEloge%W . (5.4.3)

Recall the definition of (X~ in (5.1.5). We can define z(°~2) in the same fashion and it is
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related to (LY via

2D — oy ( 1 (I)(L—l)x(L—2),a(L—1)> ‘
VL2

Inserting this and dPyp.-1 = dPyw-1ndPyp.c—2 to (5.4.3), and using (5.1.6) with 3, L

replaced by hg, L — 1, we can see that the first term in (5.4.3) is given by

1
nElOg/th’L_l’" (Y/

Recall the definition of Y” in (5.2.5). Comparing it with (5.1.4), we can see that Y is exactly

1
VNL-2

(I)(Ll)I(LQ)> dPX (;U)dPA[l,Lfﬂ (CL)

the observable for the (L — 1)-layer model with 8 = hg. In view of the definition of the
original free energy in (5.1.8), we can see that the above display is exactly EF, ho L1 NOW,
we turn to the second term in (5.4.3). Using the definitions of Y/ in (5.2.5) and pr_1, in

(5.1.10), we can compute that this term is equal to

1 nr—1
—E|Y']? = 21 _1.nh2).
2n\ | o (1+ pr-1,nh2)

We conclude that

nr—1
2n

R n °
Fgrn(0,h) = ?L‘I’L(hl, Bipr—1n) + BFR, 11, + (14 pr—1nh2),

which, by the induction assumption, converges pointwise on [0, pr—1) X Ry to

QL1
2

Yp,0(h) = arVi(hi,B;pr—1) + fayr1 + (14 pr_1hs)

where fy ;_ is the right-hand side of (5.1.15) with 3, L replaced by hg, L — 1, namely,

frpp—1= sup inf sup inf ---supinf ¢y, (hz;y(l)w--,y(L_l);z(l),--',z(L_l))
’ -0y -2 yL=2 1) yO»)

with ¢7_1 defined analogously as in (5.1.16).
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Again, as argued in the base case, Lemma 5.2.2 enables us to verify all conditions in Propo-
sition 5.3.3, which gives a weak solution fg ; satisfying f5 1(0,-) = g . Moreover, fgr is

given by the formula (5.3.7) with p, there replaced by pr_1,g 1, namely,

f3,0(t,h) = sup inf {z(L) . (h - y(L)> + gL (y(L)) +tHp (z(L))}

(L) y)

arp—1PL—1

for every (t,h) € Q where sup is taken over z(") € Ry x [0, ~t=5+=t] and inf is taken

PL—1>

over yI) e [0, pr.—1] X R4. Inserting the previous two displays and the expression of Hy, in

(5.2.10) into the above, and evaluating at (¢,h) = (1,0), we obtain that

f5.(1,0) = sup inf sup inf ---supinf{—y<L>-z<L>+aL\PL (s8".8:p11)
20 yE) -1y =D )y

+ér 1 (ygm; ORIV IO ’Z(L—1)>

ar-—1 (L) 2 (@ (D)
+ 5 (1+pL71y2 )-l—aL 121 2y }

We can verify that the expression inside the curly brackets is given by (5.1.16), and thus
f8,0.(1,0) is exactly the right-hand side of (5.1.15).

Again, the above verifies condition (2) and allows us to apply Proposition 5.4.1 to obtain

that

lim Fgr,(1,0) = f5..(1,0)

n—oo

which along with (5.4.1) gives (5.1.15) and completes the proof of Theorem 5.1.1.
5.4.2. Proof of Proposition 5.4.1

For lighter notation, we suppress some of the subscripts and simply write

Fo=Fgpn Y=%vs1, f=fsr, P=pL-1, Pn=0PL 11
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We remark that it suffices to show

lim sup / ’Fn(t, h) — f(t, h)‘dh =0 (5.4.4)
En,t(R)

N0 ¢e(0,1]

for every R > 0, where
Eni(R) =[0,(p A pn)(1 =1)] x [0, R(1 —1)]. (5.4.5)

Indeed, for every p’ < p, we have p’ < p A p,, for sufficiently large n due to assumption (1).
Then, (5.4.4) together with Fubini’s theorem implies that the integral of |F,, — f| over
Qy N{hs < R(1 —1t)} decays to 0 as n — oo, which further implies that F,, converges to f
pointwise a.e. on Q, N {hy < R(1 —t)}. By enlarging R, we conclude that this convergence

holds pointwise everywhere on €.

Let us show (5.4.4). Henceforth, we denote by C' a positive constant independent of n,t, h,
which may change from instance to instance. We also absorb R and p into C. Define

w, = F, — f and

Tn = O F, —HL(VF,). (5.4.6)
Then, by the definition of Hz, in (5.2.10), we have that

Oywy, = by, - Vw, + 1y, (5.4.7)

where

bn = (bn1, bn2) = (Oaf, O Fy). (5.4.8)
ap—1
For § € (0,1), let ¢s : R — R4 be given by
1
¢s(z) = (0 +27)>, VzeR, (5.4.9)
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which serves as a smooth approximation of the absolute value. Take v, = ¢5(w,) and

multiply both sides of (5.4.7) by ¢f5(wy) to see

Oyvp = by, - Vo, + ¢i§(wn)74n (5410)

The Lipschitzness of f and that of F,, uniform in n due to (5.2.46) and (5.2.47) imply that,

uniformly in n, §,

V| < C. (5.4.11)

By limy, 00 F',(0,0) = ¢(0) = £(0,0) due to assumption (2), we also get from the afore-

mentioned Lipschitzness that

sup \F, — f|<C (5.4.12)
Qpnpn N{h2<R}

uniformly in n, which implies that, uniformly in n, &,

sup lun| < C. (5.4.13)
QprpnN{he<R}

Recall the mollifier & given in (5.3.2) and that the mollification is well-defined on domain
Qprpn,e described in (5.3.4). Let us regularize b, by setting bfm = by * &, with the convo-

lution taken in h. For (t,h) € Qpnp, ., we can rewrite (5.4.10) as

vy = div(vpbs) — vpdivds, + (b — 05) - Vo, + ¢ (wp)rn. (5.4.14)

By (5.4.8), (5.2.46), (5.2.47) and Definition 5.3.1 (1), there is C' > 0 such that the following
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hold for all n, all € € (0,1) and all (t,h) € Qpnp, e,

an - bfz”oo = 05(1)§ (5.4.15)

bi1 €10,p], byo€10,C]. (5.4.16)

Using (5.2.49) and (3) in Definition 5.3.1, we also have that, for (¢,h) € Q,rp, e,

divb;, = af - (0102(f x &) + D102(Fr % &) 2 0. (5.4.17)

Fix R > sup,, . [|b5,[/c. In the following, we absorb R into C. Let n > 0 be specified later.

_2

Consider the following sets, indexed by t € [0,1 — oApm nl,

Dy =1[n,(p A pp)(1—1t) —n] x [, R(1 - 1)], (5.4.18)
Lie=n(pApn)(1—1t) —n] x {R(1-1)},

Dop={(pApn)(1—1t) —n}x[n R(1-1),

where, for simplicity, we suppressed the dependence on n,7 in the notation.

Let us consider the object

Js(t) = /D on(t, h)dh = / 65 (wa(t, b)) dh. (5.4.19)

Dy

Choose € < 7 to ensure that [J,cfo 1 {t} x D) € Qupp, - Differentiate Js(t) in t and

2y
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use (5.4.14) to see

d
—Js(t) = 8tvnR/ vnp/\pn/ U
de Dy Iy Tay

:/ (Ilb,i—R)Un‘F/ (n‘bi_,o/\,on)vn
Iy

Tat

+/ e [ (it B 05) o ().
0D¢\(I'1,: Ul ¢) D

Here in the second identity, we used integration by parts on the integral of div(v,b5). The
first integral on the second line is nonpositive due to the choice of R. Then second integral
on that line is bounded from above by C|p,, — p| due to (5.4.13), (5.4.16) and the fact that
on I'p; the outer normal n = (1,0). On the last line of the display, the first integral is
nonpositive due to that n € —R? on dD; \ (I'1;UT'y;), and (5.4.16). It is clear from (5.4.9)
that [|¢f]|cc < 1. By this, (5.4.11), (5.4.15) and (5.4.17), the integrand in the last integral

is bounded from above by C(0:(1) + |ry,|). Therefore, sending ¢ — 0, we conclude that, for

te [07 1- p/\2pnn]7

d
S I5(t) < Clon — ol +/ - (5.4.20)
Dy

Recall the definition of 7, in (5.4.6). Proposition 5.2.1 gives an upper bound for |r,|, which

along with Jensen’s inequality gives that

1
1 o— _ 2
/ ra| < C(/ 822Fn+]E/ (aan—aanf) + an (5.4.21)
Dt Dt n Dt

for a, bounded as in (5.2.11). In view of (5.2.47), the first integral on the right-hand side

of (5.4.21) can be bounded by Cn~!. For the last integral in (5.4.21), we will show that

<A}z, (5.4.22)
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for some Ay, converging to 0 as n — co. These estimates imply that

/ [l < C(07% + A~ + ay).
Dy

This along with (5.4.20) implies that

J5(t) < J5(0) + Cllpn — pl +172 + Ay +an), te [0’1 pAp 7’]‘

Note that lim, ,« |pn — p| = 0 by assumption (1) and lim, o a, = 0 due to (5.2.11),
assumptions (3) and (4), and (5.1.1). By (5.4.9) and (5.4.19), we have that

lig J5(0) = [ [F(0.1) = F(0. W]

0

which converges to 0 as n — oo by assumption (2), (5.4.12) and the bounded convergence

theorem. Hence, sending 6 — 0, we derive that

sup / |Fon(t,h) — f(t,h)|dh < C(Amn*% + Aoy,
n) Dt

__2
tefo.1 pPAPR,

for some Ag, that decays to 0 as n — oo. We want to extend the above result from

integrating over D; to E,¢(R) for t € [0,1]. The definitions of E, ;(R) in (5.4.5) and D; in
(5.4.18) give that

Ens(R)\ Di| < O, Vte[O, n],
| Ent(R) \ Dyl oA o

2
E,:(R)| <Cn, Vte [ n, 1] .
Bna(R) Y
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These along with (5.4.12) yield that

sup /" Fu(t, h) — f(t, h)|dh < Cn
n J Ent(R)\Dy

tef0,1— -2
sup / |Fn(t, h) — f(t, h)’dh < Cn.
tell—-n,1] / Ent(R)

Therefore, we obtain that

wp/’ (Bt h) — F(t, 1) dh < C+ Apar s + Ag).
te[0,1] J En +(R)

4
Insert n = A7, into the above display to see that the right-hand side of the above is bounded
4
by C(A7,, + Asgy), which gives the desired result (5.4.4).

It remains to verify (5.4.22).
Proof of (5.4.22)

By writing
— (pApn)(1—t) R(1-t) —
E/ |02(F — Fn)| :/ IE/ |02(F,, — F)|"dhg | dhy,
Dy n n

it suffices to show that the term inside the parentheses is 0(1)17_% uniformly in ¢, hy. Now,

let us fix any (¢, h1) and investigate the integration with respect to ho. Integration by parts
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yields that

Let us estimate the last integral. By (5.2.49) and (5.2.50),
277 2 -1, 3
aan>0, aQFn+Cn 2h2 2’2‘20,
which implies that

R(1—t) o R(1-t) o
/ B(Fy+Fa)| < / |2 F,| + |02F |
n n

R(1—t) B R(1—t) o
g/ (03F, + 03 F,) +/ 2Cn"2hy " 2|Z'].
n n
Applying integration by parts to the first integral after the second inequality gives that

R(1-1) _
/ |03(F, + F,)|
n

< (|0Fu] + |0oF])| (1927 ] +[02Fal)|, _ +Cnbn731Z

ho=R(1-t) ho=

<C(1+n"2973|7'))

where the last inequality follows from the estimates of 92 Fy, in (5.2.47) and 9o F,, in (5.2.48).

Insert estimates (5.2.47) and (5.2.48), and the above display into (5.4.23) to get that
R(1—t) N _ R
[ B = F)l < CIF = Fulluzg oy (1407 4074121).
U
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Take expectations on both sides of this inequality, invoke the Cauchy—Schwarz inequality

and use assumption (4) to conclude (5.4.22).
5.5. Auxiliary results

We collect proofs of Lemma 5.5.1 which verifies (5.1.11), Lemma 5.5.2 which gives the con-
centration of 1 |X(l) }2, and Lemma 5.5.4 which shows that the concentration condition (4)

ny

in Proposition 5.4.1 always holds.
5.5.1. Convergence of the averaged norm

Recall py p, from (5.1.10).

Lemma 5.5.1. Assume (H1)-(H3) for some L € N. For each | € {0,1,...,L}, (5.1.11)

holds for p; defined iteratively by

po = E|X1|?

—Elo (voe® a0\ 5.5.1
Pl "2 PI—-1P11, A4 . ( 0. )

)

In (5.5.1), <I>§ll) is a standard Gaussian random variable independent of Agl . Examining the
proof below, we can see that the lemma is still valid (with py defined as a limit) if we replace
(H1) and (H2) by weaker assumptions that 1|X|? converges in probability together with

(h1), and that ; is Lipschitz for all {.

Proof. It suffices to show that

[xOF
R

Iim E

n—oo

= 0. (5.5.2)

Since X(© is assumed to consist of bounded i.i.d. entries and py = E|X;|? for all j =
1,2,...,n, it is immediate that (5.5.2) holds for I = 0. We proceed by induction. Now, we

assume that (5.5.2) holds for [ — 1. Let us denote by E® the expectation with respect to
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®® and AW, We start by writing

2

02
M _Er® +92F

ny ny

xOf°

x0|?
E(l)}nl‘ — D

< 2E (5.5.3)

xXOP
E|S

We start by estimating the first term on the right. It is clear from (5.1.3) that, conditioned

on X (=1 (\X](-l) ]2);-”:1 is a sequence of i.i.d. random varaibles. Hence, the first term can be

rewritten as

1 O w0 w0 |0 ?
2EH—IQZE ‘Xj ) _E ‘Xj ’ .
j=1

Since XJ@ is bounded, we can see that the first term is bounded by Cnl_l. Now, we turn to

the second term. Using (5.1.3), we can compute that

2 _ 2
g0 X0 _ (‘X(“)\>

n nj—1

where

g(o)=E ’wz (ﬁ‘bﬁ), Agl)) ‘2 :

1

Q—Hélder continuous.

Since (; is assumed to have bounded derivatives, we can see that g is

Rewriting (5.5.1) as p; = g(pi—1), we can bound the second term in (5.5.3) by

x(-1)2
g <‘nl_1‘> _g(ﬂl—l)

which converges to 0 due to the induction assumption (5.5.2) for [ — 1. This finishes the

2

xe-np
<CE|—

nj—1

2E = pPi-1

induction step showing that (5.5.2) holds for I and thus completes the proof. O

5.5.2. Concentration of the norm

The goal is to show the following lemma.
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Lemma 5.5.2. Assume (H1)-(H3) for some L € N. There is a constant C > 0 such that,

for every n € N,

Var [1 ‘X(L)ﬂ < g
nr, n

To prove this, we need a classic result on concentration.

Lemma 5.5.3. Let Ay, As,..., A, be independent random variables with values in some

space X. Suppose that a function f : X™ — R satisfies

sup sup |f(ai,...,an) — flai,...,ai—1,0a; aiv1,...,an)| < c
1<i<n @1,--+,0n,
a,eX

for some ¢ > 0. Then, Var[f(A)] < inc?.

This is a corollary of the Efron—Stein inequality. We refer to [27, Corollary 3.2| for a proof.

Proof of Lemma 5.5.2. Setting
gr(x) = —|z|7, Va eR"E,
nrL
we have that
@) = L |xw
gL (X ) S ‘X ’ . (5.5.4)
For [ € {0,1,...,L — 1}, we can iteratively define

1
gi(z) =E [gm (wﬂ <n<1>”+1>x,A”+l>>)] , VzeR™M. (5.5.5)
v

Due to (5.1.3), this implies that

 (X0) =B g (x04) x].
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For convenience, we also set

Iterating these yields that

g1 (X)) =E g (xP)] =E [nL ‘X@) ’2] |

which along with (5.5.4) gives that

e[ L 0] < (o (+9)* (o2 (x))]

1=0
L
_ WY _ WY |[xt 2]
3 E | (o (%) ~E[o () [x0])
Then, the desired result follows if we can show that, for all I € {0,1,..., L},
E [(91 (Xm) K [gz (X(z)) ‘X“‘”DZ} < % (5.5.6)

For | = L, since X() has i.i.d. entries when conditioned on X1 due to (5.1.3), the

left-hand side of (5.5.6) is given by

g |g® (1‘Xcmf_E(L)l‘X(L)’Q)g”
ny, ny,
et sy
ny, nr,

where E() is the expectation with respect to ®&) and AWL).

Now, let I < L—1. Due to (5.1.3), X) has i.i.d. entries when conditioned on X ¢~ . Recall

the notation (5.1.2). Due to (5.1.3), viewing X (%) as a deterministic function of ®l+1ml
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AlFLm] and X and using (5.5.5), we can check inductively that

a(x0) =B [nlL x|

X<l>] .

Then, using (5.1.3) and the chain rule, we can compute that for i; € {1,2,...,n;},

99 (X) _
8Xi(ll)
(I41)  +(1+2) (L—1) (L)
i ¢(l+1)¢(l+2) o Sb(L) ti41,0 (I)il+27il+1 (piL—lyiL—Q CDZ'LJ'L—l x 0
nr, i U1 T2 i \/771 M1 Mi_2 M1 ’
(5.5.7)
where the summation is over
L
i= (iip1,i02, - i) €[] {1 nm} (5.5.8)

m=Il+1

and

m 1 _ )
)= it (e (X ) ) Vi Ol

The derivative on ¢, is with respect to its first argument.

To proceed, we want to perform the Gaussian integration by parts one every @g:}im_l in
(m)

every summand on the right-hand side of (5.5.7). The heuristics is that since P, .., always
1

Nm—1

appears in the form of o(m) x (m=1) e expect to obtain an extra factor of order n"s
after performing one instance of integration by parts. However, due to the layered structure
given in (5.1.3) and the chain rule, the differentiation involved in the process of integration
by parts may produce new terms, the number of which grows as n increases. To cancel

this effect, we need to perform more instances of integration by parts on Gaussian variables

introduced by the chain rule.
The above heuristics is made rigorous by Corollary 5.5.7 which follows from a more general
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result Lemma 5.5.6. Applying Corollary 5.5.7, we obtain that each summand in (5.5.7)
has its absolute value bounded by Cn~(~) where C is absolute. Due to (5.5.8), the
summation in (5.5.7) is over O(n~!) many terms. Therefore, we conclude that, for each

we{l,2,...,n},

g ( X(l))
ax W
i

~X

¢
=

Invoking Lemma 5.5.3, we obtain that there is a constant C' such that, for almost every

realization of X(l_l),

C
<7a
n

E

(gz (X(l>> —E |:gl (X(z)) ‘X(l—l)]>2 ‘X(l_l)

which then gives (5.5.6) and completes the proof. O

5.5.3. Concentration of the free energy

Recall the definitions of Pg 1, Ha 1 and Fp r,, given in (5.1.6), (5.2.6), and (5.2.8). The

goal is to show the lemma below.

Lemma 5.5.4. Assume (H1)-(H3) for some L € N. For every >0, and M > 1, there is

a constant C > 0 such that

sup E HF@LJZ — Fﬂ,L,n
te[0,1], h1€[0,0n(1—1)]

ER

2
}L;;([O,M}) (t,h)] <

The remaining part of this subsection is devoted to the proof of this lemma. In addition to

Lemma 5.5.3, we recall one more classic result on concentration.

Lemma 5.5.5. Let Z = (Z1,Zs, ..., Zy) be a standard Gaussian vector and f : R™ — R be

a continuously differentiable function. Then Var[f(Z)] < E|Vf(Z)]?.

This result is often called the Gaussian Poincaré inequality, whose proof we refer to that of

[27, Theorem 3.20].
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Let hy € [0, M]. In the following, C' > 0 denotes a deterministic constant independent of n,
which may differ from line to line. We also absorb M and § into C. For simplicity, we write

H = Hgp,and F' = Fgp,. In addition, we set
r (s,a(L)> = r, (S,A(L)> — ¢ (s,a(L)) , (5.5.9)
where S and s are defined in (5.2.2) and (5.2.3), respectively, and
a'l) e Rrexke (5.5.10)

is of the same size as AF). In view of (5.1.6) and (5.2.6), note that H can be rewritten as

2
)

2
H(z,w,a) =log </e§|\/BF(s,a(L>)+Z‘ dP 4w (a(L))> +VhoV' - ED % ‘X(Lfl)

where Y is given in (5.2.5) and a = (aM,---  a(F=Y) appearing in z(*~Y is defined in

(5.1.5). We introduce the Hamiltonian

H (:U,w,a,a(L))

= —% <2\/BZ - <s,a(L)> +4 ‘I‘ <s,a(L)> ‘2> + \/EY’ cgEh % 2=

(5.5.11)

2

)

and the associated free energy
~ 1 =
F="log / H@waa™) P (2)d Py (w)dP g1 (a)d Py (a(L>) .
n
Then, using these and the definition of F' in terms in of H in (5.2.8), we can see that

~ 1
F=F— |z,
2n
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which implies that
~ 1,9 =, C
Var(F') < 2Var(F) 4 2Var 2—|Z] < 2Var(F) + —, (5.5.12)
n n

where we used the fact that Z is a standard Gaussian vector in R™~. Therefore, it suffices

to study Var(F). In the sequel, we denote by ( - ) the Gibbs measure with Hamiltonian H.

Recall the notation (5.1.2). Note that F is a function of Z,.2',V,W, AL @LLl x(L-1)
where the dependence on Z is in (5.5.11); ®), X(L=1) 'V 1/ appear in S defined in (5.2.2);
X(L=1) 7" appear in Y defined in (5.2.5); A®) appears in (5.5.9); ®2—1 appears in (-~

defined in (5.1.5); and finally (), V, 2(L=1) appear in s defined in (5.2.3).

The plan is to prove concentration of F conditioned on subsets of these random variables,
and then combine them together. The order of conditioning matters and we proceed as in

[65]. Lastly, to get concentration uniformly in hy € [0, M|, we will apply an e-net argument.
Concentration conditioned on V, W, AL ®lL.LI x(L-1)

Denote by Ez 7 the expectation with respect to only Z and Z’. We want to show that

~ N2 C
Ez z <F - ]Ez,Z/F) < —, (5.5.13)
n
for almost every realization of other randomness.
For simplicity, we write I' = T’ (s,a(L)) from now on. We fix any realization of other

randomness. Note that Z appears only in (5.5.11) and Z’ appears only in Y’ (defined in

(5.2.5)). Then, we can compute that

gZﬁj :%‘<\/BFJ'>‘<%’ Vje{1,2,...,n.}
32 :%‘\/@<x§“”>‘<%, Vie{1,2,...,n51},

where we used the boundedness of ¢r,, and the boundedness of (X~ to get the inequalities.
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Hence, we have that |V, 2F|<Cn™ 2 and thus, by Lemma 5.5.5, obtain (5.5.13).
Concentration conditioned on A% 1L x(L-1)

Set g = (2,2, V,W, <I>(L)), and let Eg be the expectation with respect to these Gaussian

random variables. We want to show that, a.s.,

~ ~\ 2
Eg (Ez2F - EgF) < (5.5.14)

s1Q

Note that V appears in both S (defined in (5.2.2)) and s (defined in (5.2.3)) in I' and W
appears only in S. Hence, in view of (5.5.9), using the boundedness for the derivatives of

L, we can verify that

31[*322/13 C .
— | = — |Ez & Z T — 1.2,...
a‘/] n YA <<f +B ) >‘ TL’ VJE{ ) “y 7nL}a
OB,z F| C .
— | = — |Ez & Z T < —, 1,2,..., .
oW, ~|Ezz <<\[ + 8 ) >’ - Vjie{ n}

On the other hand, ®) only appear in both S and s. Due to the computation that

= s (4 (5 A9) X7 < () ),
Jk a

where ¢ is the derivative with respect to its first argument, and the boundedness of the

derivatives of ¢, we also can show that

OE 7 7 C
% nEZZ,<<\/Z +5r) > < .
8<I>jk @Jk n2
forall j € {1,...,nr} and k € {1,...,nr_1}. Therefore,
9 2

ny n

~12 1 ~
0Ez 71 F +Z 0Eyz 71 F < C

o,

OEy 4 F
aw;

L X
=1 k=1 aq)gk) n

Y

2 O
vV,W,(D(L)EZ,Z’F‘ = Z
j=1

ny,
2
j=1
which together with Lemma 5.5.5 implies (5.5.14).
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Concentration conditioned on ®1-X x(Z—1)

Fixing any realization of other randomness, we express Egﬁ = g(A(L)) as a function of AL,
Then, we fix a realization of A(X) and let A" be another realization such that A§L) =A ;L)
for all j except for some j = i. We want to show that there is an absolute constant C' such

that

(904”)—9(4@U’<§; (5.5.15)

which by Lemma 5.5.3 implies that, a.s.,

(5.5.16)

519

~ ~\ 2
Eg A (EgF — EgA(L)F) <

We denote by ( - )5 the Gibbs measure with AL and ( - ) the Gibbs measure with A,

Using the definition of g, we can verify that

(1) -0 (4) - Loy (1)

By Jensen’s inequality, we have that
Y _ (4 s n (57
P (40) o (1) 5y (1 ),
Symmetrically,
N _ (a0 s Lg (7 _ 7
o (41) —9 (4V) > [Ee ('~ H)
Using (5.5.9), (5.5.11) and the definitions of A() and AP e have that

~

H—ﬁ:%aqug&+n+m)
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where T; and T, correspond to A and A’ (L), respectively. Together with the boundedness

of I, T’ the above three displays yield (5.5.15) and thus imply the desired result (5.5.16).
Iteration

Note that in (5.5.16), we can rewrite that
Eg,A(L)F\ =K [F\‘X(L_l),q)[l’”} .
To proceed, we claim that

E (E [ﬁ‘X(l), cp[l’”} —E [ﬁ)XU*U, @[1’11})2 < Vie{0,1,...,L—1}, (5.5.17)

E<E[ﬁ’XU 1) (I,[u]} [ ’ (-1, ”_1]D2<

slas|q

. Vie{l,...,L—1}, (55.18)

where X(=D and @10 are understood to be constantly 0 (or any constant). Given the

above, we can iterate these to see that

E (E [ﬁ‘X(L_l), q)[l,L—l}] i o) [ﬁ]>2 < % (5.5.19)

Combining (5.5.12), (5.5.13), (5.5.14), (5.5.16) and (5.5.19) yields the pointwise concentra-

tion

E [(F —F) (¢, h)} <=, Y(th)eQ, n{lh| < M}. (5.5.20)

S1Q

Then, let us prove the assertions (5.5.17) and (5.5.18).
Proof of (5.5.17)

Due to the expression (5.1.3) and the fact that F depends on X =1 only through X we

can see that

E [ﬁ‘x(”,@[lvﬂ —E [ﬁ‘X(’),X“*U,@[L”] .
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Also, note that X consists of i.i.d. entries when conditioned on X (

1-1)

Hence, we want

to apply Lemma 5.5.3. Since each entry of X is bounded uniformly in n, to verify the

condition in Lemma 5.5.3, it suffices to obtain bounds for derivatives of EF with respect to

X where E=FE [ . |X(l)7X(l—1)7q)[1,l]]

We introduce the following notation:

SOSkL) = YL (Sa A(L)) )

oy’ = (s,aD),

o = i (e

‘.E(m) = ‘p;n (\/7%
oM = o (S, A0

where ¢/, is the derivative with respect to its first argument. For i; € {1,

compute that

ORF

axW
]

<\/BZ1'L + 8 (@&LZ)L

hy =
+n§:E

where ), is over (5.5.8) and ), is

L-1
i = (141,142, -+ i0-1) € H {1,...,nm},

<x§ff11)> putl g

(m) p(m=1)_,(m)

9

~(L)
- SO*,Z'L

. (L-1)

), vme{1,...,L},

@mﬂWﬂAWU,Vmeﬂwwm,

1~ 1~
- —E < (VBz+pr)- aX@r> +-E <h2x(L1) : 8X_(Z>X(L1)>
i Y

(5.5.21)

...,n}, we can

tL—1

over

(1+1) @(L)
S0+D) (L) (L) T Zinine
('O’il+1 i1 SO*J‘L \/”TZ nr—1
(5.5.22)
(+1) £ (1+2) (L-1)
(R U e i N W o 01 ) (5.5.23)
n /Mgl VNi-2
(5.5.24)

m=Il+1

respectively. The treatments for (5.5.22) and (5.5.23) are similar to that for (5.5.7), where
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the main tool is the Gaussian integration by parts summarized in Corollary 5.5.7. Recall
that heuristics were given below (5.5.7). Now, applying Corollary 5.5.7 to each summand in
(5.5.22), we obtain that, for every i, the summand in (5.5.22) has its absolute value bounded
by Cn~(F=D. Since 3, is over O(n”~!) many terms, we conclude that the part in (5.5.22)
is bounded from both sides by Cn~!. Analogous arguments can be applied to (5.5.23) to
derive a similar bound. Hence,

OEF

ax W
]

gg, ViZE{l,...,nl}.
n

and thus Lemma 5.5.3 yields (5.5.17).
Proof of (5.5.18)

Let us redefine E = E [ . ]X(l_l),q)[lvl]] For iy € {1,...,m}, 411 € {1,...,ni_1}, we can

compute

OEF 1~ 1~
= _ _F 7 4+ BT - T K (L-1) , x (L=1)
gar— = B (VA7) oy T} B (har D 0y

i,0—1

+ lf@ < (th(Lfl) + \/@Z’ _ th(Lfl)) ‘84)(1) a:(Ll)>
n

i1

=11+ Io+ Is.
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Here,

(1-1)

R4 X
L=--—->E [<f +8 (90* ) -l )L)> \/%wff)sﬁgff) o)

i

p!+th L)
U418 LML
Vi VAL-1
(I-1)

vt E ~(L) Ty o) 2(41) (L)

+? ZE (\/>Z7,L +6 (‘P* ir SO* 7/L)> \/ﬁwll Spil+1 “'(P*,iL
(l+1) (I)(L) -

% 14150 . 1L, L—1

Vi N

(-1 (4+1) ~(142) (-1
I2 _ @ ZE <I’§f__11)> X’il (l) (l+1) . Sb(L_l) q)il+1,il il+2,’il+1 . ¢Z‘L717Z‘L72

" 4 \/nzflﬁp” Pig " Pinn Vo s VL —2

(I-1)
1 ~ (L—1) ™ (L—1)\ ¥ () (I+1)  (L-1)
Ig = 5 Z,E <(h2X + Z — h2x1L 1 ) 1780 SOZ]+1 o SDiL,1 >

| I

_ M1 i
(I+1) (142) (L-1)
(I)il+1,iz q)iz+2,il+1 o (I)ithisz
VI A/MU+1 VL2

where i and i’ are given in (5.5.8) and (5.5.24), respectively.

