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ABSTRACT

ASYMPTOTIC PROPERTIES OF DISORDERED SYSTEMS

Jiaming Xia

Jian Ding

Robin Pemantle

This thesis considers asymptotic behaviors of high-dimensional disordered systems, including

Ising model and mean-field spin glass models. We first study the decay rate of correlations

in the two-dimensional random field Ising model (RFIM). Second, we study the limit free

energy of disordered systems.

For RFIM, we are interested in the two-dimensional case where the external field is of i.i.d

centered Gaussian variables. We show that under nonnegative temperature, the effect of

boundary conditions on the magnetization in a finite box decays exponentially in the side

length of the box.

On the side of mean-field models, we use the Hamilton-Jacobi equation (HJE) approach,

initiated by Jean-Christophe Mourrat, to characterize limiting free energy in many models

from statistical inference problems and mean-field spin glass models. We now investigate

infinite-dimensional models including many spin glass models and inference problems where

the rank of the signal matrix increases as n is sent to infinity. We give an intrinsic meaning

to the Hamilton–Jacobi equation arising from mean-field spin glass models in the viscosity

sense, and establish the corresponding well-posedness. This will shed more light on the

mysterious Parisi formula as the limit of free energy in the Sherrington–Kirkpatrick model.
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CHAPTER 1

Introduction

1.1. Random Field Ising Model

Ising model is a mathematical model of ferromagnetism, the two-dimensional version of

which can be described as follows. For some integer N , let ΛN be a centered box with

side length 2N . On each vertex v ∈ ΛN of the square lattice is placed a magnetic spin σv

which takes value +1 or −1. The collection of states {σv}v∈ΛN
is called a configuration.

Additionally, we are given a collection {hv}v∈ΛN
of independent Gaussian random variables

with zero mean and variance ε2 at each vertex, serving as a random external field imposing

on each vertex. Here, we are dealing with Gaussian disorder N (0, ε2) where ε > 0 can be

arbitrarily small so that disorder is arbitrarily weak.

We are interested in the effect of spins in the boundary ∂ΛN on the spin σo at the center as

N increases. For each configuration σ, its energy, also called the RFIM Hamiltonian, with

external field {hv}v∈ΛN
and plus (respectively, minus) boundary condition, where spins on

∂ΛN are all +1 (respectively, −1), is given by

H±(σ) = −

 ∑
u∼v; u,v∈ΛN

σuσv ±
∑

u∼v; u∈ΛN ; v∈∂ΛN

σu +
∑
u∈ΛN

σuhu

 ,

where u ∼ v means u and v are neighboring. Note that the first sum accounts for the

neighboring interaction: neighboring spins with the same sign contribute lower energy. The

second sum is the effect from the boundary and third the external field. The Ising measure,

quenched on the external field {hv}v∈ΛN
with plus (respectively, minus) boundary condition,

is defined such that for all σ ∈ {−1, 1}ΛN ,

µ±(σ) =
e−βH

±(σ)

Z± , where Z± = Σσ′∈{−1,1}ΛN e
−βH±(σ′).

There are two sources of randomness here. To clarify, we use notations P and E for the

1



randomness with respect to the external field {hv}v∈ΛN
; and we denote the Ising measures

and their expectations by µ± and ⟨·⟩µ± .

Under zero temperature, the Ising measure is supported on the unique configuration, also

known as the ground state, that minimizes the corresponding RFIM Hamiltonian. Denote

by σΛN ,± the ground state with plus (respectively, minus) boundary condition under zero

temperature. Therefore, in this case the only randomness comes from the external field.

Our zero temperature result is the following theorem.

Theorem 1.1.1. For any ε > 0, there is cε > 0 such that P{σΛN ,+
o ̸= σΛN ,−

o } ⩽ c−1
ε e−cεN

for all N ⩾ 1.

By first proving in this simplified case, some of the key ideas, including the crucial appli-

cation of [1], can be more transparent. To give a brief sketch of the proof, we reformulate

Theorem 1.1.1. For v ∈ ΛN , we define

ξΛN
v =


+, if σΛN ,+

v = σΛN ,−
v = 1 ,

−, if σΛN ,+
v = σΛN ,−

v = −1 ,

0, if σΛN ,+
v = 1 and σΛN ,−

v = −1 .

By monotonicity (c.f. [3, Section 2.2]), ξΛN
v is well-defined for all v ∈ ΛN . Theorem 1.1.1

can be restated as

mN ⩽ c−1e−cN for c = c(ε) > 0, where mN
△
= P(ξΛN

o = 0) . (1.1.1)

For any A ⊆ Z2, we can analogously define ξA by replacing ΛN with A. Let CA = {v ∈ A :

ξAv = 0}, meaning that CA is the collection of disagreements.

In particular, mN is decreasing in N , so we only consider N = 2n for n ⩾ 1. Clearly, for

any v ∈ CA, there exists a path in CA joining v and ∂A, suggesting percolation properties of

CA. Indeed, a key step in our proof is the following proposition on the lower bound on the

2



length exponent for geodesics in CΛN . For any A ⊆ Z2, we denote by dA(·, ·) the intrinsic

distance on A. Let dA(A1, A2) = minx∈A1∩A,y∈A2∩A dA(x, y).

Proposition. There exist α = α(ε) > 1, κ = κ(ε) > 0 such that for all N ⩾ 1

P(dCΛN (∂ΛN/4, ∂ΛN/2) ⩽ Nα) ⩽ κ−1e−N
κ
.

The proof of this proposition relies on [1], which requires the next lemma. For any rectangle

A ⊆ R2, let ℓA be the length of the longer side and let ALarge be the square box concentric

with A, of side length 32ℓA and with sides parallel to axes. For a set C ⊆ Z2, we use

Cross(A, C) to denote the event that there exists a path v0, . . . , vk ∈ A ∩ C connecting the

two shorter sides of A (that is, v0, vk are of ℓ∞-distances less than 1 respectively from the

two shorter sides of A).

Lemma. There exists ℓ0 and δ > 0 such that the following holds for any N ⩾ 1. For any

k ⩾ 1 and any rectangles A1, . . . , Ak ⊆ {v ∈ R2 : |v|∞ ⩽ N/2}, each with the ratio between

the lengths of the longer and shorter sides at least 100, such that

• ℓ0 ⩽ ℓAi ⩽ N/32 for all 1 ⩽ i ⩽ k and

• ALarge
1 , . . . , ALarge

k are disjoint,

we have P(∩ki=1Cross(Ai, CΛN )) ⩽ (1− δ)k .

Although the authors of [1] treated random curves in R2, the main capacity analysis can be

copied in the discrete case, and the connection between the capacity and the box-counting

dimension is straightforward (c.f. [50, Lemma 2.3]). With the lemma above, we can apply

[1, Theorem 1.3] to deduce that for some α = α(ε) > 1,

P(dCΛN (∂ΛN/4, ∂ΛN/2) ⩽ Nα) → 0 as N → ∞ .

Then by a standard percolation argument to be shown later, we can enhance the probability
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decay to the exponential decay, proving (1.1.1).

In the case of positive temperatures, our proof follows the framework as in the zero tem-

perature case. However, major obstacles emerge due to the randomness of Ising measures

under positive temperatures. In order to overcome these obstacles and to avoid further

complications, we need new ideas to delicately treat the couplings of Ising measures. The

following theorem is our result for all nonnegative temperatures.

Theorem. For any ε > 0, T ∈ [0,∞), there exists c = c(ε, T ) > 0 such that

E(⟨σo⟩ΛN ,+ − ⟨σo⟩ΛN ,−) ⩽ c−1e−cN for all N ⩾ 1,

where ⟨·⟩ΛN ,± denotes the expectation with respect to the Ising measures.

In other words, the effect on the center spin from the boundary N away decays exponentially

as N → ∞. The result can be understood in the context of the general Imry-Ma [78]

phenomenon stating that introducing arbitrarily weak disorder rounds off any first order

phase transition in two-dimensional systems. It was previously known [4, 5] that such effect

decays. The decay rate was previously proven to be polynomial [35, 3], and exponential

for large disorder ε [26, 64, 31]. Our result rigorously settled the long-standing debate

[70, 29, 51] on whether the decay rate could be polynomial when ε is small.

In spite of that our proof is seemingly related to the Mandelbrot percolation analogy pre-

sented in [3, Appendix B], our proof method is different from all of [5, 35, 3, 26, 64, 31].

The works [4, 5] treated a wide class of distributions for disorder, while [35, 3] and our work

deal with Gaussian disorder. The main features of Gaussian distributions used in our work

include the simple formula for the change of measure and linear decompositions for Gaussian

process. In addition, the analysis in [5, 3] extends to the case with finite-range interactions.

Though we expect our framework to be useful in the finite-range case, the lack of planar

duality presents non-trivial obstacles in extending the framework.
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During submission of our work, a paper [2] proving the same result was completed. Its

proof was inspired by our zero temperature proof, using [1] as a crucial tool. In terms of

the basic intuition, both proofs harness the fluctuation of the sum of the random field in

a box to compare to the influence of the boundary condition, which could trace back to

[4, 5], and both apply [1] to disagreement percolation in a crucial manner. However, the two

approaches are also very different in at least two important aspects: (1) we employ first mo-

ment analysis by exploiting perturbations of the random field, while [2], similar to [3], relies

on concentration/anti-concentration type of analysis, which uses second-moment computa-

tions; (2) at positive temperatures, we employ a certain monotone coupling between Ising

measures with different boundary conditions, whereas inspired by [107, 115], the authors of

[2] extend the Ising model continuously into the metric graph allowing them to study spin

correlations via disagreement percolation for two independent samples.

For 2D RFIM, one can further determine the correlation length, which is the critical size of

the box where the influence of random field is comparable to that of the boundary condition.

The correlation length has been found in [53] at zero temperature and an upper bound at

positive temperatures. A recent work [55] found the lower bound correlation length at low

temperatures that scales as in [53] for 2D RFIM. Future research interests are in studying

other spin glass models and their correlation length in dimension two and higher.

1.2. Free energy of mean-field disordered systems

Unlike the Ising model where the interaction is between neighboring spins, a mean-field

model averages over interactions with every spin. Many models in spin glasses and statistical

inference fall into this category.

A simple mean-field model is the statistical inference problem of rank-one symmetric matrix

estimation. Let Rn-valued random vector X be an unknown signal and n× n matrix W be

some additional noise. For t > 0 interpreted as the signal-to-noise ratio (SNR), we observe

Y =

√
t

n
XX⊺ +W (1.2.1)
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where 1√
n

is a proper scaling. The inference task is to recover X from the noisy observation

Y .

We assume that W consists of i.i.d. standard Gaussian entries. By Bayes’ law, the distribu-

tion of X conditioned on Y is a Gibbs measure proportional to eHn(t,x;Y )PX(dx) where PX

is the law of X and Hn(t, x;Y ) is called the Hamiltonian. We are interested in the limit, as

n→ ∞, of the average of the free energy

Fn(t) =
1

n
log

ˆ
eH(t,x;Y )PX(dx), (1.2.2)

and we use the notation Fn(t) = EFn(t). The Hamilton–Jacobi equation (HJE) approach

initiated in [95] starts by enriching the model via adding an simple linear observation pa-

rameterized by h ⩾ 0. The associated enriched free energy Fn(t, h) is related to the original

one by Fn(t, 0) = Fn(t).

One main reason of studying this topic is because the limit of the free energy is related,

via a simple additive relation, to an important information-theoretical quantity: the mutual

information I(X;Y ), heuristically measuring the dependence between the unknown signal X

and the observation Y . Computing the limit of 1
nI(X;Y ) as n→ ∞ allows one to determine

the critical value tc of SNR beyond which the inference task is theoretically impossible. The

definition of the critical value, also known as the information theoretic threshold, is given

by

tc = inf

{
t > 0 : lim

n→∞

I(X;Y )

n
is analytic in (t,∞)

}
.

To see the relation between the free energy and the mutual information, we first define

I(X;Y ) = E
[
log

PX,Y (X,Y )

PX(X)PY (Y )

]
,

where PX,Y (X,Y ), PX(X) and PY (Y ) are the joint law of (X,Y ), the law of X and the
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law of Y , respectively. We also assume that PX,Y (X,Y ), PX(X) and PY (Y ) are absolutely

continuous with respect to the Lebesgue measure and can be identified with their densities.

By setting PY |X(y|x) = PX,Y (x, y)/PX(x), we have PY (y) =
´
PY |X(y|x)PX(x)dx and

I(X;Y )

n
=

1

n
E
[
logPY |X(Y |X)

]
− 1

n
E
[
log

ˆ
PY |X(Y |x)PX(x)dx

]
. (1.2.3)

Recall that W consists of i.i.d. standard Gaussian entries, so we can compute that

PY |X(y|x) =
1

(2π)
n2

2

e−
1
2
|
√

t
n
xx⊺−y|2 .

Then, the first term on the right hand side of (1.2.3) is −n
2 (1+ log 2π) and the second term

is

−EFn +
1

2n
E|Y |2 + n

2
log 2π = −EFn +

t

2n2
E|XX⊺|2 + n

2
(1 + log 2π),

where Fn is the free energy as in (1.2.2) with Hamiltonian

Hn(t, x;Y ) = Y ·

(√
t

n
xx⊺

)
− t

2n
|xx⊺|2.

We therefore have the relation

I(X;Y )

n
= −EFn +

t

2n2
E|XX⊺|,

implying that it suffices to identify the limit of EFn as n→ ∞ to understand the asymptotics

of I(X : Y ).

We start with the high-dimensional limit of the free energy of finite-rank matrix tensor

products. Fix K, p ∈ N and let PXn be the law of X ∈ Rn×K where n ∈ N. For any fixed
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L ∈ N, we observe

Y =

√
2t

np−1
X⊗pA+W ∈ Rn

p×L, (1.2.4)

where t ⩾ 0 is the SNR; ⊗ is the Kronecker product; A ∈ RKp×L; and W ∈ Rnp×L is the

noise matrix consisting of i.i.d. standard Gaussian entries.

We briefly discuss the generality of this model and how it relates to other inference matrix

product models. The models of the second order products are widely studied. The spiked

Wishart model is given by Y =
√

2t
NX1X

⊺
2 +W , which is investigated in works including

[90, 14, 12, 79, 86, 36]. When X1 = X2, this becomes the spiked Wigner model, studied

in [82, 52, 95, 94]. A generalization of these spiked matrix models can be seen in the

study of community detection problems and the stochastic block models. The community

detection problem in certain settings is asymptotically equivalent to Y =
√

2t
NXBX

⊺ +W

where B is the community interaction matrix (see [104]). More generally, the community

detection with several correlated networks is asymptotically equivalent to the multiview

spiked matrix model Yl =
√

2t
NXBlX

⊺ +Wl for l = 1, 2, . . . , L where each Bl models one

network (see [87, 88]). All the examples of second order models can be represented in

Y =
√

2t
NX

⊗2
√
S +W where S is positive semidefinite. They can be seen as special cases

of (1.2.4) for p = 2.

By Bayes’ rule, we can compute in a straightforward fashion that the original Hamiltonian

Ho
n and original free energy F on of (1.2.4). By introducing an additional variable h, we enrich

the Hamiltonian and its corresponding free energy to be Hn(t, h) and Fn(t, h), respectively.

The goal is to compare limn→∞ EFn(t, h) with the solution of the HJE

(∂tf − H(∇f)) (t, h) = 0, ∀(t, h) ∈ R+ × SK+ ,
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where

H(q) := (AA⊺) · q⊗p, ∀q ∈ SK+ ,

and SK+ is the set of K ×K positive semi-definite matrices.

In [39], we bound the limit from above by the unique solution to the HJE displayed above.

If in addition we assume H is convex by choosing particular A and p, then we can identify

the limit with the solution.

Theorem. Let p ∈ N. Suppose that Fn(0, ·) pointwise converges to some function ψ and

assume concentration of Fn Then for any H of the form above, there is a unique Lipschitz

viscosity solution f to the HJE with f(0, ·) = ψ, and

lim sup
N→∞

FN (t, h) ⩽ f(t, h), ∀(t, h) ∈ R+ × SK+ .

If H is convex, then a corresponding lower bound holds and thus we have the following identity

lim
n→∞

Fn(t, h) = f(t, h), ∀(t, h) ∈ R+ × SK+ .

Later in [37], we improve the result that for any nonlinearity and any order p, we can identify

the limit with a variational formula. To be more precise, our result is the following.

Theorem. Suppose that Fn(0, ·) pointwise converges to some C1 function ψ and assume

local uniform concentration of Fn. Then for every (t, h) ∈ [0,∞)× SK+ , the limit of the free

energy can be written in terms of a variational formula, namely

lim
n→∞

Fn(t, h) = sup
h′′∈SK+

inf
h′∈SK+

{
h′′ · (h− h′) + ψ(h′) + tH(h′′)

}
.

Note that the assumption that ψ is of class C1 can be omitted for certain nonlinearity H,
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such as convex H. However, this assumption may be required if we consider arbitrary A and

p.

Another line of research using the classical interpolation method and the new adaptive

interpolation method introduced in [12, 13] includes [10, 82, 12, 90, 14, 79, 86, 82, 87, 104,

103, 83, 85, 65]. Our approach appears to be more versatile, as we are able to treat the

most general setting in the inference of matrix tensor products [37], and even models with

multiple layers [40].

More specifically, there are two major advantages of the HJE approach. The first advantage

is that it only requires one side bound, while the interpolation method requires convexity of

the nonlinearity and concentration property. Another advantage is that the HJE approach

works as a black box, meaning that if we feed in the convergence and concentration of

FN (0, ·), it spits out FN converging to the unique solution to the HJE. This feature of black

box enables us to apply the HJE approach to multi-layer generalized linear models.

In order to study HJE on more general spaces, we need a convex analysis result on Fenchel–

Moreau identities [38]. On the Hilbert space H with inner product ⟨·, ·⟩, the classical Fenchel–

Moreau identity is f = f∗∗ for convex f : H → (−∞,∞] satisfying a few additional regularity

conditions. The convex conjugate is given by

f∗(x) = sup
y∈H

{⟨y, x⟩ − f(y)}, ∀x ∈ H,

where it is worth noting that the supremum is taken over the entire space H.

On the other hand, it is well-known (c.f. [105, Theorem 12.4]) that on the cone [0,∞)d

in Rd, if f : [0,∞)d → (−∞,∞] is convex with extra assumptions and nondecreasing with

respect to the partial order induced by the cone, namely

f(x) ⩾ f(y), if x− y ∈ [0,∞)d,
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then we have f = f∗∗. The monotone conjugate is defined by

f∗(x) = sup
y∈[0,∞)d

{⟨y, x⟩ − f(y)}, ∀x ∈ [0,∞)d,

where the inner product is the standard one in Rd. Compared with the convex conjugate,

the supremum in this monotone conjugate is taken over the cone. In [36], a version of the

Fenchel–Moreau identity on Sn+ is needed to verify that the unique solution to a certain

HJE with spatial variables in Sn+ admits a variational formula. On Sn+, [36, Proposition B.1]

proves that f = f∗∗ holds if f : Sn+ → (−∞,∞] is convex with some usual regularity

assumptions and is nondecreasing in the sense that

f(x) ⩾ f(y), if x− y ∈ Sn+.

Accordingly, here ∗ stands for the monotone conjugate with respect to Sn+ given by

f∗(x) = sup
y∈Sn+

{⟨y, x⟩ − f(y)}, ∀x ∈ Sn+.

In this case, the inner product is the Frobenius inner product for matrices and Sn+ can be

viewed as a cone in Sn.

It is thus natural to pursue a generalization to an arbitrary cone C in a Hilbert space H. In

other words, we want to show for proper, lower semicontinuous and convex f : C → (−∞,∞]

which is also nondecreasing in the sense that

f(x) ⩾ f(y), if x− y ∈ C,
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the identity f = f∗∗ holds. Here ∗ stands for

f∗(y) = sup
z∈C

{⟨z, y⟩ − f(z)}, ∀y ∈ C∨, and

f∗∗(x) = sup
y∈C∨

{⟨y, x⟩ − f∗(y)}, ∀x ∈ C,

where C∨ is the dual cone of C.

The generality pursued in our work is motivated by the study of HJE arising in mean-field

disordered systems [95, 94, 92, 96, 93, 36], where the solution is defined on a set, which can

often be identified with a cone, and is expected to be nondecreasing with respect to the

cone.

With this useful tool in hand, we go back to apply the HJE approach to more general

spaces. Now let us briefly describe the multi-layer generalized linear model. For n ∈ N, fix

any L ∈ N as the number of layers. For each l ∈ {0, 1, 2, . . . , L}, let nl = nl(n) ∈ N be the

dimension of the signal at the l-th layer. We assume that n0 = n and limn→∞
nl
n = αl > 0,

for some αl > 0.

Starting with X(0) = X where X ∈ Rn is the original signal with law PX , we iteratively

define, for each l ∈ {1, . . . , L},

X
(l)
j = φl

(
1

√
nl−1

nl−1∑
k=1

Φ
(l)
jkX

(l−1)
k , A

(l)
j

)
, ∀1 ⩽ j ⩽ nl,

where each φl is measurable for some fixed kl ∈ N independent of n; (A(l)
j )1⩽j⩽nl

is a sequence

of independent Rkl-valued random vectors with law PA(l) ; and each Φ(l) is a random matrix

consisting of independent standard Gaussians.

For β ⩾ 0, the observable is given by

Y ◦ =
√
βX(L) + Z,
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where Z is an nL-dimensional standard Gaussian vector. The inference task is to recover X

based on the knowledge of Y ◦, (φl)1⩽l⩽L and (Φ(l))1⩽l⩽L. Once again we can compute its

free energy F oβ,L,n by Bayes’ rule straightforwardly.

To state the main result of this model, we further need to define that for every l ∈

{0, 1, . . . , L} and n ∈ N,

ρl,n =
1

nl(n)
E
∣∣∣X(l)

∣∣∣2 .
It can be shown that the following limit exists limn→∞ ρl,n = ρl for some ρl > 0. Set

Ψ0(r) = E log

ˆ
R
erX1x1+

√
rZ′

1x1−
r
2
|x1|2dPX1(x1), ∀r ∈ R+,

where Z ′
1 is standard Gaussian. Then for every l ∈ {1, . . . , L}, ρ ⩾ 0 and h = (h1, h2) ∈

[0, ρ]× R+, set

Ψl(h; ρ)

= E logˆ
P̃h2,l

(√
h2φl

(√
h1V1 +

√
ρ− h1W1, A

(l)
1

)
+ Z1

∣∣∣√h1V1 +√ρ− h1w
)
dPW1(w),

where V1,W1, Z1 are independent standard Gaussians and

P̃h2,l(y|z) =
ˆ
Rkl

e−
1
2
|y−

√
h2φl(z,a

(l)
1 )|2dP

A
(l)
1

(
a
(l)
1

)
, ∀y, z ∈ R.

We can now state our main result, in which we identify the limit of the free energy with a

variational formula.

Theorem. Under mild assumptions, it holds that

lim
n→∞

EF ◦
β,L,n = sup

z(L)

inf
y(L)

sup
z(L−1)

inf
y(L−1)

· · · sup
z(1)

inf
y(1)

ϕL

(
β; y(1), · · · , y(L); z(1), · · · , z(L)

)
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where supz(l) is taken over z(l) ∈ R+× [0,
αl−1ρl−1

2 ], infy(l) is taken over y(l) ∈ [0, ρl−1]×R+,

and

ϕL

(
β; y(1), · · · , y(L); z(1), · · · , z(L)

)
= αLΨL

(
y
(L)
1 , β; ρL−1

)
+
L−1∑
l=1

αlΨl

(
y
(l)
1 , y

(l+1)
2 ; ρl−1

)
+Ψ0

(
y
(1)
2

)
+

L∑
l=1

(
−y(l) · z(l) + 2

αl−1
z
(l)
1 z

(l)
2

)
+

L∑
l=2

αl−1

2

(
1 + ρl−1y

(l)
2

)
.

Now, we study the limit free energy of mean-field spin glass models. The goals are first

giving it an intrinsic meaning and then establishing the well-posedness. We interpret the

inverse temperature t as the temporal variable and enrich the model by introducing a random

magnetic field with a parameter ϱ as the spacial variable. As before, we want to compare

the enriched free energy with solutions to a certain Cauchy problem of a HJE.