Similar to the the treatments for (5.5.22) and (5.5.23), applying Corollary 5.5.7, we can see

that |I1|, |I2|, |Is| < Cn~ 2, which implies that

— < 3 ViZE{l,...,nl}, il—le{ly--'anl—l}-
oo\, n3

-1

Now, we can conclude that |V¢(1)EF| Cn~% and thus (5.5.18) by Lemma 5.5.5.
An e-net argument

By (5.2.47) and (5.2.48), there is C' such that, for all ¢,h; and all he, b}, € R, satisfying
‘hg — hlz‘ <1

[(F=F) (8,7, o) = (F = F) (t, o, 1) | < C (14078 |2]) o — B
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Setting E. = [0, M] N {e,2¢,3¢,...} for e € (0,1), we have that, for all ¢, hq,

B |17 = Pl goan ()
gE[sup (F-F) (thl} [C’(l—i—nﬂZ’)a]

hocE.

<Y E[(F-F)(th)| +Ce <O (e +2),

h2 EEE

where the last inequality follows from (5.5.20). Optimizing this by taking ¢ = n"s completes
the proof of Lemma 5.5.4.

5.5.4. Multiple Gaussian integration by parts

Denote by () the Gibbs measure with Hamiltonian H given in (5.5.11). Recall the variables
z,w,a,a® in ﬁ, and also the definition of s in (5.2.3). For v € NU {0}, we enumerate the

replicas, i.e., i.i.d. copies of z,w,a,a™, s under (-), as

2wl @l qE g,

Recall the definition of (X~ in (5.1.5), and we want to extend this. Using (5.1.3) iteratively,

for every 1 € {0,..., L}, we can find a deterministic function (; satisfying
x0 =g (Xw)’A[u], q>[1,l]>

where we understand that ALY = 0 and ®19 = 0. Replacing X O AL ahove by 2 and

projections of (a,a)), we can define (") in a way analogous to (5.1.5):

O =¢ (x,ﬁp,l] (a’a(L)> ’(P[u]>

where 7 ;) is the projection of the first Zlm:1 N km, coordinates into Hlm:l Rmmxkm (recall
a=(aM,... ,alt=Y) given in (5.1.5) and a™) in (5.5.10)). For v € N U {0}, we denote by

21 the 4-th replica of (). We also set HM to be H with variables replaced by their ~-th
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replicas.

Recall S in (5.2.2). For v e NU{0}, vy € NU{0}, j € {1,...,n}, we introduce

(mly) _ 0" ( A<m)) LI
J arv ¥\ 4 r= n;fl(qu)X(mfl))j’ vm € {l,...,L},
(L) _ 9" ( (L))
P arv P\ 4; r=—d—(@1)5);’
np 1
~(mlvly) _ 9" ( (m) v 1,....L
J a,r.ugpm Ta (Z] — n;_l(qﬂm)z(m*lh))j’ m e { ] }a
(Ll _ 9" (r a(L))
*J 8 VSDL T r=- /ni—l(cb(L)sh))j
In particular, go(-mm) = X' and &(mlo\v) — 2™ and note that these two identities can
J J J J

be extended to m = 0. Recall that Z and Z’ are standard Gaussian vectors given in (5.1.4)

and (5.2.5), respectively. We introduce the following collections of random variables

Z ={Zjhi<jen, U{Zj<icnss

(vl _ ) U
ve{0,...,v} ¥€{0,...,v}

MELW) _ U U {gp(-Lm, gD(Lm, @(LWW) G(L-‘;W)}

J *,] J RSN
’1;6{07"'7V} WE{O,,'Y}

M- U U U U

le{1,...,L} veNU{0} veNU{0} 3;{1,...,n; }

For vi,ve,...,vp,v € NU{0}, we set

m=1 j,,=1

For d,r € N, let Py, be the collection of polynomials of degree up to d over R" with real

coefficients. For every P € Py, expressed as

_ p1,.02 . ..Pr
P(z) = E Qpy p2,....pr T L2 Ty
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where the summation is over

{(plap27~~~apr) NU{O} sz\ }

we define

|1P|| = Z |@py po...ipy |-

Slightly abusing the notation, we view any finite subcollection & C M as an ordered tuple
of random variables. In this notation, for any P € P ¢ for some d, we view P(£) as P

evaluated at €. Lastly, for a,b € R, we write a V b = max{a, b}.

Lemma 5.5.6. Letl € {1,--- L}, v1,...,v, € NU{0}, y e NU{0}, 8>0, M > 1. In
addition to (h1), assume that ®™) consists of i.i.d. standard Gaussian entries and that @,
is bounded and continuously differentiable with bounded derivatives up to v, -th order for

everym € {1,..., L}, where
Vo=vm+ (M 1) vo, Yme{l,... L} (5.5.25)

Then, there are constants C,~',d’ such that the following holds.

For every k € {l,...,L}, every n € N, every (t,h) € Q,, . N {lha| < M}, every i, €

{1,....nm} withm e {l —1,... k}, every

and every P € Py ¢, there is P e Py e for some

g/ = N(V{,...,Vﬂ’y’)
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such that

k
. <P<5>>H<1>§;”?,~m_1] n LRI (P(er) (5.5.26)
m=l

and

1Pl < ClIPll, (5.5.27)

where ElLK s the expectation with respect to ®LH.

Recall the notation introduced in (5.5.21). We state an immediate corollary of Lemma 5.5.6.

Corollary 5.5.7. Assume (H1)-(H3) for some L € N. Forl e {1,...,.L}, deN, >0
M > 1, there is C such that the following holds. Suppose that P € P o1, 21410 s a monomial
with coefficient 1 and independent of n. Then, for every k € {l,...,L}, every n € N, every
(t,h) € Qpp_y, N{|ha| < M}, every i € {1,...,np} withm € {l —1,...,k}, it holds that

k
E[(PE) JT oM,

m=l

where

(L) ~L) (1) =L (L-1)  (L—1)
g <ZZL7 Z,L 17 90*1L7 SO*'LL’ gp*zL7 @*,Z‘[j XiL—l ) xiL—l )

() () XD )

q)(m) )k

and E integrates over Z;,, Z;  and (®; )y _.

in-1
Proof of Corollary 5.5.7. Comparing (5.5.21) with the notation here, we can rewrite

=z .7 (L10) = ~(L[0j0)  (L[1) ~(L[1]0)  (L—1]0) ~(L—1]0J0)
- Lo Fap—1 Fadp 0 i 0 Twip 0 Fwip 0 Fipoy 0 Y )

mDYETE (<o) \ LT a-110)  ~(-1/0j0)
(Solm )'m,:l7 ((pzm )m:l7 (pilfl ’ (pilfl ’

254



Hence, we have that & C N (1110 This corollary follows from Lemma 5.5.6 by setting
v = 0 and v, = 1 for all m and noticing that the differentiability condition (5.5.25) is

fulfilled by assumption (H2). O

Proof of Lemma 5.5.6. We use induction on [ and start with the base case [ = L. The

Gaussian integration by parts yields that

EW <P(5)<1>§LL}ZL > EW) [a ) <P(5))] =3 <><<@¢a¢<m ¢>> (5.5.28)

iLiL—1 —_— iLiL—1

where E(X) = EL1 and, by the chain rule, viewing ¢ € M as labels for the arguments in

P and H (), we have that

.,
Py =0sP(E) + P(E) | Y HM — 4o, HTY || (5.5.29)
=0
with
HE_ N (LI0) _ 5(Li0f)
0,0 = — Zl <1¢=soifj'°) - 1$:¢ifj|0|:,)> (VBz;+8 (S50 - 37)) (5530
J:
nr—1
+ Z 1 (L 1\0)h2~(L 10)
Jj=
! —1]0 L—-1|0
+) 1, (1101 (hchﬁ 4 \/n haZj; — § | h))
j=1

Let us clarify (5.5.30). Due to the definition of H in (5.5.11), fixing Z, Z', we can view
HM as a function of YL (S, A(L))7 %33 (SW), a(LW)), XL (L=17) or equivalently, @&Llo),
(ﬁiL‘OW), oL=10) - GL=10) - Therefore, when viewing these as labels for the variables inside

H), we have (5.5.30) and the left-hand side of it is nonzero only if ¢ is an entry of those

vectors.
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Next, let us show that

Pydyy  6#0 onlyif ¢e MY, (5.5.31)

. (2
insin—1
From (5.5.29) and (5.5.30), we can see that

nr—1

nr
Ps#0 onlyif gecu| |J MU G MEPPFY ) (55.32)

JL—1
Jjr—1=1 jr=1

On the other hand, due to (5.1.3), note that

. Llv|vy
Oy 6#0 onlyif g J[JMy". (5.5.33)
bkt 7eENFEN
The intersection of sets in (5.5.32) and (5.5.33) is a subset of the set in (5.5.31). Hence,

(5.5.31) is valid.

Due to (5.5.33), Oy) ¢ in (5.5.31), whenever nonzero, is of one of the four forms below,
iLiL-1
for some v < vy and ¥ < v+ 1,

(Llp) _  (Llp+1) 1 (L-1)
6@2’;?%71 i, = Pig VL1 XiL—l
0w &(LWW) _ L) 1 (L—=117)
<DiL7iL71 ‘L L MEot (5534)
(Llp) _ (Llv+1) 1 )
8@553%_1@*,@ T Prip apo -t
PR _ L) 1 17)
xaq)gi),zr,l Prjir, = Puip VL1 Sip_1

Using this, (5.5.29) and (5.5.30), we can see that for

g/ — N(V17”"VL_17VL+1|"Y+1)
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there is a polynomial P(;,s € Py e/ for some d' such that

Pi(E) =niPydym) ¢ (5.5.35)

iLL—1

Here, the scalar n? is to make n%Qb(L) ¢ to be of order 1. By (5.5.28) and (5.5.31),
iLL—1

setting

we have

Using (5.5.29), (5.5.30), (5.5.34) and (5.5.35), we can see that
1Pl < C|P|

for some constant C' that depends only on L,v1,...,vp,v, 58, M.

Now, we consider the induction step and assume that the lemma holds for [ +1 < L. In the
following, we denote by C' a constant that depends only on [, v4,...,vr,7, 8, M and may
vary from line to line. Setting E?¥) = El4 and using the induction assumption for [ 4 1, we

get that for
F = NWevph)
with some +' > 0 and

Vo=vm+ (2" 1) v0, Yme{l,...,L}, (5.5.36)
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there is Q € Py 7| for some d’ such that

k k
B Py TT o [ =B [ pe) ] <1>§:3,1»m1] ‘I’Ef?il_j
m=l m=Il+1
= n 3 DR (Q(F) @), | (5.5.37)
and
QI < C|P|. (5.5.38)

Applying the Gaussian integration by parts to the last expectation in (5.5.37) yields

RILE] <Q(]:)>(I’z(ll?z‘z_1} — LA Ka o QF) >} Z EA] <Q¢3¢(1) ¢> (5.5.39)

ig,8] 1 iy0—1
peM

where

Dy = 9yQ(F (Z dsH) — ’a¢1§r7’+1>> : (5.5.40)

Next, we show that

Pivii m=l4+1 jm=1

2500 6#0 onlyif ¢eM TV (U U M ”“). (5.5.41)

Similar to the derivation of (5.5.32), using (5.5.40) and (5.5.30), we can see that

Jjr—1=1 jr=1

nr—i ny,
2y#0 onlyif ¢€FU ( U M]f 11|0W +1)) U (U M%lOIv +1))
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Due to (5.1.3), note that
1515 b o
Opr 0 #0 onlyif ¢e Uy Mgllv\w vl U U Mg;:\ww
v vENYEN m=I+1 jm=1

The intersection of the sets in the above two displays is contained in the set in (5.5.41) and

thus (5.5.41) is valid.

Then, we compute the summands in (5.5.39). Due to (5.5.41), we distinguish two cases:

L T,
¢>€M(”V’h o NS U U Mg':f'%w . (5.5.42)

i
m=l+1 jm=1

Let us consider the first case in (5.5.42). Since [+1 < L, Opw ¢ has one of the two forms

ihi—1

below, for v < v} and ¥ <+ + 1,

1|7) (p+1) 1 (1-1)
Oy ") = o X
(I)il’il—l 2] 2] ni—1 -1
) _ @) L 1)
8(1)(”, Spil _Soil n xil—l
i -1

From this, (5.5.40) and (5.5.30), we can see that, for every ¢ belonging to the first set in

(5.5.42), there is a polynomial @, € Py, | for some dynd
F' = NFLPL'+1) (5.5.43)

with

U = (5.5.44)

V! m<l—1
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such that

QuF) =n2 2040 9. Vo€ M,
Iyl < clQl, voe MU, (5.5.45)
Therefore
ELA <g¢a¢% 1¢>> — n B (Qy(F)), Voe MY, (5.5.46)
Now, we turn to the second case in (5.5.42). Let us assume that
¢ e MUY e 1k 1, LY, € {1 i) (5.5.47)

Then, due to (5.1.3) and the chain rule, 0 ¢ is one of the following, for v < v/, 7 <

0 'm
isi—1
v+ 1:
8@@ 905‘::‘”)
i1
(ml+1) T L o @1 1 ey
 (m|p+1 m m—11 -1
=eim O | I =2 || TR
i \m=it1 Vol =i VL
-1
741] S B O R ) L a-1p)
m”“” m) (-1 I-15
Z H N~ ©]m7]m lcp]m 1 . n; -1
j m=Il+1 m—1 n=u -1
where the summation is over
m—1
i=Getsjizzs s dm-2sdm-1) € J] {1, na}. (5.5.48)
m=Il+1
When m = L, there are two more possibilities Qb(l) gai yf) and 0 o ® gofﬁ' 71 , which are

isi—1 ll i—1
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similar to the above and omitted for brevity. These computations allow us to write that

= <°@¢%a> ¢>=”5(mm)ZE”’H (@ogss) T 70, (5:549)
J

iyt 1 m=Il+1

Ji=u

where

(mlo11) ((1ym (A1) T (1-1) (D)
¥ < m=I+1 1/ o1 Pim1 > \/ EXilfl ’ ¢ = Pim
AT ) (—1]1[7) (1-15) (mlZ ) (55:50)
~(m|T+1[7 m n_ ~(m—115 n_(—17 _ ~(mpy
¥ (Hmm \ nas i > \ Vi =P,

By these, (5.5.40) and (5.5.30), there is a polynomial Qg4 ; € Py 7 for some larger d’

independent of ¢, j and for 7’ in (5.5.43) such that
Qs,i(F) = 2490, (5.5.51)
which, due to (5.5.50), also satisfies that

1Qs,5ll < ClQI- (5.5.52)

Recall that we are considering the case (5.5.47). Insert (5.5.51) into the right-hand side of

(5.5.49) and applying the induction assumption for [+ 1 to every summand there yields that

ElLH <e@¢3¢,<1) ¢>:n_é(m_l+l)ZEU7k] (Qo,i(F)) H ‘bgg?ﬂ'ﬁz—l
Jj

-1 =l+1

Ji=1

=0~ D SR (QL (), Yo e MUY (5.5.5)
J
for some polynomials @, ; € Py |g/| for some larger d’, and

g = N Y) (5.5.54)
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with some larger 7 and
V=Tn+ @2 —1)v0, Vmel{l,..., L}, (5.5.55)
where 7y, is given in (5.5.44). In addition, each of these polynomials satisfies that

16,511 < Cll Qs 1l (5.5.56)

Since  ; is a summation of O(n™'=1) many terms due to (5.5.48), setting
PY(E) =n~ DN Q) (€, (5.5.57)
J
and using (5.5.52) and (5.5.56), we obtain that
1Pl < ClQll, ¥ e MImhY, (5.5.58)
Inserting (5.5.57) into (5.5.53) gives that

B (2400 6) =n B (PEN) . o € MU (5:5.59

iyt
forme{l+1,...,L}, jm € {1,...,nm}.

Now, we are ready to conclude. Due to (5.5.41), the summation in (5.5.39) can to restricted
to be over the set in (5.5.41). Also note that 7' C & due to their definitions in (5.5.43) and

(5.5.54). Using these, (5.5.46) and (5.5.59), we can rewrite the left-hand side of (5.5.39) as

L Nm
S CEILTN Y B SR ol SED D EEI CE WY

It — P I -1
d)eMEZ\Vﬂ’Y +1)  m=l+1jm=1 ¢EM§_::L\Vm\’Y +1)

— n B (P () (5.5.60)
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where

L Nm,
PEY= Y QF)+ > > > ntPL(E"). (5.5.61)

(Z\V/\’y’+l) m=Il+1 ]mzl <m|l’4nh’,+1)
peEM; ! PEM;

Inserting (5.5.60) to (5.5.37) gives the desired result (5.5.26). Then, we verify (5.5.27). Note

that 37 in (5.5.61) is a summation of O(n) many terms. Using this, (5.5.45), and (5.5.58),

we obtain that
Pl < CllQll,

which along with (5.5.38) implies (5.5.27). Lastly, by (5.5.36), (5.5.44) and (5.5.55), we can

see that v/, in the definition of £ in (5.5.54) satisfies
V=vp+ (2" 1) v0, Yme{l,...,L},

completing the proof. O
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CHAPTER 6

HAMILTON—JACOBI EQUATIONS FROM MEAN-FIELD SPIN GLASS MODELS

This chapter is essentially borrowed from [41], joint with Hong-Bin Chen.

Abstract. We establish the well-posedness of Hamilton—Jacobi equations arising from mean-
field spin glass models in the viscosity sense. Originally defined on the set of monotone
probability measures, these equation can be interpreted, via an isometry, to be defined on an
infinite-dimensional closed convex cone with empty interior in a Hilbert space. We prove the
comparison principle, and the convergence of finite-dimensional approximations furnishing
the existence of solutions. Under additional convexity conditions, we show that the solution
can be represented by a version of the Hopf-Lax formula, or the Hopf formula on cones. As
the first step, we show the well-posedness of equations on finite-dimensional cones, which is
self-contained and, we believe, is of independent interest. The key observation making our
program possible is that, due to the monotonicity of the nonlinearity, boundary condition

is not needed.

Previously, two notions of solutions were considered, one defined directly as the Hopf—Lax
formula, and another as limits of finite-dimensional approximations. They have been proven
to describe the limit of free energy in a wide class of mean-field spin glass models. This

work shows that these two kinds of solutions are viscosity solutions.
6.1. Introduction

Recently, J.-C. Mourrat (92, 98, 96, 93] initiated a novel Hamilton—Jacobi equation approach
to studying the limit free energy of mean-field spin glass models. After interpreting the
inverse temperature as the temporal variable, and enriching the model by adding a random
magnetic field with a parameter viewed as the spacial variable, one can compare the enriched

free energy with solutions to a certain Cauchy problem of a Hamilton—-Jacobi equation.

Let us give an overview of these equations. The spacial variable, denoted by o, lives in P/
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the set of monotone probability measures on SE, the cone of D x D positive semi-definite
matrices (see Section 6.4.1 for definitions and properties of monotone probability measures)

for some fixed D € N. Formally, the equation is of the following form:

ouf /5(89f)dg —0, onR, xP’ (6.1.1)

where ¢ is a real-valued function on RP*P and R, = [0, 00) throughout.

Two notions of solutions have been considered. In [92, 98] where ¢ is convex, the solution is
defined by a version of the Hopf-Lax formula, which has been proven there to be equivalent
to the celebrated Parisi’s formula first proposed in [101] and rigorously verified in [72, 111]
(see also [100, 99, 112, 113]). In [96, 93], the solution, defined as limits of finite-dimensional
approximations, was shown to be an upper bound for the limiting free energy in a wide class

of models.

The ad hoc and extrinsic nature of these two notions motivates us to seek an intrinsic
definition of solutions. We want to define solutions in the viscosity sense, and establish the
well-posedness of the equation, by which we mean the validity of a comparison principle
and the existence of solutions. Moreover, we verify that the solution is the limit of finite-
dimensional approximations, and, under certain convexity conditions, the solution admits
a representation by a variational formula. In particular, we want to ensure that solutions
understood in the aforementioned two notions are in fact viscosity solutions. Therefore, the

framework of viscosity solutions is compatible with the existing theory.

The key difficulty is to find a natural definition of solutions in the viscosity sense so that all
goals announced above are achievable. The surprising observation is that it is sufficient to
simply require the solution to satisfy the equation in the viscosity sense everywhere, including
the boundary without prescribing any additional condition (e.g. Neumann or Dirichlet) on

the boundary. Let us expand the discussion below.

We start with some basics. To make sense of the differential 0, f, we restrict P to 772/ , the
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set of monotone measures with finite second moments, and equip 772/ with the 2-Wasserstein
metric. Heuristically, the derivative d,f(t, o) describes the asymptotic behavior of f(t,d) —
f(t,0) as ¥ tends to p in the transportational sense, namely, in the Wasserstein metric.
Fortunately, 772/ can be isometrically embedded onto a closed convex cone in an L? space.
This cone has empty interior but generates the L? space. So, we cannot restrict to a subspace

to ensure that the cone has nonempty interior. Via this isometry, 9, f can be understood in

the sense of the Fréchet derivative.

Therefore, we can interpret (6.1.1) as a special case of the Hamilton—Jacobi equation
of—H(Vf)=0, onR; xC, (6.1.2)

where C is a closed convex cone in a separable Hilbert space H, and H is a general nonlinear-
ity. Aside from the lack of local compactness in infinite dimensions, one important issue is
to figure out a suitable boundary condition. The spin glass setting does not provide a direct
hint, except for invalidating the Dirichlet boundary condition. Moreover, as aforementioned,
the solution to (6.1.1) is expected to satisfy the Hopf-Lax formula under some convexity
condition, and to be the limit of finite-dimensional approximations. These can be hard to
verify if the boundary condition is not easy to work with. The fact that the cone in the spin

glass setting has empty interior adds more difficulty.

To bypass these obstacles, we exploit the assumption that H is nondecreasing along the direc-
tion given by the dual cone of C, which holds in the spin glass setting. Under this assumption,
as aforementioned, we do not need to impose any additional condition on the boundary, and
only need the equation to be satisfied in the viscosity sense (see Definition 6.1.5). This
greatly simplifies our analysis and allows passing to the limit in a straightforward way. It
is surprising that well-posedness holds under this simple definition because usually some

boundary condition is needed.

In Section 6.2, we study (6.1.2) on general finite-dimensional cones. Under the monotonic-
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ity assumption on H, we will prove the comparison principle (implying the uniqueness of
solutions), the existence of solutions, and, under extra convexity conditions, the represen-
tation of the solution as either the Hopf-Lax formula, or the Hopf formula. This section is

self-contained, and we believe the results there are of independent interest.

In Section 6.3, we consider (6.1.2) on the infinite-dimensional cone relevant to the spin glass
models. After establishing the comparison principle, we show that the limit of solutions
to finite-dimensional approximations of (6.3) is a viscosity solution of (6.3). Here, the
construction of finite-dimensional approximations has the flavor of projective limits. We
also verify that the Hopf—Lax formula and the Hopf formula are stable when passed to the
limit. In the last subsection, we present a way to make sense of the boundary of the cone

despite the fact that it has empty interior.

In Section 6.4, we start with a brief description of mean-field spin glass models. We will
introduce more definitions, basic results, and constructions, leading to an interpretation of
viscosity solutions of (6.1.1) in Definition 6.4.3. Then, we derive basic properties of the
nonlinear term in the equation, which allows us to combine results from other sections to

prove the main result, Theorem 6.4.8. Below is a formal restatement of our main result.

Theorem 6.1.1. Under certain assumptions on £ and on the initial condition 1, which
are admissible in mean-field spin glass models, there is a unique viscosity solution f of the

Cauchy problem of (6.1.1). Moreover,
1. f is the limit of viscosity solutions of finite-dimensional approzimations of (6.1.1);
2. f is given by the Hopf-Lax formula (6.4.21) if £ is conver on SP;
3. f is given by the Hopf formula (6.4.22) if ¢ is convex.

Accompanying this, a version of the comparison principle holds. In Remark 6.4.12, we

explain in more detail that solutions considered in [92, 98, 96, 93] are viscosity solutions.

Lastly, in Section 6.5, we prove that on the cones underlying the finite-dimensional equations
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that approximate (6.1.1), a version of the Fenchel-Moreau biconjugation identity holds,
which is needed for the validity of the Hopf formula as a solution. We believe this is also a

new result.

We close this section with a discussion on related works, and a description of the general

setting and definitions related to (6.1.2) that are used throughout the paper.
6.1.1. Related works

First, we briefly review existing works on Hamilton—Jacobi equations in Hilbert spaces and

Wasserstein spaces.

Equations on Banach spaces satisfying the Radon—Nikodym property (in particular, sepa-
rable Hilbert spaces) were initially studied in [43, 44|, where the differential is understood
in the Fréchet sense and the definition of viscosity solutions is a straightforward extension
of definitions in finite dimensions. Comparison principles and existence results were es-
tablished. Our interpretation of solutions are close in spirit to them. We will use Stegall’s
variational principle (restated as Theorem 6.3.7) as used in [43] to compensate for the lack of
local compactness, in order to prove the comparison principle (Proposition 6.3.8). Different
from [44], we directly use finite-dimensional approximations to furnish the existence result.
As demonstrated in [44, Section 5|, there are examples where, under an ordinary setting,
finite-dimensional approximations converge to a solution of a different equation. Hence, the
class of equations in this work provides an interesting example where the finite-dimensional
approximations work properly. Moreover, since the domain for (6.1.2) is a closed convex
cone with empty interior, simple modifications of methods for existence results in [44] may
not be viable. Works with modified definitions of viscosity solutions for equations in Hilbert

spaces also include [45, 46, 47, 48, 114, 61, 62].

Investigations of Hamilton—Jacobi equations on the Wasserstein space of probability mea-
sures include [33, 32, 34, 66, 7, 67, 68]. There are mainly three notions of differentiability

considered in these works. Let P2(R?) be the 2-Wasserstein space of probability measures
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on R? for some d € N. The first way to make sense of differentiability is through defining
the tangent space at each o € P2(R%) by analogy to differential manifolds. The tangent
space at o is the closure of {V¢ : ¢ € C®(R?)} in L?(R% o). We refer to [8] for more
details. The second one, more extrinsic, starts by extending any function g : Po(R?) — R
through defining G : L*(Q,P) — R by G[X] = g(Law(X)) for every R%valued random
variable X € L?(£2,P) on some nice probability space (2, P). Then, one can make sense of
the differentiability of g via the Fréchet differentiability of G. One issue is that there can be
two different random variables with the same law, which leads to the situation where g, ¢
can be “lifted” to X, Y, respectively, while X and Y are not optimally coupled, namely, the
L? norm of X —Y not equal to the metric distance between p and . Another issue is the
lack of a canonical choice of Q. For details, we refer to [32, 68]. The third notion is based

on viewing P2(R?) as a geodesic metric space. Denoting by dg the 2-Wasserstein metric,

l9(9)—g(o)|

for any g : Po(R?) — R, one can define the slope of g at o by |Vg| = lim SUDY 0 a2 (0,0)

Then, one can study equations involving slopes. This notion was considered in [7].

The notion of differentiability adopted in this work is close in spirit to the second one
discussed above. But, ours is more intrinsic in the sense that there is an isometry (see (6.4.3))
between 772/ and a closed convex cone in an L? space. As a result of the monotonicity (see
(6.4.1)) of measures in 732/ , the isometry is given by the right-continuous inverse of some
analogue of the probability distribution function, which has already been observed in [93,
Section 2|. Hence, in our case, we can identify [0, 1) equipped with the Borel sigma-algebra
and the Lebesgue measure as the canonical probability space (), appearing in the discussion

of the second notion. It is natural and convenient to use the Hilbert space structure of

L%(]0,1)) to define differentiability.

To the best of our knowledge, there are no prior works on well-posedness of Hamilton—Jacobi
equations on a domain with boundary in infinite-dimensions, or on a Wasserstein space over

a set with boundary.

Considerations of using Hamilton—Jacobi equations to study the free energy of mean-field
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disordered models first appeared in physics literature [69, 71, 22, 21]. The approach was
mathematically initiated in [95], and used subsequently in [94, 36, 39, 37, 40| to treat sta-
tistical inference models. There, the equations also take the form (6.1.1) but are defined
on finite-dimensional cones. Similar to the equation in spin glass models, the nonlinearity
is monotonic along the direction of the dual cone (which is the same cone as the cones
in these models are self-dual). In these works, some additional Neumann-type conditions
were imposed on the boundary. We remark that these conditions can be dropped and the
results in [95, 39, 37|, where solutions were defined in the viscosity sense, still hold with our
simplified definition of viscosity solutions (Definition 6.1.5). Facts about viscosity solutions

proven and used there can be replaced by those in Section 6.2.

In 95, 39, 37|, the viscosity solution can always admit an expression as the Hopf formula.
To prove this, a version of the Fenchel-Moreau biconjugation identity on cones is needed,
which has been proven for a large class of cones in [38]. However, the cones pertinent to
spin glass models do not fall in that class. As aforementioned, we will prove the identity on

these cones in Section 6.5, following similar arguments as in [38|.

Using the monotonicity of the nonlinearity, [49, 109| showed that the viscosity solution to
a Hamilton—Jacobi equation on an open set €) in finite dimensions can be extended to a
viscosity solution on Q U {z} for any regular point z € 9. The result is not applicable to

our case. Instead, we study the equation directly on a closed cone.
6.1.2. General setting and definitions

Let H be a separable Hilbert space with inner product (-, -),, and associated norm | - [3.

Let C C H be a closed convex cone. In addition, we assume that C generates H, namely,

cd(C—-C)="H, (6.1.3)
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where cl is the closure operator. The dual cone of C is defined to be
C'={zeH:(x,y)yy =0, Yy cC} (6.1.4)

It is clear that C* is a closed and convex cone. We recall the following classical result (c.f.

[23, Corollary 6.33]).

Lemma 6.1.2. IfC C H is a closed convex cone, then (C*)* = C where

() ={reH:(x,y)y =0, VycC}.

Definition 6.1.3 (Differentiability and smoothness).

1. A function ¢ : (0,00) x C — R is said to be differentiable at (t,z) € (0,00) x C, if there
is an element in R x #, denoted by (0:¢(t,z), Vo (t,z)) and called the differential of

¢ at (t,x), such that

¢(s,y) — o(t,x) = 010(t, x)(s — 1) + (Vo(t, x),y — )y + o (|s — t[ + [y — xln)

as (s,y) € (0,00) x C tends to (¢,z) in R x H.
2. A function ¢ : (0,00) x C — R is said to be smooth if

(a) ¢ is differentiable everywhere with differentials satisfying that, for every (¢, x) €
(0,00) x C,

¢(37y) - gZS(t,.T) = 8t¢(t7x)(8 - t) + <v¢(t7 JI), Yy — x)’H

+O(Is—tP+ |y —=l3),

as (s,y) € (0,00) x C tends to (¢,x) in R x H;

(b) the function (t,z) — (0po(t, x), Vo(t, z)) is continuous from (0,00) x C to R x H.
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3. A function g : C — R is said to be differentiable at x € C, if there is an element in H,

denoted by Vg(z) and called the differential of g at x, such that

9(y) —g9(x) = (Vg(x),y —x)5 +o(ly — zln),

as y € C tends to z in H.

Remark 6.1.4. Note that the differential is defined at every point of the closed cone C, which
is needed to make sense of differentials at boundary points. Also, in infinite dimensions,
C can have empty interior. Let us show that the differential is unique whenever it exists.

Hence, the above is well-defined.

To see this, it suffices to show that, for any fixed (¢, ) € (0,00) xC, if (r, h) € R x H satisfies
r(s —t) 4+ (h,y — )y = o(|s — t| + |y — x|3) for all (s,y) € (0,00) x C, then we must have
r =0 and h = 0. It is easy to see that r = 0. Replacing y by = + ¢z for ¢ > 0 and any
fixed z € C, and sending € — 0, we can deduce that (h,z),, = 0 for all z € C, which along

with (6.1.3) implies that A = 0.

For a closed cone K C H, a function ¢ : £ — (—o00, 00| defined on a subset £ C H is said to

be K-nondecreasing (over &) if g satisfies that

g(x) > g(2), for all z, 2" € £ satisfying z — 2’ € K. (6.1.5)

Let H: H — R be a continuous function. The following are conditions often imposed on H:
(A1) H is locally Lipschitz;
(A2) H is C*-nondecreasing.

Since we will work with equations defined on different cones, in different ambient Hilbert
spaces, and with different nonlinearities, for convenience, we denote (6.1.2) by HJ(#,C, H).

The Cauchy problem of HJ(H,C,H) with initial condition ¢ : C — R is denoted by
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HJ(H,C,H; ).
Definition 6.1.5 (Viscosity solutions).

1. A continuous function f: Ry x C — R is a wviscosity subsolution of HJ(#H,C, H) if for
every (t,z) € (0,00) x C and every smooth ¢ : (0,00) x C — R such that f — ¢ has a

local maximum at (t,z), we have

(Orp —H(V9)) (t,z) < 0.

2. A continuous function f : Ry x C — R is a wviscosity supersolution of HJ(H,C,H) if
for every (t,z) € (0,00) x C and every smooth ¢ : (0,00) x C — R such that f — ¢ has

a local minimum at (¢, x), we have

(0r¢ —H(V9)) (t,z) = 0.

3. A continuous function f : Ry x C — R is a wiscosity solution of HJ(H,C,H) if f is

both a viscosity subsolution and supersolution.

Here, a local extremum at (¢, z) is understood to be an extremum over a metric ball of some

positive radius centered at (t,z) intersected with (0,00) x C.

For ¢ : C — R, we say f : Ry x C — R is a viscosity solution of HJ(H,C,H; %) if f is a
viscosity solution of HJ(#,C, H;v) and satisfies f(0,-) = 9.

Throughout, Lipschitzness of any real-valued function on a subset of H or R x H is defined
with respect to |- |y or | - |rxn, respectively. A Lipschitz viscosity solution is a viscosity

solution that is Lipschitz.

Remark 6.1.6. Again, we note that C is closed, and allowed to have empty interior in infinite

dimensions. The definition of viscosity solutions does not prescribe any additional boundary
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condition. It is surprising that, under (A1)—(A2), well-posedness can be established.

To talk about variational formulae, we also need definitions of convex conjugates and mono-

tone conjugates. For any function g : H — (—o00, 0], we define its convezr conjugate by

9% (y) = Sgg{@f, Y)y —9(®)}, VYyeH. (6.1.6)

For £ D Cand g: & — (—00,00], we define the monotone conjugate (over C) of g by

9" (y) = sgg{my)% —g(x)}, VyeH. (6.1.7)

Throughout, for every a,b € R, we write aVb = max{a, b}, aAb = min{a, b}, and a; = aVO0.
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6.2. Equations on finite-dimensional cones

Throughout this section, if not otherwise specified, we assume that H is finite-dimensional.
We consider the setting given in Section 6.1.2 and study the equation HJ(#,C, H). We will
prove the comparison principle and the existence of solutions in Section 6.2.1. Then, we
will show that the solution can be represented by the Hopf-Lax formula, if H is convex, in

Section 6.2.2, or by the Hopf formula, if the initial is convex, in Section 6.2.3.
6.2.1. Comparison principle and existence of solutions

We prove the comparison principle (Proposition 6.2.1) and the existence of solutions (Propo-

sition 6.2.3).

Proposition 6.2.1 (Comparison principle). Under assumption (Al), if u is a viscosity
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subsolution and v is a viscosity supersolution of HI(H,C, H) satisfying

sup |lu(t,)|lLip < oo, sup |lv(t,-)||Lip < o0,
teRy teR,

then supg, yc(u —v) = supygy xc(u — v).
Later, we will need a stronger version of the comparison principle stated below.

Proposition 6.2.2 (Comparison principle in a stronger form). Under assumption (A1), let
u be a viscosity subsolution of HI(H,C,H) and v be a viscosity supersolution of HJ(H,C’, H),

with either C C C' or C' C C. Suppose that

L = sup [lu(t,)||Lip V lv(t; ) llLip
t€R+

is finite. Then, for every R > 0 and every M > 2L, the function
Ry x (CNC) > (t,z) = ult,z) —v(t,x) — M(|Jz|y + Vit — R)+ (6.2.1)

achieves its global supremum on {0} x (CNC'), where

H(y) — H(Y')|

V:sup{| P Nyl [V <2L+3M}.

Let us first deduce Proposition 6.2.1 from Proposition 6.2.2.

Proof of Proposition 6.2.1. Let us argue by contradiction and assume SupR+XC(u —v) >
supgoyxc(u—v). Let L be given in the statement of Proposition 6.2.2. Fixing some M > 2L
and choosing R > 0 sufficiently large, we can get supg_ xc(u —v —x) > supqoyxc(u—v —Xx)
where x(t,x) = M(|z|y +Vt—R)4 for (t,x) € Ry x C. However, this contradicts the result

ensured by Proposition 6.2.2. O
The proof below is a modification of the proof of [96, Proposition 3.2].
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Proof of Proposition 6.2.2. For 6 € (0,1) to be chosen, let 6 : R — R4 be a nondecreasing

smooth function satisfying
10'] <1, and (r—0)4+<0(r)<ry, VrekR,
where ¢ is the derivative of #. We define
1
O(t, ) = MO ((5 +l2f3)? + Ve R) . V(t,z) € Ry x C.

It is immediate that

sup  |VO®(t,x)|ly < M, (6.2.2)
(t,x)eR4 xC
9D = V|VD|y, (6.2.3)
d(t,z) > M(|z|y+Vt—R—1)y, V(t,x) e Ry xC. (6.2.4)

We argue by contradiction and assume that the function in (6.2.1) does not achieve its
supremum on {0} x (C N C’). Then, we can fix 6 € (0,1) sufficiently small and 7" > 0

sufficiently large so that

sup (u—v—®)> sup (u—v—9).
[0,T)x (CNC") {0}x(Cnc)

For € > 0 to be determined, we define

3

t =®(¢t t
Xt 2) = B(t,2) + 2t + =,

V(t,xz) €[0,T) x C.
In view of the previous display, we can choose £ > 0 small and further enlarge T so that
sup (u—v—x)> sup (u—v—x). (6.2.5)

[0,T)%(CNC’) {o}x(cner)
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For each a > 1, we introduce

U (t,z,t',2") =u(t,z) —v(t' 2') — %(\t — VP 4z —2')3) — x(t, ),

V(t,z,t',2') € [0,T) x C x [0,T] x .
By the definition of L and (6.2.4), setting C1 = sup,¢jo 71(|u(t, 0)| V |v(Z,0)]), we can see that
1
\I/a(t,l‘,t/,l'/) < Cl + L(2|l’|’H + |l‘ - ZL‘/|’H) - §|ZL' - l‘,’2 - M(|x|fH i 1)+

Hence, due to the requirement M > 2L, ¥, is bounded from above uniformly in o > 1 and
decays as |z|y, |2'|y — oo. Since H is finite-dimensional, we can see that ¥, achieves its

supremum at some (tq, Zo, th, x.,). The above display also implies that there is C such that
|Tal2, |70 <C, VYa > 1.
Setting Cyp = ¥,(0,0,0,0) which is independent of a, we have
Co < Ulta, Tay th, Ta) < O1 +2LC = S (|ta — th[* + |ra — 24 [3):

From this, we can see that a(|t, — t,|* + |za — x,|3,) is bounded as a — oo. Hence,
passing to a subsequence if necessary, we may assume t,, tix — tg and x,, ac'oé — x¢ for some

(to, o) € [0,T] x (CNC’).
Then, we show to € (0,7). Since

£
T —ty’

Co < q’(tayxa?t/awra) <Oy +2LC —
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we must have that ¢, is bounded away from 7" uniformly in «, which implies g < T'. Since

u(ta, Ta) — U(t/aax,a) — X(tas Ta) = ‘lja(tmxaat,a,x;)

>  sup  (u—v—x) 2= (u—v—x)(to, o),
[0,T) % (CNC’)

sending o — oo, we deduce that

(u—v—=x)(to,z0) = sup (u—v—x).
[0,7) % (CNC’)

This along with (6.2.5) implies that ¢y > 0. In conclusion, we have ¢y € (0,7), and thus

ta,tl, € (0,T) for sufficiently large . Henceforth, we fix any such a.

Before proceeding, we want to obtain a bound on |z, — 2/, |. First, we consider the case

C CC'. Using Uy (ta, Ta,th, Ta) — Yao(ta, Ta, th, xh,) < 0, the computation that

o
Vo (to, Tasths Ta) — Yalta, Ta, th, Th) = v(th, xh) —v(th, z0) + =|Ta — a:;]%,

2

and the definition of L, we can get a|r, — 2l | < 2L. If ' C C, we use W, (to, x),t),xl) —

o Yoo

‘IlOé(tOéuxOmt{;yalJa) < 0, and

o
Uo(ta, b th 2l) — Uolta, Ta, by, 2h) = u(ta, zh) — u(ta, o) + glma — :E’aﬁ{

—B(to,2h) + P(ta, Ta)-
By the definition of L and (6.2.2), we can conclude that, in both cases,

a|zo — 2l |3 < 2(L + M). (6.2.6)

With this, we return to the proof. Since the function

(t,z) = U, (t,m,t, 2l)

YY)
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achieves its maximum at (¢,,xq) € (0,7) x C, by the assumption that u is subsolution, we

have
a(te —th) +e+e(T —ta) % + 0 ®(ta, 7o) — H (a(zq — 2},) + VO (ta, 7)) <0 (6.2.7)
On the other hand, since the function
(', 2') = Volte, Ta,t',x')

achieves its minimum at (¢, 27) € (0,00) x C', by the assumption that v is subsolution, we

have
alte —t,) — H(a(za — z,)) > 0. (6.2.8)

By (6.2.2) and (6.2.6), the arguments inside H in both (6.2.7) and (6.2.8) have norms
bounded by 2L + 3M. Taking the difference of (6.2.7) and (6.2.8), and using the definition
of V and (6.2.3), we obtain that

e < VI|VO(ta,za)| — 0:P(ta, ra) <0,
contradicting the fact that € > 0. Therefore, the desired result must hold. O

Proposition 6.2.3 (Existence of solutions). Under assumption (A1)—~(A2), for every Lips-
chitz ¢ : C — R, there is a viscosity solution f of HJ(H,C,H;). Moreover, f is Lipschitz

and satisfies

sup || £(t, )lLip = 19 l|Lip, (6.2.9)
t€R+
sup [ f(-,2)|lLip < sup  [H(p)]. (6.2.10)
zeC pEH
Pl <[ ¢llLip

Proof. Except for one modification, the existence follows from the Perron’s method as in
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[20, Theorem 7.1] or [42, Theorem 4.1] (see also the proof of [96, Proposition 3.4]). As
commented in [42, Remark 4.5|, we only need to make sure that any classical subsolution is

a viscosity subsolution, stated more precisely as follows.

Lemma 6.2.4. Under assumption (A2), suppose that f : Ry x C — R is continuously
differentiable and satisfies O f — H(V f) < 0 (respectively, 0,f — H(Vf) > 0) everywhere.

Then f is a viscosity subsolution (respectively, supersolution) of HJ(H,C,H).

Proof. We assume that 0; f —H(V f) < 0 everywhere and that f—¢ achieves a local maximum
at (t,z) € (0,00) x C for some smooth function ¢. If x € C\ IC, then we clearly have
Op(t,z) = O f(t,z) and Vo(t,z) = V f(t,z), which along with the assumption on f implies
that 9;¢ — H(V¢) <0 at (t,z).

Now, let us consider the case z € JC. By the local maximality of f — ¢ at (¢, ), we have

¢(t/’ x/) - ¢(t7 ‘73) = f(tlv x/) - f(t7 J:)

=Of(t,x)(t' —t) + <Vf(t,a:),a:’ — m>H +o(|t' —t| + |2 — x|3),

for (t',2") sufficiently close to (¢,z). Due to t € (0,00), replacing ' by = and varying t’, we

can see that
8t¢(t, J}) = 8tf(t, JJ) (6211)

Then, replacing ¢’ by ¢ and 2’ by (1 — )z + ey for € € [0,1] and any fixed y € C, we can

obtain by sending € — 0 that

<V¢(t, l‘),y - x)?—[ P (Vf(t,x),y - :E>’Ha Vy eC

which implies that Vo(t,z) — Vf(t,z) € C* by the definition of C* in (6.1.4). Since H
is C*-nondecreasing, we obtain H(V¢(t,x)) > H(Vf(t,x)). Using this, (6.2.11) and the
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assumption on f, we conclude again 0;¢ — H(V¢) < 0 at (t,z). Hence, we conclude that
f is a viscosity subsolution. The verification for supersolutions is similar, with inequalities

above reversed. O

It remains to prove (6.2.9) and (6.2.10). The identity (6.2.9) has been proved in [96, Propo-
sition 3.4]. Assuming (6.2.9), let us prove (6.2.10) here. We denote the right-hand side
of (6.2.10) by L. We argue by contradiction and assume that there exist ¢,¢' € [0,T), z € C,

and ¢ > 0 for some sufficiently large T" > 0 such that
flt,z)— f(t',x) > (L+0)|t -t (6.2.12)

For € > 0 to be chosen, we let § : R — R be a nondecreasing smooth function satisfying

(r—e)v0o<6(r)<rvo for every r € R. We set
24,1
®(z) = MY ((s +lz2)E - R) (6.2.13)

for M, R > 0 to be chosen. Due to (6.2.12), by choosing R sufficiently large and e sufficiently

small, we have

9 9

sup  f(t,z) — f(t',x) = (L+ )|t —t'| — ®(x) — ——2a (6.2.14)
t,'€[0,T), zeC T—t T-t
for some a > 0.
For every o > 1, we consider
€ €
\Ila(tvxatlax/) = f(ta .’IJ) - f(t/,l‘,) - (L + 5)“ - t/‘ - Ck’l‘ - l’l‘g.[ - CD(J;‘) - T _ ¢ - m

for (t,z,t',2') € [0,T) x C x [0,T) x C. Using (6.2.9), we can see that f(t,x) — f(¢',2') is
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bounded from above by

£ (800 + LF(E 0)] + 1 llip(2la + [2]20) < [@llip(2lla + 2 — 2'[5) + 2 S[l(l)pT] £ (&, 0)].
te|0,

Hence, by choosing M in V¥ sufficient large, we can ensure that ¥, is bounded from above
and decays as z,2' — oco. Moreover, ¥, tends to —oo as t,t’ — T. These imply that
U, is maximized at some (tq, To,th,zh). Using W, (ta, Ta,th, 2h) = Yot Ta,th, Ta), the

computation
Val(ta, Ta, ta, Ta) = Yalta, Tas ta, Ta) = f(te, ©0) = f(ta, Ta) + alza — 0ly,
and (6.2.9), we can get |z, — 2, |% = o(a™!) as @ — co. Note that we have, by (6.2.14),
U (ta, Ta,th, oh) = sup U, (t,z,t',x) > a,
t,'€[0,T), zeC

and, by (6.2.9),
\Ila(tcwxa,tayxla) < \Ija(tozaxaatomwa) + HwHLip’xa - wix"H < kuLipO (a_l) :

The above two displays imply that, for « sufficiently large, we have t, # t, and thus at

least one of them is nonzero. Now, let us fix any such a.

If to > t),, since f is a viscosity solution and since (¢,z) — W, (t, z,t,,, x.) achieves a local

maximum at (t,, ), we can get
at¢(ta7$a) —H (V¢(taa Ta)) <0, (6'2'15>
where ¢ is given by rewriting ¥, (¢, z,t,,2)) = f(t,z) — ¢(t,x). Then, we show

s Yoy

V6 (tar 2a)| < []Lip- (6.2.16)
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Since f — ¢ achieves a local maximum at (fs, za), by (6.2.9), we have

¢(tou -T) - ¢(taa33a) = f(ta,l‘) - f(toufﬁa) = *H'(/)HLipm - l‘a|7-b Vx €C.

For any y € C, replacing x by x4 + eA(y — z4) for A > 0 and € > 0 sufficiently small in the

above, and sending ¢ — 0, we have
Ay = 2a), VO(ta: o))y = =¥ llLipl Ay = Za)la, YA 20, yeC.
On the other hand, using the definition of ® in (6.2.13), we can see that

Vé(ta, o) = 20(xo — 2L,) + BTa

1

for some 3 = M0'((e + ]a:a]2)% — R)(e +]zal?)"2 = 0. Setting A\ = 2o+ and y = 2a+5:r;fl,

we have Ay — z4) = —V@(ta, o). Inserting this to the previous display, we get (6.2.16).

Since we can compute that
O1d(to, o) = L4+ 6 +e(T —to) 2> L+,

we can deduce L + § < L from (6.2.15), (6.2.16) and the definition of L. Hence, we reach a

contradiction.

If t, > tq, since (t',2') — Uy(ta, za,t’,x') achieves a local maximum at (¢, )

’,x.) and since

f is supersolution, we have

Oud(th wy) — H (Volth,at) ) > 0, (6.2.17)

for ¢ given by rewriting Uy (ta, Ta,t', ') = ¢(t',2') — f(t',2). Now, since f — ¢ achieves a

local minimum at (¢, 2,), we have

[e%) Oé

g(t/a,:l?) ¢(ta,$a) f(t l‘) f( a’ a) ||¢||L1p|1' :X|7-[7 vV e C.
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Similar to the previous case, we can deduce

(A=), Voltnat)) < Il Ay — el VA0, yec.

Here, we simply have Vgg(t’a,xg[) = 2a(zq — x),). Setting A = 2« and y = x,, in the above

display, we obtain [V (t,,z))|x < |[¢||Lip- Since dyp(t, xl) = —(L 4 8) — (T —t,,) 2 <

)

—(L +9), this along with (6.2.17) and the definition of L yields —(L + §) > —L, reaching a

contradiction.

In conclusion, we must have (6.2.10), completing the proof of (6.2.10) and thus the proof of

Proposition 6.2.3. O

6.2.2. Hopf-Lax formula

Recall the definition of ¢ in (6.1.6).

Lemma 6.2.5. Let H be a possibly infinite-dimensional Hilbert space, and C be a closed con-
vex cone in H. Suppose that g : H — (—o00,00] is C*-nondecreasing, lower semicontinuous,

and convez, and satisfies g(0) < co. Then,
1. g®(y) = o0 for ally € C;

2. g(x) = supyec{@c, Y)y — 9% (y)} for every x € H.

Proof. For every y ¢ C, by Lemma 6.1.2, there is z € C* such that (z,y),, < 0. For every
A > 0, we also have 0 € CN(—=Az+C*). Since g is C*-nondecreasing, we have g(—Az) < g(0),

which implies

9%(y) = AM(=2,9)y — 9(=A2) = X(=2,y)5 — 9(0).

Sending A\ — oo, we obtain g¥(y) = oo, verifying (1). The standard Fenchel-Moreau theorem
(c.f. [23, Theorem 13.32]) gives that g(x) = sup,ecy{{(z,y)y — g% (y)}, which along with (1)

implies (2). O
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We show that when H is convex, the solution can be represented by a version of the Hopf-Lax

formula on cones. For the standard version, we refer to [60, 42].

Proposition 6.2.6 (Hopf-Lax formula). In addition to (A1)—(A2), suppose that H is convex

and bounded below, and that v : C — R is Lipschitz and C*-nondecreasing. Let f be given by

f(t,z) = sup {zp(y) — tH® <y;$) } . Y(tz) eRy xC. (6.2.18)

yeC
Then, f is a Lipschitz viscosity solution of HJ(H,C,H; ).

Here, to make sense of (6.2.18) at ¢ = 0, we use (6.1.6) to rewrite the right-hand side

of (6.2.18) as

f(ta 33) = sup inf {%ZJ(Z/) - <Z,y - $>H +tH(Z)}7 V(t,l‘) € R+ x C.
yeC Z€H

Then, we can see that, when ¢t = 0, the supremum in this display must be achieved at y = =z,

implying f(0,z) = ¢ (x) for all x € C.

We devote the rest of this subsection to the proof of this proposition.
Semigroup property

We show that for all t > s > 0,

F(t,x) = sup {f(s,y) — (t—s)H® <3;_"’“> } , Vzec. (6.2.19)

yeC - S

The convexity of H® implies that

o (18) < o (15) e (22) e
t t S t t—s
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which along with (6.2.18) yields that

ft,x) > ys;zlgc {ﬂ}(y) — sH® (y;Z) —(t—s)H" (i - 95)}

— S

“up{r e (0]}

To show the converse inequality, we claim that for any fixed (¢,x) € (0,00) x C, there is
y € C satisfying.

ft,x) =(y) — tH® <y ; x) : (6.2.20)
Assuming this, we set z = x4 (1 — )y which satisfies 2=% = =% = ¥== By this, (6.2.18),
and (6.2.20), we have

)= =i (320) 0 - st (5 - e (222)
v

which yields the desired inequality.

It remains to verify the existence of y in (6.2.20). Fix any A > 0 and set x = )\ﬁ in (6.1.6)
for H® to see that

H®(y) = Alylx — sup |H(2)|.

EE7A)

Since H is locally Lipschitz, the supremum on the right is finite. Hence, we can deduce that

®
limint ) _ o, (6.2.21)
y—oo  |y|y

We set L = ||¢||Lip- Then, the above implies the existence of R > 0 such that H® (=) >

286



(L + 1)% for all y satisfying @ > R. These imply that

0(0) = o (U75) < 0la) 4 Lly sl = (L Dy = 2 = 0(0) ~ by~

for all y satisfying |y — x|y > tR. Therefore, the supremum in (6.2.18) can be taken over
a bounded set. Also note that the function y — v (y) — tH*(¥%) is upper semi-continuous
and locally bounded from above due to H¥(z) > —H(0). Since H is finite-dimensional, the
maximizer must exist, which ensures the existence of y in (6.2.20) and thus completes the

proof of (6.2.19).
Lipschitzness

We first show the following claim: for every (¢t,z) € (0,00) x C, there is y € C satisfying

y —x € C such that

ft,o) — ft,2") <v(y) —v(y—x+2'), Vi’ eC. (6.2.22)

Fix any (¢,z) € (0,00) x C. Arguing as before, we can find y € C such that (6.2.20) holds.
Lemma 6.2.5 (1) ensures that y —z € C, and thus y — z + 2/ € C for every 2/ € C. The

Hopf-Lax formula (6.2.18) gives the lower bound

o) > wly o+ o (170,

which along with (6.2.20) yields (6.2.22).

Now, for any (¢, z,z") € (0,00) x C x C, we apply (6.2.22) to both x and 2’ to see that there

exist y,4" € C such that

Py =o' +x) =) < flt o) = ft,2") <dly) — Py —x + '),
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which immediately implies that
sup 1£(t, )Lip < 1] Lip- (6.2.23)
>

Then, we show that

sup  |[H(p)

)
[plx<II¥llLip

} . (6.2.24)

sup || f (-, z)|Lip < max {|H®(0)
zeC
Let us fix any x € C and ¢ > s > 0. Then, (6.2.19) immediately yields
ft,2) = f(s,2) = (t = s)H"(0)

where the last term is finite by the assumption that H is bounded below. Next, using (6.2.23),

we can obtain from (6.2.19) that
-z
{Ild)IILiplfc —yly — (t = s)H" (‘Z_S> } :

Lemma 6.2.5 (1) ensures that Y= € C. Replacing Y= by z, and using ||¢||Lip|2ln =

< , M> , we can bound the right-hand side of the above display by

|z]%

f(t,z) < f(s,2) 4 sup
yeC

(t —s)sup {[[¥llLiplzl2 — H®(2)} < (t—s) sup  sup {(z,p)y, — H"(2)}
zeC [pln <l llLip 2€C

=(t—-s) sup H(p)

[plx<|[¥llLip

where the last equality follows from Lemma 6.2.5 (2). The above three displays together

yield (6.2.24).
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Verification of the Hopf-Lax formula as a supersolution

Suppose f — ¢ achieves a local minimum at (¢, z) € (0,00) x C for some smooth function ¢.

Then,

flt—s,x+sy)— ot —s,x+sy) = f(t,x) — o(t,x)

for every y € C and sufficiently small s > 0. On the other hand, (6.2.19) implies that

ft,x) = f(t—s,x+sy) — sH(y).

Combining the above two displays, we obtain that

d(t,z) — ot — s, + sy) + sH®(y) = 0.

Sending s — 0, we have that

8t¢(t7$) - <y7 v¢(t7x)>’}-[ + H®(y) = 0.

Taking infimum over y € C and using Lemma 6.2.5 (2), we obtain

(09 —H(V9)) (t,z) = 0,

verifying that f is supersolution.
Verification of the Hopf-Lax formula as a subsolution

Suppose that f — ¢ achieves a local maximum at (¢,z) € (0,00) x C. We want to show that

(09 — H(V9)) (t,z) < 0. (6.2.25)
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We argue by contradiction and assume that there is § > 0 such that
(0ep — H(V9)) (t',2") 2 6 >0,
for (¢',2") sufficiently close to (t,z). The definition of H® (in (6.1.6)) implies that
ot ') — (¢, Vo(t',2")),, +H"(q) > 6 (6.2.26)

for all such (¢',2') and all ¢ € H.

To proceed, we show that there is R > 0 such that for every s > 0 sufficiently small there is

zs € C such that

S

F(t,x) = f(t —s,25) — sH® (xs - x> , (6.2.27)
|z — xs|y < Rs. (6.2.28)
In view of (6.2.23) and (6.2.24), we set L = || f||Lip < co. By (6.2.21), we can choose R > 1

to satisfy H®(z) > 2L|z|y for every z € H satisfying |z|p; > R. Then, for every y € C

satisfying w%'” > R, we have

Yy—x

ft—s,y) 5H®< > < f(t,x) + Ls+ Lly — x|y — 2Ly — x|y < f(t,x) + Ls(1 — R).

S

Hence, the supremum in (6.2.19) can be taken over {y € C : |y — x|y < Rs}. Since
H is finite-dimensional, we can thus conclude the existence of z; € C satisfying (6.2.27)

and (6.2.28).
Returning to the proof, we can compute that, for sufficiently small s > 0,

d

5(;5(25 +(r—1Ds,rx+ (1 —r)xs)dr

1
ot x) — Bt — 5,2,) = /0

1
= /0 (sOp — (x5 —x, V) (t+ (r — V)s,rz + (1 — r)zs)dr.
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Using (6.2.26) with g replaced by =% and (6.2.27), we have

Bt,) — Bt — 5,2,) > 50 — sH® (H> > 56+ f(t2) = f(t - 5,2).