The equations in question are originally defined on the set of monotone probability measures.

A probability measure µ on SK+ , which is now seen as a cone, is said to be monotone, if

P
{
a ·X < a ·X ′ and b ·X > b ·X ′} = 0, ∀a, b ∈ SK+ ,

where X and X ′ are i.i.d. with the law µ. Note that in the case K = 1, every probability

measure on R+ is monotone. For fixed K ∈ N, let P↗ be the set of monotone probability

measures on SK+ .

When ξ is convex, the solution is defined by a version of the Hopf–Lax formula in [92, 98],

which proves it equivalent to the Parisi’s formula proposed in [101] and rigorously verified

in [72, 111] (see also [100, 99, 112, 113]). When the solution is defined as limits of finite-

dimensional approximations as in [96, 93], the solution is shown to be an upper bound for

the limiting free energy of models in a wide class.

The first notion of solutions has a ad hoc nature, whereas the second notion manifests its
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extrinsic nature. This motivates us to seek an intrinsic definition of solutions.

Formally, the equation is of the following form:

(
∂tf −

ˆ
ξ(∂ϱf)dϱ

)
(t, ϱ) = 0, on R+ × P↗,

where ξ is R-valued on RK×K . Our result can be formally stated as

Theorem. Under certain admissible assumptions on ξ and the initial condition ψ in mean-

field spin glass models, there is a unique viscosity solution f of the Cauchy problem of the

HJE displayed above. Moreover,

1. f is the limit of viscosity solutions of finite-dimensional approximations of the HJE;

2. f is given by a Hopf–Lax formula if ξ is convex on SK+ ;

3. f is given by a Hopf formula if ψ is convex.

We start with making sense of ∂ϱf . We restrict P↗ to P↗
2 , the set of monotone measures

with finite second moments, and equipped with the 2-Wasserstein metric. Heuristically,

∂ϱf(t, ϱ) describes the asymptotic behavior of f(t, ϑ)−f(t, ϱ) as ϑ tends to ϱ in the Wasser-

stein metric. Fortunately, P↗
2 can be isometrically embedded onto a closed convex cone in

an L2 space that has empty interior but generates the L2 space. Via this isometry, ∂ϱf can

be understood in the sense of the Fréchet derivative. Therefore, we can interpret the HJE

above as a special case of the following HJE

∂tf − H(∇f) = 0, on R+ × C,

where C is a closed convex cone in a separable Hilbert space H, and H is a general nonlin-

earity.

One obstacle comes from the lack of local compactness in infinite dimensions. Another

important issue is to figure out a suitable boundary condition. To treat these problems, we
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exploit the fact that H is nondecreasing along the dual cone of C in the spin glass setting.

Given this condition, we do not need to prescribe any additional condition (e.g. Neumann

or Dirichlet) on the boundary, and thus only need the HJE to be satisfied.
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CHAPTER 2

Exponential decay of correlations in the two-dimensional

random field Ising model

This chapter is essentially borrowed from [54], joint with Jian Ding.

Abstract. We study the random field Ising model on Z2 where the external field is given

by i.i.d. Gaussian variables with mean zero and positive variance. We show that the effect

of boundary conditions on the magnetization in a finite box decays exponentially in the

distance to the boundary.

2.1. Introduction

For v ∈ Z2, let hv be i.i.d. Gaussian variables with mean zero and variance ε2 > 0.

We consider the random field Ising model (RFIM) with external field {hv : v ∈ Z2} at

temperature T = 1/β ∈ [0,∞). For N ⩾ 1, let ΛN = {v ∈ Z2 : |v|∞ ⩽ N} be a

box in Z2 centered at the origin o and of side length 2N . For any set A ⊆ Z2, define

∂A = {v ∈ Z2 \ A : u ∼ v for some u ∈ A} (where u ∼ v if |u − v|1 = 1). The RFIM

Hamiltonian HΛN ,± on the configuration space {−1, 1}ΛN with plus (respectively, minus)

boundary condition and external field {hv : v ∈ ΛN} is defined to be

HΛN ,±(σ) = −
( ∑
u∼v,u,v∈ΛN

σuσv ±
∑

u∼v,u∈ΛN ,v∈∂ΛN

σu +
∑
u∈ΛN

σuhu
)

for σ ∈ {−1, 1}ΛN .

(2.1.1)

(In the preceding summation, each unordered pair u ∼ v only appears once.) Quenched on

the external field {hv}, the Ising measure with plus boundary condition (respectively minus

boundary condition) is defined such that for all σ ∈ {−1, 1}ΛN (throughout the paper the

temperature is fixed, and thus we suppress the dependence on β in all notations)

µΛN ,±(σ) =
e−βH

ΛN,±(σ)

ZΛN ,±
, where ZΛN ,± =

∑
σ′∈{−1,1}ΛN

e−βH
ΛN,±(σ′). (2.1.2)
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Note that µΛN ,± is a random measure which itself depends on {hv}. To be clear of the two

different sources of randomness, we use P and E to refer to the probability measure with

respect to the external field {hv}; and we use µΛN ,± for the Ising measures and use ⟨·⟩µΛN,±

to denote the expectations with respect to the Ising measures.

Theorem 2.1.1. For any ε > 0, T ∈ [0,∞), there exists c = c(ε, T ) > 0 such that

E(⟨σo⟩µΛN,+ − ⟨σo⟩µΛN,−) ⩽ c−1e−cN for all N ⩾ 1 .

This result lies under the umbrella of the general Imry–Ma [78] phenomenon, which states

that in two-dimensional systems any first order transition is rounded off upon the intro-

duction of arbitrarily weak static, or quenched, disorder in the parameter conjugate to the

corresponding extensive quantity. In the particular case of the RFIM, it was shown in

[4, 5] that the effect of the boundary conditions on magnetization at distance N decays

to 0 as N → ∞ for all non-negative temperatures and arbitrarily weak quenched disorder

(this also implies the uniqueness of the Gibbs state). The decay rate was then improved to

1/
√
log logN in [35] and to 1/Nγ (for some γ > 0) in [3]. In the presence of strong disorder

it has been shown that there is an exponential decay [26, 64, 31] (see also [3, Appendix

A]). The main remaining challenge is to decide whether the decay rate is exponential when

the disorder is weak. In fact, there have been debates even among physicists as to whether

there exists a regime where the decay rate is polynomial, and weak supporting arguments

have been made in both directions [70, 29, 51]—in particular in [51] an argument was made

for polynomial decay at zero temperature for a certain choice of disorder. Theorem 2.1.1

provides a complete answer to this question when the random field consists of i.i.d. Gaussian

variables.

The two-dimensional behavior of the RFIM is drastically different from that for dimensions

three and higher: it was shown in [77] that at zero temperature the effect on the local

quenched magnetization of the boundary conditions at distance N does not vanish in N
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in the presence of weak disorder, and later an analogous result was proved in [30] at low

temperatures. A heuristic explanation behind the different behaviors is as follows: in d

dimensions the fluctuation of the random field in a box of side length N is of order Nd/2,

whereas boundary condition effect is of order Nd−1 (thus, in two dimensions the fluctuation

of the random field in a box is of the same order as the size of the boundary, while in three

dimensions and above the fluctuation of the random field is substantially smaller than the

size of the boundary).

Our proof method is different from all of [5, 35, 3] (and different from [26, 64, 31]), except

that in the heuristic level our proof seems to be related to the Mandelbrot percolation

analogy presented in [3, Appendix B]. The works [4, 5] treated a wide class of distributions

for disorder, while [35, 3] and this paper work with Gaussian disorder. The main features of

Gaussian distributions used in this paper are the simple formula for the change of measure

(see (2.2.12)) and linear decompositions for Gaussian process (see (2.2.21)). In addition, we

remark that the analysis in [5, 3] extends to the case with finite-range interactions. While

we expect our framework to be useful in analyzing the finite-range case, the lack of planar

duality seems to present some non-trivial obstacle (see Remark 2.2.3).

The rest of the paper consists of two sections. In Section 2.2, we prove Theorem 2.1.1 in the

special case of T = 0. In our opinion, this is a significant simplification of the general case

but still captures the core challenge of the problem. We hope that some of the key ideas

(e.g., the crucial application of [1]) can be more transparent by first presenting the proof in

this simplified case. In Section 2.3, we then present the proof for the case of T > 0. While

the proof naturally shares the key insights with the case for T = 0, it seems to us that there

are significant additional obstacles. As a result, the proof is not presented as an extension

of the zero-temperature case. Instead, we present an almost self-contained proof, but omit

details at times when they are merely adaption of arguments in Section 2.2.

Our (shared) notations in Sections 2.2 and 2.3 are consistent with each other, and a few

notations in Section 2.3 are natural extensions of those in Section 2.2. However, for clarity
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of exposition, we will recall or re-explain all notations in Section 2.3.

Concurrent work. During the submission of this paper, a paper [2] which proved the

same result was completed. The proof of [2] was inspired by the proof at zero temperature

in this paper (for the crucial application of [1]). Both proofs share the basic intuition of

“using the fluctuation of the sum of the random field in a box to fight the influence of the

boundary condition” (which went back to [4, 5]) and both apply [1] to disagreement per-

colation in a crucial manner. However, the two approaches seem to be rather different in

at least the following two important aspects: (1) This paper employs first moment analysis

via various perturbations of the random field, and the paper [2] (similar to [3]) relies on

concentration/anti-concentration type of analysis (which in particular uses second-moment

computations); (2) At positive temperatures, this paper employs a certain monotone cou-

pling (adaptive admissible coupling as in Definition 2.3.9) between Ising measures with

different boundary conditions, and the paper [2] considers a continuous extension of the

Ising model into the metric graph which allows to study spin correlations via disagreement

percolation for two independent samples (inspired by [107, 115]).

2.2. Exponential decay at zero temperature

At zero temperature, µΛN ,+ (and respectively µΛN ,−) is supported on the minimizer of

(2.1.1), which is known as the ground state and is unique with probability 1. We denote

by σΛN ,+ the ground state with respect to the plus-boundary condition and by σΛN ,− the

ground state with respect to the minus-boundary condition. Therefore, for T = 0 we have

the simplification that the only randomness is from the P-measure. Thus, Theorem 2.1.1 for

T = 0 can then be simplified as follows.

Theorem 2.2.1. For any ε > 0, there exists c = c(ε) > 0 such that P(σΛN ,+
o ̸= σΛN ,−

o ) ⩽

c−1e−cN for all N ⩾ 1.
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2.2.1. Outline of the proof

We first reformulate Theorem 2.2.1. For v ∈ ΛN , we define

ξΛN
v =


+, if σΛN ,+

v = σΛN ,−
v = 1 ,

−, if σΛN ,+
v = σΛN ,−

v = −1 ,

0, if σΛN ,+
v = 1 and σΛN ,−

v = −1 .

(2.2.1)

By monotonicity (c.f. [3, Section 2.2]), the case of σΛN ,+
v = −1 and σΛN ,−

v = 1 cannot occur,

so ξΛN
v is well-defined for all v ∈ ΛN . Theorem 2.2.1 can be restated as

mN ⩽ c−1e−cN for c = c(ε) > 0, where mN
△
= P(ξΛN

o = 0) . (2.2.2)

For any A ⊆ Z2, we can analogously define ξA by replacing ΛN with A in (2.1.1) and (2.2.1).

Let CA = {v ∈ A : ξAv = 0} (that is, CA is the collection of disagreements). Monotonicity

(see [3, (2.7)]) implies that

CB ∩B′ ⊆ CB′
provided that B′ ⊆ B . (2.2.3)

In particular, this implies that mN is decreasing in N , so we need only consider N = 2n for

n ⩾ 1. Clearly, for any v ∈ CA, there exists a path in CA joining v and ∂A. This suggests

consideration of percolation properties of CA. Indeed, a key step in our proof for (2.2.2) is the

following proposition on the lower bound on the length exponent for geodesics (i.e., shortest

paths) in CΛN . For any A ⊆ Z2, we denote by dA(·, ·) the intrinsic distance on A, i.e., the

graph distance on the induced subgraph on A. Let dA(A1, A2) = minx∈A1∩A,y∈A2∩A dA(x, y)

(with the convention that min ∅ = ∞).

Proposition 2.2.2. There exist α = α(ε) > 1, κ = κ(ε) > 0 such that for all N ⩾ 1

P(dCΛN (∂ΛN/4, ∂ΛN/2) ⩽ Nα) ⩽ κ−1e−N
κ
. (2.2.4)

21



Remark 2.2.3. The “only” place where our proof breaks in extending to the finite range case

is to verify Proposition 2.2.2 (and its analogue at positive temperatures, Proposition 2.3.1).

The exact points where the extension of the proof encounters issues depend somewhat on

exact formulations for sub-lemmas. For instance, at zero temperature one can try to prove a

version of Lemma 2.2.8 sticking to nearest neighbor crossings, then for lack of planar duality

there are issues both in the proof of Lemma 2.2.8 (more specifically in Case 1) and in the

proof of (2.2.6) which applies Lemma 2.2.8. Of course one can also try to prove a stronger

version of Lemma 2.2.8 (which suffices to prove (2.2.6)), but this may be hard.

The proof of Proposition 2.2.2 will rely on [1], which takes the next lemma as input. For any

rectangle A ⊆ R2 (whose sides are not necessarily parallel to the axes), let ℓA be the length

of the longer side and let ALarge be (the lattice points of) the square box concentric with A,

of side length 32ℓA and with sides parallel to axes. In addition, define the aspect ratio of A to

be the ratio between the lengths of the longer and shorter sides. For a (random) set C ⊆ Z2,

we use Cross(A, C) to denote the event that there exists a path v0, . . . , vk ∈ A∩C connecting

the two shorter sides of A (that is, v0, vk are of ℓ∞-distances less than 1 respectively from

the two shorter sides of A).

Lemma 2.2.4. Write a = 100. There exists ℓ0 = ℓ0(ε) and δ = δ(ε) > 0 such that the

following holds for any N ⩾ 1. For any k ⩾ 1 and any rectangles A1, . . . , Ak ⊆ {v ∈ R2 :

|v|∞ ⩽ N/2} with aspect ratios at least a such that (a) ℓ0 ⩽ ℓAi ⩽ N/32 for all 1 ⩽ i ⩽ k

and (b) ALarge
1 , . . . , ALarge

k are disjoint, we have

P(∩ki=1Cross(Ai, CΛN )) ⩽ (1− δ)k .

(Actually, the authors of [1] treated random curves in R2. However, the main capacity anal-

ysis can be copied in the discrete case, and the connection between the capacity and the box-

counting dimension is straightforward (c.f. [50, Lemma 2.3]).) Armed with Lemma 2.2.4,
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we can apply [1, Theorem 1.3] to deduce that for some α = α(ε) > 1,

P(dCΛN (∂ΛN/4, ∂ΛN/2) ⩽ Nα) → 0 as N → ∞ . (2.2.5)

By a standard percolation argument (Lemma 2.2.10) which we will explain later, we can

enhance the probability decay in (2.2.5) and prove (2.2.4).

By (2.2.3), the random set CΛN ∩ A is stochastically dominated by CALarge ∩ A as long as

ALarge ⊆ ΛN . Moreover, it is obvious that CA
Large
i for 1 ⩽ i ⩽ k are mutually independent, as

long as the sets ALarge
i for 1 ⩽ i ⩽ k are disjoint. Therefore, in order to prove Lemma 2.2.4,

it suffices to show that for any rectangle A with aspect ratio at least a = 100 we have

P(Cross(A, CALarge
)) ⩽ 1− δ where δ = δ(ε) > 0 . (2.2.6)

Both the proof of (2.2.6) and the application of (2.2.4) rely on a perturbative analysis, which

is another key feature of our proof. Roughly speaking, the logic is as follows:

• We first consider the perturbation by increasing the field by an amount of order 1/N ,

and use this to show that the probability for a 0-valued contour surrounding an annulus

is strictly bounded away from 1.

• Based on this property, we prove (2.2.6), which then implies (2.2.4).

• Given (2.2.4), we then show that increasing the field by an amount of order 1/Nα (recall

that α > 1 is from Proposition 2.2.2 and thus the perturbation here is 1/Nα ≪ 1/N)

will most likely change the 0’s to +’s. Based on this, we prove polynomial decay for

mN with large power, which can then be enhanced to exponential decay.

For compactness of exposition, the actual implementation will differ slightly from the above

plan:
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• We first prove a general perturbation result (Lemma 2.2.5) in Section 2.2.2, where the

size of perturbation is related to the intrinsic distance on CΛN .

• In Section 2.2.3, we apply Lemma 2.2.5 by bounding dCΛN from below by the ℓ1-

distance and correspondingly setting the perturbation amount to 1/N , thereby proving

Lemma 2.2.8. As a consequence, we verify (2.2.6).

• In Section 2.2.4, we apply Lemma 2.2.5 again by applying a lower bound on dCΛN from

Proposition 2.2.2. This allows us to derive Lemma 2.2.11. As a consequence, we prove

in Lemma 2.2.14 polynomial decay for mN with large power, which is then enhanced

to exponential decay by a standard argument.

2.2.2. A perturbative analysis

We first introduce some notation. For A ⊆ Z2, we set hA =
∑

v∈A hv. For A,B ⊆ Z2, we

denote by E(A,B) = {⟨u, v⟩ : u ∼ v, u ∈ A, v ∈ B}. Note that we treat ⟨u, v⟩ as an ordered

edge. For simplicity, we will only consider N = 2n for n ⩾ 10. Let AN = ΛN \ ΛN/2 be an

annulus. Define {h̃(N)
v : v ∈ ΛN} to be a perturbation of the original field parameterized by

∆ > 0, as follows:

h̃(N)
v = hv +∆ for v ∈ ΛN . (2.2.7)

We will use H̃ΛN ,±(σ), σ̃ΛN ,±, ξ̃ΛN , C̃ΛN to denote the corresponding tilde versions of

HΛN ,±(σ), σΛN ,±, ξΛN , CΛN respectively, i.e., defined analogously but with respect to the

field {h̃(N)
v }. In addition, define CΛN

∗ = C̃ΛN ∩ CΛN (so CΛN
∗ is the intersection of disagree-

ments with respect to the original and the perturbed field; in informal discussions we will

refer to vertices in CΛN
∗ as disagreements too).

Lemma 2.2.5. Consider K,∆ > 0. Define {h̃(N)
v : v ∈ ΛN} as in (2.2.7). The following

two conditions cannot hold simultaneously:

(a) dCΛN
∗

(∂ΛN/4, ∂ΛN/2) ⩾ K;

(b) |CΛN
∗ ∩ ΛN/4| ·∆ > 8

K |CΛN
∗ ∩ AN/2|.
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Proof. Suppose otherwise both (a) and (b) hold. Let Bk = {v ∈ AN/2 : dCΛN
∗

(∂ΛN/4, v) =

k}, for k = 1, . . . ,K. Note that Bk ⊆ CΛN
∗ ∩ AN/2 for all 1 ⩽ k ⩽ K by (a). It is obvious

that the Bk’s are disjoint from each other, and thus there exists a minimal value k∗ such

that

|Bk∗ | ⩽ K−1|CΛN
∗ ∩ AN/2| . (2.2.8)

Let

S = (CΛN
∗ ∩ ΛN/4) ∪ ∪k∗−1

k=1 Bk ,

and for τ ∈ {−, 0,+}, define

g(S, τ) = {⟨u, v⟩ ∈ E(S, Sc) : ξΛN
v = τ} and g̃(S, τ) = {⟨u, v⟩ ∈ E(S, Sc) : ξ̃ΛN

v = τ} .

(2.2.9)

Note that for any v ∈ ΛN with ξΛN
v = 0 we have σΛN ,+

v = 1. Since ξΛN
v = 0 for v ∈ S (which

implies that σΛN ,+
v = 1 for v ∈ S),

hS + |g(S,+)| − |g(S,−)|+ |g(S, 0)| ⩾ 0 , (2.2.10)

because if (2.2.10) does not hold, then HΛN ,+(σ′) < HΛN ,+(σΛN ,+) where σ′ is obtained

from σΛN ,+ by flipping its value on S, thus contradicting the minimality of HΛN ,+(σΛN ,+).

In addition, by monotonicity (with respect to the external field), we have g(S, 0) ⊆ g̃(S, 0)∪

g̃(S,+), g(S,+) ⊆ g̃(S,+), and thus

|g̃(S,+)| − |g(S,+)| ⩾ |g(S, 0) \ g̃(S, 0)| .

Similarly, we have g̃(S,−) ⊆ g(S,−) and g̃(S, 0) ⊆ g(S,−) ∪ g(S, 0), and thus

|g(S,−)| − |g̃(S,−)| ⩾ |g̃(S, 0) \ g(S, 0)| .

By our definition of Bk’s, we see that g̃(S, 0) ∩ g(S, 0) = E(S,Bk∗). Therefore, (2.2.10) and
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the preceding two displays imply that

h̃
(N)
S + |g̃(S,+)| − |g̃(S,−)| − |g̃(S, 0)| ⩾ h̃

(N)
S + |g(S,+)| − |g(S,−)|

+ |g(S, 0)| − 2|E(S,Bk∗)|

⩾ |S|∆− 8|Bk∗ | > 0 ,

where the last inequality follows from (b) and (2.2.8). The preceding inequality implies

H̃ΛN ,−(σ′) < H̃ΛN ,−(σ̃ΛN ,−) where σ′ is obtained from σ̃ΛN ,− by flipping its value on S.

This contradicts the minimality of H̃ΛN ,−(σ̃ΛN ,−), completing the proof of the lemma.

Lemma 2.2.6. For any xv ⩾ 0 for v ∈ ΛN , let ȟ(N)
v = hv + xv for v ∈ ΛN (we will use

ȞΛN ,±(σ), σ̌ΛN ,±, ξ̌ΛN , ČΛN to denote the corresponding ˇ versions of HΛN ,±(σ), σΛN ,±,

ξΛN , CΛN ). Then with probability 1, for any v ∈ CΛN ∩ ČΛN there is a path in CΛN ∩ ČΛN

joining v and ∂ΛN .

Proof. The proof is similar to that of Lemma 2.2.5, and in a way it is the case of K = ∞

there.

Suppose that the claim is not true. Then take v ∈ CΛN ∩ČΛN (for which the claim fails), and

let S be the connected component in CΛN ∩ ČΛN that contains v (thus S is not neighboring

∂ΛN ). Define g(S, τ) as in (2.2.9) and define ǧ(S, τ) = {⟨u, v⟩ ∈ E(S, Sc) : ξ̌ΛN
v = τ} .

Similar to (2.2.10), we have that

hS + |g(S,+)| − |g(S,−)|+ |g(S, 0)| ⩾ 0 .

In our case, g(S, 0) ∪ g(S,+) ⊆ ǧ(S,+) and ǧ(S, 0) ∪ ǧ(S,−) ⊆ g(S,−). Therefore,

ȟ
(N)
S + |ǧ(S,+)| − |ǧ(S,−)| − |ǧ(S, 0)| ⩾ hS + |g(S,+)| − |g(S,−)|+ |g(S, 0)| ⩾ 0 .

The preceding inequality implies that ȞΛN ,−(σ′) ⩽ ȞΛN ,−(σ̌ΛN ,−) where σ′ is obtained
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from σ̌ΛN ,− by flipping its value on S. This happens with probability 0 since the ground

state is unique with probability 1.

2.2.3. Proof of Proposition 2.2.2

In this section, we will set K = K(N) = N/4, and ∆ = ∆(N) = γ/N for an absolute

constant γ > 0 to be selected, and we consider h̃(N) as in (2.2.7). In this case Condition

(a) in Lemma 2.2.5 holds trivially. For convenience, we use PN to denote the probability

measure with respect to the field {hv : v ∈ ΛN} and use P̃N to denote the probability

measure with respect to {h̃(N)
v : v ∈ ΛN}.

Lemma 2.2.7. Recall that ε is the variance parameter for the field {hv}. For any p > 0,

there exists c = c(ε, p, γ) > 0 such that for any event EN with P̃N (EN ) ⩾ p, we have that

PN (EN ) ⩾ c .