Rearranging terms, we arrive at that, for all s > 0 sufficiently small,

ft=s,xzs) —p(t —s,z5) = 80+ f(t,z) — ¢(t, x),

contradicting the local maximality of f — ¢ at (¢, z). Hence, (6.2.25) must hold, and thus f

is a subsolution.
6.2.3. Hopf formula

Recall the definition of monotone conjugate in (6.1.7). Note that, by Lemma 6.1.2, we can
verify that ¢g* is always C*-nondecreasing, which is reason for the prefix “monotone”. The

monotone biconjugate of g is given by ¢** = (¢*)*, which can be expressed as

g (x) = sug{(y,x)H —g*(z)}, VYxeH. (6.2.29)
IS
It is easy to see that
g (z) < g(x), Vzel. (6.2.30)

Definition 6.2.7. A closed convex cone C is said to have the Fenchel-Moreau property if
the following holds: for every g : C — (—o00, 00| not identically equal to co, we have that

g** = g on C if and only if g is convex, lower semicontinuous and C*-nondecreasing.

In Section 6.5, we will show that the cones relevant to the spin glass models have the
Fenchel-Moreau property. The goal of this subsection is to show that a version of the Hopf
formula on cones is a viscosity solution. In [75], Hopf proposed this formula as a solution

given that the initial condition is convex or concave, which was later confirmed rigorously
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in [84].

Proposition 6.2.8 (Hopf formula). In addition to (A1)—(A2), suppose that C has the
Fenchel-Moreau property and that ¢ : C — R is convex, Lipschitz and C*-nondecreasing.

Then, f: Ry x C — R given by

f(t,x) =supinf {(z,x —y), +¥(y) +tH(2)}, V(t,z) € Ry xC, (6.2.31)
zeC yeC

is a Lipschitz viscosity solution of HI(H,C,H; ).

We will also need the following equivalent forms of the Hopf formula (6.2.31):

ft,x) = s;;g{(zg x)y — Y (2) +tH(2)} (6.2.32)
= (V" = tH)"(2). (6.2.33)

Remark 6.2.9. For concave initial condition 1, one would expect that the following version

of Hopf formula,

f(t,x) = inf sup {(z,2 —y)y +P(y) +tH(2)}, V(t,z) e Ry xC, (6.2.34)
z€C yeC

is a viscosity solution. However, it is seemingly not valid here. Let us briefly explain this.
In the proof of Proposition 6.2.8, we will need the assumption that H is C*-nondecreasing
in several places, for instance, in the derivation of (6.2.40). Attempts to verify that for-
mula (6.2.34) is a solution fail at these places, where the monotonicity of H only yields

inequalities in undesired directions.

We check the following in order: initial condition, semigroup property (or dynamic program-
ming principle), Lipschitzness, that the Hopf formula gives a subsolution, and that the Hopf

formula gives a supersolution.
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Verification of the initial condition

Using (6.2.33), we have f(0,) = ¢**. Then, the Fenchel-Moreau property of C ensures that
o=,
Semigroup property

For f given in (6.2.31), we want to show, for all s > 0,

f(t+s,2) =supinf {(2,2 — y)y + f(t,y) + sH(2)},
zeC yeC
or, in a more compact form,
ft+s,)=(f(t,-)—sH)". (6.2.35)
In view of the Hopf formula (6.2.33), this is equivalent to
(* — (t+s)H)" = ((* — tH)™ — sH)". (6.2.36)

Since the Fenchel transform is order-reversing, (6.2.30) implies that

(" —tH)™ —sH)" > (" — (t+ s)H)". (6.2.37)

To see the other direction, we use (6.2.30) to get

s
(O

Lt = (E+ s)H) < — tH.
t+s Ty, W) <Y

For any g, it can be readily checked that g* is convex, lower semicontinuous, and C*-
nondecreasing. Taking the monotone biconjugate in the above display and applying the

Fenchel-Moreau property of C, we have

S (T — ()R < (07— )
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Then, we rearrange terms and use (6.2.30) to see

(" = (t+ s)H)™ = (9" = tH)™ < - (V" = tH)™ = ¢") < —sH,

| ®»

and thus
(" = (t+s)H)™ < (9" — tH)™ — sH.

Taking the monotone conjugate on both sides, using its order-reversing property, and invok-

ing the Fenchel-Moreau property of C, we get
(W" = (t+s)H)" > (¢" = tH)™ — sH)",

which together with (6.2.37) verifies (6.2.36).
Lipschitzness

Since v is Lipschitz, we have ¢*(z) = oo outside the compact set B = {z € C : |z|y <

|¥]lLip}. This together with (6.2.32) implies that for each € C, there is z € B such that
f(t,x) = (z,2)y — V" (2) + tH(2). (6.2.38)
Using this and (6.2.32), we get that
ft,z) — f(t,2') < <z,x — x'>H < |Ylliple — 2’3, Va2’ eC.

By symmetry, we conclude that f(¢,-) is Lipschitz, and the Lipschitz coefficient is uniform

in t.
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To show the Lipschitzness in ¢, we fix any = € C. Then, we have, for some 2z € B,
ft,@) = (z,2)5 — V7 (2) + tH(2) < f(t),2) + (t — t')H(2)

[zl <|[¥llLip

<f(t',x)+!t'—t\< sup !H(Z)\>-

Again by symmetry, the Lipschitzness of f(-, z) is obtained, and its coefficient is independent

of z.

Combining these results, we conclude that f is Lipschitz.
Verification of the Hopf formula as a subsolution

Let ¢ : (0,00) x C — R be smooth. Suppose that f — ¢ achieves a local maximum at
(t,z) € (0,00) x C. Arguing as above, there is z € C such that (6.2.38) holds. By this

and (6.2.32), we have, for s € [0,t] and h € C,
f(t,x) < f(t—s,2+h) = (z,h)y + sH(2).
By the assumption on ¢ ensures that
ft=s,z+h)— ot —s,x+h) < f(t,z) — o(t,x).
for small s € [0,¢] and small h € C. Then, we combine the above two inequalities to get
o(t,x) — ot — s,x+ h) < —(2,h)y + sH(2), (6.2.39)

for sufficiently small s > 0 and h € C. We can set s = 0, substitute ey for h for any y € C
and sufficiently small € > 0, and then send € — 0 to see (y, Vo(t,x) — 2),, > 0 forall y € C,

which implies that Vo (t,x) — 2z € C*. Since H is C*-nondecreasing, this implies

H(Vo(t, z)) = H(z). (6.2.40)
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Then, we set h = 0 in (6.2.39), take s — 0 to obtain 0:¢(t,x) < H(z), which along with the

above display gives
at¢(ta I’) - H(V¢(t,$)) < 0.

Hence, we conclude that f is a viscosity subsolution.
Verification of the Hopf formula as a supersolution

The idea of proof in this part can be seen in [84, Proof of Proposition 1]. Let (¢,z) €
(0,00) x C be a local minimum point for f — ¢. Due to (6.2.32), f is convex in both

variables. Since C is also convex, we have, for all (¢, 2") € (0,00) x C and all A € (0, 1],

ft' 2" — flt,x) > (f (t—l—)\(t' —t), 2 + M’ —x)) —f(t,a:)).

1
A

For any fixed (#,2’) and sufficiently small A > 0, the local minimality of f — ¢ at (¢,x)

implies that
FE+AE =), 2+ A2 —2)) = flt,2) 2 ¢ (t+ Al — 1),z + A" — ) — ¢(t,z).
Using the above two displays and setting A — 0, we obtain
f@A 2= flt,z) = rt' —t) +(Vo(t, z), 2’ — a:>H (6.2.41)
where, for convenience, we set

r = 0p(t, x). (6.2.42)

Before proceeding, we make a digression to convex analysis. For every convex g : H —
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(—00, 0] and every y € H, the subdifferential of g is defined by
dg(y) ={z € H:9() = g(y) + (2,9 —y),,, VW € H}. (6.2.43)
For any convex set £ C H, the outer normal cone to £ at y € H is defined to be
ng(y) ={zeH: (29 —y), <0,V €&}.
Since f(t,-) is convex, setting ¢’ = ¢ in (6.2.41), we have
Vo(t,x) € 0f(t,x). (6.2.44)

Here, 0f(t,z) stands for the subdifferential of f(¢,-) at . We need the following lemma

characterizing subdifferentials in finite dimensions (c.f. [105, Theorem 25.6]).

Lemma 6.2.10. Let g : H — (—00,00] be lower semicontinuous, and convex. If {g < oo}

has nonempty interior in H, then
9g(x) = ol (conv A(2)) + ngeney (@), ¥ € {g < o0}

where A(z) is the set of all limits of sequences of the form (Vg(xy))22, such that

limy, o0 n, = x and g is differentiable at every x.,.

Since f(t,-) : C — R is convex and continuous, extending f(¢,-) by setting f(¢,z) = oo
for x ¢ C, we can ensure this extension is lower semicontinuous and convex and thus
Lemma 6.2.10 is applicable to the extended f(t,-). Moreover, by this extension, we have

{f(t,-) < oo} =C and thus ns.)<sc}(¥) = nc(w), for every z € C.

Invoking Lemma 6.2.10 to (6.2.44), we can express

Vo(t,z) =a+b (6.2.45)
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where b € n¢(z) and a belongs to the closed convex hull of limit points of the form

lim,, oo Vf(t, z,,) where lim,,_,o x, = x and f(t,-) is differentiable at each x,,.

Since the supremum in (6.2.32) is taken over C, we can see that f(¢,-) is C*-nondecreasing
on C. Then, by Lemma 6.1.2, we can see that the differential of f whenever exists always

belongs to C, which implies that
a€eC. (6.2.46)

By the definition of n¢(x) and that of C* in (6.1.4), it can seen that —b € C*. This along

with (6.2.45) implies
a € V(t,x) +C*. (6.2.47)

By Lemma 6.2.10, the definition of a and an easy observation that 0 € n(z), we can deduce

that a € 0f(t,x), which due to the definition of subdifferential in (6.2.43) further implies
ft, o) — ft,z) > <a,a:' — x>H, va' € C.
Then, we set 2’ = 2 in (6.2.41) and use the above display to get

f 2 = ft,z) = r(t' —t)+ (a2’ — x>H, V(t' 2') € Ry x C. (6.2.48)

Now, we return to the proof. For each s > 0, we define
ns(z') = f(t,z) —rs+ (a, 2’ — x>H, vz’ e C.
Setting ¢ =t — s in (6.2.48), for s € [0, ], we have

ft—s,2") = ns(a"), Vi’ ecC.
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Applying the order-reversing property of the monotone conjugate twice, we obtain from the

above display that

(f*(t—s,-) = sH)" = (7 — sH)".

Due to the semigroup property (6.2.35), this yields

f(t,2) = (g —sH)", Vs e[0,t].

By (6.2.46) and the definition of the monotone conjugate in (6.1.7), the above yields

ft,x) = (a, x)5 — n5(a) + sH(a).

On the other hand, using the definition of 7,, we can compute

nala) = —f(t,x) +rs+ (a,z)y .

Combining the above two displays with (6.2.42), we arrive at

(019 — H(a)) (¢, 2) = 0.

Lastly, (6.2.47) and the fact that H is C*-nondecreasing imply H(a) > H(V¢(t, x)), which

along with the above display verifies that f is a supersolution.
6.3. Equations on an infinite-dimensional cone

For a fixed positive integer D, let SP be the space of D x D-symmetric matrices, and SE be
the cone of D x D-symmetric positive semidefinite matrices. We equip SP with the inner
product a - b = tr(ab), for all a,b € SP. We can view S as a closed convex cone in the

Hilbert space SP. Naturally, S” is endowed with the Borel sigma-algebra generated by the
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norm topology. For a,b € S, we write
a>b, ifa-beSh, (6.3.1)

which defines a partial order on SP.

We work with the infinite-dimensional Hilbert space
H = L?([0,1),SP) (6.3.2)

namely, SP-valued squared integrable functions on [0,1) endowed with the Borel sigma-
algebra By 1) and the Lebesgue measure. In addition to the Hilbert space H, we will also

need
P = [P([0,1),S%) (6.3.3)

for p € [1, 00|, whose norm is denoted by |- |1».

We consider the following cone
C={p:00,1)— s? | p is right-continuous with left limits, and nondecreasing} . (6.3.4)

Here, y is said to be nondecreasing if yu(t) — u(s) € SP whenever t > s. We view C C H by
identifying every element in C with its equivalence class in H. Since {1 1)}iecp,1) € C, it is

immediate that C spans H. More precisely, (6.1.3) holds.

In this section, we study HJ(H,C,H) for H and C given above. We start by introducing
more notations and basic results in Section 6.3.1. The main results of this section are scat-
tered in subsections afterwards. The comparison principle is given in Proposition 6.3.8.
In Section 6.3.3, we show that any limit of finite-dimensional approximations is a viscosity

solution (Proposition 6.3.9), and provide sufficient conditions for such a convergence (Propo-
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sition 6.3.10). In Section 6.3.4, we show that the Hopf-Lax formula and the Hopf formula
are stable, when passed to the limit (Propositions 6.3.12 and 6.3.13). Lastly, in Section 6.3.5,
we briefly discuss a way to make sense of the boundary of C in a weaker notion. Results

there are not needed elsewhere.

Throughout, we denote elements in C by p, v, p; generic elements in ‘H by ¢, k; and elements

in finite-dimensional spaces by z,y, z.
6.3.1. Preliminaries

We will introduce definitions and notations related to partitions of [0, 1), by which the finite
approximations of HJ(#,C,H) will be indexed. Projection maps and lifting maps between
finite-dimensional approximations and their infinite-dimensional counterparts will be used
extensively. Their basic properties are recorded in Lemma 6.3.3. We will also need the
projections of C and their dual cones, the properties of which are collected in Lemmas 6.3.4
and 6.3.5. Lastly, in Lemma 6.3.6, we clarify the relation between the differentiability in

finite-dimensional approximations and the one in infinite dimensions.
Partitions

We denote the collection of ordered tuples as partitions of [0,1) by
TJ=Upen{(t1,to,...,tn) € (0,1]" : 0 < t; <ta <+ <tp_1 <tn,=1}.

For every such tuple j € J, we set ¢y = 0, and denote by |j| the cardinality of j.

A natural partial order on J is given by the set inclusion. Under this partial order, a

subcollection J C J is said to be directed if for every pair 7,5’ € 5, there is j” € 3 such that

33" <"

For each j € J, we associate a sigma-algebra JF; on [0,1) generated by {1y, 1, . )} teej- A
subcollection ‘:j C J is said to be generating if \:j is directed, and the collection of sigma-

algebras {F; }j 5 generates the Borel sigma-algebra on [0,1).
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Let Junif be the collection of uniform partitions. A subcollection ‘:j C J is said to be good if
JcC Junif and Jis generating. Examples of good collections of partitions include Jnir itself,

and the collection of dyadic partitions.

In the following, we denote by Jgen a generic generating collection of partitions, and by Jgood

a generic good collection.

Then, we introduce the notions of nets and convergence of a net. For any directed subcol-

lection J C J, a collection of elements (z;) indexed by 5, from some set X is called a

JEY
net in X. If X is a topological space, a net (ﬂvj)je‘:j is said to converge in X to x if for every
neighborhood NV of z, there is jy € J such that z; € N for every j € 3 satisfying j O jr-
In this case, we write lim,_xx; = x in X.

JEJ

For each j € J and every ¢ € L', we define

1] t
: 1 k
) =3 O — / Js)ds, Vit e [0,1). (6.3.5)

k=1 te—1

It is easy to see that () is characterized by the condition expectation of ¢ on Fj, namely,
LI(U) =E[u(U)F). (6.3.6)

Here, and throughout, U is uniform random variable on [0, 1) defined on the probability space
([0,1), Bjp,1), Leb). By Jensen’s inequality, we have WU) e LP if L € LP, for any p € [1,00),
which also holds obviously for p = co. In particular, :U) € H if . € H. It is straightforward

to see that () e Cif L € C.
Projections and lifts

We introduce finite-dimensional Hilbert spaces indexed by J. For each j € J, we define

Hi = (Pl (6.3.7)
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equipped with the inner product
¥l

<$7 y>HJ = Z(tk - tk—1)$k * Yk, vxvy € HJ
k=1

For each j € J, we define the projection map p; : H — HI by

1 b
pjt = / t(s)ds , YeeH.
e —th—1 Jy,,_,

ke{l,... |51}
Correspondingly, we define the associated lift map 1; : HI — H:
Fl

lja: = Zxk]l[tkfl,tk)’ Vo € H.
k=1

We define projections and lifts acting on functions.

Definition 6.3.1 (Lifts and projects of functions). Let j € J.

is given by fI(t,-) = f(t,1;(-)) for each t € T.

g'=gop;.

by f1(t,-) = f(t,p;(-)) for each t € T.

(6.3.8)

(6.3.9)

(6.3.10)

For any £ C H and any g : £ — R, its j-projection ¢/ : p;€ — R is given by ¢/ = gol;.

For any 7 x £ CRy x H and any f: 7T x & — R, its j-projection f/: T x p;€ - R

For any & C H/ and any function g : £ — R, its lift g" : ;€ — R, is given by

for any 7 x £ CRy x H and any f: T x € — R, its lift fT: T x1,€ — R, is defined

Remark 6.3.2. Let us clarify our use of indexes. Objects with superscript 5, for instance, H7,

C’ (introduced later in (6.3.11)), f/, are always projections of infinite-dimensional objects

either mapped directly by p; or induced by p;. Superscript (j) is reserved for (6.3.5).

Other objects directly associated with j or whose existence depends on j are labeled with
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subscript j. For example, the solution to finite-dimensional approximation corresponding to

the partition j will be denoted as f;.
We record basic properties of projections and lifts in the following lemma.
Lemma 6.3.3. For every j € J, the following hold:
1. p;j andl; are adjoint to each other: (pji,x),,; = (t,1;w), for every 1t € H and x € HI;
2. 1; is isometric: (l;x,ljy), = (x,y)yy for every x,y € HI;
3. pjl; is the identity map on HI: pjljz = x for every x € HI;
4. Lipjt= !9 for every v € H;
5. pj is a contraction: |pjtlys < ||y, or equivalently 1193y < |e|, for every v € H;
6. if i € J satisfies j C j', then pjljpjre = pju for every v € H.
In addition, the following results on convergence hold:
7. for every v € H, limjey,,, ) = in H;

8. for any net (1)) jeape, i H, if limjey,,, tj = ¢ in H, then limjey,,, ng) =1inH.

Proof. Part (1). We can compute:

il N
(Pjts @)y = Z(tk —tp—1) (tl/t L(S)ds> T

— k— k-1
il e 1 ls

= Z/ L(s) - zpds = / t(s) - Z]l[tk—htk)(s)xk ds = (1,1;x),, .
k=1"th—1 0 k=1

Part (2). We use (6.3.10) to compute explicitly to get the desired result.

Part (3). Definitions of p; in (6.3.9) and 1; in (6.3.10) directly yield (3).
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Part (4). Comparing the definitions of p;, 1; and :V) in (6.3.5), we can easily deduce (4).

Part (5). We use (6.3.6) and Jensen’s equality to see
Ol | 2 2 |2
(0] =E|O@)| = EEL)IF? <EWO)P = |

The equivalent formulation follows from (2) and (4).

Part (6). We can directly use the definitions of projections and lifts. Heuristically, j is a
coarser partition and j' is a refinement of j. The map 1;p; has the effect of locally averaging
¢ with respect to the finer partition j/. On the other hand, p; is defined via local averaging
with respect to the coarser j. The result follows from the fact that local averaging first with
respect to a finer partition and then to a coarser partition is equivalent to local averaging

directly with respect to the coarser one.

Part (7). We argue by contradiction. We assume that there exists ¢ > 0 such that for

every j € Jgen, there is some j' D j satisfying ]L(j/) — t|y = €. Let us construct a sequence

recursively. We start by choosing ji € Jgen to satisfy |L(j1) —tly = e. For m > 1, we choose

Jma1 D (Jm U jl,) such that [oUm+1) — |y > &, where we let j, € Jgen be any partition
1

satisfying max;<i<)js |{[ti — ti-1]} < ;;. Denote this sequence by Jg.,, which is clearly

directed and generating.

By (6.3.6), for jm,,jn € 3'gen such that n > m, we have
(U = B [(U)|F5,.) = E[EU)IF,] 1F5,] = E [0 @)1 F, ]

which implies that (:U7)),cy is a martingale with respect to (Fj, )nen. By the martingale
convergence theorem, this sequence converges to ¢ in H as n — oo, which is a contradiction

to our construction of the sequence.
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Part (8). By the triangle inequality and (5), we have

< ‘ng) _ LU)‘H i ‘Lm _ L"H <y =ty + ‘Lo‘) _ L‘H

Then, (8) follows from (7). O

Cones and dual cones

For each j € J, we introduce
Cl={zeM :0<m <oy < <y}, (6.3.11)

where we used the notation in (6.3.1). It is clear that C? and H/ satisfy (6.1.3).
Recall the definition of dual cones in (6.1.4).
Lemma 6.3.4 (Characterizations of dual cones).

1. For each j € J, the dual cone of C7 in H7 is

5
C)y =SaeH ) (ti—ti)z €SP, Vke{1,2,... [}
i=k

2. The dual cone of C in H is
1
Cr= {l, eEH: / Ws)ds e SP, vte [0,1)}.
t

Proof. Part (1). We denote the set on the right-hand side by RHS. We first show that

(C7)* CRHS. Let x € (C7)*. For every k and every a € SP, we can choose y € C7 such that

0=y1 = =yk1 and yp = --- =y} = a. Then, we have
ls1 Fl
S ti—ti)zica=> (ti—ti1)zi-y; >0,
i=k i=k
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which implies that = € RHS. In the other direction, we assume € RHS. For every y € C7,
by setting yo = 0, since yr — yr_1 € Sf for all k, we have

¥l il (14l

Z(ti —tim1)wi - yi = Z Z(ti —ti—1)Zi (Y — Ye—1) | 20,

i=1 k=1 \i=k

which gives that = € (C?)*. Now we can conclude that (C?)* = RHS as desired.

Part (2). We denote the set on the right-hand side by RHS. Let « € C*. For any a € SE
and t € [0,1), we set u = al, ;). It is clear that y € C. Due to (i, )5, > 0 by duality, we
deduce that + € RHS.

Now, let © € RHS. We argue by contradiction and assume ¢ ¢ C*. Then, by definition,
there is 4 € C such that (¢, ),, < 0. By Lemma 6.3.3 (7), there is a partition j such that
<L(j), ,u(j)>7_[ < 0. Due to Lemma 6.3.3 (2) and (4), this can be rewritten as (p;¢, pju),,; < 0.
On the other hand, by the definition of p; in (6.3.9), we can compute that, for every k,

ld 1
> (i —tio1)(pje)i = / 1(s)ds € SP

i=k b1

by the assumption that « € RHS. Hence, by (1), we have ¢ € (C7)*. Since p is nondecreasing
as p € C, it is easy to see that pju € C’. The detailed computation can be seen in (6.3.13).

Therefore, we must have (pj;¢, pjju),,; = 0, reaching a contradiction. O

Hi
Lemma 6.3.5. For every j € J, the following hold:
1. 1;(¢7) C¢;
2. 1((C7)") S ¢
3. p;(C) =CI;

4. p;(C7) = (C7)";
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5. we p) +C*, for every p € C.
Proof. We first show that
p;(C) C 7 (6.3.12)

and then verify each claim. For every u € C, it follows from the definition that p;ju € HI.

Since p is nondecreasing, setting (p;u)o = 0 by our convention, we get,

1 123 1 tk—1
(Pj)k — (Pjp) k-1 = / p(s)ds — / p(s)ds
te—1 tp—2

tr —tr_1 th—1 —tp—2
= ,u(tk,l) - ,u(tk,l) = 0, (6.3.13)
for k € {2,---,|j|}. Clearly when k& = 1, (pju)1 = % gl u(s)ds € SP. Hence, we have

pji € C7 and thus (6.3.12).

Part (1). For any = € C7, recall the definition of 1;z in (6.3.10). Since xy > x5 for each k,

it is clear that l;x is nondecreasing and thus belongs to C.

Part (2). Let x € (C7)*. For every u € C, recalling the definition of p;u in (6.3.9), we have

1 bl il ey
/ Z]ltk 17tk dS—Z/ ok - pls
0 p—1 te—1
1 b
:Z(tk_tkfl) T - tt/ ,u(s)ds
=1 k= V=1 Jtp_q

]
Z (tk — th—1)zK - (Pjp)r = 0,

k=
where the last inequality holds due to = € (C/)* and pju € C? by (6.3.12). This implies that
Lz € C*, and thus L,((C7)*) C C*.

Part (3). For every z € C7, by (1), we have l;z € C. Lemma 6.3.3 (3) implies that z = p;1;z.
Hence, we get C/ C p;(C). Then, (3) follows from this and (6.3.12).
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Part (4). Let . € C*. For every z € €7, we have by Lemma 6.3.3 (1) that (pj¢,z),, =
(1,1;2)5, > 0 due to Lz € C ensured by (1). Hence, we have p;(C*) C (C?)*. For the other
direction, let z € (C7)*. Lemma 6.3.3 (3) gives = p;l;z. Invoking (2), we can deduce that

(C7)* C p;(C*), completing the proof of (4).

Part (5). We show that u — ) € C*. Let 7 € [0,1) and a € SP. We choose t;, € j such

that 7 € [tg,_1,tk,). Using the definition of xU) in (6.3.5), we can compute that

1 kg 1 trg
— (tgy— 7) / ple)ds — o [ u(s)as ) >0,
the — 7 /s tho — tho—1 Ji, s

where the last inequality follows from the fact that p is nondecreasing. By Lemma 6.3.4 (2),

we conclude that pu — pU) € C* as desired. O

Derivatives

Recall Definition 6.1.3 (3) for the differentiability of functions defined on C. We denote by

V; the differential operator on functions defined on Cl.
Lemma 6.3.6. For every j € J, the following hold.

1. If g : C — R is differentiable at 1jx for some x € CI. Then, ¢7 : C7 — R is differentiable

at x and its differential is given by Vg’ (x) = p;(Vg(l;x)).

2. If g: C7 = R is differentiable at x for some x € C?. Then, g' : C — R is differentiable

at every p € C satisfying p;pu = x and its differential is given by Vg'(n) = 1;(V,g(x)).
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Proof. Part (1) Recall that by definition, g/ = gol;. For every y € C/, we can see that

9 (y) =g’ (z) = goli(y) — g ol;(x)
= (Vg(z), Ly — L)y, + o (liy — Lizl) ,
= (pj(Vg(ljz)),y — )3y + 0 (ly — zlp0)
where the last equality follows from Lemma 6.3.3 (1) and (2).

Part (2). Recall that by definition, g" = g o p;. Let u € C satisfy pju = z. Then for any

v e, we get
9'(v) = g (1) = g op;(v) — g o p;(n),
= (Vjg(x),pjv = 2)3 + o (Ipjv — zlpy)
= (i(Vjg(x)), v = phy +o(lv = pln)
where we used Lemma 6.3.3 (1) and (5). O

6.3.2. Comparison principle
To compensate for the lack of compactness in infinite dimensions, we need Stegall’s varia-

tional principle [110, Theorem on page 174] (see also [32, Theorem 8.8]).

Theorem 6.3.7 (Stegall’s variational principle). Let € be a convex and weakly compact set
in a separable Hilbert space X and g : £ — R be an upper semi-continuous function bounded
from above. Then, for every 6 > 0, there is v € X satisfying |t|x < § such that g + (¢, -) 4

achieves mazimum on &.

Originally, £ is only required to satisfy the Radon-Nikodym property which is weaker than

being convex and weakly compact (see discussion on [110, page 173]).

The goal of this subsection to prove the following.
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Proposition 6.3.8 (Comparison principle). Under assumption (Al), let u be a Lipschitz
viscosity subsolution and v be a Lipschitz viscosity supersolution of HJ(H,C,H). If u(0,-) <

v(0,-), then u < v.

Proof of Proposition 6.5.8. It suffices to show u(t,-) — v(t,-) < 0 for all t € [0,T) for any
T > 0. Henceforth, we fix any T' > 0. We set L = ||u||ip V ||v|/Lip, M = 2L+ 3 and V to
be the Lipschitz coefficient of H restricted to the centered ball with radius 2L + M + 3. We

proceed in steps.

Step 1. Let 8 : R — R, be a nondecreasing smooth function satisfying
0] <1 and (r—=1)+ <0(r) <ry, VrekR,
where 0’ is the derivative of 6. For R > 1 to be determined, we define
g1
O(t, 1) = MO ((1 ) + Vi — R) . Y(t,u) € Ry xC.

It is immediate that

sup  |VO(t,u)|ly < M, (6.3.14)
(t,m)ERL XC
8 > V|V|y, (6.3.15)

For e,0 € (0,1) to be determined, we consider

g

1
\P(tv M7tlvul) = u(tnu’) - v(tlhul) - 7(|t - t/’2 + ‘:U’ - :u’l|’%-l) - (I)(tvu) —ot — ma

2¢e
V(t,pu,t' 1) €10,T) x C x Ry x C.
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Setting Cy = u(0,0) — v(0,0), and using (6.3.16) and the definition of L, we have

1
Wit ot ) < Co+ LI+ 2nlae + 1t — ]+ | — ) — o= (1t = ¢ + | — ')

(6.3.17)

a

~M(lule— R=1)4 — =

Hence, by the definition of M, ¥ is bounded from above and its supremum is achieved over
a bounded set. Invoking Theorem 6.3.7, for § € (0,1) to be chosen, there is (5,7,5,7') €

R x H x R x H satisfying
51, [ela, 5], [n <6, (6.3.18)
such that the function
Wt p,t, 1) = Wt p, b 1) =5t — (T, )y =5 = (T ')y,

for all (¢, pu,t', 1) € [0,T) x C x Ry x C achieves its maximum at (¢, 1, fl,ﬁ’).

Step 2. We derive bounds on ||y, [z — @'|% and |t — f/|. Using ¥(0,0,0,0) < ¥(%, 7, Zl,ﬁ’),

(6.3.17) and ¢ < T, we have

Co< =+ V(& T, i) + 20|filp + 276 + 6t — T'| + 6|1 — 1|

<

Nlo Hlo

_ 1 - _
+ Co+ 2T+ (L — Ml — R= 1)) + (L~ 7] - i~ 7P)
. 1, _ _ - o .
+ <Llu — Bl = ol - u’!%) + 2071lp + 276 + 6[F — €| + 0|n — 1 |n

€
<@L+ )k — Ml = R = 1)1) + (7 + Co + 2LT + e(L +6)? + 2T3) .
By this and the definition of M, there is C; > 0 such that, for all ,6 € (0,1) and all R > 1,

[l < C1R. (6.3.19)
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) = o0 1)~ o) + o7~ B+ (7~ Ty
by the definition of L and (6.3.18), we can get
I — 13 < 2(L +0)e. (6.3.20)
Similarly, by
) =@ 7)o@ ) + o F - TP +F D),
we have

[t —1) < 2(L+ d)e. (6.3.21)

Step 3. We show that for every o,e € (0,1), every R > 1, and sufficiently small §, we have
either £ = 0 or £ = 0 We argue by contradiction and assume that ¢ > 0 and ¢ > 0. Since

the function
(1) = Ut 1,7 T7)

achieves its maximum at (¢, ) € (0,7) x C, by the assumption that u is a subsolution, we

have

—_

€

™

-1+ 8,9t m)+0+0(T—1)2+35—H (1 (m—p)+Vo(t,n) + L) < 0. (6.3.22)

Since the function
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achieves its maximum at (fl,ﬁ’) € (0,00) x C, by the assumption that v is a supersolution,

we have

L=t -7 -n (L) ) 2o (6:3.25)

By (6.3.14), (6.3.18) and (6.3.20), for £,0 € (0, 1), we have

1
~(m—-w)-7| <2L+M +3.
£

)

1 _
—(A—1)+ Vet m) +1
€ H

H

Taking the difference of terms in (6.3.22) and (6.3.23), by the definition of L, (6.3.15) and
(6.3.18), we obtain

0 < =55 +VIVO(l, )| + V([tly + [T'ln) — 0@, 70) < 2(1+V)é.

By making 0 sufficiently small, we reach a contradiction, and thus we must have either ¢ = 0

-/

ort =0.

Step 4. We conclude our proof. Let us consider the case ¢ = 0. Fixing any (¢, ) € [0,T) xC,

by W(t, p,t, ) < (L, 7, , '), we have

Wt p,t, ) < OEEE T + 64T + 2|ply + 2C1 R + 2(L + 6)e)

where we used ¢,t < T, (6.3.18), (6.3.19) and (6.3.20). Due to u(0,-) < v(0,-) and ¢ = 0,

using (6.3.20) and (6.3.21), we can see

U(t,m,t, 1) <w(0,7) — o, 1) <v(0,7) — o, 1) < LT =7+ Lip — 1|

<AL(L + 6)e.
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Combining the above two displays and recalling the definition of ¥, we get

u(t, i) — v(t, p) < B¢, 1) + ot + TL_t +AL(L + 8)e + 6(AT + 2|ply + 2C1R + 2(L + 8)e).

First sending § — 0, then €,0 — 0, and finally R — oo, by the above and the definition of

®, we obtain u(t, ) — v(t, 1) < 0 as desired. The case f = 0 is similar. O

6.3.3. Convergence of approximations

Let us denote by HJ(H, C, H) the Hamilton—Jacobi equation (5.2.12) on cone C with nonlin-
earity H, and by HJ(H,C, H; ¢) the equation HJ(#,C, H) with initial condition ¢ : C — R.

The following lemma shows that the lift of a finite-dimensional viscosity solution is a viscosity

solution in infinite-dimensions.

Proposition 6.3.9 (Limit of approximations is a solution). Suppose that H is continu-
ous. For each j € Jgen, let f;j be a viscosity subsolution (respectively, supersolution) of
HI(HI,C7 W), If f = limjey,., f; in the local uniform topology, then f is a viscosity subso-

lution (respectively, supersolution) of HJ(H,C,H).

Proof. Suppose that {f;}jeg,., 15 a collection of viscosity subsolutions. Let us assume that
f — ¢ achieves a local maximum at (¢,4) € (0,00) x C for some smooth function ¢. We

define

¢<3,1/) :¢(3,V)+‘S—t‘2+|l/—ﬂ’%{, V(S,V) GR-F xC.

Then, there is some R > 0 such that

f(S7V) - ¢(va) = f(tvu) - ¢(tvu) - |(5’V) - (t’ M)hg&x?-l? V(S,I/) €B (6'3'24)
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where
B ={(s,v) € (0,00) X C:|(s,v) — (t, p)|rxn < 2R}.

Note that f — gg achieves a local maximum at (¢, ) and that the derivatives of (?5 coincide
with those of ¢ at (¢, ). For lighter notation, we replace ¢ by 5 henceforth. It is also clear

from Definition 6.1.3 (2) that ¢ is locally Lipschitz. Hence, there is L > 0 such that

lo(s,v) — @(s', V)| < Li(s,v) — (8", V) |rxn,  V(s,v), (s',0) € B. (6.3.25)

For each j € Jgen, We set

Bj = {(s,y) € (0,00) x €7 : |(s,y) — (. pj10) lpxrs < R}

By making 2R < |t| sufficiently small, we can ensure that both B and Bj are closed. Let
(tj,x;) € Bj be the point at which f; — ¢’ achieves the maximum over Bj. Here, @’ is the

j-projection of ¢ given in Definition 6.3.1.

For any ¢ € (0,1), we choose j' € Jgen such that, for all j € Jgen satistying j D 7/,

52
sup ‘f} - f‘ <2, (6.3.26)
B 4
2
‘,u—,u(j)) <R/\5—. (6.3.27)
H 4L
We claim that, for all j € Jgen satisfying j D j’,
‘(tﬁ ljxj) - (tvu)‘RxH < 4. (6328)

We argue by contradiction and suppose that there is j D j’ such that

(5, 175) — (8 1) [pocyy = 0. (6.3.29)
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Before proceeding, we note that

’@ﬁb%)*@JO@xyg‘@ph%)*(@MﬂM —%M4¢NWH<2R (6.3.30)

RxH

where in the last inequality we used (6.3.27), and the fact that (¢;,z;) € B; together with

Lemma 6.3.3 (2) and (4). Then, we have

ity ms) — & (t,25) = f1(t;,z5) — o(t;, 1))

52

< fty hg) — oty zg) +
362
62

gﬁ(mﬂ0_¢GM@)_f
2

~ 0

where the first and the last equalities follow from the definitions of lifts and projections
of functions in Definition 6.3.1 together with Lemma 6.3.3 (3) and (4); the first and third
inequalities follow from (6.3.26) and the fact that (¢;,1j2;) € B due to (6.3.30); the second
inequality follows from (6.3.29) and (6.3.24); the fourth inequality follows from the observa-
tion that ij(t, W) = ij(t, 119 due to the definition of lifts of functions and Lemma 6.3.3 (4),
and (6.3.25) along with (6.3.27). The relation in the above display contradicts the fact the
maximality of f; — ¢; over B; at (;,x;). Hence, by contradiction, we must have (6.3.28)

and thus

lim (¢j,1j2;) = (t,n) in (0,00) x C. (6.3.31)
JE€Jgen

Using (6.3.31) and Lemma 6.3.3 (3) and (5), we also have that
limjey,., [(t5, ;) — (£, pj1)|gxns = 0. Hence, we deduce that, for sufficiently fine j € Jgen,

(tj,z;) lies in the interior of B; relative to (0,00) x CJ. Since f; is a viscosity subsolution,
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we get that
(0 — W (V;¢7)) (t), ;) <0. (6.3.32)

Using the definition of projections of functions, Lemma 6.3.6 (1), and Lemma 6.3.3 (4), we

have that

O (t, ) = Oro(t, ), Vel (t5,x5) = p; (Vo(ty, lzy))

HY (V50 (1, 25)) = H (VoL L) D).

Then, using (6.3.31), the continuity of differentials (see Definition 6.1.3 (2)), and Lemma

6.3.3 (8), we can pass (6.3.32) to the limit to obtain that

(0 —H (V) (t, 1) < 0.

Hence, we have verified that f is a viscosity subsolution. The same argument also works for

viscosity supersolutions. O

Recall that Jynif is the collection of uniform partitions of [0,1), which is generating in the

sense given in Section 6.3.1.

Proposition 6.3.10 (Convergence of approximations). In addition to (A1)—-(A2), suppose
that v : C — R satisfies

1Y) = ()] < Clu—v|re, (6.3.33)

for some C > 0 and p € [1,2). For every j € Jgood, let fj be a viscosity solution of

HI(HI,CT,HI; 7). Then, (f;)jeﬂgood converges in the local uniform topology to a Lipschitz
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function f: R4 x C — R satisfying f(0,-) = 1,

sup [ f(t, )luip < [[¥]lLip, (6.3.34)
teRy
sup || f(-, 1)lLip < sup  [H(2)]. (6.3.35)
nel LEH
le|<I1¥[lLip

To prove this result, we follow closely the proof of [96, Proposition 3.7]. We need the

following lemma.

Lemma 6.3.11. Under assumption (A2), let j,j" € J satisfy j C j'. If f; is a viscosity

subsolution (respectively, supersolution) of HJ(H’,C7,H7), then the function defined by

fimy(tx) = fj(t,pjlypz), V(t,x) € Ry x (pjly)~1(C7) (6.3.36)

is a viscosity subsolution (respectively, supersolution) of HI(H', (p;l;1)~1(C7), H").

Proof. Setting C = (pjlj)~1(C7) for convenience, we suppose that f;_,; — ¢ has a local

maximum at (¢,z) € (0,00) x C for some smooth function ¢. We define
0;(s,y) = ¢(s, x + pyljy — pylypslya), V(s y) € Ry x 7.
Using Lemma 6.3.3 (6) and (3), we can show
pily (z +pjljy — pylipjlyz) = piliy =y € C7 (6.3.37)

for every y € C7, which implies that = + p;/ljy — py/ljp;lyz € C for every y € C’. Setting
Y = pjljx, we want to show that f; — ¢; achieves a local maximum at (¢,%). Let us fix some

r > 0 sufficiently small such that

sup(fj—jr — @) = fimj(t, ) — 6(t, @) (6.3.38)

j/
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where
Bj = {(s,z) € (0,00) x C : |s —t| + |z — x|y, <T}-

Then, we set B; = {(s,y) € (0,00) x C/ : |s — t| + |y — Y|y < r}. Using Lemma 6.3.3 (2)

and (5), we have that
Py — itk <y — T, Yy e,
which along with (6.3.37) implies that
(s, +pjlyy — pyly) € By, V(s,y) € Bj.

Using (6.3.37), the definition of f;_,; in (6.3.36), and the definition of ¢;, we also have that

for all (s,) € Ry x 7,

[i(s,y) — di(s,y) = fimj (s, + pjrljy — pyriy) — (s, + pjrLiy — pyrli7).

Using this, the previous display, and (6.3.38), we obtain that

sup(fj — ¢5) < sup(fjmjr = 0) = fimy(t,x) = o(t,2) = f5(8,7) — ¢5(1,7),

B; I
which implies that f; — ¢; achieves a local maximum at (¢,7).

Since f; is a viscosity subsolution, we have

(G5 — W (V;¢5)) (£.7) < 0.
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Using the definition of ¢;, we can compute that, for any h € H’ sufficiently small,

(h, V0 (s,4)) 55 + 0 (|hli) = ¢5(s,y + h) — ¢5(s,y)
= (pjrLih, V(- ))yr + 0 (Ipylihlyr)

= (h, Dl V(- )y +o(lhlaw), V(s,y) e,

where in (---) we omitted (s,z + pjyljy — pylipjlyx), and, in the last equality, we used
Lemma 6.3.3 (1) and (6) to get the term in the bracket and Lemma 6.3.3 (2) and (5) for
the error term. The above display implies that V;¢;(t,y) = p;jly Vo(t, z). It is easy to see

Orpi(t,y) = Oyp(t, ). These along with the previous display and the definition of H’ yield
(0r¢ — H(1jp;15Vj9)) (t,2) < 0.
We claim that
1;Vyo(t,x) —1iply Vid(t,z) € C*. (6.3.39)

Since H is C*-nondecreasing, recalling that H/ = (Li7()), we deduce from (6.3.39) and the

previous display that

(96— W' (V;9)) () <,

verifying that f;_,; is a viscosity subsolution of HJ (Hj/,g , Hj/).

To prove (6.3.39), by the duality of cones, it suffices to show that

<L, 1j/Vj/¢(t,$) — ljpjlj/vj'/(ﬁ(t,x)%_[ >0, Vieel.
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By Lemma 6.3.3 (1), the above is equivalent to
<pj/L — pjrlipjt, Vj/¢(t,x)>m-/ >0, VieeCl. (6.3.40)
Fix any ¢ € C. Lemma 6.3.3 (6) yields
pjly (pj/L — pjr jij) = pjt — pjljp;e = 0. (6.3.41)

Hence, setting z = pj/t — pjL;pjt, we have z € C~, and thus ez + z € C for any € > 0. Since

fj—j — ¢ has a local maximum at (¢, ), we can see that, for ¢ > 0 sufficiently small,

<527 Vj/¢(t,$)>j, + 0(5) = ¢(t7$ + EZ) - gb(t,ﬂ?) = fj%j/(tx + EZ) - fj%j’(tv l’)

= fj(t, pjlj/l‘ + spjlj/z) — fj(t, pjlj/l') =0

where the last equality follows from (6.3.41) and the definition of z. Sending ¢ — 0, we can
verify (6.3.40) and complete the proof for subsolutions. The argument for supersolutions is

the same with inequalities reversed. O

Proof of Proposition 6.3.10. Throughout this proof, we denote by C' an absolute constant,
which may vary from instance to instance. Let j, j' C Jgood satisfy j C j/, and f;, f;» be
viscosity solutions to HJ(H7,C7, HT; %), HJ(Hj/, CI' HT'; 47", respectively. We define fisj
by (6.3.36). By Lemma 6.3.11, f;_,; is a viscosity solution of

’

HI(HY', (pjly)~1(C7), HI'; 47 (pjljs(+))). By Lemma 6.3.5 (3) and (1), we have
¢’ C (ply)7H(E). (6.3.42)
We claim that there is C' > 0 such that

2—p

\fimy(tx) — fr(t,2)| S Cli| =2 (E+|alyy), Y(tz) e Ry x 7 (6.3.43)
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Let us use this to derive the desired results. For 1 € C, we set = pjsu. Lemma 6.3.3 (6)

implies that pjlyx = p;ju. Hence, by definitions, we have

ij(tv M) = fj(t,pjﬂ) = f]'%j/(ta I’)

and f]T, (t,p) = fy(t,x). Now using (6.3.43) and Lemma 6.3.3 (5), we have

—p

) = ()| < CUIS ¢+ k) -

We could now conclude the existence of a limit f(¢, ) by arguing that the above together
with the triangle inequality yields that ( ij(t, 1)) j€dg00a 18 @ Cauchy net in R (see [89, Defini-
tion 2.1.41] and [89, Proposition 2.1.49]). Denoting the pointwise limit by f, and passing j’
to limit in the above display to see that f]T converges in the local uniform topology to some

f:Ry xC. By Lemma 6.3.3 (7), it is straightforward to see f(0,-) = 1.

Then, we show (6.3.34) and (6.3.35). By (6.3.33) and Hoélder’s inequality, we have ||¢)||rip <

C. Proposition 6.2.3 implies that, for every j,

sup || fi(t, Mip = 197 lLip, — sup [ 2)llip < sup  [H/(p)]. (6.3.44)
teR4 xeCi pEHI
Iplyy5 <l1%? [|Lip

By the definition of 1/ and Lemma 6.3.3 (2), we can see that, for every z,y € C/,

97 () = (y)] = [¥(z) = oLGy)] < [¥lupllz —Lylx = [1llLplz =yl
which implies that

197 |Lip < [[¢llLip, Vi € 3. (6.3.45)

Using this, the first result in (6.3.44) and Lemma 6.3.3 (5), we have, for every ¢t € Ry and
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every u,v € C,

1t 1) — F1 ) = 1£5(E D) — £ i) < 17 Liplpjse — Pivla < 1 llLipli — vine,

yielding (6.3.34) after passing j to the limit. To see (6.3.35), for every p satisfying the
condition under supremum in the second result in (6.3.44), we have, by Lemma 6.3.3 (2),

that

pl = [pls < 197 |Lip < 19 L.

Since H7(p) = H(1;p) by definition, the right-hand side of the second result in (6.3.44) is thus

bounded by the right-hand side of (6.3.35). Passing j to the limit, we can verify (6.3.35).

It remains to prove (6.3.43). Due to (6.3.45), Proposition 6.2.3 yields

sup || f5 (€, )lluip. — sup [ (¢, )lLip < [[¢]luip- (6.3.46)
teR 4 teR 4

The definition of f;_,; in (6.3.36) implies

|[fimy () = fimy Gyl = 15t pilyx) — £, piliy)

< lluip [pilye — piliyly, < lluiple =yl VE=0, Va,y € (ply)~1(C7),

where we used Lemma 6.3.3 (2) and (5) to derive the last inequality. Hence, we have
sup [ fj—5 & ) Lip < 19 l|Lip- (6.3.47)
+

Using (6.3.42) and Proposition 6.2.2 with M replaced by 2||¢||Lip + 1 and R > 1 to be
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determined, we have that

sup  fiy(tx) — fi(t,x) — M(|z]y +VE—R)y
(t,z)€Ry xCT’

= sup fj;(0,7) — f5(0,2) — M(|x|y — R)+. (6.3.48)

xecy’
The term inside the supremum on right-hand side of (6.3.48) can be rewritten as
¥ ((12)9) = ¥ (1) = M|l — R+,

where we used the definition of f;,; in (6.3.36) and Lemma 6.3.3 (4). By (6.3.33) and

Holder’s inequality, we have

2—p ‘ 2p—2
v (42)9) =) < ¢ —a| T |1p2)D ~La] ”
) 2-p 2p—2
<C ’(1]-,3;)0) ~lya| 7 ol (6.3.49)

where we also used Lemma 6.3.3 (2) and (5) in the last inequality. Setting J = |j| and
J' = 15|, due to j* D j and 4,5 € Jgood T Junif, We know that there is N € N such that
J' = JN. Before estimating the L' norm, we remark that it suffices to assume D = 1,
namely, 1;;z(s) € Ry for each s € [0,1). Indeed, if D > 1, we can use reduce the problem to

the real-valued case by considering
s+ Ip-lyx(s)

where Ip is the D x D identity matrix. This reduction is valid due to Cx'Ip - a < |a| <
Cplp - a for every a € SE and some constant C'p > 0. With this simplification clarified, we

assume D = 1. Writing j' = (t1,t2,...,t ) with ¢ = % and j = (s1,...,57) with s;,, = 7,
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we can compute that

J
Lz — (L)W "= > (tp — tr_1)- (6.3.50)
m=1k:sy—1<tp<Sm
1
e — Z (ter — ter—1)xhr
m m—1 k' :8m—1<tp <sm
J Nm Nm
1 1
- Z Z INIF TN Z Tr
m=1k=N(m—1)+1 k'=N(m—1)+1

m=1k=N(m—1)+1k'=N(m—1)+1

= J]2V2 > > |z, — ). (6.3.51)

m=1k,k":N(m—1)<k/<k<Nm

Let B > 0 be chosen later. Since 3 = z3r = 0 for k > k' due to x € le, we have

J
2
TN > > ok — 2 Ly 5B < N2 > |2k Lz, > B
m=1kk":N(m—1)<k/'<k<Nm m=1kk' N(mfl)<k’ <k<Nm
9 J Nm ’mk‘Q
2 2
<AL 8 mEISlapslug,
N(m—1)+1

(6.3.52)

One the other hand, switching summations, we have

2
JN2 E ’xk—wk’fﬂ\ngB
m=1kk":N(m—1)<k/'<k<Nm

2
=7 2 2 [ eveenar = oo Moy yl<B

! 0<r’' <r<N m=1

Again using zp > x> 0 for k > k' and setting m* = max{m € {1,...,J} : Tn(m_1)4r <
(m—1)+
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B}, we can see that

J m*
Z 2N (m—1)+r = TN =1+ Lz nn1)rl<B = Z (@Nm—1)4r = TNm—1)4r) Loy n_1)4,<B
m=1 m=1

< xN(m*—1)+T]1'CEN(m*_1)+T<B < B.

Here in the penultimate inequality, we also used the fact that —z (1)1 + TN (m—2)4r <0

because N(m — 1) 41’ > N(m — 2) +r due to |r — 7’| < N. Therefore,

2 < B
N2 > > 2% = 2 Loy <B < 5
m=1kk":N(m—1)<k/<k<Nm

Inserting into (6.3.51) the above estimate combined with (6.3.52), and choosing

B = \/j|x]w~/, we conclude that
(Lyz)D — L L, < 373 |0
Plugging this into (6.3.49) yields
Fjo(0,2) = f1(0,2) = M(jalyy — R)y < CT % Jalyy, Va el

Due to f;—(0,0) = f;(0,0) = ¥(0), (6.3.46), and (6.3.47), the choice of M = ||¢||rip + 1

ensures that
fj%j’(oa T) — fj’(07$) - M(|x|7-[j/ - R); < 2”¢||Lip|x|7-u’/ - M‘$|Hj’ + MR
= MR — |z|,, Yrel.
2

These two estimates implies that the left-hand side of them is bounded by C'J % MR.

Absorbing M into C' and using (6.3.48), we arrive at

2—p
sup  fijoy(tx) — fit,x) — M(|z|y +Vt—-R). <CJ 2 R.
(t,x)eR4 xCi’
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Replacing R by |z, + V1 for each (t,z) € Ry x C7', we obtain one bound for (6.3.43).

For the opposite bound, we again use (6.3.42) and Proposition 6.2.2 to get a result as in
(6.3.48) with f;_,;» and f;; swapped. Then, the same arguments as above give the other

bound to complete the proof of (6.3.43). O]

6.3.4. Variational formulae

Recall the definition of convex conjugates in (6.1.6). For j € J, (H7)® is defined with respect

to H’ as the Hilbert space; H® is defined with respect to .

The proposition below shows that the limit of finite-dimensional Hopf-Lax formulae is the
infinite-dimensional Hopf-Lax formula. Then we will prove the counterpart for the Hopf

formula.
Proposition 6.3.12 (Hopf-Lax formula in the limit). In addition to (A2), suppose
e ¢ :C — R is C*-nondecreasing and continuous;

e H:H — R is lower semicontinuous, convex, and satisfies H(t')) < H(1) for every

L € H and every j € Jgen;
e for each j € Jgen, fj : Ry x C7 — (—00,00] is given by

x

fi(t,z) = sup {W(y) —t(H)® (y;

yeCi

>} , Y(t,x) e Ry x ¢ (6.3.53)

If limjeg,., f}(t,y) exists in R at some (t, ) € Ry x C, then the limit is given by

£t 1) = sup {wu) e (” - “) }

veC

Proof. The assumption on H allows us apply Lemma 6.2.5 (1) to H’ to see that
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(Hj)®(W) =00 if y — pju & CI. Therefore, we have

o e -y ()

= sup inf {¢7(y) + (2,0 — y)yy +tH (2)}
yep;putCi €M

= sup inf {¢(Liy) + (pje, Pip — Y)gy + tH (Do) } (6.3.54)
yep;utci t€H

= swp it {wlyy) + (La — L)+t (9],

yep putci LEH

)

where in the penultimate equality, we used the easy fact that p;/H = H7; in the last equality,
we used and Lemma 6.3.3 (2) and (4). Using the assumption that H(:()) < H(¢) for all « € H,

we have

yEp; p+Ci

ij(t, p) < sup {¢(1jy) _tH® (W) }

For y € pju + C’, we have ljy — p) € C by Lemma 6.3.5 (1) and Lemma 6.3.3 (4).

Meanwhile, Lemma 6.3.5 (5) yields p — 9 € C*. Since 1 is C*-nondecreasing, we obtain
D(ljy) < (1]'3/ —p9 + u) , Vyepu+C.

Using this, the previous display, we have

yEp;utCI t

. 0 a
flt.p) < sup _{w(ljy—u(”Jru)—tH@ (OJ ) “)}gf(m)-

Passing j to the limit, we conclude that limjej,., ij(t, w) < f(t, ).

For the other direction, fixing any € > 0, we can find v to satisfy

Fta) < &+ ) — tHE (”t“) = e )+ nf {1 v) IR
Since 1 is continuous, by Lemma 6.3.3 (7), we can find j' € Jgen such that ¢(v) < () +e
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for all 7 D j'. Then, we have

Flt ) <25+ (v9)) + inf {(1,1 = vy +H ()}

DY o ; G )
<2 () £ (o), 2 ()]
= 2e+ ¢(L(p;v)) + inf {{pjt, pjp — D)3 + tH’ (p;u) }

<2+ fl(tp), Vidj

where the second inequality follows from {t) : + € H} C H; on the third line we used
Lemma 6.3.3 (2) and (4); the last line follows from (6.3.54). Passing j to the limit and then

sending € — 0, we obtain the converse bound, which completes the proof. O

Proposition 6.3.13 (Hopf formula in the limit). Suppose
e ¢ :C — R is C*-nondecreasing;
e H:H — R is continuous;

e for each j € Jgen, fj : Ry x C7 — (—00,00] is given by

fi(t,x) = sup incf‘ {(z.2 —y)gy + ¥/ (y) +tH (2)}, V(t,z) eRy xCI.  (6.3.55)
zeCi yel’

If limjeg,., ij(t,u) exists in R at some (t, ) € Ry x C, then the limit is given by
£t 1) = sup inf {(v, 1 — p) + $(p) + tH(w)}
vec peC

Proof. We start by finding a formula for ij(t, w). Using (6.3.55), the definitions of lifts and

projections of functions, and Lemma 6.3.5 (3), we can get

fltp) = Sup /l)relg, {(pjv,pjit = Pjp)yy + ¥(Aipip) + tHLp) | -
ve
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Then, by Lemma 6.3.3 (2) and (4), the above becomes

fT(t ,u)—suplnf{<u(j),u() ])> +7JJ( )+tH( ())}.

vec reC

Fix any (¢, ). For € > 0, we choose v such that

[t p) < 6+1nf{<l/u Py +P(p) +tH(V)}

<€+;I€1£{<VM P > + () + tH(v )}

for all j € J, where the last inequality follows from the fact that {p(j )ipe C} CC. Allowed

by the continuity of H and Lemma 6.3.3 (7), we can find j' € J such that for all j D j/,

(Vo p)gy +tH(Y) < e+ <V(j), M>H + tH (l/(j)) .

By Lemma 6.3.3 (1), (2) and (4), we can see that (, Ii(j)> = <L(j),/<c(j)>H for all v,k € H,

H

which along with the above two displays implies that

f(t, 1) <2+ inf {<V(j),u( 7 — J)> —|—lb( ) +tH (I/(j))} <2+ ij(t, w), Vjioj.

peCl
Passing j to the limit and sending € — 0, we obtain f(t, ) < limjeg,,, ij(t, ).

To see the converse inequality, fixing any € > 0, we choose v, for each j € J, to satisfy

ftm) < e+mf{<§),u() J)> + (p9) +tH (W)}, vied.

On the other hand, it is clear from the definition of f(¢, u) that

ftw =it {(v n—p) +v(p)+tH ()}, vied

peC

By Lemma 6.3.5 (5), we have p — pU) € C*. Since 9 is C*-nondecreasing, we obtain 1(p) >
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¥(pY)). This along with the fact that <V](-j),u - p>H = <V](-j),u(j) — p(j)>H yields

ODE ;22 {<V](j)’ﬂ(j> _ p(j)>H ) (pm) 1 tH (,/]@)} > f}(t,u) Ce Yied.

Passing j to the limit along Jgen and sending ¢ — 0, we get f(¢,p) > limjeg,, ij(t, i),

completing the proof. O

6.3.5. Weak boundary

It can be checked that C has empty interior in H. Therefore, the boundary of C is equal
to C. On the other hand, for each j € J, the interior of C/ is not empty. We denote its
boundary by 9C7.

Lemma 6.3.14 (Characterizations of dC’). Let j € J and x € C7. Then, the following are

equivalent:
1. x €0C;
2. there is y € (C7)*\ {0} such that (z,y),; = 0;
3. there is k € {1,2,...,|j|} such that z, = xp_1.

For (3), recall our convention that z¢ = 0.

Proof. First, we show that (3) implies (2). Let Ip be the D x D identity and matrix. If & > 1,
we set yp = ﬁID, Yp—1 = —mfp and y; =0 foralli e {1,2,....[j|}\{k—1,k}.

If k=1, we set y1 = Ip and y; = 0 otherwise. By Lemma 6.3.4 (1), we have y € (C/)*. It

is also clear that y # 0 and (x,y),, = 0, verifying (2).

Next, we show that (2) implies (1). Assuming (2), we suppose that x is in the interior. Then,
there is ¢ > 0 sufficiently small such that 2 — ey € C7, which implies that (z — YY)y =
0. However, by assumption (2), we must have —5|y[${j > 0 and thus y = 0, reaching a

contradiction.
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Finally, we show that (1) implies (3). Assuming (1), we suppose that (3) is not true. Since
the coordinates of = are increasing, we can find § > 0 such that z > dIp + ;1 for all k.

By the finite-dimensionality, there is a constant C' > 0 such that
yr — Celp < xp <y + Celp

for every y € H/ satistying |y — x|y < €, for every ¢ > 0 and every k € {1,,2,...,|j|}.
Choosing ¢ sufficiently small, we can see that, for such y, we have yi > yi_1 for all k, namely

y € C7, which contradicts (1). O

The equivalence between (1) and (2) actually holds for more general cones in finite dimen-

sions. It is thus natural to define a weak notion of boundary for C.

Definition 6.3.15. The weak boundary of C denoted by 0,,C is defined by

OWC={peC:3ecC"\{0}, (1), =0}.