Proof. There exists a constant C > 0 such that P̃N (|h̃(N)
ΛN

−∆|ΛN || ⩾ CεN) ⩽ p/2. Thus

we have

P̃N (EN ; |h̃(N)
ΛN

−∆|ΛN || ⩽ CεN) ⩾ p/2 . (2.2.11)

Also, by a straightforward Gaussian computation, we see that

dPN
dP̃N

= exp
{
−

∆(h̃
(N)
ΛN

−∆|ΛN |)
ε2

}
exp

{−∆2|ΛN |
2ε2

}
(2.2.12)

and thus there exists ι = ι(ε) > 0 such that

dPN
dP̃N

⩾ ι provided that |h̃(N)
ΛN

−∆|ΛN || ⩽ CεN .

Combined with (2.2.11), this completes the proof of the lemma.

For any annulus A, we denote by Crosshard(A, C) the event that there is a contour in C

which separates the inner and outer boundaries of A, and by Crosseasy(A, C) the event that
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there is a path in C which connects the inner and outer boundaries of A.

Lemma 2.2.8. There exists δ = δ(ε) > 0 such that

min{P(Crosshard(ΛN/8 \ ΛN/32, CΛN )),P(Crosseasy(ΛN/8 \ ΛN/32,CΛN ))}

⩽ 1− δ for all N ⩾ 32.

Proof. We first provide a brief discussion on the outline of the proof. We refer to the disagree-

ments on ΛN/32 with plus/minus boundary conditions posed on ∂ΛN/8 as the “enhanced”

disagreements (the word enhanced is chosen since the enhanced disagreements stochasti-

cally dominate the disagreements with boundary conditions on ∂ΛN by monotonicity of the

Ising model). Note that the set of disagreements in AN/2 is stochastically dominated by

the union of a constant number of copies of enhanced disagreements, which are independent

of the enhanced disagreements in ΛN/32. Therefore, with positive probability the number

of enhanced disagreements in ΛN/32 is larger than (up to a constant factor) the number of

disagreements in AN/2 (see (2.2.14)). On this event, (modulo a caveat) by Lemma 2.2.5 at

least one of the enhanced disagreements is not a disagreement when considering boundary

conditions on ∂ΛN — this yields the desired statement as incorporated in Case 1 below.

In Case 2, we tighten the argument by addressing the caveat which is the scenario that the

enhanced disagreement is empty (this is relatively simple).

We are now ready to carry out the formal proof. We can write AN/2 = ∪ri=1Ai where each

Ai is a box of side length N/16 (so a copy of ΛN/32) and r ⩾ 16 is a fixed integer (while it is

conventional to choose Ai’s as disjoint boxes, the disjointness is not used in the proof). For

a box A, denoting by ABig as the concentric box of A whose side length is 4ℓA. We have

that (see Figure 2.1)

ABig
i ∩ ΛN/8 = ∅ and ABig

i ⊆ ΛN for all 1 ⩽ i ⩽ r. (2.2.13)

For any A ⊆ ΛN , let CA be defined as CA but replacing {hv : v ∈ A} by {h̃(N)
v : v ∈ A}
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(note that CΛN/2 is different from C̃ΛN/2 , which is defined with respect to h̃(N/2)). Write

CA⋄ = CA ∩ CA. Write Xi = |CA
Big
i⋄ ∩ Ai| and X = |CΛN/8

⋄ ∩ ΛN/32|. Clearly, Xi’s and X are

identically distributed and by (2.2.13) Xi’s are independent of X (but Xi’s are not mutually

independent). Let θ = inf{x : P(X ⩽ x) ⩾ 1− 1/2r}. Thus,

P(X ⩾ max
1⩽i⩽r

Xi, X ⩾ θ) ⩾ P(X ⩾ θ)P(max
1⩽i⩽r

Xi ⩽ θ) ⩾ 1/4r . (2.2.14)

The rest of the proof divides into two cases.

𝜕𝜕Λ𝑁𝑁/2

𝜕𝜕Λ𝑁𝑁/4

𝜕𝜕Λ𝑁𝑁/8
𝜕𝜕Λ𝑁𝑁/32 𝑣𝑣

Figure 2.1: Illustration for the geometric setup of the proof for Lemma 2.7. In the picture
on the left we cover AN/2 by a collection of translated copies of ΛN/32 (the grey boxes) —
we only draw out a few copies for an illustration. Note that the (4-times) enlargements
of translated copies (while overlapping among themselves) are all disjoint with ΛN/8. The

picture on the right illustrates the scenario in Case 1: for some v ∈ CΛN/8
⋄ \ CΛN , we draw

its component with the same ξΛN -value and this component necessarily goes out of ΛN/8.

Case 1: θ > 0. Let E = {|CΛN/8
⋄ ∩ ΛN/32| ⩾ r−1|CΛN

∗ ∩ AN/2|} ∩ {|CΛN/8
⋄ ∩ ΛN/32| > 0}.

By (2.2.3) and (2.2.13), we have |CΛN
∗ ∩AN/2| ⩽

∑r
i=1Xi. Combined with (2.2.14), it gives

that P(E) ⩾ 1/4r. Setting γ = 100r, we get that |CΛN/8
⋄ ∩ ΛN/32| ·∆ > 16K−1|CΛN

∗ ∩ AN/2|

on E . By Lemma 2.2.5, on E there is at least one vertex v ∈ CΛN/8
⋄ ∩ΛN/32 but v ̸∈ CΛN

∗ . So

either v ̸∈ CΛN or v ̸∈ C̃ΛN on E . Assume that v ̸∈ CΛN and the other case can be treated

similarly.

29



We will use the following property: for any connected set A, u ̸∈ CA if and only if there

exists a connected set A ⊆ A with u ∈ A such that ξAw = + for all w ∈ A or ξAw = − for all

w ∈ A. The “if” direction of the property follows from (2.2.3). For the “only if” direction,

we assume without loss that ξAu = + and let A be the connected component containing u

where the ξA-value is +. Note σA,−w = −1 for all w ∈ ∂A and σA,−w = 1 for all w ∈ A. This

implies that ξAw = + for all w ∈ A.

By the preceding property, there exists a connected set A ⊆ ΛN with v ∈ A such that ξAw = +

for all w ∈ A or ξAw = − for all w ∈ A (see Figure 2.1 for an illustration). In addition, A

cannot be contained in ΛN/8 since otherwise it contradicts v ∈ CΛN/8 . By planar duality,

this implies that on E , either Crosshard(ΛN/8 \ΛN/32, CΛN ) or Crosshard(ΛN/8 \ΛN/32, C̃ΛN )

does not occur (the second case corresponds to the case when v ̸∈ C̃ΛN ). Therefore,

P((Crosshard(ΛN/8 \ ΛN/32, CΛN ))c) + P((Crosshard(ΛN/8 \ ΛN/32, C̃ΛN ))c) ⩾ P(E) ⩾ 1/4r .

Combined with Lemma 2.2.7, this completes the proof of the lemma.

Case 2: θ = 0. Applying a simple union bound (by using 16 copies of ΛN/32 to cover ΛN/8,

and a derivation similar to |CΛN
∗ ∩AN/2| ⩽

∑r
i=1Xi) we get that P(CΛN

∗ ∩ΛN/8 = ∅) ⩾ 1/2.

We assume without loss that P(Crosseasy(ΛN/8 \ ΛN/32, CΛN )) ⩾ 3/4 (otherwise there is

nothing further to prove), and thus

P(Crosseasy(ΛN/8 \ ΛN/32, CΛN ) and CΛN
∗ ∩ ΛN/8 = ∅) ⩾ 1/4 .

On the event Crosseasy(ΛN/8\ΛN/32, CΛN ) and CΛN
∗ ∩ΛN/8 = ∅, the easy crossing (joining two

boundaries of ΛN/8 \ΛN/32) in CΛN becomes an easy crossing with ξ̃ΛN -values +. Thus, by

planar duality, it prevents existence of a contour surrounding ΛN/32 in (ΛN/8 \ΛN/32)∩C̃ΛN .

Therefore,

P((Crosshard(ΛN/8 \ ΛN/32, C̃ΛN ))c) ⩾ 1/4 .

Combined with Lemma 2.2.7, this completes the proof of the lemma.
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Proof of (2.2.6). Let N = min{2n : 2n+2 ⩾ ℓA}. By our assumption on A, it is clear that

we can position four copies A1, A2, A3, A4 of A by translation or rotation by 90 degrees so

that (see the left of Figure 2.2)

• A1, A2, A3, A4 ⊆ ΛN/8 \ ΛN/32.

• The union of any crossings through A1, A2, A3, A4 in their longer directions surrounds

ΛN/32.

• ΛN ⊆ ALarge
i for 1 ⩽ i ⩽ 4.

Set p = P(Cross(A, CALarge
)) (note that p depends on the dimension of A and also the

orientation of A). By rotation symmetry and (2.2.3) we see that P(Cross(Ai, CΛN )) ⩾

P(Cross(Ai, CA
Large
i )) = p. In what follows, we denote A = ΛN/8 \ ΛN/32. Then, by

P(Cross(Ai, CΛN )) ⩾ p and a simple union bound, we get that

P(Crosshard(A, CΛN )) ⩾ P(∩4
i=1Cross(Ai, CΛN )) ⩾ 1− 4(1− p) . (2.2.15)

Similarly, we can arrange two copies Aa, Ab of A obtained by translation and rotation by

90 degrees such that ΛN ⊆ ALarge
a , ALarge

b and that the union of any two crossings through

ALarge
a , ALarge

b in the longer direction connects the two boundaries of A (see the right of

Figure 2.2). This implies that

P(Crosseasy(A, CΛN )) ⩾ P(Cross(Aa, CΛN ) ∩ Cross(Ab, CΛN )) ⩾ 1− 2(1− p) . (2.2.16)

Combined with (2.2.15) and Lemma 2.2.8, it yields that p ⩽ 1− δ for some δ = δ(ε) > 0 as

required.

The following standard lemma will be applied several times below. Before presenting the

lemma, we first provide a definition.

Definition 2.2.9. Divide ΛN into disjoint boxes of side lengths N ′ ⩽ N where N ′ = 2n
′ for
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some n′ ⩾ 1, and denote by B(N,N ′) the collection of such boxes. Consider a percolation

process on B(N,N ′), where each box B ∈ B(N,N ′) is regarded open or closed randomly.

For C, p > 0, we say that the percolation process satisfies the (N,N ′, C, p)-condition if for

each B ∈ B(N,N ′), there exists an event EB such that

• On EcB, B is closed.

• P(EB) ⩽ p for each B.

• If minx∈Bi,y∈Bj |x − y|∞ ⩾ CN ′ for all 1 ⩽ i < j ⩽ k, then the events EB1 , . . . , EBk

are mutually independent.

Furthermore, we say two boxes B1, B2 are adjacent if minx1∈B1,x2∈B2 |x1 − x2|∞ ⩽ 1, and

we say a collection of boxes is a lattice animal if these boxes form a connected graph.

Lemma 2.2.10. For any C > 0, there exists p > 0 such that for all N and N ′ ⩽ N and

any percolation process on B(N,N ′, C, p) satisfying the (N,N ′, C, p)-condition, we have

P(there exists a lattice animal of open boxes on B(N,N ′) of size at least k) ⩽ ( NN ′ )
22−k .

Proof. On the one hand, the number of lattice animals of size exactly k is bounded by

( NN ′ )282k (the bound comes from first choosing a starting box, and then encoding the lattice

animal by a surrounding contour on B(N,N ′) of length 2k). On the other hand, for any k

such boxes, we can extract a sub-collection of ck boxes (here c > 0 is a constant that depends

only on C) such that the pairwise distances of boxes in this sub-collection are at least CN ′;

hence the probability that all these k boxes are open is at most pck. The proof of the lemma

is then completed by a simple union bound, employing the (N,N ′, C, p)-condition.

Proof of Proposition 2.2.2. Let N ′ = N1−(α−1
10

∧ 1
10

), where α is as in (2.2.5). For each

B ∈ B(N,N ′), we say B is open if dCBLarge (∂B, ∂Blarge) ⩽ (N ′)α, where Blarge is the box con-

centric with B of doubled side length and BLarge (as we recall) is a concentric box of B with
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Figure 2.2: On both left and right, the three concentric square boxes are ΛN , ΛN/8 and
ΛN/32 respectively. On the left, the four rectangles are A1, A2, A3, A4 and on the right the
two rectangles are Aa, Ab.

side length 32ℓB. By (2.2.5), we see that this percolation process satisfies the (N,N ′, 64, p)-

condition where p→ 0 as N → ∞. Now, in order that dCΛN (∂ΛN/4, ∂ΛN/2) ⩽ (N ′)α, there

must exist an open lattice animal on B(N,N ′) of size at least N
16N ′ . Applying Lemma 2.2.10

completes the proof of Proposition 2.2.2 (since (α(1− (α−1
10 ∧ 1

10)) > 1).

2.2.4. Proof of Theorem 2.2.1

In this subsection, we will show that the probability for {o ∈ CΛN } has a polynomial decay

with large power (Lemma 2.2.14), which then yields Theorem 2.2.1 by a standard application

of Lemma 2.2.10. In order to prove Lemma 2.2.14, we first provide a bound on the probability

for {o ∈ CΛN
∗ } (Lemma 2.2.11), whose proof crucially relies on Proposition 2.2.2.

Let α > 1 be as in Proposition 2.2.2 (note that we can assume without loss that α ⩽ 2).

Let
√
1/α < α′ < 1 (and thus we have α(α′)2 > 1).

Lemma 2.2.11. For N⋄ ⩾ 16, set ∆ = (N⋄)−α(α
′)2 and let h̃(N) be defined as in (2.2.7)

for N ⩽ N⋄. Write m⋄
N = m⋄

N (N
⋄) = P(o ∈ CΛN

∗ ). Then there exists C = C(ε) > 0 such

that m⋄
N⋄ ⩽ C(N⋄)−6.
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Remark 2.2.12. (1) In this lemma, regardless of the size of the box under consideration, the

amount of perturbation ∆ in our field h̃(N) only depends on N⋄. This is crucial for (2.2.18)

below. (2) Since α(α′)2 > 1, we have that ∆ ≪ 1/N⋄ (this is crucial for getting a large power

in the polynomial bound as in Lemma 2.2.14). (3) Since our perturbation ∆ = (N⋄)−α(α
′)2

applies to all N ⩽ N⋄, when N is very small in comparison of N⋄ the perturbation is possibly

too mild and thus we may not have a good control on CΛN
∗ . However, this is not a problem

because in the proof below we will only consider N ⩾ (N⋄)α
′ (for which the perturbation is

still significant).

Proof. Write K = (N⋄)αα
′ . We claim it suffices to show that there exists N0 = N0(ε) such

that for N⋄ ⩾ N0

m⋄
2N ⩽ K− 1−α′

2 m⋄
N/2 for (N⋄)α

′
⩽ N ⩽ N⋄ . (2.2.17)

Indeed, sinceK = (N⋄)αα
′ , we can deduce from (2.2.17) by recursion thatm⋄

N⋄ ⩽ e−c(logN
⋄)2

for some constant c > 0, which yields the claimed bound in the lemma (with room to spare).

We now turn to the proof of (2.2.17). Suppose that (2.2.17) fails for some (N⋄)α
′
⩽ N ⩽ N⋄.

Since ΛN ⊆ v+Λ2N for all v ∈ ΛN/4 and v+ΛN/2 ⊆ ΛN for all v ∈ AN/2, by (2.2.3) we see

E|CΛN
∗ ∩ ΛN/4| ⩾

N2

32
m⋄

2N and E|CΛN
∗ ∩ AN/2| ⩽ N2m⋄

N/2 . (2.2.18)

Together with the assumption that (2.2.17) fails, this yields that

E|CΛN
∗ ∩ ΛN/4| > 32−1K− 1−α′

2 E|CΛN
∗ ∩ AN/2| .

Since |CΛN
∗ ∩ ΛN/4| and |CΛN

∗ ∩AN/2| are integer-valued and are at most N2, the preceding

inequality implies that (recall that α′ > 1/
√
α ⩾ 1/

√
2)

P(|CΛN
∗ ∩ ΛN/4| > 64−1K− 1−α′

2 |CΛN
∗ ∩ AN/2|) ⩾

1

32N3
.
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Now, set N0 = N0(ε) sufficiently large so that

1

106N3
> κ−1e−N

κ
and 64−1K− 1−α′

2 >
8

K∆
for all N ⩾ (N0)

α′
. (2.2.19)

Therefore, by Proposition 2.2.2, there is a positive probability such that

|CΛN
∗ ∩ ΛN/4| > 64−1K− 1−α′

2 |CΛN
∗ ∩ AN/2| and dCΛN

∗
(∂ΛN/4, ∂ΛN/2) ⩾ K .

In particular, there exists at least one instance for the two events in the preceding display

to occur simultaneously. This contradicts Lemma 2.2.5, thus completing the proof of the

lemma.

In the proof of Lemma 2.2.14 below, it is important for us to have independence between

different scales. To this end, it is useful to consider a perturbation which only occurs in an

annulus. In order to make a difference in notation from the previous perturbation (which

occurs in a whole box), for ∆(N) > 0 we define (we emphasize the dependence of ∆ on N

in the notation here since later in Lemma 2.2.14 we will consider perturbations for different

N ’s simultaneously)

ĥ(N)
v =


hv +∆(N) for v ∈ ΛN \ ΛN/4 ,

hv for v ∈ ΛN/4 .

(2.2.20)

We then define ĈΛN similar to CΛN but with respect to the field {ĥNv : v ∈ ΛN}. Further,

let CΛN
⋆ = CΛN ∩ ĈΛN (so CΛN

⋆ is a version of CΛN
∗ , but it replaces C̃ΛN with ĈΛN in its

definition).

Lemma 2.2.13. Let ∆(N) = (N/4)−α(α
′)2 and define {ĥ(N)

v : v ∈ ΛN} as in (2.2.20). Then

there exists C = C(ε) > 0 such that P(o ∈ CΛN
⋆ ) ⩽ CN−5.

Proof. For v ∈ ∂ΛN/2, let Bv be a translated copy of ΛN/4 centered at v. Thus, for all
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u ∈ Bv we have ĥ(N)
u = hu + (N/4)−α(α

′)2 . Recall m⋄
N/4(N/4) as in Lemma 2.2.11. By

(2.2.3) and Lemma 2.2.11,

P(v ∈ CΛN
⋆ ) ⩽ m⋄

N/4(N/4) ⩽ CN−6 .

Hence, P(∂ΛN/2∩CΛN
⋆ ̸= ∅) ⩽ CN−5 by a simple union bound. Combined with Lemma 2.2.6

(and the simple observation that o cannot be connected to ∂ΛN by a path in CΛN
⋆ if ∂ΛN/2∩

CΛN
⋆ = ∅), this completes the proof of the lemma.

Lemma 2.2.14. There exists C = C(ε) > 0 such that mN ⩽ CN−3.

Proof. A rough intuition behind the proof is as follows: the random field in each dyadic

annulus has probability close to 1 to stop the event {o ∈ CΛN } from occurring and thus

altogether we get a polynomial upper bound with large power. In order to formalize the

proof, we will apply Lemma 2.2.13 and employ a careful analysis to justify the “independence”

among different scales.

Without loss of generality, let us only consider N = 4n for some n ⩾ 1. For each such N ,

define {ĥ(N)
v : v ∈ ΛN} as in (2.2.20) with ∆(N) = (N/4)−α(α

′)2 . Let Eℓ = {o ̸∈ CΛ
4ℓ

⋆ } and

E = ∩0.9n⩽ℓ⩽nEℓ. (Note that there is no containment relation among the events Eℓ’s, since

each event depends on a different perturbation.) By Lemma 2.2.13, we see that P(Ec) ⩽

CN−3 for some C = C(ε) > 0 (whose value may be adjusted later in the proof). Write

Aℓ = Λ4ℓ \ Λ4ℓ−1 . For 0.9n ⩽ ℓ ⩽ n, let Fℓ = σ(hv : v ∈ Λ4ℓ) and write

hv = (|Aℓ|)−1hAℓ
+ gv for v ∈ Aℓ , (2.2.21)

where {gv : v ∈ Aℓ} is a mean-zero Gaussian process independent of hAℓ
and {gv : v ∈ Aℓ}

for 0.9n ⩽ ℓ ⩽ n are mutually independent (note that gv’s are linear combinations of a

Gaussian process and their means and covariances can be easily computed). Let F ′
ℓ be

the σ-field which contains every event in Fℓ that is independent of hAℓ
(so in particular
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Fℓ ⊆ F ′
ℓ+1 ⊆ Fℓ+1). By monotonicity, there exists an interval Iℓ measurable with respect

to F ′
ℓ such that conditioned on F ′

ℓ we have o ∈ CΛ
4ℓ if and only if hAℓ

∈ Iℓ. Let I ′ℓ be the

maximal sub-interval of Iℓ which shares the upper endpoint and with length |I ′ℓ| ⩽
|Aℓ|·4α(α′)2

4α(α′)2ℓ .

By our definition of Eℓ, we see from (2.2.21) that conditioned on F ′
ℓ we have {o ∈ CΛ

4ℓ}∩Eℓ

only if hAℓ
∈ I ′ℓ. Thus, for 0.9n ⩽ ℓ ⩽ n,

P({o ∈ CΛ
4ℓ} ∩ Eℓ | F ′

ℓ) ⩽ P(hAℓ
∈ I ′ℓ) .

Combined with the fact that Var(hAℓ
) = ε2|Aℓ|, this gives that

P({o ∈ CΛ
4ℓ} ∩ Eℓ | F ′

ℓ) ⩽
C

4ℓ(α(α′)2−1)
.

Since {o ∈ CΛ4n}∩E = ∩nℓ=0.9n({o ∈ CΛ
4ℓ}∩Eℓ) and since {o ∈ CΛ

4ℓ}∩Eℓ is Fℓ-measurable

(and thus is F ′
ℓ+1-measurable), we deduce that P({o ∈ CΛN }∩E) ⩽ CN−3. Combined with

the fact that P(Ec) ⩽ CN−3, it completes the proof of the lemma.

Proof of Theorem 2.2.1. Let N0 = N0(ε) be chosen later. For B ∈ B(N,N0), we say B is

open if CBlarge ∩B ̸= ∅. Clearly, this percolation process satisfies the (N,N0, 4, p)-condition

where

p = P(CBlarge ∩B ̸= ∅) ⩽ N2
0mN0/2 ⩽ CN−1

0 for C = C(ε) > 0 . (2.2.22)

(The last transition above follows from Lemma 2.2.14.) In addition, we note that in order

for o ∈ CΛN , it is necessary that there exists an open lattice animal on B ∈ B(N,N0) with

size at least N
10N0

. Now, choosing N0 sufficiently large (so that p is sufficiently small, by

(2.2.22)) and applying Lemma 2.2.10 completes the proof.

2.3. Exponential decay at positive temperatures

In this section, we prove Theorem 2.1.1 for the case of T > 0. Our proof method follows the

basic framework presented in Section 2.2 for the case of T = 0, which applies the result in
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[1] in a crucial way. However, there seem to be significant additional obstacles due to the

randomness of Ising measures at positive temperatures. For T = 0, it suffices to consider

the ground state which is unique with probability 1, and thus ground states with different

boundary conditions and external fields are naturally coupled together. In the case of T > 0,

on the one hand we try to carry out our analysis with validity for all reasonable (e.g., for all

monotone couplings) couplings of Ising measures whenever possible (see Section 2.3.1); on

the other hand it seems necessary to construct a coupling with some desirable properties in

order to apply [1] (see Section 2.3.2). Both of these require some new ideas as well as some

delicate treatment.

Organization for the rest of this section is as follows. In Section 2.3.1, we verify the hy-

pothesis in [1] via a perturbation argument and thereby prove that under any monotone

coupling for Ising spins with plus/minus boundary conditions, the intrinsic distance for the

induced graph on vertices with disagreements has dimension strictly larger than 1. The proof

method is inspired by that of Proposition 2.2.2, but the implementation is largely different

with new tricks involved. In Section 2.3.2, we introduce the notion of adaptive admissible

coupling and a multi-scale construction of an adaptive admissible coupling is then given in

Section 2.3.3. In Section 2.3.3, we then introduce another perturbation argument, using

which we analyze our adaptive admissible coupling in Section 2.3.3 and prove a crucial es-

timate in Lemma 2.3.17. In Section 2.3.4, we provide the proof of Theorem 2.1.1 for T > 0,

which requires to employ an admissible coupling such that the disagreement percolates to

the boundary.