When D = 1, for every pu € C, since p is nondecreasing, we have that u is differentiable
a.e. and we denote its derivative by fi. If D > 1, we can choose a basis for S” consisting of
elements in SE. For each a from the basis, the derivative of s — a - u(s) exists a.e. We can
use these to define ji. We define the essential support of an SP-valued function on [0, 1) as

the smallest closed set relative to [0, 1), outside which the function is zero a.e.

Lemma 6.3.16 (Characterization of 0,,C). For u € C, it holds that u € 0,C if and only if

the essential support of [ is not [0,1).

Proof. Let u € C. By adding a constant, we may assume p(0) = 0. For any fixed ¢ €
C*, we set k : [0,1) — R by s(t) = j;l t(s)ds. Then, k is continuous, nonnegative (by

Lemma 6.3.4 (2)), and differentiable with its derivative is given by —¢. Since u(0) = 0 and
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lim;_,; k(t) = 0, by integration by parts, we have that

1
e = [ wo)ids)is

First, suppose that the essential support of /i is [0,1). Note that for any nonzero ¢, we must
have k is not identically zero. Then the integral above is positive, and thus u ¢ 9,C. For
the other direction, suppose that the essential support of /i is a strict subset of [0,1). This
implies the existence of a nonempty open set O C [0,1) on which g vanishes. We then
choose a nonnegative and smooth « such that x > 0 only on a subset of O. Setting ¢ = —&,
we clearly have ¢ € C* \ {0}. In this case, the integral in the above display is zero, implying
€ OWC. O

It is thus attempting to use 0,C as a more suitable notion of boundary in this case, and
to impose some boundary condition on 0,C. However, the argument could still be more
involved than the one we presented in this section, due to the following result as an immediate

consequence of Lemma 6.3.16.

Lemma 6.3.17. For j € J, then Liz € 0,C for every x € C’; and p9) e 8,C for every

ueC.

In other words, any point from C7 is lifted to the boundary of C, no matter it is in the

interior of C7 or not. The following lemma could potentially be a remedy.

Lemma 6.3.18. If z € C7\ 9C7, then there is p € C \ OuC such that p;p = .

Proof. By the equivalence between (1) and (3) in Lemma 6.3.14, we can find § > 0 such
that zp — xx_1 > dIp for all k, where Ip is the D x D identity matrix. Then, we define
p:[0,1) — SP by

te + 111

u(s) = el < e

> +x, ifsée [tk—htk)a
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for e > 0. It is straightforward to check that pju = . By choosing € > 0 sufficiently
small, we can ensure that p is strictly increasing on [0,1). Hence, Lemma 6.3.16 implies

that p € C\ OuC. O
6.4. Application to the spin glass setting

6.4.1. Setting and definitions

We first introduce the definition of monotone probability measures. After explaining the
setting of mean-field spin glass models in detail, we give the definition of viscosity solutions

of (6.1.1).
Monotone probability measures

We have already mentioned the set P~ of monotone probability measures on SE in Sec-
tion 6.1. Its definition is as follows. A probability measure y on SE is said to be monotone,
if

P{a-X<a X' andb-X >b-X'} =0, Va,beS?, (6.4.1)

where X and X’ are two independent SE—Valued random variable with the same law pu.

For p € [1,00), denote by Pp/ the restriction of " to those probability measures with finite
p-th moments. We equip Pp/ with the p-Wasserstein metric d,,. Let us recall the definition
of Wasserstein metrics. For probability measures g, on some measure space X with finite
p-th moments, the p-Wasserstein distance between g, ¥ is given by

dy(0,9) = inf . </ |z — y|Pr(de, dy)>; , (6.4.2)

m€ll(e,

where II(p, 1) is collection of all couplings of g,%, and a probability measure 7 on X’ x X is

said to be a coupling of g, ¢ if the first marginal of 7 is ¢ and its second marginal is ¥.

We want to embed 77{ isometrically onto the cone C given in (6.3.4) with the ambient

Hilbert space H in (6.3.2). Throughout this section, let U be the random variable distributed
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uniformly over [0,1). Guaranteed by [93, Propositions 2.4 and 2.5|, we have that

C— 732]
= (6.4.3)

p e Law(u(U))

is an isometric bijection between C and 73{ . In fact, [93, Propositions 2.4 and 2.5| ensures

a stronger result:

(1]
[1]

dp(0,9) = 27 (0) —E7' W)l = B2 (9(U) —E () (U)P, Vo, 0 € P, Wpe[1,2].

(6.4.4)
For g : 772/ — R and f: R4 x 732/ — R, the actions of = on them are given by
C—R Ry xC—R
g , =f: . (6.4.5)
> g(E(w)) (t, 1) = f(t,E(n))

Mean-field spin glass models

We following the setting in [93]. We consider a wide class of mean-field fully connected
vector spin models. Recall that D is any positive integer. Let & : RP*P — R be locally
Lipschitz. For each N € N, let Hy be a finite-dimensional Hilbert space, and (Hy (o)) oEHD
be a centered Gaussian random field with covariance structure given by

otT

Bl(o) i (r)] = N¢ 5

) , Vo,7 € HR, (6.4.6)

where the D x D real-valued matrix o77 is given by

T _
o1 = (<Ud’TdI>HN)1<d,d'<D'
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Here, Hy (o) is the Hamiltonian of the configuration o. For each N € N, let Py be a
probability measure on ”H]I\), and we assume that Py is supported on the centered ball in ’Hf,
with radius v N, where the inner product on 7—[1?] is the standard one induced by Cartesian

products, namely,
D
<07 T>7—Lg = Z <O'd77'd>HN s VO’,T c ’Hﬁ
d=1

Each o is viewed as a configuration of spins in a system, and Hy (o) is the random Hamil-

tonian at o. Spin configurations are distributed according to Py .

As an example, the SherringtonKirkpatrick Model corresponds to D = 1, Hy = RY,
£(r) = r? and Py is a uniform measure on {—1,4+1}". For each N € N, under Py, we can
view o as sampled uniformly from configurations of Ising spins, namely, combinations of N

spins each at state —1 or +1. The Hamiltonian can be expressed as

N
1
H]SVK(O') = ﬁ Z 9ij0i035, Yo € {—1,+1}N,

1,7=1
where {gi;}1<i,j<n is a collection of independent standard Gaussian random variables.

Back to the general setting, we are interested in the asymptotics, as N — oo, of the free

energy

VEDog [ exp (Hy() 4Py (o),

For t > 0, we also set

Fu(t) = —% log / exp <\/%HN(U) N ("J?)) dPy(0).

Comparing with the previous display, the additional normalizing term Nt{(ocoT/N) is to

ensure the exponential term has expectation equal to one. This additional term can be
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removed as explained in [98].

In a more involved way (see [93, Section 3]), we can enrich the spin glass model by introducing
an additional magnetic field parametrized by o € P~ with finite support. Similarly, there
is a quantity Fy(t, o) associated with enriched model satisfying Fi(t,00) = Fn(t) for all

t € R, where §y is the Dirac measure at the zero matrix.
Interpretation of (6.1.1)

By the isometry between P{ and C, we can make sense of 9, as the Fréchet derivative in H
discussed in Section 6.1.2. In particular, whenever exists, VZf(t, ) is an L? function over

[0,1). From another angle, note that, for every measurable g : Sf_) — RP*P we have

1
/ Eg)do=E[¢ (g0 (2 1(0)) ()] = /0 £ (g0 (E(0)) (5)) ds.

Hence, the equation (6.1.1) can be viewed as

1
8tf—/0 £(Vf)ds=0, onR; xC, (6.4.7)

where ds denotes the Lebesgue measure.

For technical reasons, we want to consider a regularized version of £&. Let us describe the
regularization. Recall the definition of being nondecreasing along a cone in (6.1.5). A
function g : SE — R is said to be proper if g is nondecreasing over S¥, and for every b € SP

the function a — g(a + b) — g(a) is nondecreasing over S¥.

Definition 6.4.1. A function ¢ : Sf — R is said to be a regularization of £ : RP*P — R in

(6.4.6) if
1. € coincides with ¢ on a subset of Sf_) consisting matrices with every entry in [—1, 1];
2. € is Lipschitz and proper;

3. € is bounded below;
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4. £ is convex, if, in addition, £ is convex.

Let us justify the condition (1). For simplicity, we write Fy(t,0) = EFn(t,0) for every
N, t,p. It is expected that (t, ) — Fx (¢, 0) converges as N — oo to a solution f of (6.4.7).

Due to our assumption on the support of Py, it has been shown in [93, Proposition 3.1] that

[Fn(t,0) = Fy(t,9)] <di(e,d) = [E7 (o) ~E7' ()|, V>0, Vo,0 € P5, YN €N.
(6.4.8)

The above bound is first established for o, with finite supports. Then Fy(t,-) can be
extended by density, and the above bound can be extended accordingly. The above bound
implies that |V(ZF y)(t, it)| 1~ < 1 for every N,t, u. Passing to the limit, then same bound
is expected to hold for Zf, which means that only values of £ on matrices with entries in

[—1, 1] matter. In addition, by |93, Proposition 3.8|, for every N and ¢,
EFN(t,-) is C*-nondecreasing (6.4.9)

which by the duality of cones implies that V(ZF x)(t, 1) € C for every p € C. In particular,
V(EFN)(t, u(s)) € S? for a.e. s € [0,1). Passing to the limit, we expect V(Zf) (¢, u(s)) € S?
for a.e. s € [0,1) and every u € C. Hence, in view of (6.4.7), £ can be further restricted to

SP. Therefore, condition (1) can be justified.

Since £ is the covariance function for Gaussian fields, there are many structures to exploit.
Under the assumption that { admits a convergent power series expansion, [93, Proposi-
tions 6.4 and 6.6] yield that & is when restricted to SE. The following lemma guarantees the

existence of &.

Lemma 6.4.2. If £ : RP*P 5 R restricted to SE is locally Lipschitz and proper, then &

admits a regularization.

Proof. We follow the construction in [93, Proposition 6.8]. There, the definition of regular-
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izations only requires (1) and (2). Here, we will verify that & constructed is convex if ¢ is
so. For r > 0, we set By, (r) = {a € S? : tr(a) < r}. Then, all a € S§ with entries in [—1,1]
belong to By (D). For every a € S, we denote by |a|s the largest eigenvalue of a. Setting

L= H]V§|OOHL00(BU(2D)), we define, for every a € SE,

£(a) = §(a) v (£(0) +2L(tr(a) — D)), if a € Bu:(2D),
£(0) + 2L(tr(a) — D), if a ¢ B (2D).

Since ¢ is proper, we have &(a) > £€(0) > £(0) + 2L(tr(a) — D) for all a € By, (D). Hence, &
coincides with & on matrices with entries in [—1, 1], verifying (1). Note that £ is continuous
on {a € S? : tr(a) = 2D}. Then, it is easy to check that £ is Lipschitz. Due to the choice
of L, we can also see that the gradient of ¢ is nondecreasing and thus € is proper, verifying

(2). It is clear from the construction that (3) holds.

Now, assuming that £ is convex, we show that £ is also convex. If a,b € By (2D) or

a,b & B (2D), it is easy to check that

EAa+ (1= A)b) < A(a) + (1 —N)ED), VYA€ [0,1]. (6.4.10)
Then, we consider a € By (2D) and b & By (2D). If X satisfies A\a+ (1 —\)b & B, (2D), then
(6.4.10) holds. Now, let X be such that A\a+ (1 —X)b € B, (2D). There is v € [0, A] such that
¢ = ya+(1—7)bsatisfies tr(c) = 2D. Then, for a = i\—;jw we have aa+(1—a)c = Aa+(1—\)b.
Since £ is convex on By (2D), the left-hand side of (6.4.10) is bounded from above by
af(a)+ (1—a)é(c). Since £(c) = £(0) +2L(tr(c) — D) is due to tr(c) = 2D, by the definition
of &, we have £(c) < v€(a) + (1 — 7)&(b). Combining these and using the choice of a, we

recover (6.4.10), verifying (4). O
Henceforth, we fix a regularization £&. We set
Hy={reH:us)eSY, aese01]}
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and define HE :Hy - Rby

1
He(1) = /0 E(u(s))ds, Voe M.
The equation (6.4.7) with regularized nonlinearity can be expressed as

8tf - HE(Vf) = 0, on R+ x C.

Note that Hg is not defined on the entirety of H, which is needed to apply results from

previous sections. Hence, we introduce the following extension,
H() :inf{Hg(N) :#em(wc*)}, Vi€ H. (6.4.11)

We will study properties of H in the next subsection. Now, we can conclude the subsection

with the definition of solutions to (6.1.1).

Definition 6.4.3. Under the assumption that ¢ : RP*P — R admits a regularization
IE Sf — R, a function f: R x 772] — R is said to be a wiscosity subsolution (respectively,
supersolution) of (6.1.1) (with regularization £), if =f : R, xC — R is a viscosity subsolution
(respectively, supersolution) of HJ(#,C,H) for #H, C, H given in (6.3.2), (6.3.4), (6.4.11),
respectively. The function f is said to be a wiscosity solution of (6.1.1) if f is both a

subsolution and a supersolution.
6.4.2. Properties of the nonlinearity

In this section, we verify a few useful properties of H. Most of them are recorded in
Lemma 6.4.4 below. We will also show an alternative expression of the Hopf-Lax formula

in terms of £ in Proposition 6.4.7.
Basic properties

Lemma 6.4.4. Let H be given in (6.4.11). Then, the following hold:
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1. H(p) = Hg(u) for every p € C;

2. H is C*-nondecreasing;
3. H is Lipschitz;

4. H is bounded below;

v

. if & is convex, then H is convex and satisfies H(1U)) < H(1) for every j € J and every

LEH.

Proof. Part (1). We first show that HE is C*-nondecreasing on C. We argue that it suffices
to show H% is (C7)*-nondecreasing on C7, where H% is the j-projection of Hg. Indeed, for
wu,v € C satisfying p — v € C*, we have Hg(,u(j)) - Hg(l/(j)) = H%(pj,u) - H%(pjl/). Due to
Lemma 6.3.5 (4), we have pjuu—p;v € (C7)*. Hence, Hg(u(j)) - HE(V(j)) > 0 for every j € J.
Passing to the limit along some Jgen, and using Lemma 6.3.3 (7) and the continuity of Hg

to conclude that Hg(p) — Hg(v) = 0.

With this explained, we compute the gradient of H%. Since for every x € CJ, Hé(az) =
131
k=1

H/ is given in (6.3.8))

(tr, — tp—1)&(zx) and € is locally Lipschitz, we have (recall that the inner product in

VjH%(»’U) = (Vg(xk))kzl,z...,w Vr € Cj,

which holds almost a.e. on €/ endowed with the Lebesgue measure. Here V, denotes the
gradient of functions defined on subsets of H? and V on SE . Since ¢ is proper, the above
display implies that V; H%(:U) € C/ a.e. We can find a full measure set in C/ x C? such that
H% is differentiable a.e. on the line segment between any two points from this set. For any

x,y from this set satisfying x — y € (C7)*, we have

HI () — Hi(y) = /01 <VjH%(sa: +(1—s)y), x — y>w ds >0,
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where we used the definition of dual cones to deduce that the integrand is nonnegative a.e.

Using the density of such pairs, we can conclude that H% is (C7)*-nondecreasing.

Having shown that HE is C*-nondecreasing, we return to the proof. Let u € C. By the
definition of H, we clearly have H(u) < Hg(nt). On the other hand, for every v € CN(u+C”),
the monotonicity of Hg implies that Hg(1) < Hg(v). Taking infimum in v, we obtain Hg(u) <

H(p) verifying (1).

Part (2). Let t,x € H satisfy « — k € C*. For every p € CN (v + C*), it is immediate
that 4 € CN (k +C*), implying Hg(p) > H(x). Taking infimum over p € CN (k +C*), we

obtain (2).

Part (3). Fix any ¢,// € H. Let v be the projection of ¢ — ¢/ to C. Since C is closed and

convex, we have
(vt —v, pfu>7_t <0, VpeC. (6.4.12)
Since sv € C for all s > 0, (6.4.12) yields
(L=t =vv),, =0. (6.4.13)
Inserting this back to (6.4.12), we have (v — ¢/ — v, p),, < 0 for all p € C, which implies

—1+vecC

For all 4 € C N (/ + C*), the above display implies that p+ v € CN (¢ + C*). Since H is

C*-nondecreasing by (2), we have

He(u+v) > H(1), Yueln(/+C).
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By (1), we get

H(p + v) — He(w)| < EIE(u(U) + v(U)) — E(uU)] < [I€llLiplv 2.
The above two displays imply
H() — He(p) < €lluiplvlae,  Ypeln(+C7).
Due to (6.4.13), we can see that
o= = o= = v+ vl = vl
Using this and taking supremum over p € C N (/' + C*), we obtain
H(1) = H() < [1€llLiple — ¢l

By symmetry, we conclude that H is Lipschitz.
Part (4). This is clear from Definition 6.4.1 (3) and (6.4.11).

Part (5). By Definition 6.4.1 (6.4.10), we have that £ is convex. From (1), we can see
that H is convex on C. For every ¢,k € H and every s € [0,1], we have su + (1 — s)v €
CN(st+(1—-—9)k+CifpelCnN(+C* and v € CN (k+C*). In view of this, the
convexity of H on H follows from its convexity on C and (6.4.11). To see the second claim,
using Jensen’s inequality, we have that, for every p € C and every j € J,

ld

th 1_
H (Mm) =3 (th1 — )€ (tk_ltkz—l /tk_1 ,u(s)ds) < /0 E(u(s))ds = H(u).

k=0

Fix any ¢ € H. By Lemma 6.3.3 (4) and Lemma 6.3.5, we have u9) € ¢ (.9) 4C*) for every

j €3, and every u € CN (14 C*). Therefore, the above display along with the definition of
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H implies that
H (LU)) <H(p), Ypeln(t+C).

Taking infimum over 1 € C N (1 + C*), we conclude that H(:()) < H(1). O

Alternative expression of the Hopf—Lax formula

The goal is to prove Proposition 6.4.7. We need several lemmas in preparation for the proof.

We introduce the notation for the nondecreasing rearrangement. For every j € Junif and
z € H’, we set zy = (To(k))k=1,2,...,|j] Where o is a permutation of (1,2,...,[j|) satisfying

Tok) = To(k—1) € SE for every k > 2. Using this notation, for every j € Junif and every
L€ H, we set Léj) =1;((pje)s)-
Lemma 6.4.5. For every j € Junif,

1. Léj) e ) +C* for every v € H;

2. Léj) € C for every 1 € Hy;

3. Eh(O)(U)) = ]Eh(béj)(U)) for every real-valued function h and every ¢ € H.

Proof. Part (1). For every x € H7, by the rearrangement inequality, we have

¥l 1

1 .
<xﬁ7y>’}{j = m Zxa(k)yk > m Z:Ekyk = <x7y>’Hj , VY€ CJ?
k=1 k=1

where o is the permutation in the definition of x3. This implies that =y — z € (C7)*.
By the definition of Léj) and Lemma 6.3.3 (3), we have pj(Léj)) = (pjt)s. Hence, we get
pj(ng)) — pjt € (C7)*, which along with Lemma 6.3.5 (2) implies that (ng))(j) -0 e ¢

By Lemma 6.3.3 (3) and (4), we have
()9 =13 ((pj0)e) = Li((pj0)e) = o
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Then, (1) follows.

Part (2). Let ¢ € Hy. It is clear from the definition that (pj.); € C/. Then, by

Lemma 6.3.5 (1), we get L( N ec.
Part (3). We can compute that

£ (10 )—fki (m/'?' ) & (\j\/:ff)lwsms):Eh(L?(U))

[Fil

where the permutation ¢ is the one corresponding to the nondecreasing rearrangement of

pjt. This completes the proof. O

Recall the definitions of conjugates in (6.1.6) and (6.1.7). The monotone conjugate £ s

defined with respect to the cone SE in the space S, namely,

€ (a) = sup {d"-a—¢&d)}, Vac SP. (6.4.14)

a’ GSE
Next, we show the following.

Lemma 6.4.6. For every pu € C, it holds that H® (1) = EE (u(U)).

Proof. We proceed in three steps.

Step 1. Setting

Hi(v) = ls/gg{(u tyy —He(W)}, VeEH,

we first show that

H(n) = H(n), VnecC. (6.4.15)

Since the supremum in H® is taken over H and since H coincides with Hg on C (by
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Lemma 6.4.4 (1)), it is immediate that H®(u) > Hg(,u). Fix any € > 0. For every ¢ € H, by

the definition of H in (6.4.11), there is v € CN (¢ + C*) such that H(.) > Hg(v) — €. Due to

v—1€C*and pu € C, we have (1, 1), < (v, 1)5,- Hence, we obtain

{6 )3 = H(0) < (W )y — He(v) + e

Since the right-hand side of the above is bounded by H%(,u) + ¢, taking supremum over ¢ € H
yields H®(u) < H%(u) + &. Sending £ — 0, we obtain (6.4.15).

Step 2. We show
H%(u) =H%(n), vpec, (6.4.16)
where H? is defined by

H?(L) = sup {(k, L>H — Hg(/@)}, Vi e H.
KEH

Due to C C H., it is easy to see that H%(u) < H?(u) for u € C. For any fixed € > 0, by the

definition of H?, there is k € H4 such that
HE (1) < (k. iy — Helo) +<.
Using Lemma 6.3.3 (7) and the continuity of Hg, we can find j € Junir such that
@ () _H- (W
HE (1) < (r ”“‘>H He (50)) +2¢.

Lemma 6.4.5 implies that <n(j),u>H < <I€§j),,u,>q.[ (due to pu € C), Hg(li(j)) = Hg(ligj)), and
/Qg € C. These together with the above display yields H%B(u) < Hg(,u) + 2e. Since ¢ is

arbitrary, we obtain (6.4.16).
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Step 3. We show
H%B(L) =E& (W(U)), Vi€ M. (6.4.17)
For every ¢ € H, k € H4, by the definition of E*, we have

€ (1)) = u(s) - w(s) = E(r(s)), Vs € [0,1).

Integrating in s, we get

*

EE (U(U)) = (1, k) — He(r).

Taking supremum over k € H, we obtain E€ («(U)) > H?(L) for every ¢ € H.

For the converse inequality, note that £ is lower-semicontinuous and E*(l,) > £(0) by the
definition of E* Using Lemma 6.3.3 (7), we can extract from Jynif a sequence (j,)0%;

satisfying lim,, o tUn) = ¢ a.e. on [0,1). Since € (1) > £(0), invoking Fatou’s lemma, we get

EE (1(U)) < Eliminf " (L(j”)(U)> < liminf EE" (L(j")(U)) .

n—o0 n—o0

Recall the definitions of ¢() in (6.3.5), and pj¢ in (6.3.9). We can compute that

|71 ¥l
EL" <L(j)(U)> =Y (tk —ti-1)E ((Pjo)r) = Y (th — th1) Sup, {@r - (pjo)r — &) }
k=1 k=1 TR ESY
= sup {(z,pjt)yy — BE(a(U))} = sup {{z, 1), — He(ljz)} <HZ (1),
xeH?, €M,

where Hi stands for pj(H4) = {z € H7 : x; € SP, Vk}, and, in the last equality, we used
Lemma 6.3.3 (2). The above two displays together yield E€ (4(U)) < H®(1) for every ¢ € H,

verifying (6.4.17). The desired result follows from (6.4.15), (6.4.16) and (6.4.17). O
Now, we are ready to prove the following.
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Proposition 6.4.7 (Hopf-Lax formula in the spin glass setting). If ¢ is C*-nondecreasing

and continuous, then

sup {w(u) — tH® <’/;“)} = sup {¢(u) — tEE” <(”_?(U>) } . Ypel. (6.4.18)

velC veu+C

If D =1, then the right-hand side of the above is equal to

sup {w(y) — {RE" ((”_“)(U)> } , VYpec. (6.4.19)

veC 13

Proof. Let us denote the right-hand side in (6.4.18) by RHS. For simplicity, we omit U and
write E€ (1) = EE (4(U)) for all ¢ € H. By Lemma 6.2.5 (1) which still holds in infinite
dimensions, we have H®(1) = oo if ¢+ € C. Using this and Lemma 6.4.6, we can get the the

left-hand side of (6.4.18) is equal to

sup {w(y) — tH® (T)} =RHS, VueCl,

veu+C
verifying (6.4.18).

Now, we assume D = 1. Denoting the term in (6.4.19) by I, to show (6.4.19), we only need
to show | < RHS. Now, note that & (r) = sup,so{sr — &(s)}. Since € is SP-nondecreasing
(see Definition 6.4.1 (2)), we have £ (r) = £ (0) for all r < 0. For every k € H, we define

Ky by ki(s) = (k(s)) VO for all s € [0,1). Then, we have

=g - ()

For every € > 0, we can find v € C such that
| <p(v) —tEE (1) +e,

where we set ¢ = %(1/ — )+ € Hy. We choose a sufficiently fine j € Junif satisfying

Y(v) < (W) +e. Since € is convex, we have EE (1)) < EE (1) by Jensen’s inequality.
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Hence, the above becomes

| <o (u(j>> _{EE" (N)) + 2.

Setting p = p + tbgj), we have

p— v = (- D)+ t(béj) 0y (u@ (- M)m) c

where the terms inside the first two pairs of parentheses on the right belong to C* due to
Lemma 6.3.5 (5) and Lemma 6.4.5 (1), respectively; and it is easy to see that the term in
the last pair of parentheses belongs to Hy C C*. Due to ¢ € Hy, Lemma 6.4.5 (2) implies
p€Cand p—pecC. Since 1 is C*-nondecreasing, we get (v < 1)(p). Lemma 6.4.5 (3)
also gives Eg*(%) = EE*(Léj)) = E& (1)), These along with Lemma 6.4.6 yield

| < (p) — tEE" <p;“> 126 = 4(p) — tH® <p_t“) + 22 < RHS + 2¢.

Sending £ — 0, we obtain the desired result. O

6.4.3. Proof of the main result

We state the rigorous version of Theorem 6.1.1. Recall the isometry = given in (6.4.3); the
action of Z on functions in (6.4.5); the 1-Wasserstein metric d; in (6.4.2); the definition
of solutions in Definition 6.4.3; Hilbert spaces H and H7, j € J, in (6.3.2) and (6.3.7),
respectively; cones C and €/, j € J, in (6.3.4) and (6.3.11), respectively; the definition of
C*-nondecreasingness in (6.1.5); £ in (6.4.14); the definition of good collections of partitions

at the beginning of Section 6.3.1; lifts and projections of functions in Definition 6.3.1.
Theorem 6.4.8. Suppose

o £:RP*XP 4 R is locally Lipschitz and its restriction to Sf 18 proper;
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o Y 732/ — R satisfies that =i : C — R is C*-nondecreasing, and

(o) — ¥(¥)| < di(0,9), Vo, 0 € Py . (6.4.20)

Then, reqularizations of & exist, and, for any reqularization &, there is a unique Lipschitz

viscosity solution f to (6.1.1) (with regularization &) satisfying f(0,-) = 1. Moreover,

1. Zf = limjeg,. f]T in the local uniform topology, for any good collection of partitions
Jgoods where fj is the unique Lipschitz viscosity solution to HI(H’,C7, HI; (E)7) for

every j € Jgood and for H given in (6.4.11);

2. if £ is convex, then f is given by the Hopf-Lax formula

2f(t,u) = sup {Ew(y)—ﬂEg* <(”“)(U)>} V(t,p) e Ry xC; (6.4.21)

veu+C 13
3. if =1 is convex, then f is given by the Hopf formula

=f(t, ) = sup inf {1 = )y + E(p) +EE(W(U)) ), V(t,p) € Ry x C. (6.4.22)

Remark 6.4.9. In view of Definition 6.4.3 and Lemma 6.4.4, Proposition 6.3.8 supplies a

comparison principle for (6.1.1).

Remark 6.4.10. We briefly comment on the assumptions on £ and . As mentioned pre-
viously, in most of interesting models, £ given in (6.4.6) admits a convergent power series
and is proper on SE (see [93, Propositions 6.4 and 6.6]). In practice, ¢ will be the limit
of Fn(0,-) as N — co. Due to (6.4.8) and (6.4.9), the assumptions on 1 are natural. In
general, the initial condition v as the limit of F(0,) is neither concave or convex, which
renders the Hopf formula less useful. A discussion on existence of variational formulae for

free energy limits is in [96, Section 6].
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Remark 6.4.11. If D = 1, using Proposition 6.4.7, we can slightly simplify (6.4.21) into

Ef(t, p) = sup {E¢(u) — tEE” <(V—tM>(U)

veC

)} . Y(t,p) € Ry x C. (6.4.23)

The supremum in (6.4.21) is taken over x4+ C, and now the supremum is simply over C. We

do not know if this simplification holds for D > 1.

Remark 6.4.12. Let us discuss how solutions considered in [92, 98, 96, 93] can be recast
as viscosity solutions. In [92, 98] where D = 1, the solution to (6.1.1) was defined as
(6.4.23) with & replaced by the original ¢. Since it is only the values of & over matrices
in SP with entries in [—1,1] that matters (see the discussion below Definition 6.4.1), one
can work directly with the regularization £. Then, due to Theorem 6.4.8 (2), the Hopf-Lax
solution in [92, 98| is the unique viscosity solution. In [96, 93], the solution was defined
as the limit of solutions of HJ(H7,C7, H7; (Z1))7) indexed by j € Junir. Although solutions
of finite-dimensional equations in (96, 93| were required to satisfy the Neumann boundary
condition, the theory developed there is compatible with the definition of solutions in this
work. All results related to viscosity solutions in finite dimensions there can be replaced
by their counterparts in this work. Moreover, some arguments can be simplified due to
the simplification of the boundary condition. Therefore, with this modification, in view of

Theorem 6.4.8 (1), the solution considered in [96, 93| is the unique viscosity solution.