2.3.1. Intrinsic distance on disagreements via a perturbation argument

For any A ⊆ Z2, we continue to denote by dA(·, ·) the intrinsic distance on A, i.e., the

graph distance on the induced subgraph on A. Let σΛN ,± be spins sampled according to

µΛN ,±. We will continue to use repeatedly the standard monotonicity properties of the

Ising model with respect to external fields and boundary conditions (c.f. [3, Section 2.2]

for detailed discussions). Let π be a monotone coupling of µΛN ,± (that is, under π we have
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σΛN ,+ ⩾ σΛN ,−) and let

CΛN = CΛN ,π = {v ∈ ΛN : σΛN ,+
v > σΛN ,−

v } . (2.3.1)

(Note that π depends on the random field h.) In addition, denote by P⊗π the joint measure

of the external fields and the spin configurations (similar notations also apply below). The

following proposition is the major goal of this section.

Proposition 2.3.1. There exist α = α(ε, β) > 1, κ = κ(ε, β) > 0 such that the following

holds. For all 0 < c ⩽ 1, there exists N0 = N0(ε, β, c) such that for all N ⩾ N0 and

1 ⩽ N1 ⩽ N2 ⩽ N/2 with N2 −N1 ⩾ N c the following holds for all monotone coupling π of

µΛN ,±:

P⊗ π(dCΛN (∂ΛN1 , ∂ΛN2) ⩽ (N2 −N1)
α) ⩽ κ−1e−N

κc
. (2.3.2)

Remark 2.3.2. (1) The preceding proposition is analogous to Proposition 2.2.2. In the

present case, it is crucial that the result holds for all monotone couplings (note that the

intrinsic distance may depend on the coupling), so that we can apply it to couplings which

we construct later.

(2) In Proposition 2.3.1, we introduce parameters N1, N2 (as opposed to N1 = N/4 and

N2 = N/2 in Proposition 2.2.2) for convenience of later applications. The condition that

N2 −N1 ⩾ N c is just to ensure that the decay in probability absorbs the number of choices

for starting and ending points of the shortest path. This slight extension does not introduce

complication to the proof.

The proof of Proposition 2.3.1 again crucially relies on the result of [1]. In order to apply

[1], the following lemma (analogous to Lemma 2.2.8) is a key ingredient. For any annulus

A and C ⊆ Z2, we continue to denote by Crosshard(A, C) the event that there is a contour
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in C which separates the inner and outer boundaries of A. Let

E± = E±
N = Crosshard(ΛN/8 \ ΛN/32, {v ∈ ΛN : σΛN ,±

v = ±1}) . (2.3.3)

Lemma 2.3.3. There exists δ = δ(ε, β) > 0 such that for all N ⩾ 32

min{P⊗ µΛN ,+(E+),P(
∑

v∈ΛN/8
(⟨σΛN ,+

v ⟩µΛN,+ − ⟨σΛN ,−
v ⟩µΛN,−) > 10−3N)} ⩽ 1− δ .

In particular, P ⊗ π(Crosshard(ΛN/8 \ ΛN/32, CΛN )) ⩽ 1 − δ for all monotone coupling π of

µΛN ,±.

Remark 2.3.4. By Lemma 2.3.3, either of the following holds: (i) with positive probability

the plus-spins with respect to the plus boundary condition does not separate the boundaries

of an annulus (this is a stronger than what was proved in Case 1 in the proof of Lemma 2.2.8);

(ii) with positive probability the expected number of disagreements (averaged over the Ising

measures) is small (this corresponds to Case 2 in the proof of Lemma 2.2.8). Assuming either

property, we are able to derive a uniform bound on crossing probabilities for disagreements

under any monotone coupling.

After establishing exponential decay, then it is clear that Property (ii) holds. In addition, we

know that with overwhelming probability away from the boundary the spin configurations

with plus and minus boundary conditions agree with each other. Therefore, by symmetry

and planar duality we see that Property (i) also holds.

A perturbative analysis

Before proving Lemma 2.3.3, we need some preparational work on a certain perturbative

analysis. This is analogous to Lemma 2.2.5, which has been applied twice in the case of

T = 0: in the proof of Lemma 2.2.8 and the proof of Lemma 2.2.11. For T > 0, it is

more complicated and thus we provide two separate versions of perturbative analysis, both

of which are proved via keeping track of the free energy. The first version is presented in
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Lemma 2.3.5 in the present section (for the application in Lemma 2.3.3), and the second

version is presented in Section 2.3.3 (for the application in Lemma 2.3.17).

For any set Λ ⊆ Z2 and a configuration τ ∈ {−1, 1}∂Λ, analogous to (2.1.1) we can define

the Hamiltonian on Λ with boundary condition τ and external field {hv} by:

HΛ,τ (σ) = −
( ∑
u∼v,u,v∈Λ

σuσv +
∑

u∼v,u∈Λ,v∈∂Λ
σuτv +

∑
u∈Λ

σuhu
)

for σ ∈ {−1, 1}Λ . (2.3.4)

We can then analogously define the Ising measure µΛ,τ by assigning probability to σ ∈

{−1, 1}Λ proportional to e−βHΛ,τ (σ). In addition, we define the corresponding log-partition-

function (it is the negative of the free energy; in our analysis, it seems cleaner to work with

the log-partition-function so not to be confused by the negative sign)

FΛ,τ =
1

β
log
( ∑
σ∈{−1,1}Λ

e−βH
Λ,τ (σ)

)
. (2.3.5)

For simplicity, we will only consider N = 2n for n ⩾ 10. For ∆ > 0, ∆′ ⩾ 0 and 0 ⩽ t ⩽ 1,

we will consider the following perturbed field in this section (which is increasing in t):

h(t)v = h(t,N)
v =


hv +∆′, for v ∈ ΛN \ ΛN/8 ,

hv + t∆, for v ∈ ΛN/8 .

(2.3.6)

(We draw the reader’s attention to that t appeared in the definition of h(t)v only for v ∈ ΛN/8,

and that h(0) ̸= h if ∆′ > 0. The perturbation in (2.3.6) is more subtle than that in (2.2.7),

for the reason that we wish to take advantage of (2.3.17) below later with a judicious choice

of ∆′.) Let µΛN ,±,t be Ising measures with plus/minus boundary conditions and external

field {h(t)v : v ∈ ΛN}. In addition, let HΛN ,±,t be the corresponding Hamiltonians, let

FΛN ,±,t be the corresponding log-partition-functions, and let σΛN ,±,t be spin configurations

sampled according to µΛN ,±,t.
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For notation convenience, for any set Γ ⊆ Z2, let SΓ be the collection of vertices which

are not in Γ and are separated by Γ from ∞ on Z2 (i.e., the collection of vertices that are

enclosed by Γ).

Let S ⊆ ΛN be a subset which contains ΛN/8 and let Γ = ∂S (thus we have S ⊆ SΓ). For

any τ ∈ {−1, 1}Γ, we denote by µS,τ,t the Ising measure on S with boundary condition τ and

external field {h(t)v : v ∈ S}. In addition, let HS,τ,t be the Hamiltonian for the corresponding

Ising spin, and let FS,τ,t be the corresponding log-partition-function. Also, we let σS,τ,t be

the spin configuration sampled according to µS,τ,t. For later applications, it would be useful

to consider the log-partition-function restricted to a subset of configurations. To this end,

we define

FS,τ,tΩ =
1

β
log
(∑
σ∈Ω

e−βH
S,τ,t(σ)

)
for Ω ⊆ {−1, 1}S . (2.3.7)

In addition, for any measure µS,τ,t, we define µS,τ,tΩ to be a measure such that

µS,τ,tΩ (σ) = (µS,τ,t(Ω))−1µS,τ,t(σ) for σ ∈ Ω .

(We draw readers’ attention to that µS,τ,t(Ω) is the total measure of Ω under µS,τ,t and thus

is a number, and that µS,τ,tΩ is the measure µS,τ,t conditioned on the occurrence of Ω.) For

convenience, we let σS,τ,tΩ be the spin configuration sampled according to µS,τ,tΩ . Further,

define (note that below we sum over v ∈ ΛN/32 as opposed to v ∈ S)

mS,τ,t
Ω =

∑
v∈ΛN/32

⟨σS,τ,tΩ,v ⟩
µS,τ,tΩ

. (2.3.8)

For notation convenience, we write mS,τ,t = mS,τ,t
Ω if Ω = {−1, 1}S . We say Ω ⊆ {−1, 1}S is

an increasing set if σ ∈ Ω implies that σ′ ∈ Ω provided σ′ ⩾ σ, and we say Ω is a decreasing

set if Ωc is an increasing set. In what follows, we consider τ+, τ− ∈ {−1, 1}Γ such that

τ+ ⩾ τ−.

Lemma 2.3.5. Quench on the external field {hv}. We have that for any increasing set
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Ω+ ⊆ {−1, 1}S and any decreasing set Ω− ⊆ {−1, 1}S

∆

ˆ 1

0
(mS,τ+,t

Ω+ −mS,τ−,t
Ω− )dt ⩽ 8

∑
v∈Γ

(τ+v − τ−v )− 1

β

(
logµS,τ

+,0(Ω+) + log µS,τ
−,1(Ω−)

)
.

Proof. The proof is done via keeping track of the change on the difference of log-partition-

functions with respect to different boundary conditions when we perturb the external field.

In Step 1, we bound such difference from above by the number of disagreements on boundary

conditions; in Step 2 we bound such difference from below by the expected number of

disagreements, with a caveat that we use the notion of “restricted” log-partition-functions

as in (2.3.7); in Step 3, we address the caveat by linking the two notions of log-partition-

functions.

Step 1. We will prove (below the equality is obvious since τ+ ⩾ τ−)

(FS,τ
+,1−FS,τ−,1)−(FS,τ

+,0−FS,τ−,0) ⩽ 16·#{v ∈ Γ : τ+v ̸= τ−v } = 8
∑
v∈Γ

(τ+v −τ−v ) . (2.3.9)

(Here we use #A to denote the cardinality of A for a finite set A. We switch from the

more compact notation |A| to #A in this section, as we wish to avoid somewhat awkward

notation when | is followed by another | which means “conditioned on”.) Since each vertex

has 4 neighbors in Z2, a straightforward computation gives that

FS,τ
+,1 − FS,τ

−,1 =
1

β
log

∑
σ e

−βHS,τ+,1(σ)∑
σ e

−βHS,τ−,1(σ)
⩽

1

β
log e8β·#{v∈Γ:τ+v ̸=τ−v }

⩽ 8 ·#{v ∈ Γ : τ+v ̸= τ−v } .

Similarly, we have that FS,τ+,0 − FS,τ
−,0 ⩾ −8 ·#{v ∈ Γ : τ+v ̸= τ−v }. This proves (2.3.9).

Step 2. We will prove

(FS,τ
+,1

Ω+ − FS,τ
−,1

Ω− )− (FS,τ
+,0

Ω+ − FS,τ
−,0

Ω− ) ⩾ ∆

ˆ 1

0
(mS,τ+,t

Ω+ −mS,τ−,t
Ω− )dt . (2.3.10)
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We write

(FS,τ
+,1

Ω+ −FS,τ
−,1

Ω− )−(FS,τ
+,0

Ω+ −FS,τ
−,0

Ω− ) = (FS,τ
+,1

Ω+ −FS,τ
+,0

Ω+ )−(FS,τ
−,1

Ω− −FS,τ
−,0

Ω− ) . (2.3.11)

Thus, we get that

FS,τ
+,1

Ω+ − FS,τ
+,0

Ω+ =

ˆ 1

0

dFS,τ
+,t

Ω+

dt
dt, FS,τ

−,1
Ω− − FS,τ

−,0
Ω− =

ˆ 1

0

dFS,τ
−,t

Ω−

dt
dt . (2.3.12)

Since
dFS,τ+,t

Ω+

dt =
∑

v∈ΛN/8
∆⟨σS,τ

+,t
Ω+,v

⟩
µS,τ

+,t

Ω+

and
dFS,τ−,t

Ω−
dt =

∑
v∈ΛN/8

∆⟨σS,τ
−,t

Ω−,v ⟩
µS,τ

−,t

Ω−
, we see

dFS,τ
+,t

Ω+

dt
−
dFS,τ

−,t
Ω−

dt
⩾

∑
v∈ΛN/32

∆(⟨σS,τ
+,t

Ω+,v
⟩
µS,τ

+,t

Ω+

− ⟨σS,τ
−,t

Ω−,v ⟩
µS,τ

−,t

Ω−
) = ∆mS,τ+,t

Ω+ −∆mS,τ−,t
Ω− ,

where the inequality follows from the fact that

⟨σS,τ
+,t

Ω+,v
⟩
µS,τ

+,t

Ω+

⩾ ⟨σS,τ+,tv ⟩
µS,τ+,t ⩾ ⟨σS,τ−,tv ⟩

µS,τ−,t ⩾ ⟨σS,τ
−,t

Ω−,v ⟩
µS,τ

−,t

Ω−
for all v ∈ S .

In the preceding display, the first and the third inequalities follow from FKG inequality [63]

and the second inequality follows from monotonicity. Combined with (2.3.12) and (2.3.11),

it yields (2.3.10).

Step 3. From definitions as in (2.3.5) and (2.3.7), we see that

FS,τ
+,1 − FS,τ

+,1
Ω+ = − 1

β
logµS,τ

+,1(Ω+) , (2.3.13)

and similar equalities hold for other combinations of boundary conditions, external fields

and Ω±.

Combining (2.3.9), (2.3.10) and (2.3.13), we complete the proof of the lemma.

44



A lower bound on the intrinsic distance

Denote by Vσ,± = {v ∈ S : σv = ±1} for S ⊆ ΛN and σ ∈ {−1, 1}S . For any S ⊃ ΛN/8,

define

Ω± = Ω±(S) = {σ ∈ {−1, 1}S : Crosshard(ΛN/8 \ ΛN/32,Vσ,±) occurs } . (2.3.14)

We see that Ω+ is an increasing set and Ω− is a decreasing set. For A ⊆ Λ ⊆ Z2 and

σ ∈ {−1, 1}Λ, we denote by σA the restriction of σ on A. Let r > 0 be a constant chosen

later. Recall (2.3.6). Let ∆ = 1010r8

N(β∧1) and ∆′ = t∗∆ for 0 ⩽ t∗ ⩽ 1 to be chosen.

Lemma 2.3.6. For any p, r > 0, there exists c = c(ε, p, r, β) > 0 such that for any event

EN with P({h(t)v : v ∈ ΛN} ∈ EN ) ⩾ p for some 0 ⩽ t, t∗ ⩽ 1, we have that P({hv : v ∈

ΛN} ∈ EN ) ⩾ c.

Proof. The proof is an adaption of Lemma 2.2.7 except for minimal notation change, and

thus we omit further details.

Proof of Lemma 2.3.3. The proof shares similarity with that of Lemma 2.2.8, but the present

proof is substantially more involved. We first provide a heuristic outline of the proof, and

we will not be precise on notations or unimportant constants in this informal description.

The statement will follow immediately if the probability for existence of a plus contour with

respect to plus boundary condition is strictly less than 1, and thus we suppose otherwise

(formally, we suppose (2.3.15) below). We wish to compare the number of disagreements

in ΛN/32 with that in AN/2. To this end, it will be useful to consider the “enhanced”

disagreements in ΛN/32 (that is, when we pose plus and minus boundary conditions on

∂ΛN/8 instead of ∂ΛN ; the word “enhanced” is chosen because by monotonicity the enhanced

disagreements stochastically dominate the original disagreements). We now compare the

enhanced disagreements in ΛN/32 and disagreements in AN/2 in both directions.

• The “⩽” direction (Step 1 below): This is where plus (minus) contours come into
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play. Conditioned on existence of plus and minus contours, the disagreements in ΛN/32

stochastically dominate the enhanced disagreements. In addition, by Lemma 2.3.5, the

number of disagreements in ΛN/32 is upper bounded by that in AN/2 (up to an additive

term that is related to the probability of existence of plus/minus contours, which we

will address later). Altogether, we get that the number of enhanced disagreements in

ΛN/32 is upper bounded by the number of disagreements in AN/2 (see (2.3.25)).

• The “⩾” direction (Step 2 below): The set of disagreements in AN/2 is dominated

by a union of constant copies of enhanced disagreements in ΛN/32, where the number

of disagreements in all these copies are independent of the enhanced disagreements in

ΛN/32 (but not of each other). This implies that with positive probability, the number

of enhanced disagreements in ΛN/32 is larger (up to a constant factor) than the number

of disagreements in AN/2 (see (2.3.29)).

Now, if we choose the constants appropriately, we will see that the preceding two scenarios

will occur simultaneously with positive probability, which yield bounds in two directions that

“almost” contradict each other. These events can only happen concurrently if the logarithmic

term we ignored earlier (which becomes N
2β in (2.3.25)) plays a significant role. But this can

happen only when the typical number of enhanced disagreements is at most of order N , in

which case an application of Markov’s inequality (see (2.3.21)) yields the desired lemma.

We next carry out the proof formally, where we slightly shuffle the order of arguments: we

first show that if the typical number of enhanced disagreements is at most of order N (see

(2.3.18)), then the lemma holds. Next, we prove (2.3.18) (which is the main challenge) by

contradiction, via the aforementioned two directional comparisons.

For convenience of notation, write

E±,t = Crosshard(ΛN/8 \ ΛN/32,Vσ
ΛN,±,t,±) .
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We suppose that

min
0⩽t⩽1

{P⊗ µΛN ,+,t(E+,t),P⊗ µΛN ,−,t(E−,t)} ⩾ 1− r−410−10 . (2.3.15)

Otherwise Lemma 2.3.3 follows from Lemma 2.3.6 (since under any monotone coupling we

have Crosshard(ΛN/8 \ ΛN/32, CΛN ) ⊆ E+
N ∩ E−

N , where E±
N is defined in (2.3.3)). We remark

that by monotonicity the preceding inequality is equivalent to min{P ⊗ µΛN ,+,0(E+,0),P ⊗

µΛN ,−,1(E−,1)} ⩾ 1− r−410−10.

Let E⋆ = {µΛN ,+,0(E+,0) ⩾ 99/100} ∩ {µΛN ,−,1(E−,1) ⩾ 99/100} be an event measurable

with respect to the Gaussian field. By (2.3.15), we see that

P(E⋆) ⩾ 1− 10−2r−4 . (2.3.16)

Let t∗ ∈ [0, 1] be such that

inf{θ : P(mΛN/8,+,t
∗ −mΛN/8,−,t∗ ⩾ θ) ⩽ 1/2r} = θ∗ , (2.3.17)

where θ∗ = min0⩽t⩽1 inf{θ : P(mΛN/8,+,t −mΛN/8,−,t ⩾ θ) ⩽ 1/2r} . We claim that

θ∗ ⩽ 10−3r−1N . (2.3.18)

We first show that (2.3.18) implies the lemma. For any box A, let ABig be the concentric

box of A with side length 4 times that of A. Let r be a large enough constant so that we can

write ΛN/8 = ∪ri=1Ai, where Ai is a copy of ΛN/32 and Ai’s are disjoint such that ABig
i ⊆ ΛN

for 1 ⩽ i ⩽ r. By monotonicity, we see that for each 1 ⩽ i ⩽ r

P(
∑
v∈Ai

(⟨σΛN ,+,t
∗

v ⟩µΛN,+,t∗ − ⟨σΛN ,−,t∗
v ⟩µΛN,−,t∗ ) > θ∗)

⩽ P(
∑
v∈Ai

(⟨σA
Big
i ,+,t∗

v ⟩
µA

Big
i

,+,t∗ − ⟨σA
Big
i ,−,t∗

v ⟩
µA

Big
i

,−,t∗ ) > θ∗) ⩽ (2r)−1 ,
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where the last inequality holds due to our choice of t∗ as in (2.3.17) and ∆′ = t∗∆ (thus

h
(t∗)
v = hv +∆′ for v ∈ ΛN ). Hence, a simple union bound gives that

P(
∑

v∈ΛN/8

(⟨σΛN ,+,t
∗

v ⟩µΛN,+,t∗ − ⟨σΛN ,−,t∗
v ⟩µΛN,−,t∗ ) ⩽ rθ∗) ⩾

1

2
. (2.3.19)

By Lemma 2.3.6, we get that

P(
∑

v∈ΛN/8

(⟨σΛN ,+
v ⟩µΛN,+ − ⟨σΛN ,−

v ⟩µΛN,−) > rθ∗) ⩽ 1− δ for δ = δ(ε, β, r) > 0 . (2.3.20)

Note that 2⟨#(CΛN ∩ ΛN/8)⟩π =
∑

v∈ΛN/8
(⟨σΛN ,+

v ⟩µΛN,+ − ⟨σΛN ,−
v ⟩µΛN,−) on each instance

of the Gaussian field for any monotone coupling π of µΛN ,±. Therefore, on each instance of

Gaussian field (which occurs with probability at least δ) such that
∑

v∈ΛN/8
(⟨σΛN ,+

v ⟩µΛN,+ −

⟨σΛN ,−
v ⟩µΛN,−) ⩽ rθ∗, we apply Markov’s inequality and get that

π(Crosshard(ΛN/8 \ ΛN/32, CΛN )) ⩽ π(#(CΛN ∩ ΛN/8) ⩾
N
32) ⩽

θ∗r

N/32
⩽

1

2
, (2.3.21)

where the last inequality follows from (2.3.18). This implies that P ⊗ π(Crosshard(ΛN/8 \

ΛN/32, CΛN )) ⩽ 1− δ/2, completing the proof of Lemma 2.3.3 (combined with (2.3.20)).

It remains to prove (2.3.18). Suppose that (2.3.18) does not hold. We will derive a contra-

diction, using the following two steps.

Step 1. We refer to Figure 2.3 for an illustration of geometric setup in this step. Fix

N/4 ⩽ k ⩽ N/2. Write S = Λk and Γ = ∂S. We first quench on the Gaussian field and also

condition on

(σΛN ,+,1)Γ = τ+ and (σΛN ,−,0)Γ = τ− where τ± ∈ {−1, 1}Γ and τ+ ⩾ τ− . (2.3.22)
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𝜕𝜕Λ𝑁𝑁/2

𝜕𝜕Λ𝑁𝑁/4

𝜕𝜕Λ𝑁𝑁/8
𝜕𝜕Λ𝑁𝑁/32

𝜕𝜕Λ𝑘𝑘

𝜕𝜕Λ𝑁𝑁/4

𝜕𝜕Λ𝑁𝑁/8

Figure 2.3: Illustrations for geometric setup in Step 1 of Lemma 2.3.3. The picture on the
left illustrates the setup for derivation of (2.3.23), where we bound disagreements in the
grey square by disagreements on ∂Λk (the larger dot-line boundary). The picture on the
right illustrates the setup for derivation of (2.3.24): by FKG conditioned on plus (respec-
tively minus) contour (drawn in dots in the picture) the magnetization on the grey box is
pushed up (respectively down); this allows us to compare the disagreements and enhanced
disagreements.

Applying Lemma 2.3.5, we get that (recall Ω± = Ω±(S) as in (2.3.14))

∆

ˆ 1

0
(mS,τ+,t

Ω+ −mS,τ−,t
Ω− )dt ⩽ 8

∑
v∈Γ

(τ+v − τ−v )− 1

β

(
logµS,τ

+,0(Ω+) + log µS,τ
−,1(Ω−)

)
.

(2.3.23)

Conditioned on σS,τ
+,t ∈ Ω+, let C ⊆ VσS,τ+,t,+ ∩ (ΛN/8 \ ΛN/32) be the outmost contour

which surrounds ΛN/32. Note that C = Γ′ is measurable with respect to {σS,τ
+,t

v : v ∈

ScΓ′}. Thus, by monotonicity of Ising model we see that (σS,τ
+,t)ΛN/32

conditioned on C =

Γ′ stochastically dominates (σΛN/8,+,t)ΛN/32
. A similar analysis applies to (σS,τ

−,t)ΛN/32
.

Combined with (2.3.23), it yields that

∆

ˆ 1

0
(mΛN/8,+,t −mΛN/8,−,t)dt ⩽ 8

∑
v∈Γ

(τ+v − τ−v )− 1

β

(
logµS,τ

+,0(Ω+) + log µS,τ
−,1(Ω−)

)
.