Proof of Theorem 6.4.8. Lemma 6.4.2 guarantees the existence of regularizations. We fix
any regularization £&. The properties of H are listed in Lemma 6.4.4. In particular, H

satisfies (A1)-(A2). Using (6.4.4), we can rewrite (6.4.20) as

m

=

=
|
[1

H@D(V)’ < C’M_V‘Lla Vp,l/ EC,

where L' is given in (6.3.3). The existence of a viscosity solution f and (1) follow from
Propositions 6.3.9 and Proposition 6.3.10. The latter proposition also ensures that Zf is

Lipschitz. By Proposition 6.3.8, Zf (and thus f) is the unique viscosity solution that is
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Lipschitz.

Given that ¢ is convex, it is easy to see from Lemma 6.4.4 (4) and (5) that H is convex and
bounded below for every j € J. In addition, it is also clear that (Z¢)7 : C7 — R is Lipschitz
and (C7)*-nondecreasing. Therefore, Proposition 6.2.6 ensures that the viscosity solution f;
of HJ(H7,C7,H7; (Z¢)7) admits a representation given in (6.3.53) with v there replaced by

=1. Hence, Proposition 6.3.12 along with Lemma 6.4.4 (5) and Proposition 6.4.7 yields (2).

Proposition 6.5.1 stated and proved later ensures that C/ has the Fenchel-Moreau property
as defined in Definition 6.2.7, for each j € J. Under the assumption that = is convex, it
is straightforward to see that (Z¢)7 : C/ — R is also convex. Invoking Proposition 6.2.8, we
have that the viscosity solution f; of HJ(H7,C7, H7; (21)?) is given by (6.3.55) with ¢ there

replaced by Z¢. Then, (3) follows from Proposition 6.3.13 along with Lemma 6.4.4 (1). O

6.5. Fenchel-Moreau identity on cones

Recall Definition 6.2.7 of the Fenchel-Moreau property. To apply Proposition 6.2.8 to equa-
tions on Ry x C7, j € J, we need to show that C/ given in (6.3.11) has the Fenchel-Moreau
property. Adapting the definition of monotone conjugate in (6.1.7) to C? with ambient

Hilbert space H7 given in (6.3.7), in this section, for any g : ¢/ — (—o00, o], we set

g (y) = S;lclg{(x, Yy —9(x)}, Vye, (6.5.1)

and ¢** = (¢g*)*, where g* is understood to be its restriction to C7.

Proposition 6.5.1. For every j € J, the closed convexr cone C? possesses the Fenchel-
Moreau property: for g : C? — (—00,00] not identically equal to oo, we have g** = g if and

only if g is convex, lower semicontinuous and (C?)*-nondecreasing.

The proof largely follows the steps in [38]. We first recall basic results of convex analysis.
Then, we show Lemma 6.5.7 which treats the case where the effective domain of g has

nonempty interior. Finally, in the last subsection, we extend the result to the general case.
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6.5.1. Basic results of convex analysis

For a € H/ and v € R, we define the affine function L, with slope a and translation v by
Loy(7) = (a,2)y,; +v, Yz eH.

For a function g : & — (—00,00] defined on a subset & C H7, we can extend it in the
standard way to g : H/ — (—00, 00| by setting g(x) = oo for x & £. For g : H/ — (—00, 00],

we define its effect domain by
domg = {z € H/ : g(z) < o0}.

Henceforth, we shall not distinguish functions defined on C’ from their standard extensions
to H7. We denote by T'o(€) the collection of convex and lower semicontinuous functions

from & C H? to (—oo, 0o] with nonempty effect domain.

For g : H7 — (—00,00] and each x € H7, recall that the subdifferential of g at x is given by
Og(z) = {z € H 1 g(y) = g(a) + (z,y —2)yyy , Yy € H } .
The effective domain of dg is defined to be

domdg = {z € H/ : dg(z) # 0} .

We now list some lemmas needed in our proofs.

Lemma 6.5.2. For a convez set £ C H7, ify € cl€ andy’ € int&, then A\y+(1—-N\)y' € int&
for all A € [0,1).

Lemma 6.5.3. For g € T'o(H’), it holds that intdom g C dom dg C dom g.

Lemma 6.5.4. Let g € To(H’), x € H/ and y € domg. For every a € (0,1), set x, =
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(1 —a)z+ay. Then lima—o g(Ta) = g(z).

Lemma 6.5.5. Let g € Tg(C?), 2 € C/ and y € C7. If y € dg(x), then g*(y) = (T, Y)2y —

9().

Lemma 6.5.6. For g € ['4(C?) and x € C?, we have

g (x) =sup Lg ()

where the supremum s taken over

{(a,v) €C? xR : Ly, < g on C’}. (6.5.2)

For, Lemmas 6.5.2, 6.5.3, and 6.5.4, we refer to |23, Propositions 3.35, 16.21, and 9.14].

Here, let us prove Lemma 6.5.5 and Lemma 6.5.6.

Proof of Lemma 6.5.5. By the standard extension, we have g € T'o(H7). Since y € dg(x), it

is classically known (c.f. [23, Theorem 16.23]) that

sup {(2,¥)q; — 9(2)} = (T, y)ys — 9(2).
z€HI

By assumption, we know x € dom dg. Hence, Lemma 6.5.3 implies € dom g and thus both
sides above are finite. On the other hand, by the extension, we have g(z) = oo if 2z & C7,

which yields

sup {(z,¥)3; — 9(2)} = sup {(z,y)3; — 9(2)} = 9" ().
zEHI zeCI

The desired result follows from the above two displays. O
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Proof of Lemma 6.5.6. For each y € CJ,

Ly _gop)(x) = (Y, 7) 55 — 9" (y), YreCl.

is an affine function with slope y € C/. By (6.1.7), we can see that Ly gy < gon C/. In
view of the definition of g** in (6.2.29), we have g**(z) < sup Lq, () for all € C7 where

the sup is taken over the collection in (6.5.2).

For the other direction, if («, ) belongs to the set in (6.5.2), we have
(a,2)q; +v < g(x), Voel
Rearranging and taking supremum in 2 € C/, we get g*(a) < —v. This yields
Law(2) < {a, )1 — 9°(a) < 6™ (),
which implies sup L, (z) < g**(z). O

The proof of Proposition 6.5.1 consists of two parts. The first part, summarized in the

lemma below, concerns the case where dom g has non-empty interior.

Lemma 6.5.7. Ifintdom g # ), then g** = g if and only if g is convez, lower semicontinuous

and (C7)*-nondecreasing.

The next subsection is devoted to its proof. The second part deals with the case where
dom g has empty interior. For this, we need more careful analysis of the structure of the

boundary of C7. This is done in the second subsection.
6.5.2. Proof of Lemma 6.5.7

Let satisfy intdom g # (0. It is clear from (6.2.29) that ¢** is convex, lower semicontinuous,

and (C?)*-nondecreasing.
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Henceforth, assuming that g is convex, lower semicontinuous, and (C’)*-nondecreasing, we
want to prove the converse. For convenience, we write {2 = dom g. The plan is to prove the

identity g = g™ first on int {2, then on cl {2, and finally on the entire C.
Analysis on int)

Let = € intQ. By Lemma 6.5.3, we know dg(x) is not empty. For each v € (C7)*, there is
e > 0 small so that x —ev € Q. For each y € dg(z), by the definition of subdifferentials and

the monotonicity of g, we have

o | =

(0, Y)pi = = (9(x) — g(z — ev)) >0,

which implies ) # dg(z) C C’. Invoking Lemma 6.5.5, we can deduce

9(@) < sup{{y, )3, — 9" (y)} = 97" (2).
yeCi
On the other hand, from (6.2.29), it is easy to see that
g(x) = g™ (x), Vaedl. (6.5.3)

Hence, we obtain

g(x) = g™ (z), Vzeint.

Analysis on cl 2

Let z € cIQ and choose y € intQ. Setting z, = (1 — @)z + ay, by Lemma 6.5.2, we have

Zo € intQ) for every a € (0,1]. By the result on int ), we have

9(wa) = g™ (7a).
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Then, z, belongs to dom g and dom g**. Applying Lemma 6.5.4 and sending o — 0, we get

g(z) =g (x), Vxec. (6.5.4)

Analysis on C/

Due to (6.5.4), we only need to consider points outside clQ. Fixing any = € C7 \ clQ, we
have g(x) = oco. Since f is not identically equal to oo and (C’)*-nondecreasing, we must

have 0 € Q. By this, x ¢ clQ and the convexity of cl €2, we must have

A=sup{AeR: Az €clQ} < 1. (6.5.5)

We set

(6.5.6)

8
I
>
8

Then, we have that 7 € bd Q and AT ¢ clQ for all A > 1.
We need to discuss two cases: T € () or not.

In the second case where T ¢ €2, we have ¢g(Z) = co. Due to T € cl) and (6.5.4), we have
g**(T) = 0o. On the other hand, by (6.5.4) and the fact that 0 € Q, we have ¢g**(0) = ¢(0)

and thus 0 € dom g**. The convexity of g** implies that

00 = g™ (T) < Ag™ () + (1= A)g™(0).

Hence, we must have ¢**(x) = oo and thus g(x) = ¢**(z) for such z.

We now consider the case where Z € Q. For every y € H7, the outer normal cone to Q at y
is defined by

no(y) = {z € M : <z,y' — y>7—u’ <0,Vy €Q}. (6.5.7)
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We need the following result.

Lemma 6.5.8. Assume intQ # (). For everyy € Q\intQ satisfying \y ¢ clQ for all X > 1,

there is z € ng(y) NCJ such that (z, Y)qs > 0.

By Lemma 6.5.8 applied to Z € €, there is z € C? such that
(z,w—=T)y,; <0, Ywe, (6.5.8)
<Z,E>'HJ > 0. (6'5.9)
The monotonicity of g ensures that g(x) > ¢(0) for all z € C7. For each p > 0, define
Lyp= Ly, 9(0)—p(2,T) 55 *
Due to (6.5.8), we can see that
£,(w) = p (2w — Fs + 9(0) < glw), Vo € Q.
Since we know f ‘ civg = 09 the inequality above gives

L,<g, Vp=0. (6.5.10)

Evaluating £, at « and using (6.5.6), we have

Lp(x) = p (2,2 =Ty +9(0) = p (Tl - 1) {2, %) + 9(0).

By (6.5.5) and (6.5.9), we obtain
lim £,(z) = oo.

p—r00
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This along with (6.5.10), Lemma 6.5.6 and (6.5.3) implies

g(x) = g™ (x) Vzell\cdQ.

In view of this and (6.5.4), we have completed the proof of Lemma 6.5.7. It remains to prove

Lemma 6.5.8.

Proof of Lemma 6.5.8. Fix y satisfying the condition. Since it is possible that y ¢ intC/,
we want to approximate y by points in bd Q NintC/. For every open ball B C H/ centered
at y, there is some A > 1 such that 3/ = Ay € ¢/ N (B \ clQ). Due to intQ # () and y € Q,

by Lemma 6.5.2, there is some y” € BNintQ C intC. For p € [0, 1], we set

yp=py +(1—p)y" € B.

Then, we take

po =sup{p € [0,1] : y, € intQ}.

Since ¥’ ¢ clQ, we must have pg < 1. It can be seen that y,, € clQ\ intQ and thus
Yp, € BNbdQ. Due toy € C/, vy’ € intC’ and Lemma 6.5.2, we have y,, € intC’. In

summary, we obtain y,, € BN bd{Nint cl.

By this construction and varying the size of the open balls centered at y, we can find a

sequence (yp)>2; such that

Yn € int 7, (6.5.11)
Yn € bdQ, (6.5.12)
nh_)ngo Yn = Y. (6.5.13)
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Fix any n. By (6.5.11), there is § > 0 such that
yn + B(0,26) C 7. (6.5.14)

Here, for a € H7,r > 0, we write B(a,r) = {z € H? : |z —a| < r}. For each ¢ € (0,6), due

to (6.5.12), we can also find y, . such that

Yne € 8, (6.5.15)

Yn.e — yn| <e. (6.5.16)
This and (6.5.14) imply that
Yne —a €C, Ve €(0,6), ac B(0,6).
Since g is (C’)*-nondecreasing, this along with (6.5.15) implies that
Yne —a €Q, Vee€ (0,0), ac (CV)* N B(0,0).

Due to (6.5.12) and intQ # (), we have that ng(y,) contains some nonzero vector z, (see
[23, Proposition 6.45] together with |23, Proposition 6.23 (iii)|). The definition of the outer

normal cone in (6.5.7) yields

(zn, Yne — @ — yn>7.Lj <0,

which along with (6.5.16) implies

<Znaa>7-u' > —|zule.
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Sending € — 0 and varying a € (C7)* N B(0, ), we conclude that

Zn €ng(y,) NCI,  Vn. (6.5.17)

Now for each n, we rescale z, to get |z,| = 1. By passing to a subsequence, we can assume

that there is z € C7 such that z, converges to z. By z, € ng(y,), we get
(Zn, W —Yn)qy <0, Yw e Q.
The convergence of (z,)72 ; along with (6.5.13) implies
nh—>Holo (Zns W — Yn)gy = (2,0 = Y)gy,  Yw € L

The above two displays yield z € ng(y) N C7.

Then, we show (z,y),,; > 0. Fix some x¢ € int{2 and some € > 0 such that B(xg,2¢) C Q.

Let y,, and z, be given as in the above. Due to |z,| = 1, we have

xg—sanQQCj.

Since it is easy to see that C/ C (C7)*, by (6.5.17), we have z, € (C?)*, which along with the

above display implies that

(*TO — EZn, Zn>7-[j =0

and thus (xo, 2,),,; = €. Using 2, € ng(yn), we obtain

<Z/n72n>7{j 2 <I'O,Zn>7_[j 2 g.

Passing to the limit, we conclude that (z,y),,; > 0, completing the proof. O

362



6.5.3. Proof of Proposition 6.5.1

Similar to the arguments in the beginning of the proof of Lemma 6.5.7, we only need to show
the direction that ¢** = g if g is convex, lower semicontinuous and (C’)*-nondecreasing. By
Lemma 6.5.7, we only need to consider the case where ) has empty interior. Recall that we
have set 2 = dom g. Throughout this subsection, we assume that €2 has empty interior. We

proceed in steps.

Step 1. Setting
N = max {rank (z|;) : 2 € Q}, (6.5.18)

we want to show N < D. We need the following lemma.

Lemma 6.5.9. If there is x € C7 such that x; is of full rank, then int (C7N(z—(C7)*)) # 0.

Proof. Recall the partial order induced by SE in (6.3.1). Let x satisfy the assumption.
Then, there is some constant a > 0 such that T)j| = alp where Ip is the D x D identity
matrix. Let us define y, = kdIp, k = 1,2,...,|j|, for some § > 0 to be chosen later. Then,
it is clear that y € C/. We consider B = {2 € H7 : |z, — yx| < r, Vk} for some r > 0 to be
chosen later. Then, due to finite dimensionality, there is some ¢ > 0 such that, for every

z € B,
—crlp <z —yp < crlp, VE=1,2,...,]j]
Using this, we can show that, for every z € B,
2k — 2k—1 2 Yk — Yk—1 — 2crlp = (0 — 2er)Ip, Yk =1,2,...,]j],

where we set z9 = yo = 0. By choosing r sufficiently small, the above is in S?, and we have
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B C C7. On the other hand, we also have, for i = 1,2,...,|j],

Hl ld Fl Fl

Z(Uck — z) = Z(-Tk — Ykt Yk —2k) = | T — Zyk + Z(yk — 2k)
k=1 k=i

k=1 k=i
¥

. 1 N )
> aID—;yk —\]|crID—<a—2(1+j\)]j]5—]j]cr>ID,

which is in SE if § and r are chosen sufficiently small. Hence, we have x — z € (C?)* for all
z € B, which is equivalent to B C x — (C’)*. Since B has nonempty interior, the proof is

complete. O
Since g is (C7)*-nondecreasing, we have
Cn(z—(CHcCcQ, Vzeq.

Hence, Lemma 6.5.9 implies that if there is x € Q with rank(z;) = D, then intQ # 0.
Therefore, under our assumption int Q = (), we must have that x);| is of rank less than D for

every = € ). So, for N defined in (6.5.18), we must have N < D.

Step 2. We fix € Q with rank N. By changing basis, we may assume = = diag(a,0p_n)
where a is a N x N diagonal matrix with positive entries and Op_p is (D — N) x (D — N)

zero matrix. We set

gf = {diag(a,0p_n) : a € Sf} c sP,

&:{xecj:xkegf,Vk}.
We want to show that
QCal. (6.5.19)
We argue by contradiction and assume that there is y € Q such that yir & gﬂ\_f for some
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k'. Let us define §y by g = y; for all k < k' and g, = yp for all k > k'. We clearly
have § € C? N (y — (C?)*) which implies that § € Q (because g is (C?)*-nondecreasing). By

convexity of €2, we must have z = %m + %j] e Q.

We argue that z|; has rank at least N + 1. Since yj is positive semi-definite, we must have
()i >0 (6.5.20)

for some i > N. By reordering coordinates, we may assume ¢ = N + 1 in (6.5.20) and thus
(Yr)N+1,n+1 > 0. Setting z)5 = ((2(j))m.n)1<mon<lj|» it suffices to verify vTz;v > 0 for all

v € RV+1\ {0}. We define 7); and yj;| analogously. If v, # 0 for all n = 1,2,..., N, we

have
T2, > 1 T5, 0
viZv 2 52} TV >
due to the fact that |; = a is a diagonal matrix with positive entries. If v, = 0 for all
n=1,2,..., N, then we must have vy11 # 0 and thus

1 1

2
QUTyIjIU = *UNH(?/U\)NH,NH > 0.

UTZIjIU > 5

We conclude that z|; has rank at least NV + 1 contradicting the definition of N. Therefore,

we must have (6.5.19).

Step 3. We conclude by applying Lemma 6.5.7 to g restricted to CNj, and treating ¢ on C7 \57

using Lemma 6.5.6.

In view of (6.5.18) and (6.5.19), applying Lemma 6.5.9 to C7, we have that  has nonempty

interior relative to C7. Let g be the restriction of g to CJ. Define

7 (y) = sup{(z,y)3s — (@)}, VyeH
xeCi

365



where Hi = {z € H7 : 2}, € SV, Vk} with SV = {diag(a,0x_y) : a € SV}. Since g(z) = 0o

for x ¢ CJ and g=gon CNj, we can see from the definition of g* in (6.5.1) that

9" (y) = swp {(z,9)35 — 9(@)} = 5" (y), VyeH,
zeCl

which implies ¢**(z) = §7 (z) for all z € C7. Since Lemma 6.5.7 implies that §(z) = §** (z)
for z € €7, we can thus conclude that ¢**(z) > g(z) = g(z) for all z € C/. This along

with (6.5.3) yields

g (z) = glz), Vwell (6.5.21)

For z € C/ \CNJ , arguing as above (the paragraph studying the rank of 2/;|), we can see that
there is some k and some i > N such that (zx); > 0. Now, setting y, = diag(On, Ix—N)
for every k, we have y € C7, (y,x);;, > 0 and (y,2);,; = 0 for all z € CI. We define
L, = p{y,)s+9(0) for each p > 0. Since g(z) > g(0) for all z € C/ due to the monotonicity
of g, and since £,(z) = ¢(0) for all z € CJ, we have g(z) > L,(z) for all z € CJ. Due to

g = 00 on Cj\(?j, we thus get
9(2) = L,(2), Vzeld.

Due to (y,x),,; > 0, we also have lim, ,o, £,(z) = 00 = g(z). In view of Lemma 6.5.6, this
along with the above display implies that ¢**(z) = g(z) for all z € €7\ €7, which together

with (6.5.21) completes the proof of Proposition 6.5.1.
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CHAPTER 7

FENCHEL—MOREAU IDENTITIES ON CONES

This chapter is essentially borrowed from [38], joint with Hong-Bin Chen.

Abstract. A pointed convex cone naturally induces a partial order, and further a notion
of nondecreasingness for functions. We consider extended real-valued functions defined on
the cone. Monotone conjugates for these functions can be defined in an analogous way to
the standard convex conjugate. The only difference is that the supremum is taken over the
cone instead of the entire space. We give sufficient conditions for the cone under which
the corresponding Fenchel-Moreau biconjugation identity holds for proper, convex, lower
semicontinuous and nondecreasing functions defined on the cone. In addition, we show that

these conditions are satisfied by a class of cones known as perfect cones.
7.1. Introduction

The classical Fenchel-Moreau identity can be stated as f = f** for convex f : H — (—o0, 00]
satisfying a few additional regularity conditions. Here H is a Hilbert space with inner product

(-,+) and the convex conjugate is given by

f(x) = zgg{@,@ - fy)}, VzeH.

Note that the supremum is taken over the entire space H.

On the other hand, it is well-known (c.f. [105, Theorem 12.4]) that if f : [0, 00)% — (—00, 00]

is convex with extra usual assumptions and, in addition, is nondecreasing in the sense that

flx) = fly), ifa—yel0,00),
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then we also have f = f**. Here * stands for the monotone conjugate defined by

fAx)= sup {(y,x) — f(y)}, Vae€[0,00)"
y€[0,00)4

The inner product appearing above is the standard one in R?. The nonnegative orthant
[0,00)% is a cone in R? and the nondecreasingness can be formulated with respect to the
partial order induced by this cone. Compared with the convex conjugate, the supremum

above is taken over the cone.

Recently, in [36], to study a certain Hamilton—Jacobi equation with spatial variables in the
set of n x n (symmetric) positive semidefinite (p.s.d.) matrices denoted by S", a version
of the Fenchel-Moreau identity on S is needed to verify that the unique solution admits
a variational formula. The derivation of such formulae for Hamilton—Jacobi equations on
entire Euclidean spaces are known and can be seen, for instance, in [15, 84]. On S, [36,
Proposition B.1| proves that f = f** holds if f : S} — (—o0, 0] is convex with some usual

regularity assumptions and is nondecreasing in the sense that

f@) = fly), ifx—yeSh.

Accordingly, here * stands for the monotone conjugate with respect to S} given by

[ (@) = sup{(y, =) — f(y)}, VeS|

yESi

The inner product is the Frobenius inner product for matrices. Again, in this case, S} can

be viewed as a cone in S™, the space of n X n real symmetric matrices.

In view of these two examples, it is natural to pursue a generalization to an arbitrary
(convex) cone C in a Hilbert space H. More precisely, we want to show f = f** for proper,

lower semicontinuous and convex f : C — (—o0, oo] which is also nondecreasing in the sense
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that

where

f*(y> :Sgg{<zvy> —f(Z)}, vyECV, (711)
[ (@) = Sélcpv{@,@ -}, vezed, (7.1.2)

where CV is the dual cone of C.

In Theorem 7.2.2, we give sufficient conditions on C for f = f** to hold for all f satisfying
the aforementioned properties. In particular, these conditions hold for a class of cones called
perfect cones first introduced in [17] in the setting of Euclidean spaces. In short, a perfect
cone is a self-dual cone satisfying that every face F of C is self-dual in the linear space

spanned by F.

The nonnegative orthant [0, 00)? and the set of p.s.d. matrices S’ are both perfect cones. The
former is easy to see using Definition 7.2.1 and the latter will be proved in Lemma 7.5.1. An
example of an infinite-dimensional perfect cone is given in Lemma 7.5.3. Classical references
for properties of cones and self-dual cones in Euclidean spaces or Hilbert spaces include
[16, 18, 19, 24, 102|. The generality pursued in this work is also motivated by the study of
Hamilton—Jacobi equations arising in mean-field disordered systems [95, 94, 92, 96, 93, 36],
where the solution is defined on a set that can be identified with a cone in possibly infinite

dimensions, and expected to be nondecreasing with respect to the cone.

Let us briefly comment on the connection to the theory of abstract convexity and related
works. Let <7 be the collection of affine functions with slopes in CV. In view of (7.1.1)
and (7.1.2), we can declare a function f on C to be &/-convex if f is equal to the upper

envelope of all functions in & lying below f (see (7.3.4) and the right-hand side of (7.3.3)).
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Then, by the Fenchel-Moreau theorem for abstract convexity (c.f. |73, Theorem 7.1]), the
desired Fenchel-Moreau identity here is equivalent to the statement that the ./-convexity
coincides with the usual notion of convexity for nondecreasing functions defined on C. We
refer to [91, 108, 73] for more details on abstract convexity. Studies of increasing functions

on cones from the perspective of abstract convexity include [57, 58, 59|. The rest of the paper

is organized as follows. We introduce definitions and state the main results in Section 7.2.
These results will be proved in Section 7.3 and Section 7.4. Lastly, examples of perfect cones

in finite dimensions and infinite dimensions are given in Section 7.5.
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7.2. Definitions and main results

Let H be a real Hilbert space equipped with inner product (-,-) and the associated norm
| - |. We refer to an element in H sometimes as a vector, though H can be possibly infinite-
dimensional. We denote the interior, the closure and the boundary relative to H by int, cl,

and bd, respectively.
7.2.1. Definitions related to cones

Let C be a cone in H. In this work, for simplicity, we require all cones to be convex and

contain the origin. Hence, C is a cone if and only if it satisfies

ar+ pyelC, Vzr,yel, Va,5 > 0.

Naturally, C induces a preorder =< on H given by

x =y ifand onlyif y—az€C.

We also write = y if y < . When C is pointed, namely C N (—C) = {0}, this preorder
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becomes a partial order. We denote by span and span the operations of taking the linear
span and the closed linear span, respectively. The dual of C with respect to spanC is given

by

CV ={zespanC: (x,y)>0,VyecC} (7.2.1)

The cone C is said to be self-dual (with respect to spanC) provided C = CV. It is clear that

a self-dual cone is closed and pointed.

A subset F of a closed and pointed cone C is a face of C if F is a cone and satisfies that

it 0<z<y and ye F, thenzeF. (7.2.2)

Denote by FV the dual cone of F in the space span.F. The following definition is a gener-

alization of [17, Definition 4] from Euclidean spaces to Hilbert spaces.

Definition 7.2.1. A cone C is said to be perfect if it is self-dual and every face F of C

satisfies
1. FV =F;
2. F has nonempty interior with respect to span .F.

In other words, 7V = F means F is self-dual in its own closed span. Since C is itself a face, a
perfect cone satisfying spanC = H must have nonempty interior. In finite-dimensions, a self-
dual cone always has nonempty interior in its own span (c.f. [23, Exercise 6.15]). Hence, if H
is finite-dimensional, then (2) automatically follows from (1). Compared with [17, Definition
3] where only (1) is imposed, condition (2) is added to ensure this non-degeneracy in infinite
dimensions. In Section 7.5, we give two examples of perfect cones, a finite-dimensional one

and an infinite-dimensional one.
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7.2.2. Definitions related to functions

The domain of a function f : C — (—00,00] is defined as

domf={zeC: f(z)<oo}. (7.2.3)

A function f: C — (—o0,00] is said to be C-nondecreasing provided

f(x) = fly), Yo =y=0.

For any f : C — (—o00,00|, we define the monotone conjugate of f by (7.1.1) and the
monotone biconjugate of f by (7.1.2). Lastly, f is said to be proper if f is not identically
equal to co. We denote by I' +(C) the collection of functions on C with values in (—o0, o0]

that are proper, convex, lower semicontinuous (l.s.c.), and C-nondecreasing.

7.2.3. Main results

For any closed subspace H' C H, we denote by Py the orthogonal projection onto H’.
Theorem 7.2.2. Assume that

(H1) C C H is a closed and pointed cone satisfying SpanC = H;

(H2) every face F of C is closed and has nonempty interior with respect to span JF;

(H3) for every face F of C, the dual cone F" of F in the space SpanF is contained in

Psgan 7 (C).
Let f: C — (—o0,00] be proper. Then, f = f** if and only if f € I’ A(C).

If f= f**, then it is easy to see f € I' 2(C) necessarily. The nontrivial part is the sufficient

condition for f = f**. As a special case, the following holds.

Corollary 7.2.3. Suppose that C is a perfect cone satisfying spanC = H. Let f : C —
(—00,00] be proper. Then, f = f** if and only if f € T »(C).
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Let us briefly comment on hypotheses (H1)-(H3). The first two hypotheses are natural. Note
that since C is itself a face, (H2) ensures that C has nonempty interior. In finite dimensions,
given that C is closed, every face F is automatically closed (see [105, Corollary 18.1.1]), and
the second half of (H2) also holds. Hence, (H1) implies (H2) in finite dimensions. Lastly,

the proposition below shows that (H3) is nearly sharp when H is finite-dimensional.

Proposition 7.2.4. Assume (H1) and that H is finite-dimensional. If f = f** for all

[ €T x(C), then every face F of C satisfies F¥ C cl (Pspan 7(CY)).

We believe that our results can be extended to more general scenarios. Here, we stick to the
current setting for simplicity of presentation.

7.3. Preliminaries

In the first part of this section, we state some basic results that are needed throughout this
work. In the second part, we prove Proposition 7.2.4. In the last part, we prove the following

result.

Proposition 7.3.1. Suppose that C is closed and pointed. Let f : C — (—o0, 00| satisfy
intdom f # 0. Then f = f** if and only if f €T »(C).

7.3.1. Basic results of convex analysis

For a € H and v € R, we define the affine function L, , with slope a and translation v by

Lyy(x) =(a,z)+v, VaeH. (7.3.1)

For a function f : E — (—o0, 00] defined on a subset E C H, we can extend it in the standard
way to f : H — (—o0,00] by setting f(z) = oo for x ¢ E. For f: H — (—o0, 00|, we define

its domain by

domf={zeH: f(z)<oo}.
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Note that by the standard extension, the above definition is equivalent to (7.2.3) where only
functions defined on C are considered. Henceforth, we shall not distinguish functions defined
on C from their standard extensions to H. Denote by I'g(E) the collection of proper, convex
and l.s.c. functions from E C H to (—oo, o0]. In particular, when C is closed, the collection

I' A(C) € T'o(C) can be viewed as a subcollection of I'g(H).

For f:H — (—o0, 0] and each x € H, we define the subdifferential of f at = by

Of(w) = {ueH: f(y) > f(@) + {y—zu), Vy € H}. (7.3.2)
The effective domain of df is defined to be

domdf ={z € H: df(x) #0}.

We now list some lemmas needed in our proofs.

Lemma 7.3.2. For a convexr set ACH, ify € cl A andy’ € int A, then A\y+(1—\)y’ € int A
for all A € [0,1).

Lemma 7.3.3. For f € Ty(H), it holds that intdom f C domdf C dom f.

Lemma 7.3.4. Let f € Tg(H), © € H and y € dom f. For every a € (0,1), set x, =

(1 —a)x + ay. Then lim,—o f(zq) = f(x).

Lemma 7.3.5. Suppose that C is closed. Let f € To(C), x € C and uw € CV. Ifu € df(x),
then f*(u) = (z,u) — f(x).

Lemma 7.3.6. For f € T'¢(C) and x € C, we have

[ (z) = sup Lq,u(z) (7.3.3)
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where the supremum is taken over

{(a,v) €CY xR : Ly, < f on C}. (7.3.4)

Lemmas 7.3.2, 7.3.3, and 7.3.4 can be found in [23] as Propositions 3.35, 16.21, and 9.14,

respectively. For completeness, let us quickly prove Lemma 7.3.5 and Lemma 7.3.6.

Proof of Lemma 7.3.5. By the standard extension, we have f € I'g(H). Invoking |23, Theo-

rem 16.23], it is classically known that

sup{(z,u> — f(z)} = (z,u) — f(z).

z€eH

By assumption, we know x € dom df. Hence, Lemma 7.3.3 implies z € dom f and thus the
right hand side of the above equation is finite. Then, the supremum on the left must also

be finite. On the other hand, by the extension, we have f(z) = oo if z & C, which yields

sup{ (z,u) — f(z)} = sup{ (z,u) — f(z)} = f*(u).

zeH zeC

Proof of Lemma 7.3.6. For each y € CV,

Ly _pep(x) = (y,2) — f*(y), VxzeC.

is an affine function with slope y € CV. By (7.1.1), we can see that Ly ) < fonC. In
view of the definition of f** in (7.1.2), we have f**(x) < sup Ly, (x) for all x € C where the

sup is taken over the collection in (7.3.4).
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For the other direction, for L, , satisfying a € C¥ and L,, < f, we have

(a,x)y +v < f(x), VzeCl.

Rearranging and taking supremum in x € C, we get f*(a) < —v. This yields

Lay(x) < (a,2) — f*(a) < f7(2),

which implies sup Lq , (z) < f**(2). O

7.3.2. Proof of Proposition 7.2.4

We first prove the following lemma.

Lemma 7.3.7. For w € FY, the function f:C — RU{co} given by

(w, x) ifx e F,
f(z) =
00 ife g F.

belongs to I' A(C). Moreover, if f = f**, then

(w,x) =sup (v,z), YVreF (7.3.5)

where the supremum s taken over

{vedPsgmr(CY)):w—veF'} (7.3.6)

Proof. Tt is clear that f is convex, proper, and ls.c. To show f is C-nondecreasing, let
0 < & < y. Note that this implies 0 <y —x < y. If y € F, by (7.2.2) in the definition of
faces, we have z € F and y — z € F. This along with w € F" yields f(z) < f(y). If y & F,
then f(x) < oo = f(y). This verifies f € I' 2(C).
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Now, we want to show (7.3.5). By Lemma 7.3.6,

f(z) =sup{{a,z) + v}, VeeF (7.3.7)

where the supremum is taken over all (a,r) € CV x R satisfying

(w,y) = (a,y) +v, VyecF,

which is equivalent to

(w—a,\y)y >v, YA=20, yeF.

Setting A = 0 and A — oo yield, respectively,

v <0, and (w—a,y) 20, VyecF.

For every such (a,v), setting v = Psgan #(a) (which gives (v,y) = (a,y) for all y € F), we

thus obtain

(w,y) = (v,y) = (a,y) +v, VyecF.

In particular, this implies that v belongs to the set in (7.3.6). Hence, in view of (7.3.7), we

conclude

f(x) <sup (v,z), VereF

where the supremum is over the set in (7.3.6). On the other hand, for every v in the set in

(7.3.6), we have f(z) = (w,z) > (v,z) for all z € F. This completes the proof of (7.3.5). O

Now, we are ready to prove Proposition 7.2.4. Since H is finite-dimensional, we have span F =

span F. We argue by contradiction and assume that there is w € F¥ \ cl (Pspan #(C")). Then,

377



by separation theorems, there are € > 0 and z € span F such that

(w,z) = (u,z) + &, Yu € Pgpan#(C). (7.3.8)

By [23, Proposition 6.4 (i)] and the fact that F is a cone, we have span F = F — F. Hence,
there are z,y € F such that z = x — y. By Lemma 7.3.7, we can find v from the set in

(7.3.6) such that

(w,x) < (v,x) + €.

On the other hand, since (w,y) > (v,y) due to (7.3.6), we obtain from (7.3.8) that

(w,z) > (v, x) +¢,

contradicting the previous display.
7.3.3. Proof of Proposition 7.3.1

Let f : C — (—o0, 00| be proper and satisfy intdom f # (). It is clear from (7.1.2) that f** is
convex, l.s.c.; and C-nondecreasing. Therefore, assuming f = f** and that f is proper, we

have f € ' A(C).

From now on, we assume f € I' x(C) and prove the converse. For convenience, we write
Q) = dom f. The plan is to prove the identity f = f** first on int €2, then on cl €2, and finally

on the entire C.
Analysis on int{)

Let € intQ. By Lemma 7.3.3, we know Jf(x) is not empty. For each v € C, there is
e > 0 small so that z —ev € Q. For each u € df(x), by the definition of subdifferentials and

nondecreasingness, we have

(v,u) >

m | =

(f(@) = f(z —ev)) >0,
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which implies

0+#0f(x) CCY, Vz€int. (7.3.9)

Invoking Lemma 7.3.5, from (7.3.9) we can deduce

f@) < sup {{y,z) = f*(y)} = [T (2).

yeCY

On the other hand, from (7.1.2), it is easy to see that

f(z) = f* (@), Vzec. (7.3.10)

Hence, we obtain

f(x) = f*(x), Yz cintQ.

Analysis on cl ()

Let x € cl and choose y € int{). Then, z, = (1 — a)x + ay belongs to int{ for every

a € (0,1] due to Lemma 7.3.2. By the result on int 2, we have

f(@a) = [ (2a).

Then, z, belongs to dom f and dom f**. Applying Lemma 7.3.4 and sending o — 0, we

conclude that

f(x) = f"(x), Vzec. (7.3.11)

379



Analysis on C

Due to (7.3.11), we only need to consider vectors outside cl Q. Let x € C\ cl €, and we have
f(x) = oo. Since f is proper and C-nondecreasing, we must have 0 € Q. By this, = ¢ clQ

and the convexity of cl {2, we must have

N =sup{) € [0,00) : Az € clQ} < 1. (7.3.12)

We set

=Nz (7.3.13)

Then, we have that 2/ € bd Q and \a’ ¢ clQ for all A > 1.
We need to discuss two cases: ' € Q or not.

In the second case where 2/ ¢ Q, we have f(2) = co. Due to 2/ € clQ and (7.3.11), we have
1 (2") = 0o. On the other hand, by (7.3.11) and the fact that 0 € Q, we have f**(0) = f(0)

and thus 0 € dom f**. The convexity of f** implies that

00 = f*(2') S Nf™(z) + (1= X)f(0).

Hence, we must have f**(z) = oo and thus f(z) = f**(x) for such z.

We now consider the case where 2’ € Q. For every y € H, the outer normal cone to Q at y
is defined by
n(y) ={z€H: <z,y’ — y> <0,Vy € Q}. (7.3.14)

We need the following result.

Lemma 7.3.8. Assume intQ # (). For everyy € Q\intQ satisfying \y ¢ clQ for all X > 1,

there is z € n(y) NCY such that (z,y) > 0.
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Figure 7.1: Construction of y,,.

Proof. Fix y satisfying the condition. It can happen that y & intC, and we want to approxi-
mate y by a point in bd Q2NintC. The following construction is illustrated in Figure 7.1. For
every open ball B C H centered at y, there is some A > 1 such that 3/ = Ay € CN(B\ cl Q).
Due to intQ) # () and y € Q, by Lemma 7.3.2, there is some 3y’ € BNintQ C intC. For
p € 10,1], we set

yo=py +(1-p)y'€B.
Then, we take
po = sup{p € [0,1] : y, € intQ}.

Since ¥ ¢ clQ, we must have pg < 1. It can be seen that y,, € clQ\ intQ and thus
Ypo € BNbdQ. Due to y' € C, ¥y € intC and Lemma 7.3.2, we have y,, € intC. In

summary, we obtain y,, € BNbdQ NintC.

By this construction and varying the size of the open balls centered at y, we can find a
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sequence {yy o2 ; such that

Yn € intC, (7.3.15)
yn € bd Q, (7.3.16)
lim y, =y. (7.3.17)
n—oo

Fix any n. By (7.3.15), there is § > 0 such that

yn + B(0,20) C C. (7.3.18)

Here, for a € H,r > 0, we write B(a,7) ={z € H: |z —a| <r}. For each ¢ € (0,9), due to

(7.3.16), we can also find y, . such that

Yne € €, (7.3.19)
[Yn,e — yn| < €. (7.3.20)

This and (7.3.18) imply that
Yne —a€C, Vee(0,6), aec B(0,9). (7.3.21)

By C-nondecreasingness, (7.3.19) and (7.3.21), we can see

Yne —a €Q, VYee (0,0), aeCnB(0,9).

Due to (7.3.16) and intQ # (), we have that n(y,) contains some nonzero vector z, (see

[23, Proposition 6.45] together with |23, Proposition 6.23 (iii)|). The definition of the outer
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normal cone in (7.3.14) yields

<Zna Yne — Q@ — yn> <0,

which along with (7.3.20) implies

(zn,a) = —|znle.

Sending € — 0 and varying a € C N B(0,d), we conclude that

2n €n(y,)NCY, Vn.

Now for each n, we rescale z, to get |z,|] = 1. Since CY¥ N clB(0,1) is convex, closed,
and bounded, invoking the Banach—Alaoglu—Bourbaki theorem and the Eberlein-Smulian
theorem, by passing to a subsequence, we can assume that there is z € CV such that z,

converges weakly to z. By z, € n(y,), we get
(zn,w —yp) <0, YweN. (7.3.22)
The weak convergence of {z,}72 ; along with the strong convergence in (7.3.17) implies
nlLIEO (zn,w —yp) = (z,w —y), YweQ.

The above two displays yield z € n(y) NCY.

Then, we show (z,y) > 0. Fix some xy € intQ and some £ > 0 such that B(zg,2¢) C Q.

Let y,, and z, be given as in the above. Due to |z,| = 1, we have

ro— ez € L CC,
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which along with the fact that z, € CV implies that
(xog —€zp,2n) =0
and thus (xg, z,) > . Using z, € n(y,), we obtain
(Yny 2n) = (T0, 2n) = €.
Passing to the limit, we conclude that (z,y) > 0 completing the proof. 0

We now go back to our main proof and apply Lemma 7.3.8 to 2’ € Q. Hence, there is z € C¥

such that
(z,w—1a") <0, YweQ, (7.3.23)

(z,2") > 0. (7.3.24)

By (7.3.11) and Lemma 7.3.6 (or the simple fact that f > f(0)), there is an affine function

L, with a € CY and v € R such that f > L. For each p > 0, define
Ly=Lotpz, v—plza)-
Due to (7.3.23), we can see that
Ly(w) = Lay(w) + p<z,w — :c’> < Loy (w) < f(w), Yw e Q.
Since we know f ‘ oo = 09 the inequality above gives us

L,<f, VYp=0. (7.3.25)
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Evaluating £, at « and using (7.3.13), we have
Ly(x) = Loy(x) +p(z,2 —a') = Lap(x) + p(N7t—1) (z,2).
By (7.3.12) and (7.3.24), we obtain

lim £,(z) = oo.

p—00

This along with (7.3.25), Lemma 7.3.6 and (7.3.10) implies
flz)=f"(x) VYxel\c.

In view of this and (7.3.11), we have completed the proof of Proposition 7.3.1.
7.4. Proof of Theorem 7.2.2
We devote this section to the proof of Theorem 7.2.2. As commented in the beginning of

the proof of Proposition 7.3.1 in Section 7.3.3, assuming f = f**, we have f € I' 2(C).

Now, assuming (H1)-(H3) and f € I' (C), we want to prove f = f**. Again, we write

Q2 = dom f which is a nonempty subset of C. Let us introduce
.FQ:{)\y: )\2073/69}.

We will first show that f = f** holds on Fq and then on C.
7.4.1. Identity on Fq

We prove f = f** on Fq. The idea is to show €2 has nonempty interior relative to Fq and
apply Proposition 7.3.1 to f restricted to Fq. Some properties of F are needed and they

are stated and proved in the two lemmas below.

Lemma 7.4.1. The set Fq is a face of C.
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Proof. Recall the definition of a face above Definition 7.2.1. Since in this work, we require
cones to be convex, to show Fgq is a face, we start by checking it is convex. Note that for
any x1, s € Fq, there are A1, Ao > 0 and y1,y2 € € such that x; = A\;y; for i = 1,2. We can
choose p > 0 large enough so that %yl =< y; for both ¢. Hence, by the C-nondecreasingness

of f, we have %yl € Q for both i. Then, for each a € [0, 1], it holds that

A A
az1 + (1 —a)zg = u<aﬂly1 +(1 - a):y2>-

By the convexity of €2, we have a%yl +(1—- a)%yg € Q. Hence, we conclude that ax; +

(1 — a)xg € Fq, which implies that Fq is convex. Then, it is easy to see Fq is a cone.

Now let 0 <= =z =< y and y € Fq. By definition, there is u > 0 such that uy € Q. We
can deduce that 0 < pzr < py. Again, the C-nondecreasingness implies pz € € and thus

z € Fq. O

Lemma 7.4.2. Assume (H1) and (H2). The subset Q2 has nonempty interior with respect

to the space span Fgq.

Proof. For positive integers m,n € N, we set E,,,, = {mx € H: f(z) < n} which is the

level set {f < n} scaled by m. We want to show

Fo= |J Emn (7.4.1)

m,neNy

For each z € Fq, there is p > 0 such that y = pz € Q. Then, there is n € Ny such
that y € {f < n}. Choose m € N to satisfy mu > 1. Since f is C-nondecreasing and
0= miﬂy <y, it yields that m%ﬂ/ € {f < n}, which implies that € E,,,,. The other

direction is easy by the definition of Fq. Therefore, we have verified (7.4.1).

Since f is l.s.c., we know that every E,,, is closed. As a closed subspace of H, the space

span Fq is complete. On the other hand, by (H1) and (H2), the face Fq also has nonempty
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interior in Span Fq. Hence, invoking the Baire category theorem (see [106, Section 10.2])
and taking (7.4.1) into account, we can deduce that there is a pair m, n such that E,, ,, has
nonempty interior in span Fq. This implies that the interior of {f < n} C Q relative to

span Jq is nonempty. Hence, we conclude that €2 has nonempty interior. O

Let us set C' = Fq, H' = span Fq and f’ be the restriction of f to C’. Since Q C Fgq, it is
immediate that dom f' = Q C C'. Also, due to f € ' 2(C), we have f' € T 2(C'). By (H1),
(H2) and Lemma 7.4.1, C’ is closed and pointed in H’. Lemma 7.4.2 guarantees that dom f’

has nonempty interior in H’. Therefore, invoking Proposition 7.3.1, we obtain
f'(z) = f’*/*/(az), vz € C. (7.4.2)
Here,

7 () = sup{(z,9) = ()}, Wy e ¢,

77 (@) = sup {(y,z) — [ ()}, Veel,
yec'V
where €’V is the dual cone of C’ in H'. Due to Q C (',
f(z) =00, VzgC(. (7.4.3)
By this and (7.1.1), we have
Fy)=1"(y), wec”.

Using (H3), the definition of f” and (7.4.3), we can see that

{Lay :a€ C'V, v € R such that L,, < f' on C'}

C{Ly,:a€C’ veRsuchthat L,, < f on C},
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which together with Lemma 7.3.6 implies that
@) = 7 (2), Vzecd.

This along with (7.4.2) and f = f/ on C’ yields f** > f on C’. Lastly, from (7.3.10), we

conclude that

f(x) = f"(x), Vze Fa. (7.4.4)

7.4.2. Identity on C

Due to (7.4.4), we only need to show f(z) = f**(z) for x € C\ Fq. To start, we record
useful properties of faces in the ensuing two lemmas. Note that from the discussion below

Definition 7.2.1 we have intC # () if C is perfect.

Lemma 7.4.3. Let F be a face of a cone C C H. If F # C, then FNintC = () and thus
F ChbdC.

Proof. Let us argue by contradiction and suppose that there is z € FNintC. Then for every
y € C, we can find € > 0 small so that x —ey € C and thus 0 < ey < x. Then, the definition
of faces implies that ey € F. Since F is a cone and € > (, we obtain y € F which implies
C C F and thus C = F, contradicting the assumption that F # C. Therefore, the desired

result holds. O

Lemma 7.4.4. Assume (H1)-(H3). Let F be a face of C. For every x € C\ F, there is

v € CY such that (v,x) >0 and
(v,y) =0, YyeF.

Proof. We take F' to be the intersection of all faces of C containing both F and z. It can

be checked that F’ is again a face of C. Hence, F’ is the minimal face containing both F
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and x. Let us write
H' = span 7’ (7.4.5)

and denote by F” the interior of F’ with respect to H'. By (H2), we have 7’ # () and that F’

is closed. Since F is clearly a face of F’, Lemma 7.4.3 applied to F C F' yields FNF' = (.

By the Hahn-Banach separation theorem (c.f. |28, Theorem 1.6]), there are o € R and a

nonzero vector w € H' such that

(w,y) < a, YyeF, (7.4.6)

(w,z) >, VzeF. (7.4.7)

Since F is closed and convex, and F’ # (), by [23, Proposition 3.36 (iii)], we have that the

closure of F is F'. Hence, (7.4.7) becomes
(w,2) > a, VzeF. (7.4.8)

By (7.2.2), we have 0 € F. Due to this and F C F', using (7.4.6) and (7.4.8), we must have

a =0 and
(w,y) =0, Yye F. (7.4.9)
Then, (7.4.8) is turned into (w, z) > 0 for all z € F’ which implies that
we FY (7.4.10)
where F'V is the dual cone of F’ in H’. Due to (H3), there is v € CV such that

(v,2) = (w,z), VzeH. (7.4.11)
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Now, we consider the null space of the linear map y — (v,y) given by

E={yeH: (v,y) =0} (7.4.12)

We want to show E N F’ is a face of C. It is clear that EN F’ is a cone. For y € ENF’ and

z € C satisfying 0 < 2 < y, by v € CV, we obtain

<U,y—Z> 207

(v,2) = 0.

Due to y € E, the above two displays yield (v, z) = 0 which implies that z € E. Since F' is
a face, by 0 < z <y and y € F’, we also have z € F'. Hence, we have z € EN F’ and thus

verified that E N F’ is a face of C.

We claim that

ENF #F. (7.4.13)

Otherwise, we have F/ C E, which due to (7.4.5) implies that H' C E. However, this along
with (7.4.11) means that (w,w) = 0 contradicting the fact that w # 0. Hence, (7.4.13) is

valid.

To conclude, we argue that

z¢E. (7.4.14)

Otherwise, since F’ contains x by the definition of F', we have € EN F'. From (7.4.9),
(7.4.11) and (7.4.12), we can deduce that F C E and thus F C EN F’. Therefore, E N F’
is a face containing both x and F. However, this together with (7.4.13) contradicts the fact

that F’ is chosen to be the minimal face containing x and F.
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Therefore, by contradiction, we conclude that (7.4.14) must hold. Then, by x € F’ and
(7.4.10), we must have (v, ) > 0. In view of this, (7.4.9) and (7.4.11), the vector v satisfies

all the desired properties. O

With these results, we resume the proof of f = f** on C\ Fq. Fix any « € C\ Fq. For each

p >0, we set

Ly = Loy, f(0);

with v € CV given in Lemma 7.4.4 corresponding to this x and F = Fq. This lemma implies

that v is perpendicular to Fqo and thus

Lp(y) = p(v,y) + f(0) = f(0), Vy e Fa.
Then, the C-nondecreasingness of f implies that
fy) = Loly), Vy € Fa.
Since we know f = oo on C\ Fq, we obtain
=L, Vp>0.
On the other hand, due to (v,z) > 0 in Lemma 7.4.4, we have
lim £,(2) = o0 = f(2)

Hence, by the above two displays, (7.3.10) and Lemma 7.3.6, we conclude that f(z) = f**(z)

for x € C\ Fq. This together with (7.4.4) completes the proof of Theorem 7.2.2.
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7.4.3. Proof of Corollary 7.2.3

Recall the notion of perfect cones in Definition 7.2.1. We verify that any perfect cone C
with spanC = H satisfies (H1)—-(H3). Since the self-duality of C implies that C is both closed
and pointed, property (H1) holds for C. For any face F of C, by Definition 7.2.1 (1), F is
self-dual in span F and thus closed. Hence, (H2) follows from this and Definition 7.2.1 (2).
Lastly, due to F CC, FY = F and C¥ = C, it is immediate that 7" C Pssar p(CY) and thus

(H3) holds. Therefore, Theorem 7.2.2 yields Corollary 7.2.3.
7.5. Examples of perfect cones

We show that the set of positive semidefinite matrices is a perfect cone, and that an infinite-

dimensional circular cone is perfect.
7.5.1. Positive semidefinite matrices

Let n € N\ {0} and denote by S™ the set of all n X n symmetric matrices, by S} the set
of all n x n positive semidefinite matrices, and by St , the set of all n x n positive definite

matrices. On S”, we define the inner product by
where tr is the trace of a matrix and z7 is the transpose of x. Hence, S™ is a Hilbert space
with dimension n(n + 1)/2. The goal is the following.

Lemma 7.5.1. For each positive integer n, the set S is a perfect cone in S™.

To start, it is well-know that S7} is self-dual, which is attributed often to Fejér (see, e.g. |76,

Theorem 7.5.4|). For completeness of presentation, we prove it below.

Lemma 7.5.2. Let x € S". Then, x € S} if and only if (x,y) > 0 for every y € STt

Proof. If x € ST, then for any y € S we have (z,y) = tr(/r\/y\/yv/z) > 0. For the other

direction, by choosing an orthonormal basis, we may assume that = is diagonal. Testing by
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y € S', we can show that all diagonal entries in x are nonnegative and thus z € S'}. O

Proof of Lemma 7.5.1. Given the above lemma, we only need to verify the conditions on

the faces of S} stated in Definition 7.2.1. Let F be a face of S}.

The cases F = {0} and F = S} are trivial, so we assume {0} C F C S". Lemma 7.4.3

implies 7 C bdS? =87 \ S, . Set
m = max {rank(z) : z € F}, (7.5.1)

where rank(z) is the rank of the matrix z. By our assumption on F, we must have 1 < m < n.
For each k € N\ {0}, we denote by 0j the k x k zero matrix. Due to (7.5.1), there is z € F

with rank(z) = m. By fixing a suitable orthonormal basis, we may assume
x =diag(A1, A2, -+ Ay O ) (7.5.2)
where A\; >0 for all 1 < j <m.
Let us consider the following set
E= {diag(yo,On_m) oyt e ST} cSh. (7.5.3)

We now show E = F. First, we want to prove F C E. In other words, we claim that for

every y € F, there is y° € S such that

y= diag(yovon—m)- (7.5.4)

Let us argue by contradiction. Suppose that (7.5.4) does not hold for all y € F, then we
can find y € F with y;;, # 0 for some j > m or k > m. Assuming the former without loss
of generality, we compute vTyv for v = tel + e* and vary t € R where e/ and e* belong to

the standard basis for R". Then, due to y € S}, we must have y;; > 0. By reordering the
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basis, we may assume j = m + 1, and thus

Ym+1, m+1 > 0. (7.5.5)

Let § = (ij)1<i, jem+1 € S, and we define 7 similarly. Then, we want to show rank(z +

y) =m+ 1. Let v € R™T1\ {0}. If v; # 0 for some 1 < j < m, then we have
vI(Z+y)v = vz > 0.

The last inequality follows from (7.5.2). If v; = 0 for all 1 < j < m, then due to v # 0, we

must have v,,11 # 0, and by (7.5.5), we get
V(@ + v = vTyv = ym+1,m+17)72n+1 > 0.

In conclusion, we obtain vT(Z +%)v > 0, which implies that Z+7 € STI" and thus rank(z +
y) = rank(Z + y) = m + 1. Since F is a cone, we have = + y € F. But this contradicts
the maximality of m as in (7.5.1). Hence, every y € F satisfies (7.5.4), and thus we verified

F CLE.

Now, we turn to the proof of E C F. For every y of the form (7.5.4), due to (7.5.2), there
exists a small € > 0 such that x = ey > 0 where the partial order > is induced by the
cone . Indeed, such ¢ exists because, viewing x,y as matrices in S, we can choose
sufficiently small so that the absolute values of eigenvalues of y is bounded by mini<j<m A;.
Recall the definition of faces above Definition 7.2.1. Since F is a face, we must have ey € F

and thus y € F. Hence, we conclude E C F.

Now, we have 7 = E. In view of (7.5.3), we can identify F with S7" and span F with S"™.
We know that S’ is self-dual in S™ by Lemma 7.5.2, whose interior is given by S, and

thus not empty. Therefore, all conditions on F in Definition 7.2.1 are verified. O
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7.5.2. An infinite-dimensional circular cone

We consider a generalization of the finite dimensional circular cone {z € R4T!: (22 + ... +
x?l)% < 29}. Let H = [?(N) where the elements in [?(N) are precisely x = (xq,T1,Z2,...)

with 377, :I:Z2 < 00. The inner product on H is given by

o0
=0

We denote by | - | the associated norm. For each x € H, we write x>; = (0,21, 22,...) € H.

We consider the following cone
C={xeH: |zz1| <o} (7.5.6)

The desired result is stated below.
Lemma 7.5.3. The cone C defined in (7.5.6) is perfect in H.
To prove this lemma, we start with the following result.

Lemma 7.5.4. The interior of C is nonempty, and given by
intC={xeH: z9>0,|z=1| <0} (7.5.7)

Proof. Let y belong to the set on the right hand side of (7.5.7). Choose £ > 0 such that
Yo — |y=1| > 2¢. Then, we want to show that, for all z € H satisfying |z — y| < &, we have

z € C. We can see that
(o —y0)* + |21 — Y1 > = |z — y|* < &%

This yields |xg — yo| < € and |z>1 — y>1| < &. Now, using these, the property of € and the
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triangle inequality, we get

lz>1] < Jy=1] +¢ < (yo —2¢) + € = yo — € < 2o.

Hence, we have x € C and can deduce that the right side of (7.5.7) is contained in intC. For
the other direction, let y € C with |y=1| = yo. It is easy to see that every neighborhood of

y contains a point not in C. Therefore, we conclude that (7.5.7) holds. O

In order to prove the perfectness of C, we need information about its faces. The next lemma

classifies all faces of C. The definition of faces are given above Definition 7.2.1.

Lemma 7.5.5. Under the above setting, if F is a face of C, then either F = C or there is
x € bdC such that F = {\x: X > 0}.

Proof. 1t is clear that C is a face of itself. Now we consider the case F # C. If F = {0}, then
there is nothing to prove. Hence, let us further assume that there is a nonzerox € 7 C C. In
particular, due to (7.5.6), we have zy > 0. Lemma 7.4.3 implies F C bdC. By Lemma 7.5.4

and the definition of C, the vector x satisfies
|z>1] = 20 > 0. (7.5.8)
By definition of faces, F is a cone. Due to this and = € F, we have
FO{\x: A>0}

Now, we show that the above is in fact an equality. Let y € F \ {0}. By similar arguments
as above, we have yg > 0. Rescaling if needed, we may assume yy = zg. Recall that in

this work, convexity is built into the definition of cones. Set z = %(a: + y). Using Jensen’s
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inequality, by (7.5.8) and an analogous one for y, we obtain

2 2 Ti +yi)? Ty +y; 2
$0:|Z>1|=Z(12 1,> <Z =%
i=1 i=1
The equality holds only if x; = y; for all 7, so y = x and the proof is complete. O

Proof of Lemma 7.5.5. We first show that C is self-dual. Recall that the dual cone is defined

in (7.2.1) and denoted by CV. Let y € CV and we have

(x,y) >0, VaeCl. (7.5.9)

Since (1,0,0,...) € C, we get yo = 0. We consider two cases depending on whether yo = 0
or not. Suppose yg = 0, for any fixed ¢ > 1, we construct 2’ in the following way. Set
xy =1, set i = =1 if y; > 0 and 2} = 1 if y; < 0, and lastly set all other entries of 2’ to
be zero. Inserting this 2’ into (7.5.9) and varying i, we can see y = 0 and thus y € C. Now
we consider the case where yg > 0. If |y>1| = 0, then this immediately implies y € C. If

ly=1] # 0, then we set v = |y=1|~! > 0 and consider 2’ given by

TH=7Yo; T = —VYiYo-

Plugging 2’ into (7.5.9) and using yo > 0, we obtain yy > |y>1| and thus y € C, which implies

CY C C. Since it is clear that C C CV, we conclude that C is self-dual.

To show C is perfect, it remains to check the conditions on the faces of C stated in Defini-
tion 7.2.1. Recall that Lemma 7.5.4 ensures intC # (). Hence, if F = C, then F is self-dual
and has nonempty interior with respect to span F. Now if F # C, then Lemma 7.5.5 implies
F = {Xx : XA > 0}, which is one-dimensional. We can identify span.F with R and F with
[0,00) in an isometric way. Now, it is easy to see that F is self-dual and has nonempty
interior with respect to span.F. By Definition 7.2.1, we conclude that C given in (7.5.6) is

perfect. O
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