(2.3.24)
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Define EΓ,+ = {τ+ : µS,τ
+,0(Ω+) ⩾ 3/4} and EΓ,− = {τ− : µS,τ

−,1(Ω−) ⩾ 3/4}. Thus,

µΛN ,+,0(E+,0) = µΛN ,+,0(E+,0 | (σΛN ,+,0)Γ ∈ EΓ,+)µΛN ,+,0((σΛN ,+,0)Γ ∈ EΓ,+)

+ µΛN ,+,0(E+,0 | (σΛN ,+,0)Γ ̸∈ EΓ,+)µΛN ,+,0((σΛN ,+,0)Γ ̸∈ EΓ,+)

⩽ µΛN ,+,0((σΛN ,+,0)Γ ∈ EΓ,+) + 3
4µ

ΛN ,+,0((σΛN ,+,0)Γ ̸∈ EΓ,+) .

Since µΛN ,+,0(E+,0) ⩾ 99/100 on E⋆, it gives that µΛN ,+,0((σΛN ,+,0)Γ ∈ EΓ,+) ⩾ 3/4 and

thus by monotonicity µΛN ,+,1((σΛN ,+,1)Γ ∈ EΓ,+) ⩾ 3/4 (note EΓ,+ is an increasing set).

Similarly, we get µΛN ,−,0((σΛN ,−,0)Γ ∈ EΓ,−) ⩾ 3/4 on E⋆. Consider an arbitrary monotone

coupling πΓ of µΛN ,+,1 and µΛN ,−,0 restricted to Γ. Then we see that on E⋆

πΓ(EΓ,+,−) ⩾ 3
4 + 3

4 − 1 = 1
2 where EΓ,+,− = {(σΛN ,+,1)Γ ∈ EΓ,+, (σΛN ,−,0)Γ ∈ EΓ,−} .

Averaging (2.3.24) over the conditioning of (2.3.22) but restricted to the event EΓ,+,−, we

get that on E⋆

∆

2

ˆ 1

0
(mΛN/8,+,t −mΛN/8,−,t)dt ⩽ 8

∑
v∈Γ

⟨(σΛN ,+,1
v − σΛN ,−,0

v )1EΓ,+,−⟩πΓ + 2/β .

Since πΓ is a monotone coupling, we thus obtain that on E⋆

∆

2

ˆ 1

0
(mΛN/8,+,t −mΛN/8,−,t)dt ⩽ 8

∑
v∈Γ

⟨σΛN ,+,1
v − σΛN ,−,0

v ⟩πΓ + 2/β

= 8
∑
v∈Γ

(⟨σΛN ,+,1
v ⟩µΛN,+,1 − ⟨σΛN ,−,0

v ⟩µΛN,−,0) + 2/β .

Summing over N/4 ⩽ k ⩽ N/2, we deduce that on E⋆

8
∑

v∈AN/2

(⟨σΛN ,+,1
v ⟩µΛN,+,1 − ⟨σΛN ,−,0

v ⟩µΛN,−,0) +
N

2β
⩾
N∆

8

ˆ 1

0
(mΛN/8,+,t −mΛN/8,−,t)dt .

(2.3.25)
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Step 2. For N ⩾ 2, recall that AN = ΛN \ ΛN/2 is an annulus. Adjust the value of r if

necessary so that we can write AN/2 = ∪ri=1Ai, where Ai is a copy of ΛN/32 and Ai’s are

disjoint such that

ABig
i ⊆ ΛN \ ΛN/8 for all 1 ⩽ i ⩽ r . (2.3.26)

(The geometric setup here is similar to that in the proof of Lemma 2.2.8; see the left picture

of Figure 2.1 for an illustration.) By monotonicity, we see that for each 1 ⩽ i ⩽ r

P(
∑
v∈Ai

(⟨σΛN ,+,1
v ⟩µΛN,+,1 − ⟨σΛN ,−,0

v ⟩µΛN,−,0) > θ∗)

⩽ P(
∑
v∈Ai

(⟨σA
Big
i ,+,1

v ⟩
µA

Big
i

,+,1
− ⟨σA

Big
i ,−,0

v ⟩
µA

Big
i

,−,0
) > θ∗)

= P(mΛN/8,+,t
∗ −mΛN/8,−,t∗ > θ∗) ⩽ 1/2r ,

where the equality holds due to (2.3.26) and ∆′ = t∗∆ (note that h(t)v = hv+∆′ for v ∈ ΛN \

ΛN/8 and for all 0 ⩽ t ⩽ 1), and in addition the last inequality holds due to (2.3.17). Thus,

a simple union bound gives that the event {
∑

v∈AN/2
(⟨σΛN ,+,1

v ⟩µΛN,+,1 −⟨σΛN ,−,0
v ⟩µΛN,−,0) ⩽

rθ∗} contains an event EAN/2
which is measurable with respect to {hv : v ̸∈ ΛN/8} such that

P(EAN/2
) ⩾ 1/2 . (2.3.27)

Furthermore, let T = {1 ⩽ t ⩽ 1 : mΛN/8,+,t−mΛN/8,−,t ⩾ θ∗}. By (2.3.17) we have E|T | ⩾

1/2r where |T | is the Lebesgue measure of T . Since |T | ⩽ 1, we have P(|T | ⩾ 1/4r) ⩾ 1/4r.

Therefore,

P(
ˆ 1

0
(mΛN/8,+,t −mΛN/8,−,t)dt ⩾ θ∗/4r) ⩾ 1/4r . (2.3.28)

Combined with (2.3.27), this yields that

P(E⋄) ⩾ 1/8r (2.3.29)
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where E⋄ is the event such that

ˆ 1

0
(mΛN/8,+,t −mΛN/8,−,t)dt ⩾

θ∗

4r
⩾ (4r2)−1

∑
v∈AN/2

(⟨σΛN ,+,1
v ⟩µΛN,+,1 − ⟨σΛN ,−,0

v ⟩µΛN,−,0) .

Suppose (2.3.18) does not hold. Then by (2.3.25) and the preceding display, the events E⋆

and E⋄ are mutually exclusive. But by (2.3.16) and (2.3.29), we have P(E⋆) + P(E⋄) > 1,

arriving at a contradiction.

Proof of Proposition 2.3.1. The proof of Proposition 2.3.1 at this point is highly similar to

that of Proposition 2.2.2. As a result, we only provide a sketch emphasizing the additional

subtleties.

Let π be an arbitrary monotone coupling of µΛN ,± and let CΛN = CΛN ,π be defined as in

(2.3.1).

For any rectangle A ⊆ R2 (whose sides are not necessarily parallel to the axes), recall that

ℓA is the length of the longer side and ALarge is the square box concentric with A and of side

length 32ℓA. In addition, the aspect ratio of A is the ratio between the lengths of the longer

and shorter sides. Consider an arbitrary rectangle A with aspect ratio at least a = 100. For

a (random) set C ⊆ Z2, we continue to use Cross(A, C) to denote the event that there exists

a path v0, . . . , vk ∈ A∩C connecting the two shorter sides of A. For any monotone coupling

πA
Large of µALarge,± (below we denote CALarge

= {v ∈ ALarge : σA
Large,+ > σA

Large,−} under

πA
Large), we can adapt the proof of (2.2.15) and deduce that (write N ′ = min{2n : 2n+2 ⩾

ℓA}, and recall E+ as in Lemma 2.3.3)

P⊗ µΛN′ ,+(E+
N ′) ⩾ 1− 4(1− P⊗ πA

Large
(Cross(A,VσALarge,+,+)))

⩾ 1− 4(1− P⊗ πA
Large

(Cross(A, CALarge
))) ,

where the second inequality follows from the fact Cross(A, CALarge
) ⊆ Cross(A,VσALarge,+,+).
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In addition, by a similar derivation of (2.3.21),

P⊗πALarge
(Cross(A, CALarge

)) ⩽ P⊗ πA
Large

(#(CALarge ∩A) ⩾ ℓA/2)

⩽
1

2
(1 + P(

∑
v∈ΛN′/8

(⟨σΛN′ ,+
v ⟩

µΛN′ ,+ − ⟨σΛN′ ,−
v ⟩

µΛN′ ,−) > 10−3N ′)) .

Therefore, by Lemma 2.3.3,

P⊗ πA
Large

(Cross(A, CALarge
)) ⩽ 1− δ where δ = δ(ε, β) > 0 . (2.3.30)

It is crucial that (2.3.30) holds uniformly for all possible monotone couplings πALarge . Note

that the probability for Cross(A, CΛN ,π) could potentially depend on the location of A, either

due to different influences from the boundary at different locations or different coupling

mechanisms chosen at different location. However, thanks to (2.3.30), all these probabilities

have a uniform upper bound which is strictly less than 1. In addition, by monotonicity

of the Ising model, for a collection of rectangles that are well-separated, the corresponding

crossing events can be dominated by independent events which have probabilities strictly

less than 1. Next, we complete the proof of Proposition 2.3.1 by utilizing this intuition.

For any k ⩾ 1 and any rectangles A1, . . . , Ak ⊆ {v ∈ R2 : |v|∞ ⩽ N/2} with aspect ratios

at least a such that (a) ℓ0 ⩽ ℓAi ⩽ N/32 for all 1 ⩽ i ⩽ k and (b) ALarge
1 , . . . , ALarge

k are

disjoint, we see that under any coupling π of µΛN ,±, there exist sets CA
Large
i such that

• CA
Large
i is sampled according to some monotone coupling of µA

Large
i ,±.

• CΛN ,π ∩ Ai ⊆ CA
Large
i ∩ Ai (by monotonicity of Ising model with respect to boundary

conditions).

• µA
Large
i ,±’s are mutually independent (as they only depend on {hv : v ∈ ALarge

i } re-

spectively).
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Therefore, by (2.3.30),

P⊗ π(∩ki=1Cross(Ai, CA
Large
i )) ⩽ (1− δ)k .

This proves an analogue of Lemma 2.2.4, which verifies the hypothesis required in order to

apply [1]. The remaining proof is merely an adaption of Proposition 2.2.2 and thus we omit

further details.

2.3.2. Admissible coupling and adaptive admissible coupling

In Sections 2.3.2 and 2.3.3, we wish to prove an analogue of Lemma 2.2.11. In the case for

T > 0, it seems quite a bit more challenging as the choice of the coupling for various Ising

measures plays a role, which seems to be subtle in light of Remark 2.3.8 below. To address

the issue, we consider a general class of couplings for various Ising measures (i.e., adaptive

admissible couplings) in this section. In Section 2.3.3, we describe a particular construction

of adaptive admissible coupling, which is suited for the multi-scale analysis (the multi-

scale analysis is a more complicated version of the proof for Lemma 2.2.11) presented in

Section 2.3.3.

For k ⩾ 1, we consider deterministic boundary conditions and external fields (τ (i), {h(i)v :

v ∈ Λ}) where τ (i) ∈ {−1, 1}∂Λ for 1 ⩽ i ⩽ k (these will be fixed throughout this section).

We define the partial order ≺ by

i ≺ j if τ (i) ⩽ τ (j) and h(i) ⩽ h(j) . (2.3.31)

We say that (σ(1), . . . , σ(k)) (for σ(1), . . . , σ(k) ∈ {−1, 1}Λ) is an admissible configuration if

σ(i) ⩽ σ(j) for all i ≺ j. Denote by Σk the collection of all admissible configurations. For

A ⊆ Λ, write (σ(1), . . . , σ(k))A for the restriction of (σ(1), . . . , σ(k)) on A.

Definition 2.3.7. For each 1 ⩽ i ⩽ k, let µ(i) be the Ising measure on Λ with boundary

condition τ (i) and external field h(i). We say that a measure π is an admissible coupling of
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µ(1), . . . , µ(k) if π is supported on Σk and its marginal distributions agree with µ(i)’s.

Remark 2.3.8. Ideally, it would be great if there would exist an admissible coupling π which

satisfies the Markov field property. Or, it would also be great if there would exist an

admissible coupling π which satisfies a weak version of Markov field property, such that

for any Γ ⊆ Λ the measure π(σ(i)SΓ
∈ · | (σ(1), . . . , σ(k))Γ) is the Ising measure on SΓ with

boundary condition σ
(i)
∂SΓ

and external field {h(i)v : v ∈ SΓ}. However, such coupling does

not exist as we can see from the following simple example. Let us consider Ising measures

on a line segment with no external field and plus/minus boundary conditions on one end

(denoted as u). Suppose that there exists an admissible coupling π (in this case a monotone

coupling) with weak Markov field property. Then conditioned on the event that the two

spins disagree at the other end of the line (denoted as v), we claim that the spins from the

two Ising measures have to disagree on every vertex on the line, thereby violating the weak

Markov property. In order to verify the claim, we suppose the claim fails and let w be the

first vertex (from u) where the two spins agree with each other. Conditioned on spins from

u to w, the two marginals at v are the same (by the weak Markov property) and thus have

to agree in a monotone coupling.

In light of Remark 2.3.8, we will seek for admissible couplings with a desirable property

even weaker than the weak Markov field property. To this end, we will explore the spins

using certain “adaptive” algorithm and then we will argue that the marginal measures on the

unexplored region remain to be Ising measures. This motivates us to consider the adaptive

admissible coupling (see Definition 2.3.9 below). Let Ξk = {(σ(1), . . . , σ(k)) ∈ {−1, 1}k :

σ(i) ⩽ σ(j) for all i ≺ j}. For θ1, . . . , θk which are measures on {−1, 1}, we say that θ1, . . . , θk

are admissible if θi(1) ⩽ θj(1) for all i ≺ j. In this case, let θ be the monotone coupling

of θ1, . . . , θk. That is, θ is the joint measure of (σ1, . . . , σk), which is defined in terms of a

uniform variable U on [0, 1] such that

σi = −1 if and only if U ⩽ 1− θi(1) .
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Clearly, θ is supported on Ξk and its marginals are θ1, . . . , θk. In addition, θ is consistent,

i.e.,

The projection of θ onto the first (k − 1) spins is the monotone coupling for θ1, . . . , θk−1 .

(2.3.32)

In order to define adaptive admissible couplings, we make use of exploration procedures. An

exploration procedure can be encoded by a family of deterministic maps {fV : V ⊆ Λ, V ̸=

Λ} where fV is a mapping that maps an admissible configuration on V to a vertex in Λ \V .

That is to say, if we have explored a set V ⊆ Λ and the spin configuration on V is given by

(σ(1), . . . , σ(k))V , then the next vertex we will explore is fV ((σ(1), . . . , σ(k))V ).

Definition 2.3.9. For each exploration procedure {fV }, we associate an admissible coupling

in the following manner. Let V0 = ∅. For t ⩾ 1, let vt = fVt−1((σ
(1), . . . , σ(k))Vt−1). Let

Vt = Vt−1 ∪ {vt}. Quenched on the realization of {Vt−1, (σ
(1), . . . , σ(k))Vt−1}, for 1 ⩽ i ⩽ k

let θ(t)i (±1) = µ(i)(σ
(i)
vt = ±1 | σ(i)Vt−1

). Let θ(t) be the monotone coupling of θ(t)1 , . . . , θ
(t)
k ,

and we sample (σ(1), . . . , σ(k))vt according to θ(t). We repeat this procedure until t = #Λ.

We let π be the measure on (σ(1), . . . , σ(k)) at the end of the procedure. In addition, we say

that a random set V is a stopping set if {V = Vt = Vt} (for any deterministic Vt ⊆ Λ) is

measurable with respect to {(σ(1), . . . , σ(k))Vt)}.

Remark 2.3.10. In the study of spin models, it is common to use an exploration procedure

to discover certain observables (such as interfaces) associated with spin configurations. Of-

ten times, an instance of spin configurations is sampled a priori (which is usually sampled

according to a Gibbs measure) and then the exploration procedure is performed on this

instance. That being said, it is not uncommon to construct a measure as the exploration

process evolves. Definition 2.3.9 is one example of such constructions, where the spin config-

uration is sampled as the exploration procedure evolves and more importantly the measure

on spin configurations depends on the exploration procedure.

Lemma 2.3.11. For each exploration procedure, the measure π given in Definition 2.3.9 is
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a well-defined admissible coupling. In addition, for any stopping set V, given the realiza-

tion of V and (σ(1), . . . , σ(k))V , the conditional measure of π restricted on Vc has marginals

corresponding to Ising measures on Vc with boundary condition σ
(i)
∂Vc and external field

{h(i)v : v ∈ Vc}.

Proof. The measure π is well-defined since we can inductively verify that for t = 0, 1, 2, . . .,

the sequence θ(t)1 , . . . , θ
(t)
k is admissible and thus (σ(1), . . . , σ(k))Vt+1 is admissible. To prove

the second part of the statement, it suffices to show that for each 1 ⩽ i ⩽ k and 1 ⩽ t ⩽ #Λ,

π(σ
(i)
Λ\Vt−1

∈ · | (σ(1), . . . , σ(k))Vt−1 ,Vt−1 = Vt−1) = µ(i)(σ
(i)
Λ\Vt−1

∈ · | σ(i)Vt−1
) . (2.3.33)

We prove (2.3.33) by induction for t = #Λ, . . . , 1. It is obvious from Definition 2.3.9 that

(2.3.33) holds for t = #Λ. Suppose (2.3.33) holds for t, we then deduce for t− 1 that

π(σ
(i)
Λ\(Vt−2∪{vt−1}) ∈ ·, σ(i)vt−1

= ±1 | (σ(1), . . . , σ(k))Vt−2 ,Vt−2 = Vt−2)

= µ(i)(σ(i)vt−1
= ±1 | σ(i)Vt−2

)× µ(i)(σ
(i)
Λ\(Vt−2∪{vt−1}) ∈ · | σ(i)Vt−2

, σ(i)vt−1
= ±1) .

This implies that π(σ(i)Λ\Vt−2
∈ · | (σ(1), . . . , σ(k))Vt−2 ,Vt−2 = Vt−2) = µ(i)(σ

(i)
Λ\Vt−2

∈ · |

σ
(i)
Vt−2

), thereby completing the proof by induction.

In what follows, we refer to π as in Definition 2.3.9 as an adaptive admissible coupling. In

addition, we will always define adaptive admissible couplings by presenting an exploration

procedure and then consider the associated admissible coupling given in Definition 2.3.9.

For convenience of exposition, we usually describe an exploration procedure in words rather

than specifying the maps {fV }.

2.3.3. A multi-scale analysis via another perturbation argument

Let α > 1 be as in Proposition 2.3.1. Let
√

1/α < α′ < 1. Let N0 = N0(ε, β) be a large

number to be chosen. For each N ⩾ N0 (of the form 4n), set ∆ = ∆(N) = N−α(α′)2 . In the
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rest of the paper, we consider the following perturbation:

h̃(N)
v =


hv +∆, for v ∈ ΛN \ ΛN/4 ,

hv, for v ∈ ΛN/4 .

(2.3.34)

We denote by µ̃ΛN ,± the Ising measures on ΛN with respect to plus/minus boundary condi-

tions and external field {h̃(N)
v : v ∈ ΛN}, and denote by σ̃ΛN ,± the spins sampled according

to µ̃ΛN ,±. In this whole section except in (2.3.45) and (2.3.46), we will quench on the

realization of {hv} and thus the external field is viewed as deterministic.

A construction of an adaptive admissible coupling

We will define the following adaptive admissible coupling πΛN
for µΛN ,± and µ̃ΛN ,±. Ac-

cording to Definition 2.3.9, in order to specify πΛN
, we only need to specify the exploration

procedure (i.e., the order of vertices in which we sample the spins), as described as fol-

lows. Throughout the procedure, we let CΛN
∗ be the collection of vertices v which have been

sampled such that σΛN ,+
v > σΛN ,−

v and σ̃ΛN ,+
v > σ̃ΛN ,−

v . We first sample spins at vertices

on ∂Λk for k = N − 1, N − 2, . . . , N2 . For vertices on ∂Λk, for concreteness we sample in

clockwise order starting from the right top corner. Next, let K = ⌊Nα′α⌋ and ℓ = ⌊14N
1−α′⌋.

A comment on the order of the scales chosen: the exploration procedure below contains ℓ

phases, and in every phase we consider an annulus where the inner and outer boundaries

have Euclidean distance Nα′ and thus by Proposition 2.3.1 typically have intrinsic distance

⩾ K ≫ N . This is why we can hope to gain a contraction when comparing the number of

disagreements on an annulus to that on its neighboring (larger) annulus (see (2.3.47) below).

We now turn to the description of the exploration procedure. For each 1 ⩽ j ⩽ ℓ our

construction employs the following procedure which we refer to as Phase j (see Figure 2.4

for an illustration). Let N ′ = N
2 − (j − 1)Nα′ .

• We set Aj,0 = ∂ΛN ′ ∩ CΛN
∗ , Vj,0 = ΛN \ ΛN ′ , and for k = 0, 1, . . . ,K, we inductively

employ the following procedure (which we refer to as stage). At the beginning of Stage
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k + 1, we first set Aj,k+1 = ∅ and Vj,k+1 = Vj,k.

– If Aj,k = ∅ (which we denote as event Ej,k,∅), we sample the unexplored vertices

in ΛN in a prefixed order (which can be arbitrary) and stop our procedure. Oth-

erwise, we explore all the neighbors of Aj,k (in a certain prefixed order, which

can be arbitrary) which are in ΛN ′ \ Vj,k (that is, vertices which have not been

explored) and sample the spins at these vertices. We also put these vertices into

Vj,k+1.

– If a newly sampled vertex is in ∂ΛN ′−Nα′ (we denote this as event Ej,k,d, where

the subscript d suggests an event related to the intrinsic distance), we sample the

unexplored vertices in ΛN in a prefixed order (which can be arbitrary) and stop

our procedure. Otherwise, if a newly sampled vertex ends up in CΛN
∗ then we add

it to Aj,k+1. (For k ⩾ 1, it is clear that Aj,k records all the vertices in ΛN ′ that

are of dCΛN
∗

-distance k to ∂ΛN ′ and Vj,k records all the explored vertices up to

Stage k.)

• Sample the unexplored vertices in ΛN ′ \ ΛN ′−Nα′ in a prefixed order (which can be

arbitrary).

Finally, if the procedure is not yet stopped after ℓ phases, we sample the unexplored vertices

in ΛN in a prefixed order (which can be arbitrary).

Remark 2.3.12. (1) Later in the analysis, when we refer to sets such as Aj,k, Vj,k we mean

to use their values at the end of our procedure. (2) Note that in the preceding procedure,

unless some event of the form Ej,k,∅ or Ej,k,d occurred, the exploration in all the ℓ phases is

within ΛN \ ΛN/4.
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𝜕𝜕Λ𝑁𝑁′

𝜕𝜕Λ𝑁𝑁′−𝑁𝑁𝛼𝛼′

1

Figure 2.4: Illustration for Phase j of the construction in Section 2.3.3. The inside square
is ΛN ′−Nα′ , whose size has been reduced in the picture for better demonstration. On lattice
points, empty indicates an unexplored vertex, an open circle indicates a vertex in CΛN

∗ , and
a solid disk indicates a vertex not in CΛN

∗ . The top-left illustrates the beginning of Phase j,
where vertices on ∂ΛN ′ have been explored (vertices outside have been explored too but we
did not draw); the top-right illustrates the middle of Phase j (here k = 5); the bottom-left
picture illustrates event Ej,k,∅ (here k = 8); the bottom right event illustrates Ej,k,d (here
k = 12).

Another perturbation argument

We use H̃ΛN ,±, F̃ΛN ,±, σ̃ΛN ,± to denote tilde versions of HΛN ,±, FΛN ,±, σΛN ,±, i.e., defined

analogously but with respect to the field {h̃(N)
v } defined as in (2.3.34). Without further

notice, we will always consider measures where we couple all these Ising spins together.

Thus, in particular, CΛN and C̃ΛN are defined in the same probability space and we can then

define CΛN
∗ = C̃ΛN ∩ CΛN .

We need some preparation before presenting our perturbative analysis. Suppose that V is a

stopping set (see Definition 2.3.9) obtained when constructing πΛN
described in Section 2.3.3.

Let π′Vc be the restriction of πΛN
to Vc. (We use prime in the notation π′Vc as we wish to
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save πVc for later use.) By Lemma 2.3.11 and our definition of πΛN
, we see that π′Vc

depends on (σΛN ,±)V , (σ̃
ΛN ,±)V only through (σΛN ,±)∂Vc , (σ̃ΛN ,±)∂Vc . Thus, we may denote

by (σV
c,(σΛN,±)∂Vc , σ̃V

c,(σ̃ΛN,±)∂Vc ) the spin configurations sampled according to π′Vc with

corresponding boundary conditions on ∂Vc. Thus,

((σΛN ,±
V , σV

c,(σΛN,±)∂Vc ), (σ̃ΛN ,±
V , σ̃V

c,(σ̃ΛN,±)∂Vc )) has law πΛN
. (2.3.35)

In what follows, we will mainly consider the measure π′Vc . For clarity of exposition, we

quench on the realization of V = V . Let S = V c and Γ = ∂S (thus we have S ⊆ SΓ).

Further, we quench on the values of (σΛN ,±)Γ, (σ̃
ΛN ,±)Γ by

(σΛN ,±)Γ = τ±, (σ̃ΛN ,±)Γ = τ̃± , where τ±, τ̃± ∈ {−1, 1}Γ . (2.3.36)

For v ∈ Γ (in fact, any v ∈ ΛN ), by admissibility there are only six possible values for

(τ+v , τ
−
v , τ̃

+
v , τ̃

−
v ) as shown in Table 2.1. For each such possible spin value, we will define a

“hat” version (τ̂+v , τ̂
−
v ,
̂̃τ+v , ̂̃τ−v ), where the definition is given in Table 2.2. Note that the hat

version is a modification of the original spin value, and we emphasize the change in Table 2.2

by circling out the modifications. We will explain why we introduced the hat version of the

spin on Γ after a number of definitions. From Tables 2.1 and 2.2, we see that

τ̂+ ⩾ τ̂− ⩾ τ−, τ̃+ ⩾ ̂̃τ+ ⩾ ̂̃τ−, ̂̃τ+ = τ̂+ ⩾ τ+, ̂̃τ− = τ̂− = τ̃− . (2.3.37)

From a notation point of view, despite the fact that τ̂± = ̂̃τ±, we still differentiate these

two notations because our mental picture is that the boundary conditions τ̂± are matched

to external field {hv} and the boundary conditions ̂̃τ± are matched to external field {h̃(N)
v }.

Recall that π′S is the admissible coupling for Ising measures with boundary conditions

and external fields ((τ±)Γ, {hv}), ((τ̃±)Γ, {h̃(N)
v }), where the order of sampling vertex is

given by that of πΛN
conditioned on spin configurations on the stopping set V = V .
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Table 2.1: Original spins on Γ

type τ+v τ−v τ̃+v τ̃−v

a. −1 −1 −1 −1

b. −1 −1 +1 −1

c. −1 −1 +1 +1
d. +1 +1 +1 +1
e. +1 −1 +1 +1
f. +1 −1 +1 −1

Table 2.2: The hat version of the spins on Γ

type τ̂+v τ̂−v
̂̃τ+v ̂̃τ−v

a. −1 −1 −1 −1

•b. −1 −1 −1 −1

•c. +1 +1 +1 +1

d. +1 +1 +1 +1

•e. +1 +1 +1 +1

f. +1 −1 +1 −1

In addition, we can extend π′S to an adaptive admissible coupling πS for Ising measures

with boundary conditions and external fields ((τ±)Γ, {hv}), ((τ̃±)Γ, {h̃(N)
v }), ((τ̂±)Γ, {hv}),

((̂̃τ±)Γ, {h̃(N)
v }), where the order of sampling vertices is determined by the coupling π′S .

Let (σS,τ
±
, σ̃S,τ̃

±
, σS,τ̂

±
, σ̃S,

̂̃τ±) be the spin configuration sampled according to πS (note

that we use the tilde symbol on σ to emphasize the dependence on the external field

{h̃(N)
v }; similarly for H and F below). By (2.3.32), we see that the projection of πS onto

(σS,τ
±
, σ̃S,τ̃

±
) has measure π′S . As a result, we will simply use πS in what follows. We also

let HS,τ± , H̃S,τ̃± , HS,τ̂± , H̃S,̂̃τ± denote Hamiltonians for corresponding Ising spins. Simi-

larly, we denote by FS,τ± , F̃S,τ̃± , FS,τ̂± , F̃S,̂̃τ± the log-partition-functions of corresponding

Ising measures. Define

CS,τ± = {v ∈ S : σS,τ
+

v = 1, σS,τ
−

v = −1}

and similarly define C̃S,τ̃± , CS,τ̂± , C̃S,̂̃τ± . Define CS,τ
±,τ̃±

∗ = CS,τ± ∩ C̃S,τ̃± and CS,τ̂
±,̂̃τ±

∗ =

CS,τ̂± ∩ C̃S,̂̃τ± .

Now we have necessary notations to explain the reason for introducing the hat version of the

spins on Γ. We wish to bound #(CΛN
∗ ∩S∩(ΛN \ΛN/4)) in terms of #(CΛN

∗ ∩Γ). One way to

achieve this is to track the increment for the difference between the log-partition-functions

with plus and minus boundary conditions when the external field is perturbed. We see that

on the one hand, the increment for the difference between log-partition-functions can be
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bounded from below in terms of #(CΛN
∗ ∩ S ∩ (ΛN \ ΛN/4)) (see Lemma 2.3.15); and on

the other hand such increment can be bounded from above by the number of disagreements

for spins on Γ with respect to the plus and minus boundary conditions. However, when

approaching the upper bound, the spin values of Type b, c, e as in Table 2.1 will also

contribute to the upper bound despite the fact that they do not belong to CΛN
∗ ∩ Γ. To

address this, we introduce the hat version of the spins, which are in agreement except on

CΛN
∗ ∩ Γ. A crucial feature as we will show in Lemma 2.3.13, is that under the admissible

coupling πS we have CS,τ
±,τ̃±

∗ ⊆ CS,τ̂
±,̂̃τ±

∗ . Therefore, the intended lower bound on the

increment for the difference between log-partition-functions is still valid for the hat version.

Another crucial feature of the hat version of the spin is that

{v ∈ Γ : τ+v = τ̃+v = 1, τ−v = τ̃−v = −1} = {v ∈ Γ : τ̂+v = ̂̃τ+v = 1, τ̂−v = ̂̃τ−v = −1}

= {v ∈ Γ : τ̂+v = 1, τ̂−v = −1} = {v ∈ Γ : ̂̃τ+v = 1, ̂̃τ−v = −1} .
(2.3.38)

Lemma 2.3.13. Under the admissible coupling πS, we have CS,τ
±,τ̃±

∗ ⊆ CS,τ̂
±,̂̃τ±

∗ .

Proof. For u ∈ CS,τ
±,τ̃±

∗ , we have σS,τ
+

u = σ̃S,τ̃
+

u = 1 and σS,τ
−

u = σ̃S,τ̃
−

u = −1. By (2.3.37)

and the admissible coupling, we see that σS,τ̂
+

u ⩾ σS,τ
+

u = 1; similarly, σS,τ̂
−

u ⩽ σ̃S,τ̃
−

u =

−1. So u ∈ CS,τ̂± . In addition, by (2.3.37) and the admissible coupling, we see that

σ̃S,
̂̃τ+

u ⩾ σS,τ
+

u = 1; similarly, σ̃S,
̂̃τ−

u = σ̃u
S,τ̃− = −1. So u ∈ C̃S,̂̃τ± . Thus, u ∈ CS,τ̂

±,̂̃τ±
∗ as

required.

Corollary 2.3.14. Under the admissible coupling πS, we have o ̸∈ CS,τ
±,τ̃±

∗ provided that

CΛN
∗ ∩ Γ = ∅.

Proof. If CΛN
∗ ∩ Γ = ∅, we have τ̂+ = τ̂− = ̂̃τ+ = ̂̃τ−, in which case we have CS,τ̂

±,̂̃τ±
∗ = ∅

and in particular o ̸∈ CS,τ̂
±,̂̃τ±

∗ . Combined with Lemma 2.3.13, this completes the proof of

the corollary.
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Lemma 2.3.15. We have that

2∆⟨#(CS,τ̂±,̂̃τ±∗ ∩ (ΛN \ ΛN/4))⟩πS ⩽ (F̃S,
̂̃τ+ − F̃S,

̂̃τ−)− (FS,τ̂
+ − FS,τ̂

−
) (2.3.39)

⩽ 16#{v ∈ Γ : τ̂+v = ̂̃τ+v = 1, τ̂−v = ̂̃τ−v = −1} . (2.3.40)

Proof. The proof of the lemma shares some similarity to that of Lemma 2.3.5. However, we

give a self-contained proof here in order for clarity of exposition.

We first prove (2.3.40). A straightforward computation gives that

F̃S,
̂̃τ+ − F̃S,

̂̃τ− =
1

β
log

∑
σ e

−βH̃S,̂̃τ+ (σ)∑
σ e

−βH̃S,̂̃τ− (σ)
⩽

1

β
log e8β·#{v∈Γ:̂̃τ+v ̸=̂̃τ−v }

⩽ 8 ·#{v ∈ Γ : ̂̃τ+v ̸= ̂̃τ−v } .
Similarly, FS,τ̂+ − FS,τ̂

−
⩾ −8 ·#{v ∈ Γ : τ̂+v ̸= τ̂−v }. Combined with (2.3.38), this proves

(2.3.40).

Now we turn to prove (2.3.39). We write

(F̃S,
̂̃τ+ − F̃S,

̂̃τ−)− (FS,τ̂
+ − FS,τ̂

−
) = (F̃S,

̂̃τ+ − FS,τ̂
+
)− (F̃S,

̂̃τ− − FS,τ̂
−
). (2.3.41)

For 0 ⩽ t ⩽ 1, define

h̃(t)v =


hv + t∆, for v ∈ ΛN \ ΛN/4 ,

hv, for v ∈ ΛN/4 .

(2.3.42)

Let FS,τ̂+,t be the log-partition-function on S with boundary condition τ̂+ (note that ̂̃τ+ =

τ̂+ by (2.3.37)) and external field {h̃(t)v }. In particular, FS,τ̂+,0 = FS,τ̂
+ and FS,τ̂+,1 = F̃S,

̂̃τ+ .

Similar notations apply for FS,τ̂−,t. Thus, we get that

F̃S,
̂̃τ+ − FS,τ̂

+
=

ˆ 1

0

dFS,τ̂
+,t

dt
dt, F̃S,

̂̃τ− − FS,τ̂
−
=

ˆ 1

0

dFS,τ̂
−,t

dt
dt . (2.3.43)
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Denote by σS,τ̂±,t spins sampled according to Ising measures with boundary conditions τ̂±

and external field {h̃(t)}. In addition, for any fixed t, we let πS,t be the admissible coupling

extended from πS by also incorporating the spins σS,τ̂±,t (again, the order of sampling vertex

is given by that of πS). Therefore, we see

dFS,τ̂
+,t

dt
= ∆

∑
v∈S∩(ΛN\ΛN/4)

⟨σS,τ̂+,tv ⟩πS,t and
dFS,τ̂

−,t

dt
= ∆

∑
v∈S∩(ΛN\ΛN/4)

⟨σS,τ̂−,tv ⟩πS,t .

Combined with (2.3.43) and (2.3.41), it yields that

(FS,
̂̃τ+−FS,̂̃τ−)−(FS,τ̂

+−FS,τ̂−) = 2

ˆ 1

0
∆⟨#{v ∈ S∩(ΛN\ΛN/4) : σS,τ̂

+,t
v ̸= σS,τ̂

−,t
v }⟩πS,tdt .

(2.3.44)

For any v ∈ S and t ∈ (0, 1), by admissible coupling we have σS,τ̂
+

v ⩽ σS,τ̂
+,t

v ⩽ σ̃S,
̂̃τ+

v

and σS,τ̂
−

v ⩽ σS,τ̂
−,t

v ⩽ σ̃S,
̂̃τ−

v . Therefore, {v ∈ S ∩ (ΛN \ ΛN/4) : σS,τ̂
+,t

v ̸= σS,τ̂
−,t

v } ⊃

CS,τ̂
±,̂̃τ±

∗ ∩ (ΛN \ ΛN/4). Combined with (2.3.44), this completes the proof of (2.3.39).

Corollary 2.3.16. Conditioned on the realization of the stopping set V = V , let S = V c

and Γ = ∂S. Then we have

∆⟨#(CΛN
∗ ∩ S ∩ (ΛN \ ΛN/4)) | (σΛN ,±, σ̃ΛN ,±)V ⟩πΛN

⩽ 8#{Γ ∩ CΛN
∗ } .

Proof. Quench on the realization of (σΛN ,±, σ̃ΛN ,±)Γ as in (2.3.36). By Lemmas 2.3.13 and

2.3.15,

∆⟨#(CS,τ±,τ̃±∗ ∩ (ΛN \ ΛN/4))⟩πS ⩽ 8#{v ∈ Γ : τ̂+v = ̂̃τ+v = 1, τ̂−v = ̂̃τ−v = −1}

= 8#{v ∈ Γ : τ+v = τ̃+v = 1, τ−v = τ̃−v = −1} ,

where the equality follows from (2.3.38). Combined with (2.3.35), this completes the proof

of the corollary.
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Analysis of the adaptive admissible coupling

We now analyze the adaptive admissible coupling πΛN
. Recall that ℓ = ⌊14N

1−α′⌋ and

K = ⌊Nαα′⌋, and define DN to be the event (measurable with respect to the Gaussian field)

by

DN = {πΛN
( min
1⩽j⩽ℓ

dCΛN (∂ΛN/2−jNα′ , ∂ΛN/2−(j−1)Nα′ ) ⩽ K) ⩾ N−20} . (2.3.45)

By Proposition 2.3.1 and a simple Markov’s inequality, we see that for C = C(ε, β) > 0

P(DN ) ⩽ CN−20 . (2.3.46)

In what follows, we quench on the Gaussian field at which DN does not occur.

Lemma 2.3.17. We have that πΛN
(o ∈ CΛN

∗ ) ⩽ CN−10 on Dc
N , for C = C(ε, β) > 0.

Proof. For 1 ⩽ j ⩽ ℓ, 1 ⩽ k ⩽ K, let Ej,k,∅, Ej,k,d, Vj,k, Aj,k be defined as in Section 2.3.3.

For each 1 ⩽ j ⩽ ℓ, let Ej,∅ = ∪ji=1 ∪Kk=1 Ei,k,∅ and define

m∗
j = ⟨#(CΛN

∗ ∩ (ΛN/2−(j−1)Nα′ \ ΛN/2−jNα′ ))1Ec
j−1,∅

⟩πΛN
.

By Corollary 2.3.14, it suffices to prove that m∗
ℓ ⩽ 2N−10. To this end, it suffices to prove

that for N ⩾ N0 = N0(ε, β) (where N0 is to be selected)

m∗
j+1 ⩽ 10−3m∗

j +N−10 for all 1 ⩽ j ⩽ ℓ− 1 . (2.3.47)

Let Ej,d = ∪ji=1 ∪Kk=1 Ei,k,d. Since πΛN
(Ej,d) ⩽ CN−20 on Dc

N , it suffices to show that

⟨#(CΛN
∗ ∩ (ΛN/2−jNα′ \ ΛN/2−(j+1)Nα′ ))1Ec

j,∅
1Ec

j,d
⟩πΛN

⩽ 10−3m∗
j . (2.3.48)

Fix 1 ⩽ j ⩽ ℓ. For 1 ⩽ k ⩽ K, write Ej,⩽k,∅ = Ej−1,∅ ∪ ∪ki=1Ej,i,∅ and Ej,⩽k,d = Ej−1,d ∪
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∪ki=1Ej,i,d. Thus, we can deduce that

∆⟨#(CΛN
∗ ∩ (ΛN/2−jNα′ \ ΛN/2−(j+1)Nα′ ))1Ec

j,⩽k,∅
1Ec

j,⩽k,d
| (σΛN ,±, σ̃ΛN ,±)Vj,k⟩πΛN

= 1Ec
j,⩽k,∅

1Ec
j,⩽k,d

∆⟨#(CΛN
∗ ∩ (ΛN/2−jNα′ \ ΛN/2−(j+1)Nα′ )) | (σΛN ,±, σ̃ΛN ,±)Vj,k⟩πΛN

⩽ 8#Aj,k · 1Ec
j,⩽k,∅

1Ec
j,⩽k,d

,

where the equality holds since Ej,⩽k,∅ and Ej,⩽k,d are measurable with respect to

(σΛN ,±, σ̃ΛN ,±)Vj,k , and the inequality is obtained by applying Corollary 2.3.16 with V = Vj,k

(note that ΛN/2−jNα′ ∩ Vj,k = ∅ on the event Ecj,⩽k,d). Averaging over the conditioning in

the preceding display and recalling that Ej−1,∅ ⊆ Ej,⩽k,∅ ⊆ Ej,∅ and Ej,⩽k,d ⊆ Ej,d, we deduce

that

∆⟨#(CΛN
∗ ∩ (ΛN/2−jNα′ \ ΛN/2−(j+1)Nα′ ))1Ec

j,∅
1Ec

j,d
⟩πΛN

⩽ ⟨8#Aj,k · 1Ec
j−1,∅

1Ec
j,⩽k,d

⟩πΛN
.

Since
∑K

k=1#Aj,k ·1Ec
j,⩽k,d

⩽ #(CΛN
∗ ∩(ΛN/2−(j−1)Nα′ \ΛN/2−jNα′ )), summing the preceding

display over 1 ⩽ k ⩽ K yields (2.3.48) (recall that ∆K = N−α(α′)2⌊Nαα′⌋ ⩾ 105 if N ⩾ N0

for large enough N0). This completes the proof of the lemma.

2.3.4. Proof of Theorem 2.1.1 for positive temperature

We continue to consider h̃(N) defined as in (2.3.34), and let µΛN ,±, µ̃ΛN ,±, πΛN
be defined

as in Section 2.3.3. For δ > 0, let Qδ ⊆ [−1, 1] be the collection of multiples of δ, and for

q ∈ Qδ define E∗
o,N,q to be an event measurable with respect to the Gaussian field by (the

tilde symbol only applies on the minus version below)

E∗
o,N,q = {⟨σΛN ,+

o ⟩µΛN,+ ⩾ q + δ, ⟨σ̃ΛN ,−
o ⟩µ̃ΛN,− ⩽ q − δ} . (2.3.49)

By admissibility, on the event E∗
o,N,q we have πΛN

(o ∈ CΛN
∗ ) ⩾ δ. Combined with Lemma

2.3.17 and (2.3.46), it yields that

P(E∗
o,N,q) = O(N−10/δ) . (2.3.50)
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(Throughout, O(1) hides a constant that may depend on (ε, β).) Next, we define

Eo,N,q = {⟨σΛN ,+
o ⟩µΛN,+ ⩾ q + δ, ⟨σΛN ,−

o ⟩µΛN,− ⩽ q − δ} . (2.3.51)

By monotonicity, we thus have

Eo,N,q ⊆ Eo,N ′,q and E∗
o,N,q ⊆ E∗

o,N ′,q for all N ′ ⩽ N . (2.3.52)

Lemma 2.3.18. Let δ = N−3/3. There exists C = C(ε, β) > 0 such that P(Eo,N,q) ⩽ CN−6

for all q ∈ Qδ.

Proof. While the proof of the lemma is similar to that of Lemma 2.2.14, we nevertheless

provide a self-contained proof for clarity of exposition.

For A ⊆ Z2, we set hA =
∑

v∈A hv. Without loss of generality, let us only consider N = 4n

for some n ⩾ 1, and for 1 ⩽ ℓ ⩽ n, we define {h̃(4
ℓ)

v : v ∈ Λ4ℓ} as in (2.3.34). Write

Aℓ = Λ4ℓ \ Λ4ℓ−1 . For 0.9n ⩽ ℓ ⩽ n, let Fℓ = σ(hv : v ∈ Λ4ℓ) and write

hv = (#Aℓ)
−1hAℓ

+ gv for v ∈ Aℓ , (2.3.53)

where {gv : v ∈ Aℓ} is a mean-zero Gaussian process independent of hAℓ
and {gv : v ∈

Aℓ} for 0.9n ⩽ ℓ ⩽ n are mutually independent. Let F ′
ℓ be the σ-field which contains

every event in Fℓ that is independent of hAℓ
(so in particular Fℓ ⊆ F ′

ℓ+1 ⊆ Fℓ+1). Write

E∗ = ∪0.9n⩽ℓ⩽nE∗
o,4ℓ,q

. By monotonicity of ⟨σΛN ,+
o ⟩µΛN,+ and ⟨σΛN ,−

o ⟩µΛN,− with respect

to the external field, there exists an interval Iℓ measurable with respect to F ′
ℓ such that

conditioned on F ′
ℓ we have Eo,4ℓ,q occurs if and only if hAℓ

∈ Iℓ. Let I ′ℓ be the maximal

sub-interval of Iℓ which shares the upper endpoint and |I ′ℓ| ⩽
#Aℓ

4α(α′)2ℓ (here |I ′ℓ| denotes the

length of the interval I ′ℓ). By definition in (2.3.49) and (2.3.34), we see from (2.3.53) that
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conditioned on F ′
ℓ we have that Eo,4ℓ,q ∩ (E∗

o,4ℓ,q
)c occurs only if hAℓ

∈ I ′ℓ. Thus,

P(Eo,4ℓ,q ∩ (E∗
o,4ℓ,q)

c | F ′
ℓ) ⩽ P(hAℓ

∈ I ′ℓ) , for 0.9n ⩽ ℓ ⩽ n .

Combined with the fact that Var(hAℓ
) = ε2#Aℓ, this gives that for C = C(ε, β) > 0 (whose

value may be adjusted below)

P(Eo,4ℓ,q ∩ (E∗
o,4ℓ,q)

c | F ′
ℓ) ⩽

C

4ℓ(α(α′)2−1)
.

By (2.3.52), we have Eo,N,q ∩ Ec∗ = ∩nℓ=0.9n(Eo,4ℓ,t ∩ (E∗
o,4ℓ,q

)c). Since (Eo,4ℓ,t ∩ (E∗
o,4ℓ,q

)c) is

Fℓ-measurable (and thus is F ′
ℓ+1-measurable), we deduce that (recalling α(α′)2 > 1)

P(Eo,N,q ∩ Ec∗) ⩽ CN−6 .

By (2.3.50), we have P(E∗) ⩽ CN−6. Combined with the preceding display, this completes

the proof of the lemma.

Define Eo,N to be an event measurable with respect to the Gaussian field by

Eo,N = {⟨σΛN ,+
o ⟩µΛN,+ − ⟨σΛN ,−

o ⟩µΛN,− ⩾ N−3} . (2.3.54)

Since Eo,N ⊆ ∪q∈Qδ
Eo,N,q with δ = N−3/3, we get from Lemma 2.3.18 that P(Eo,N ) =

O(N−3). Thus,

E(⟨σΛN ,+
o ⟩µΛN,+ − ⟨σΛN ,−

o ⟩µΛN,−) ⩽ 2P(Eo,N ) + E(1Ec
o,N

(⟨σΛN ,+
o ⟩µΛN,+ − ⟨σΛN ,−

o ⟩µΛN,−))

= O(N−3) . (2.3.55)

Remark 2.3.19. In Lemma 2.3.18, we work with Eo,N,q other than Eo,N , for the reason that

we do not have the property that Eo,N occurs if and only if hAℓ+1
is in a certain interval (but

the property holds for Eo,N,q).
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In order to prove Theorem 2.1.1, we will consider a monotone coupling of µΛN ,± and consider

CΛN = {v ∈ ΛN : σΛN ,+
v > σΛN ,−

v }. We wish to have that {o ∈ CΛN } occurs only if o is

connected to ∂ΛN in CΛN . However, as we have seen in Remark 2.3.8, this property does not

hold for all monotone couplings of µΛN ,± (For instance if we build an adaptive admissible

coupling by first sampling the spin at o and then the rest of the spins, then it is possible to get

a configuration where the spin disagrees at o but there exists a contour surrounding o where

all spins agree on this contour). In order to address this issue, we will construct an adaptive

admissible coupling πΛN
such that this percolation property holds. Our construction is

similar to that in Section 2.3.3 in a way that we explore CΛN in a breadth first search order.

But our construction now is much simpler as we no longer need to consider multiple phases.

By Definition 2.3.9, in order to define πΛN
we only need to specify the order of vertices in

which we sample the spins, as described as follows. Throughout the procedure, we let CΛN

be the collection of vertices v which have been sampled and satisfy σΛN ,+
v > σΛN ,−

v . We set

A0 = ∂ΛN and for k = 0, 1, 2, . . ., we inductively employ the following procedure (which we

refer to as stage).

• At stage k + 1, first set Ak+1 = ∅. If Ak = ∅, we sample the unexplored vertices in

ΛN in an (arbitrary) prefixed order and stop our procedure. Otherwise, we explore all

the unexplored neighbors of Ak (in a certain arbitrary prefixed order) and sample the

spins at these vertices.

• For each newly sampled vertex, if it is in CΛN then we add it to Ak+1.

Lemma 2.3.20. Under the coupling πΛN
, o ∈ CΛN only if o is connected to ∂ΛN in CΛN .

Proof. Let k∗ be the first k such that Ak = ∅. If o has been explored by the end of

Stage (k∗ − 1), we see that o is connected to ∂ΛN in CΛN . Otherwise, denote Vk∗ the

collection of explored vertices at the end of Stage (k∗). If o was explored in Stage k∗,

then o ̸∈ CΛN (since Ak∗ = ∅). If o was not explored by the end of Stage k∗, we see that

σΛN ,+ and σΛN ,− agree on ∂V c
k∗

, and thus they will have to agree with each other on V c
k∗

by
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Lemma 2.3.11 (this is because σΛN ,+
v and σΛN ,− have the same conditional marginal for all

v ∈ V c
k∗

and thus have to agree with each other in an admissible coupling). This in particular

implies that o ̸∈ CΛN , completing the proof of the lemma.

Proof of Theorem 2.1.1: T > 0. Consider the adaptive admissible coupling πΛN
. We will

use the fact that P⊗πΛN
(v ∈ CΛN ) = 1

2E(⟨σ
ΛN ,+
v ⟩µΛN,+ −⟨σΛN ,−

v ⟩µΛN,−) for all v ∈ ΛN . Let

N0 = N0(ε, β) be chosen later. For any box B, recall that Blarge is the box concentric with

B of doubled side length. For B ∈ B(N,N0), we say B is open if CΛN ∩B ̸= ∅. In order to

analyze this percolation process, we say a box B is exceptional if
∑

v∈B(⟨σ
Blarge,+
v ⟩

µB
large,+ −

⟨σB
large,−

v ⟩
µB

large,−) ⩾ N
−1/2
0 (so exceptional is a property measurable with respect to {hv :

v ∈ Blarge}). By (2.3.55) and monotonicity,

P(B is exceptional) ⩽ N
1/2
0

∑
v∈B

E(⟨σBlarge,+
v ⟩

µB
large,+ − ⟨σBlarge,−

v ⟩
µB

large,−) = O(N
−1/2
0 ) .

Recall Definition 2.2.9. We see that the exceptional boxes on B(N,N0) form a percolation

process which satisfies the (N,N0, 4, p)-condition with p = O(N
−1/2
0 ). In addition, for any

box B which is not exceptional, denoting by FB the σ-field generated by spin configurations

outside Blarge, we see from monotonicity that

πΛN
(B is open | FB) ⩽

∑
v∈B

(⟨σBlarge,+
v ⟩

µB
large,+ − ⟨σBlarge,−

v ⟩
µB

large,−) = O(N
−1/2
0 ) .

Altogether, this implies that the collection of open boxes forms a percolation process which

also satisfies the (N,N0, 4, p)-condition with p = O(N
−1/2
0 ). By Lemma 2.3.20, in order for

o ∈ CΛN , it is necessary that there exists an open lattice animal on B ∈ B(N,N0) with

size at least N
10N0

. Now, choosing N0 sufficiently large (so that p is sufficiently small) and

applying Lemma 2.2.10 yields that

P⊗ πΛN
(o ∈ CΛN ) ⩽ c−1e−cN for c = c(ε, β) > 0 ,
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completing the proof of the theorem.
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CHAPTER 3

Hamilton–Jacobi equations for inference of matrix tensor

products

This chapter is essentially borrowed from [39], joint with Hong-Bin Chen.

Abstract. We study the high-dimensional limit of the free energy associated with the infer-

ence problem of finite-rank matrix tensor products. In general, we bound the limit from

above by the unique solution to a certain Hamilton–Jacobi equation. Under additional as-

sumptions on the nonlinearity in the equation which is determined explicitly by the model,

we identify the limit with the solution. Two notions of solutions, weak solutions and vis-

cosity solutions, are considered, each of which has its own advantages and requires different

treatments. For concreteness, we apply our results to a model with i.i.d. entries and sym-

metric interactions. In particular, for the first order and even order tensor products, we

identify the limit and obtain estimates on convergence rates; for other odd orders, upper

bounds are obtained.

3.1. Introduction

Tensor factorizations or tensor decompositions play important roles in numerous applica-

tions. In this work, we study the inference problem of estimating tensor products of matrices.

Let us first describe the model we are concerned with. Fix K ∈ N and let PXN be the law of

X ∈ RN×K , where N ∈ N will be sent to ∞. For a fixed L ∈ N, we observe

Y =

√
2t

Np−1
X⊗pA+W ∈ RN

p×L. (3.1.1)

where t ⩾ 0 is interpreted as the signal-to-noise ratio; ⊗ is the Kronecker product (hence

X⊗p ∈ RNp×Kp); A ∈ RKp×L is a deterministic matrix; and W ∈ RNp×L consists of

independent standard Gaussian entries.

The inference task is to recover the information of X based on the observation of Y . Hence,
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we investigate the law of X conditioned on observing Y . Bayes’ rule gives that, for any

bounded measurable g : RN×K → R, we have

E
[
g(X)

∣∣Y ] = ´
RN×K g(x)e

H◦
N (t,x)PXN (dx)´

RN×K e
H◦

N (t,x)PXN (dx)
.

Here the Hamiltonian associated with this model is given by

H◦
N (t, x) =

√
2t

Np−1
(x⊗pA) · Y − t

Np−1
|x⊗pA|2. (3.1.2)

Throughout this paper, the dot product between two tensors, matrices or vectors of the

same size is the entry-wise inner product. We denote by | · | the associated norm. The goal

is to understand the high-dimensional limit as N → ∞ of the free energy

EF ◦
N (t) =

1

N
E log

ˆ
RN×K

eH
◦
N (t,x)PXN (dx).

We briefly discuss the generality of the model (3.1.1) and its relation to other models in-

volving the inference of matrix products. Among the ones widely studied are the models

concerning the second order products. The inference problem of nonsymmetric matrices

(or the spiked Wishart model) is given by Y =
√

2t
NX1X

⊺
2 +W . Works investigating this

model include [90, 14, 12, 79, 86, 36]. When X1 = X2, this becomes the inference problem

of symmetric matrices (or the spiked Wigner model), which is studied in [82, 52, 95, 94].

A generalization of these spiked matrix models can be seen in the study of community

detection problems and the stochastic block models. In certain settings, the community

detection problem is asymptotically equivalent to Y =
√

2t
NXBX

⊺ +W where B is deter-

ministic and models the community interactions (see [104]). More generally, the community

detection with several correlated networks is asymptotically equivalent to the multiview

spiked matrix model Yl =
√

2t
NXBlX

⊺ +Wl for l = 1, 2, . . . , L where each Bl reflects one

network (see [87, 88]). All of these second order models can be represented in the form of
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Y =
√

2t
NX

⊗2
√
S +W where S is a positive semidefinite matrix. This model is studied in

[103], and its equivalence to the models above is discussed in more details therein. Hence, the

models so far mentioned can be seen as special cases of (3.1.1) for p = 2. In Appendix 3.8,

we will demonstrate the representation of the nonsymmetric matrix inference problem into

the form of (3.1.1). Higher order cases (p ⩾ 2) include Y =
√

2t
Np−1X

⊗p +W with vector

X ∈ RN in [12, 95], and Y =
√

2t
Np−1

∑r
k=1X

⊗p
k +W with each vector Xk ∈ RN in [83]. The

model (3.2.16) studied in [85] and considered in Section 3.2.3 as a special case also belongs

to this class. Again, they can be viewed as special cases of (3.1.1).

Recently, the powerful method of adaptive interpolations was introduced in [12]. This

technique and its improvements have been employed in works including [11, 86, 103]. In

this work, we follow the approach via Hamilton–Jacobi equations set forth in [95, 94, 92,

98, 96, 93]. Let FN (t, h) be the free energy corresponding to an enriched version of the

Hamiltonian (3.1.2). Here h is an additional variable and the original free energy satisfies

F ◦
N (t) = FN (t, 0). We seek to compare the limit of EFN (t, h) as N → ∞ with the solution

of the following Hamilton–Jacobi equation

(
∂tf − H(∇f)

)
(t, h) = 0.

Here the nonlinearity H is given by a simple formula (3.2.6) in terms of the interaction matrix

A in (3.1.1). To make sense of solutions of this equation and the convergence, two notions

have been explored. The notion of viscosity solutions of Hamilton–Jacobi equations was

initially adopted to study convergence of free energies in [95] and later the notion of weak

solutions was taken in [94]. Viscosity solutions are in general heavier to handle. Bounds

from two sides require different treatments, and often one side is much easier than the other

and requires weaker assumptions. The convergence happens in the local L∞
t L

∞
h topology

while it takes considerable effort to obtain convergence rates. On the other hand, weak

solutions are simpler and it is easier to obtain estimates on convergence rates, although the

convergence takes place in local L∞
t L

1
h. It can be upgraded to estimates in L∞

t L
∞
h by giving
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up some powers (see Remark 3.2.4). A more detailed comparison of these two notions of

solutions can be found in [94, Section 2].

We utilize both notions in this work. For any interaction matrix A (equivalently, for any H of

the form (3.2.6)), we obtain an upper bound on the limit of the free energy in Theorem 3.2.2

via viscosity solutions. This theorem also gives the corresponding lower bound under an

additional assumption that H is convex. Employing weak solutions as in Theorem 3.2.1, we

obtain convergence and estimates on convergence rates under an assumption on H which is

weaker than convexity.

We emphasize that, different from the usual approach in statistical mechanics, the existence

of a variational formula for the limit of free energies is not a priori needed in our approach.

Instead, the existence of solutions to the Hamilton–Jacobi equation is sufficient. In the weak

solution approach, we prove the existence in a straightforward manner by verifying that the

free energies form a Cauchy sequence. For viscosity solutions, there are classical tools to

ensure existence. Here, we prove that the Hopf formula is a viscosity solution as a useful

fact (see Remark 3.2.5), and simply use this to furnish the existence for convenience.

The rest of the paper is organized as follows. We describe the setting and state main results

in Section 3.2. We apply these results to a special case where X has i.i.d. entries and the in-

teraction is symmetric in Section 3.2.3. In Section 3.3, we show that the free energy satisfies

an approximate Hamilton–Jacobi equation and collect some basic results of the derivatives

of the free energy. Section 3.4 gives the precise definition of weak solutions and the unique-

ness of solutions. In Section 3.5, we show the convergence of the free energy to a weak

solution, and finish the proof of Theorem 3.2.1. The definition of viscosity solutions and the

corresponding well-posedness results are in Section 3.6. The ensuing Section 3.7 studies the

convergence of the free energy to the viscosity solution and proves Theorem 3.2.2. A special

version of the Fenchel–Moreau biconjugation theorem on the set of positive semidefinite

matrices is needed to analyze the Hopf formula. It is stated and proved in Appendix 3.9.
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3.2. Setting and Main results

3.2.1. Setting

We assume that the random matrix X ∈ RN×K in (3.1.1) satisfies

|X| ⩽
√
NK. (3.2.1)

For convenience, we use the shorthand notation

x̃ = x⊗pA, ∀x ∈ RN×K . (3.2.2)

We enrich the Hamiltonian (3.1.2) by introducing

HN (t, h, x) =

√
2t

Np−1
x̃ · Y − t

Np−1
|x̃|2

+
√
2h · (x⊺Y )− h · (x⊺x).

(3.2.3)

Here Y = X
√
2h + Z, where h ∈ SK+ , the set of K ×K (symmetric) positive semi-definite

matrices, and entries of Z ∈ RN×K are independent standard Gaussian variables. This

Hamiltonian HN is associated with the law of X conditioned on observing both Y and Y .

The corresponding free energy is given by

FN (t, h) =
1

N
log

ˆ
RN×K

eHN (t,h,x)PXN (dx). (3.2.4)

Let FN (t, h) = EFN (t, h) be its expectation.

Set R+ = [0,∞). We consider the Hamilton–Jacobi equation

∂tf − H(∇f) = 0, in R+ × SK+ (3.2.5)
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where H : SK+ → R is given by

H(q) =
(
AA⊺) · q⊗p, ∀q ∈ SK+ . (3.2.6)

3.2.2. Main results

To state the results, we need more notation. Let us introduce

SK+,M =
{
h ∈ SK+ : |h| ⩽M

}
. (3.2.7)

We also denote the set of K×K symmetric matrices by SK , and the set of K×K symmetric

positive definite matrices by SK++. For N ∈ N and M > 0, we define

KM,N =

(
E sup

(t,h)∈[0,M ]×SK+,M

∣∣FN − FN |2
) 1

2

, (3.2.8)

and for any function ψ : SK+ → R,

Lψ,M,N = sup
h∈SK+,M

∣∣FN (0, h)− ψ(h)
∣∣. (3.2.9)

The quantity KM,N measures the concentration of FN . Many tools are available to estimate

this. In view of (3.2.3) and (3.2.4), we can recast FN (0, h) as the free energy corresponding

to a decoupled system (inference of X based on the observation of Y with Y in (3.2.3)).

Hence, Lψ,M,N is also a relatively simple object to analyze.

Throughout, the gradient ∇ is taken in the space variable h ∈ SK+ (sometimes written

as x ∈ SK+ ). To avoid confusion when multiple ∇ are present, we specifically denote the

differential of H by DH. We identify SK with RK(K+1)/2 in an isometric way (see (3.4.1)) and

endow it with the Lebesgue measure. Let A be the set of real-valued nondecreasing, Lipschitz
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and convex functions on SK+ . Here a function u : SK+ → R is said to be nondecreasing provided

u(a) ⩾ u(b), if a− b ∈ SK+ . (3.2.10)

We define

AH =
{
ϕ ∈ A : ∇ ·

(
DH(∇ϕ)

)
⩾ 0
}
, (3.2.11)

where the inequality is understood in the sense of distribution, namely
´
DH(∇ϕ) · ∇η ⩽ 0,

for all nonnegative smooth function η compactly supported on SK++.

Before stating the theorems, we comment that the assumptions imposed in them are three-

fold. The first part is on the concentration, namely, the quantity KM,N . The second part

is on FN (0, ·) or Lψ,M,N , which is about the convergence of the free energy in the afore-

mentioned decoupled system. The third part is on H (equivalently on A due to (3.2.6)) or,

further, on AH.

Theorem 3.2.1. Let p ∈ N. Suppose

• supM⩾1,N∈N(KM,N/M
β) < ∞ for some β > 0, and limN→∞KM,N = 0 for each

M ⩾ 1;

• there is a function ψ : SK+ → R such that limN→∞ Lψ,M,N = 0 for each M ⩾ 1;

• AH is convex and FN (t, ·) ∈ AH for all t ⩾ 0 and N ∈ N.

Then there is a unique weak solution f to (3.2.5) with f(0, ·) = ψ, and there is a constant

C > 0 such that the following holds for all M ⩾ 1 and all N ∈ N:

sup
t∈[0,M ]

ˆ
SK+,M

∣∣FN (t, h)− f(t, h)
∣∣dh ⩽ CMα

(
Lψ,CM,N +N− 1

14 +
(
KCM,N/M

β
) 2

7

)
,

(3.2.12)
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where α = K(K+1)
2 + β∨1

2 + 1.

Theorem 3.2.2. Let p ∈ N. Suppose that there is ψ : SK+ → R such that FN (0, ·) converges

to ψ pointwise, and that for each M > 0 we have

lim
N→∞

KM,N = 0. (3.2.13)

Then, for any H of the form (3.2.6), there is a unique Lipschitz viscosity solution f to (3.2.5)

with f(0, ·) = ψ, and

lim sup
N→∞

FN (t, h) ⩽ f(t, h), ∀(t, h) ∈ R+ × SK+ .

If, in addition, H is convex, then a corresponding lower bound holds and thus

lim
N→∞

FN (t, h) = f(t, h), ∀(t, h) ∈ R+ × SK+ .

The proofs of Theorem 3.2.1 and Theorem 3.2.2 are in Section 3.5 and Section 3.6, respec-

tively.

Remark 3.2.3 (Conditions on AH). When ϕ is smooth, we can compute that ∇·
(
DH(∇ϕ)

)
=

D2H(∇ϕ) · ∇2ϕ where D2H is the Hessian of H. Lemma 3.4.5 will show that if H is convex,

then the conditions on AH in Theorem 3.2.1, namely, the convexity of AH and FN (t, ·) ∈ AH,

are satisfied.

Note that when p ⩽ 2, D2H is constant and in this case AH is always convex. Hence, the

only condition to check is that FN (t, ·) ∈ AH. In Appendix 3.8, we demonstrate a special

model of (3.1.1) with p = 2 where this condition is satisfied but H is not convex. This model

is equivalent to the nonsymmetric matrix inference problem considered in [90, 14, 12, 79,

86, 36].

It seems that the conditions on AH are not satisfied by the model (3.2.16) for odd p ⩾ 1.
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The explicit expression of D2H in this model is computed in (3.4.8). We believe that this

issue is closely related to a similar difficulty in the adaptive interpolation approach to the

same model with odd p, which is discussed in [85, Section 7].

Remark 3.2.4 (Local uniform convergence). The local L∞
t L

1
x convergence in Theorem 3.2.1

can be upgraded to local L∞
t L

∞
x . Let ξ be a smooth function supported on −SK+,1, and

satisfy 0 ⩽ ξ ⩽ 1 and
´
ξ > 0. For ε ∈ (0, 1), let ξε(x) = ε−K(K+1)/2ξ(ε−1x). Then, for

every Lipschitz g : SK+ → R, we have

∥g∥L∞(SK+,M ) ⩽ ∥g ∗ ξε∥L∞(SK+,M ) + ∥g − g ∗ ξε∥L∞(SK+,M )

⩽ Cε−K(K+1)/2∥g∥L1(SK+,M+1)
+ Cε∥g∥Lip.

By (3.3.8), we know FN (t, ·) is Lipschitz uniformly in N and t, and thus f(t, ·) is also

Lipschitz. Replace g in the above by FN (t, ·) − f(t, ·), apply Theorem 3.2.1 and optimize

the above display over ε to see convergence in local L∞
t L

∞
x .

Remark 3.2.5 (Variational formulae). Under the assumptions on ψ in the two theorems, we

can show that ψ is Lipschitz, convex and nondecreasing in the sense that ∇ψ ∈ SK+ . By

the pointwise convergence FN (0, ·) → ψ and (3.3.8), (3.3.10), (3.3.12), and the pointwise

convergence FN (0, ·) → ψ, we can see that ψ is Lipschitz in the two theorems above.

Proposition 3.6.6 will show that f in Theorem 3.2.2 can be represented by the following

variational formula

f(t, x) = sup
z∈SK+

inf
y∈SK+

{
z · (x− y) + ψ(y) + tH(z)

}
, ∀(t, x) ∈ R+ × SK+ . (3.2.14)

When H is convex, comparing Theorem 3.2.1 with Theorem 3.2.2 in view of Remark 3.2.4,

we can see that the unique weak solution f coincides with the viscosity solution pointwise,

and thus also admits the representation (3.2.14). For general H, we believe weak solutions

are still of the form (3.2.14). The relatively difficult part is to verify that (3.2.14) satisfies
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(2) of Definition 3.4.1.

Remark 3.2.6 (Possibility for weaker assumptions on H). Let us point out key inequalities,

where the assumptions on H are used. If these inequalities still hold in certain models, then

our results should still be valid there.

The conditions on AH in Theorem 3.2.1 are used to obtain the inequality (3.4.4) in the

proof of Lemma 3.4.3, which is further used to prove the uniqueness of weak solutions

(Proposition 3.4.2), and the convergence to the unique weak solution (Proposition 3.5.1 and

Proposition 3.5.2). In fact, uniqueness and convergence are still valid if the right-hand side

of (3.4.4) is replaced by a negative constant depending locally on the temporal and spacial

variables. However, the convergence rate can be much worse (logarithmic in N), because the

absolute value of this constant will appear in the exponential factor of Gronwall’s lemma.

The convexity assumption in the second assertion of Theorem 3.2.2 is only used to apply

Jensen’s inequality to derive (3.7.28) in the proof of that the limit of FN is a viscosity

supersolution.

3.2.3. Special case

We apply Theorem 3.2.1 and Theorem 3.2.2 to an i.i.d. case. Let P be a probability distri-

bution in RK supported on {z ∈ RK : |z| ⩽
√
K}. For each N ∈ N, let the row vectors of

X, namely X1,· , X2,· , . . . , XN,·, be i.i.d. with law P. Set L = 1 and consider A ∈ RKp×1

given by

Aj =


1, if j1 = j2 = · · · = jp,

0, otherwise.

Here, we used the multi-index notation

j = (j1, j2, . . . , jp) ∈ {1, · · · ,K}p. (3.2.15)
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Explicitly, (3.1.1) now becomes

Yi =

√
2t

Np−1

K∑
j=1

p∏
n=1

Xin,j +Wi, i ∈ {1, · · · , N}p, (3.2.16)

and (3.2.6) becomes

H(q) =
K∑

j,j′=1

(
qj,j′

)p
, q ∈ SK+ . (3.2.17)

Using (3.2.4) and the fact that rows of X are i.i.d., we can see FN (0, ·) = F 1(0, ·), for all

N ∈ N. Setting ψ = F 1(0, ·), we clearly have Lψ,M,N = 0 for all M and N . Estimate on

KM,N is given in Lemma 3.10.1. When p = 1 or p is even, Lemma 3.4.5 shows that the

assumptions on AH in Theorem 3.2.1 are satisfied. Applying the main results, we have the

following corollary.

Corollary 3.2.7. In the special case described above, let f be given by (3.2.14) with ψ =

F 1(0, ·). Then for all p ∈ N, we have

lim sup
N→∞

FN (t, h) ⩽ f(t, h), ∀(t, h) ∈ R+ × SK+ .

If p is even or p = 1, then there is C > 0 such that, for all M ⩾ 1 and N ∈ N,

sup
t∈[0,M ]

ˆ
SK+,M

∣∣FN (t, h)− f(t, h)
∣∣dh ⩽ CM

K(K+1)+3
2 N− 1

14 .

This model (3.2.16) has also been investigated in [85] and similar convergence results for

even orders were established. Although the convergence for odd orders remains open, we

are able to obtain an upper bound for the limit of free energy.
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3.3. Approximate Hamilton–Jacobi equations

The goal of this section is to show that FN satisfies an approximate Hamilton–Jacobi equa-

tion, as summarized in Proposition 3.3.1 below. There is a considerable overlap between

results in this section and [94, Section 3], which follows the approach of [9]. To simplify

our presentation, whenever similar arguments are available in [94, Section 3], we shall only

demonstrate key steps and refer to [94, Section 3] for more detailed computations.

Proposition 3.3.1 (Approximate Hamilton–Jacobi equations). There exists C > 0 such

that for every N ⩾ 1 and uniformly over R+ × SK+ ,

∣∣∂tFN − H(∇FN )
∣∣2 ⩽ Cκ(h)N− 1

4
(
∆FN + |h−1|

) 1
4 + CE

∣∣∇FN −∇FN
∣∣2.

Here κ is the condition number of h ∈ SK+ given by

κ(h) :=

 |h||h−1|, if h ∈ SK++,

+∞ otherwise.
(3.3.1)

3.3.1. Proof of Proposition 3.3.1

We start by proving the following identity

∂tFN − H
(
∇FN

)
=

1

Np

(
E
〈
H(x⊺x′)

〉
− H

(
E
〈
x⊺x′

〉 ))
. (3.3.2)

Proof of (3.3.2). Let us first compute ∂tFN and ∇FN . Indeed, from (3.2.4), we can compute

∂tFN (t, h) =
1

N

〈
2

Np−1
x̃ · X̃ +

√
1

2Np−1t
x̃ ·W − |x̃|2

Np−1

〉
, (3.3.3)

and, for a ∈ SK ,

a · ∇FN (t, h) =
1

N

〈
2a · (x⊺X) +

√
2D√

h(a) · (x
⊺Z)− a · (x⊺x)

〉
. (3.3.4)
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Here D√
h is the differential of the square-root function at h ∈ SK++. More precisely, for

h ∈ SK++ and a ∈ SK , we have

D√
h(a) = lim

ε→0

(√
h+ εa−

√
h
)
.

Using the Gaussian integration by parts (c.f. [94, Lemma 3.3]) and the Nishimori identity

(c.f. [94, Section 3.1]), we can get from (3.3.3) that

∂tFN =
1

Np
E
〈
x̃ · x̃′

〉
. (3.3.5)

Here x′ is an independent copy (or replica) of x with respect to the Gibbs measure ⟨·⟩.

To compute ∇FN , we refer to the derivation of [94, (3.17)]. The object x therein is X in our

notation, and our FN (t, h) corresponds to FN (t, 2h) there. Hence [94, (3.17)] is equivalent

to ∇FN = 1
NE ⟨x⊺X⟩. A further application of the Nishimori identity yields

∇FN =
1

N
E
〈
x⊺x′

〉
. (3.3.6)

By (3.2.2) and (3.2.6), we have x̃ · x̃′ = H(x⊺x′). This along with (3.3.5), (3.3.6) and (3.2.6)

implies (3.3.2).

Now, to prove Proposition 3.3.1, we only need to estimate the right hand side of (3.3.2).

Using (3.2.6) and (3.2.1), we get

∣∣∣E 〈H(x⊺x′)〉− H
(
E
〈
x⊺x′

〉 )∣∣∣ ⩽ CE
〈∣∣∣(x⊺x′)⊗p − (E 〈x⊺x′〉 )⊗p∣∣∣〉

⩽ CNp−1E
〈∣∣x⊺x′ − E

〈
x⊺x′

〉 ∣∣〉 ,
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Jensen’s inequality gives

∣∣∣E 〈H(x⊺x′)〉− H
(
E
〈
x⊺x′

〉 )∣∣∣2 ⩽ CN2p−2E
〈∣∣x⊺x′ − E

〈
x⊺x′

〉 ∣∣2〉 .
We need the following estimate

1

N2
E
〈∣∣x⊺x′ − E

〈
x⊺x′

〉 ∣∣2〉 ⩽ Cκ(h)N− 1
4
(
∆FN + |h−1|

) 1
4 + CE

∣∣∇FN −∇FN
∣∣2.

This is exactly [94, (3.18)], and we shall omit the derivation here. The above two displays

and (3.3.2) gives the desired result.

3.3.2. Estimates of derivatives

We finish this section by collecting useful results in Lemma 3.3.2 and (7.5.2). Recall A ∈

RKp×L and W ∈ RNp×L. We define

∥WA⊺∥ = sup
y1, y2, ..., yp∈SNK−1

{
(WA⊺) · (y1 ⊗ y2 ⊗ · · · ⊗ yp)

}
(3.3.7)

where SNK−1 denotes the unit sphere in RNK .

Lemma 3.3.2. There exists a constant C > 0 such that the following estimates hold uni-

formly over R+ × SK+ for every N ∈ N:

|∂tFN |+ |∇FN | ⩽ C, (3.3.8)

|∂tFN | ⩽ C

(
1 +

∥WA⊺∥√
Nt

)
, and |∇FN | ⩽ C

(
1 +

|Z||h−1|
1
2

√
N

)
. (3.3.9)

Everywhere in R+ × SK+ , we have

∂tFN ⩾ 0, ∇FN ∈ SK+ , (3.3.10)

∂2t FN ⩾ 0. (3.3.11)
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Moreover, for every a ∈ SK , we have

a · ∇(a · ∇FN ) ⩾ 0, (3.3.12)

a · ∇(a · ∇FN ) ⩾ −C|a|
2|Z||h−1|

3
2

√
N

. (3.3.13)

Proof of (3.3.8). It follows easily from (3.2.1), (3.3.5) and (3.3.6).

Proof of (3.3.9). In view of (3.3.7), we have

∣∣∣(x⊗pA) ·W ∣∣∣ = ∣∣∣(WA⊺) · (x⊗p)∣∣∣ ⩽ ∥WA⊺∥|x|p.

In addition, it can be seen from (3.2.2) that |x̃| ⩽ C|x|p. Using these, (3.3.3) and (3.2.1),

we have

∣∣∂tFN (t, h)∣∣ ⩽ 〈 2

Np
|x̃||X̃|+

√
1

2tNp+1

∣∣∣(x⊗pA) ·W ∣∣∣+ 1

Np
|x̃|2
〉

⩽ C +
C∥WA⊺∥√

Nt
+ C = C

(
1 +

∥WA⊺∥√
Nt

)
.

For the second estimate in (3.3.9), we need the following estimate

|D√
h(a)| ⩽ C|a||h−1|

1
2 . (3.3.14)

Its proof can be seen from the derivation of [94, (3.7)]. Insert a = ∇FN
|∇FN | ∈ SK into (3.3.4)

and then use (3.3.14) to see

|∇FN | ⩽

〈
2

N

∣∣x⊺X∣∣+ C|h−1|
1
2

N

∣∣x⊺Z∣∣+ 1

N
|x⊺x|

〉
⩽ C

(
1 +

|Z||h−1|
1
2

√
N

)
.

Proof of (3.3.11). Recall (3.3.5). Using (3.2.3), we differentiate ∂tFN one more time in t to
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see

Np∂2t FN = E
〈
(x̃ · x̃′)

(
2

Np−1

(
x̃+ x̃′ − 2x̃′′

)
· X̃ − 1

Np−1

(
|x̃|2 + |x̃′|2 − 2|x̃′′|2

)
+

1√
2Np−1t

(
x̃+ x̃′ − 2x̃′′

)
·W

)〉
.

Using the symmetry between replicas, the Nishimori identity and the Gaussian integration

by parts, we can compute

N2p−1∂2t FN = 2E
〈
(x̃ · x̃′)

(
x̃ · x̃′ − 2x̃ · x̃′′ + x̃′′ · x̃′′′

)〉
= 2E

∑
i,j,k,l

(
⟨x̃i,kx̃j,l⟩2 − 2 ⟨x̃i,kx̃j,l⟩ ⟨x̃i,k⟩ ⟨x̃j,l⟩+ ⟨x̃i,k⟩2 ⟨x̃j,l⟩2

)
⩾ 0.

This gives (3.3.11).

Proof of (3.3.10). By the independence of the replica x′ from x, we can rewrite (3.3.5) as

∂tFN = 1
NpE(⟨x̃⟩ · ⟨x̃⟩) and rewrite (3.3.6) as ∇FN = 1

NE ⟨x⟩⊺ ⟨x⟩. Then, (3.3.10) clearly

follows.

Proof of (3.3.12). For a ∈ SK , we can compute

Na · ∇(a · ∇FN ) = E
〈(
a · x⊺x′

)2〉− 2E
〈(
a · x⊺x′

)(
a · x⊺x′′

)〉
+ E

〈
a · x⊺x′

〉2
.

The details of this computation can be seen from the derivation of [94, (3.27)]. Expand the

right hand side of the above display to get

E
∑

i,j,k,m,n,l

aijamn
〈
xkix

′
kjxlmx

′
ln − 2xkix

′
kjxlmx

′′
ln + xkix

′
kjx

′′
lmx

′′′
ln

〉

where x′, x′′, x′′′ are replicas of x with respect to the measure ⟨·⟩. Then, (3.3.12) follows if

we can show the above is nonnegative. Use the independence and write x̂ = x− ⟨x⟩ to see
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that the above display is equal to

E
∑

i,j,k,m,n,l

aijamn

(
⟨xkixlm⟩ ⟨xkjxln⟩ − 2 ⟨xkixlm⟩ ⟨xkj⟩ ⟨xln⟩+ ⟨xki⟩ ⟨xlm⟩ ⟨xkj⟩ ⟨xln⟩

)
= E

∑
i,j,k,m,n,l

aijamn

(
⟨xkixlm⟩ ⟨x̂kj x̂ln⟩ − ⟨x̂kix̂lm⟩ ⟨xkj⟩ ⟨xln⟩

)
.

Notice that since a ∈ SK , we can replace i and m by j and n, respectively, in the second

term inside the last pair of parentheses. So the above becomes

E
∑

i,j,k,m,n,l

aijamn

(
⟨xkixlm⟩ ⟨x̂kj x̂ln⟩ − ⟨x̂kix̂lm⟩ ⟨xki⟩ ⟨xlm⟩

)
= E

∑
i,j,k,m,n,l

aijamn ⟨x̂kix̂lm⟩ ⟨x̂kj x̂ln⟩ = E
∑

i,j,k,m,n,l

aijamn
〈
(x̂⊺x̂′)ij(x̂

⊺x̂′)mn
〉

= E
〈
(a · x̂⊺x̂′)2

〉
⩾ 0.

Proof of (3.3.13). By (3.3.4), we can compute

a·∇(a · ∇FN (t, h))

=
1

N

(〈(
H ′
N (a, h, x)

)2〉−
〈
H ′
N (a, h, x)

〉2 )
+

1

N

〈√
2D2√

h
(a, a) · x⊺Z

〉
, (3.3.15)

where

H ′
N (a, h, x) =

√
2D√

h(a) · x
⊺Z + 2a · x⊺X − a · x⊺x,

and, for every h ∈ SK++ and a, b ∈ SK ,

D2√
h
(a, b) = lim

ε→0
ε−1
(
D√

h+εb(a)−D√
h(a)

)
.
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Recognizing a variance term in (3.3.15) and using (3.2.1), we have

a · ∇(a · ∇FN (t, h)) ⩾ −C
∣∣∣D2√

h
(a, a)

∣∣∣ |Z|√
N
.

The display [94, (3.38)] states

∣∣D2√
h
(a, a)

∣∣ ⩽ C|a|2|h−1|
3
2 .

Combining this with the previous display, we obtain (3.3.13).

Lastly, we state an elementary lemma characterizing SK+ .

Lemma 3.3.3. Let a ∈ SK , Then, a ∈ SK+ if and only if a · b ⩾ 0 for every b ∈ SK+ .

Proof. If a ∈ SK+ , then for any b ∈ SK+ we have a · b = tr(
√
a
√
b
√
b
√
a) ⩾ 0. For the

other direction, by choosing an orthonormal basis, we may assume a is diagonal. Testing by

b ∈ SK+ , we can show that all diagonal entries in a are nonnegative and thus a ∈ SK+ .

3.4. Weak solutions of Hamilton–Jacobi equations

In this section, we study the Hamilton–Jacobi equation (3.2.5) through the perspective

of weak solutions. Precise definitions of weak solutions will be stated and uniqueness of

solutions is given in Proposition 3.4.2.

We identify SK isometrically with RK(K+1)/2 via the orthonormal basis {eij}1⩽i⩽j⩽K given

by, for m,n ∈ {1, 2, . . . ,K},

(eij)mn =

(
1i=j +

√
2

2
1i ̸=j

)
1{m,n}={i,j}. (3.4.1)

Here 1 stands for the indicator function. Naturally, we endow SK with the Lebesgue measure

on RK(K+1)/2. Recall the definition of AH in (3.2.11).

Definition 3.4.1. A function f : R+ × SK+ → R is a weak solution to (3.2.5) if
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1. f is Lipschitz and satisfies (3.2.5) almost everywhere;

2. f(t, ·) ∈ AH for all t ⩾ 0.

Proposition 3.4.2 (Uniqueness). Under the assumption that AH is convex, there is at most

one weak solution to (3.2.5).

3.4.1. Proof of Proposition 3.4.2

The idea of proof is classical and can be seen in [56, 80, 81]. See also [25] and [60, Section

3.3.3]. The following lemma will also be used later. Recall the definitions of SK+,M in (3.2.7).

Lemma 3.4.3. Assume that AH is convex. For M > 0, T ⩾ 1, η ∈ (0, 1), define

Dt = SK+,R(T−t) ∩ (ηI + SK+ ), ∀t ∈ [0, T ] (3.4.2)

with R = sup
{
|DH(p)| : p ∈ SK+,M

}
. Let ϕ : R → R+ be any smooth function. Then,

the following holds for all choices of M,T, η, ϕ, and for every pair f, g ∈ AH satisfying

∥f∥Lip, ∥g∥Lip ⩽M :

d

dt
J(t) ⩽

ˆ
Dt

(
ϕ′(f − g)|r|

)
(t, h)dh, ∀t ∈ [0, T ]

where

J(t) =

ˆ
Dt

ϕ(f − g)(t, h)dh,

r =
(
∂tf − H(∇f)

)
−
(
∂tg − H(∇g)

)
.

Proof. Let us set w = f − g and v = ϕ(w). We proceed in steps.

Step 1. We study the relations which w and v satisfy. Since f and g are weak solutions, we
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have

∂tw = H(∇f)− H(∇g) + r = b · ∇w + r

where the function b is given by

b =

ˆ 1

0
DH
(
s∇f + (1− s)∇g

)
ds.

Here DH is the gradient of H while ∇ is taking derivatives in the spacial variable h. Then,

we also have

∂tv = b · ∇v + ϕ′(w)r. (3.4.3)

Step 2. We introduce a family of mollifiers. Let ξ : RK(K+1)/2 → R+ be smooth, be

supported on −SK+,1, and satisfy
´
ξ = 1. For ε ∈ (0, 1), set

ξε = ε−K(K+1)/2ξ
( ·
ε

)
.

Define bε by the convolution

bε(t, h) =
(
b(t, ·) ∗ ξε

)
(h) =

ˆ
b(t, h− h′)ξε(h

′)dh′.

Recall the definition of AH in (3.2.11). Since AH is assumed to be convex and f, g ∈ AH

are weak solutions, by the definition of b, we must have ∇ · b ⩾ 0 in the distribution sense.

Then, it is easy to see that

∇ · bε ⩾ 0 (3.4.4)
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holds pointwise everywhere. We finish this step by proving

bε ∈ SK+ . (3.4.5)

This follows from the next lemma, which will also be used later.

Lemma 3.4.4. For H given in (3.2.6), its differential DH ∈ SK+ everywhere.

Proof. For simplicity, we write S = AA⊺ ∈ SKp

+ . Let a, q ∈ SK , then we can compute that

a · DH(q) = pS · sym(a⊗ q⊗p−1).

Here sym denotes the symmetrization of tensors given by

sym
(
b1 ⊗ b2 ⊗ · · · ⊗ bp

)
=

1

p!

∑
σ

bσ(1) ⊗ bσ(2) ⊗ · · · ⊗ bσ(p),

where the summation is taken over all permutations. Since S ∈ SKp

+ , to show a · DH(q) ⩾ 0

it suffices to show a⊗ q⊗p−1 ∈ SKp

+ . We only need to check

u⊺
(
a⊗ q⊗p−1

)
u ⩾ 0, ∀u ∈ RK

p
.

Index u ∈ RKp as (ui)i with i in the form of (3.2.15). Writing î = (i2, i3, . . . , ip), let us

compute

u⊺
(
a⊗ q⊗p−1

)
u =

∑
i,j

ui
(
a⊗ q⊗p−1

)
i,j
uj =

∑
i,j

u
i1 ,̂i
ai1,j1(q

⊗p−1)̂
i,̂j
u
j1 ,̂j

= tr
(
u⊺auq⊗p−1

)
= tr

(√
auq⊗p−1u⊺

√
a
)
⩾ 0.

Here, we used the fact that q⊗p−1 is positive semi-definite, which can be proved by iterating

the above arguments. Therefore, we can conclude that a · DH ⩾ 0 for every a ∈ SK+ , which

by Lemma 3.3.3 implies DH ∈ SK+ .
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Step 3. We study J(t) which can be written as J(t) =
´
Dt
v(t, ·). On R+×SK+ , the equation

(3.4.3) can be expressed as

∂tv = div(vbε)− v∇ · bε + (b− bε) · ∇v + ϕ′(w)r. (3.4.6)

In addition to Dt, we set

Γt = ∂Dt ∩ {|x| = R(T − t)}.

Using (3.4.6) and integration by parts, we can compute

d

dt
J(t) =

ˆ
Dt

∂tv −R

ˆ
Γt

v

=

ˆ
Γt

(n · bε −R)v +

ˆ
∂Dt\Γt

(n · bε)v +
ˆ
Dt

v(−∇ · bε) +
ˆ
Dt

(b− bε) · ∇v (3.4.7)

+

ˆ
Dt

ϕ′(w)r,

where n stands for the outer normal vector, and the integrations are only carried out in the

spacial variable. We treat the integrals in (3.4.7) individually. By the definitions of bε and

ξε, we can see |bε| ⩽ R. Hence, the first integral is nonpositive. Due to (3.4.5) and the fact

that −n ∈ SK+ on ∂Dt \ Γt, the second integral is also nonpositive. In view of (3.4.4), the

third integral is again nonpositive, while the last one is oε(1). Therefore, taking ε → 0, we

conclude that d
dtJ(t) ⩽

´
Dt
ϕ′(w)|v| as desired.

Proof of Proposition 3.4.2. Let f and g be two weak solutions to (3.2.5) with f(0, ·) = g(0, ·).

Let M = ∥f∥Lip∨∥g∥Lip. For each δ > 0, we have ∥f(δ, ·)−g(δ, ·)∥∞ ⩽Mδ. Let ϕ : R → R+
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be a smooth function and satisfy


ϕ(z) = 0, if |z| ⩽Mδ,

ϕ(z) > 0, otherwise.

Applying Lemma 3.4.3 to f, g,M, ϕ described above, and any choice of T, η, we have J(t) ⩽

J(δ) for t ∈ [δ, T ]. But our choice of ϕ implies that

J(δ) =

ˆ
Dδ

ϕ(f − g)(δ, h)dh = 0.

Since J(t) is nonnegative, we must have J(t) = 0 for all t ∈ [δ, T ]. This together with the

definition of ϕ guarantees that

|f(t, h)− g(t, h)| ⩽Mδ, ∀h ∈ Dt, ∀t ∈ [δ, T ].

Recall the definition of Dt in (3.4.2) which depends on T and η. Sending δ → 0, η → 0 and

T → ∞, we conclude that f = g.

3.4.2. Assumptions on AH

Lastly, we show that assumptions on AH in Theorem 3.2.1 are satisfied when H is convex

and in the special case considered in Section 3.2.3 for p = 1 or p even.

Lemma 3.4.5. If H is convex, then AH is convex and contains FN (t, ·) for all t and N .

In the special case where H is given in (3.2.17) and p = 1 or p is even, we have that H is

convex.

Proof. Note that, if ϕ : SK+ → R is smooth, then we have

∇ ·
(
DH(∇ϕ)

)
= D2H(∇ϕ) · ∇2ϕ.
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If H is convex, a sufficient condition for the above to be nonnegative is the convexity of

ϕ. Recall that convexity is required in the definition of A given above (3.2.11). Hence, by

regularizing functions in A, we can see AH = A when H is convex. It is also clear that A is

convex. Due to (3.3.8), (3.3.10), and (3.3.12), we have FN (t, ·) ∈ A for all t and N . This

completes the proof of the first part of the lemma.

Now, let H be given in (3.2.17). By computing the limit of ε−1(H(q + εa) − H(q)), we can

see a · DH(q) = pa · q◦p−1 where ◦ denotes the Hadamard product. Differentiate one more

time to get

a · D(a · DH)(q) = p(p− 1)(a◦2) · (q◦p−2) (3.4.8)

for all a ∈ SK and q ∈ SK+ . If p = 1 or p is even, this quantity is nonnegative. Hence the

convexity of H follows.

3.5. Convergence to the weak solution

The goal of this section is to prove Theorem 3.2.1. The plan is to first prove the convergence

of FN assuming the existence of a weak solution f to (3.2.5) with f(0, ·) = ψ. Next, we

prove the existence of solutions by using a similar argument. We adopt this plan because

notation is much simpler in the first part, and the two parts are independent. Theorem 3.2.1

follows from Proposition 3.5.1 and Proposition 3.5.2 proved in Section 3.5.1 and Section 3.5.2,

respectively.

3.5.1. Convergence when assuming existence of solutions

Let us assume f is a weak solution to (3.2.5) satisfying f(0, ·) = ψ. We want to show that

FN converges to f as N → ∞. The goal can be summarized as follows.

Proposition 3.5.1. In addition to the assumptions in Theorem 3.2.1, we assume that there

is a unique weak solution f to (3.2.5) with f(0, ·) = ψ. Then, there is C > 0 such that

(3.2.12) holds for all M ⩾ 1 and all N ∈ N.
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Proof. Step 1. For N ∈ N, we set

rN = ∂tFN − H
(
∇FN

)
. (3.5.1)

For δ > 0, define ϕδ : R → [0,∞) by

ϕδ(s) = (δ + s2)
1
2 , (3.5.2)

which serves as a smooth approximation of the absolute value. Since FN is Lipschitz uni-

formly in N due to (3.3.8), we can set M = ∥f∥Lip ∨ supN∈N ∥FN∥Lip. Then, we apply

Lemma 3.4.3 to FN , f,M, ϕδ, and any choice of T, η to see that

d

dt
Jδ(t) ⩽

ˆ
Dt

ϕ′δ
(
FN − f

)
|rN | ⩽

ˆ
Dt

|rN |, ∀t ∈ [0, T ], (3.5.3)

where

Jδ(t) =

ˆ
Dt

ϕδ
(
FN − f

)
(t, h)dh, (3.5.4)

for Dt given in (3.4.2). Also recall the definition of R in Lemma 3.4.3.

Step 2. We estimate
´
Dt

|rN |. Due to the definition of rN in (3.5.1), Proposition 3.3.1 gives

an upper bound for |rN |2. Hence, writing

γ = K(K + 1)/2, (3.5.5)

we have

ˆ
Dt

|rN | ⩽ |Dt|
1
2

(ˆ
Dt

|rN |2
) 1

2

⩽ CT γ/2
(
N− 1

4

ˆ
Dt

κ(h)
(
∆FN + C|h−1|

) 1
4dh+

ˆ
Dt

E
∣∣∇FN −∇FN

∣∣2dh) 1
2

.

(3.5.6)
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Here and henceforth, we absorb the constant R in the definition of Dt in (3.4.2) into the

constant C. To bound the first integral in (3.5.6), recall the definition of κ(h) in (3.3.1), use

the definition of Dt and invoke Hölder’s inequality to see

ˆ
Dt

κ(h)
(
∆FN + C|h−1|

) 1
4dh ⩽ Cη−1T |Dt|

3
4

(ˆ
Dt

∆FN + |h−1|
) 1

4

.

In view of (3.3.8), using integration by parts, we have

ˆ
Dt

∆FN ⩽ CT γ−1.

The integral
´
Dt

|h−1| is bounded by Cη−1T γ . Therefore, we obtain

ˆ
Dt

κ(h)
(
∆FN + C|h−1|

) 1
4dh ⩽ Cη−

5
4T 1+γ .

To avoid heavy notation, let us write

K =
KRT,n

T β
, L = Lψ,RT,n. (3.5.7)

Here, β is given in the assumption of Theorem 3.2.1. For the last integral in (3.5.6), we will

show in Step 4 that

E
ˆ
Dt

∣∣∇(FN − FN )
∣∣2 ⩽ CT γ+βη−

3
2K. (3.5.8)

These estimates imply that

ˆ
Dt

|rN | ⩽ CT γ+
β∨1
2 η−

3
4
(
N− 1

8 +K
1
2
)
. (3.5.9)

Step 3. We estimate Jδ(t), extend the integration from over Dt to SK+,R(T−t) (defined in
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(3.2.7)), and conclude the result. Use (3.5.9) and (3.5.3) to see

Jδ(t) ⩽ Jδ(0) + CTαη−
3
4
(
N− 1

8 +K
1
2
)
, t ∈ [0, T ], (3.5.10)

where we set

α = γ +
β ∨ 1

2
+ 1. (3.5.11)

Recall definitions (3.2.9), (3.5.2) and (3.5.4). Hence, for t = 0, we have

lim
δ→0

Jδ(0) =

ˆ
D0

∣∣FN (0, h)− f(0, h)
∣∣dh ⩽ CT γL.

Sending δ → 0 in (3.5.10) and using the above display, we derive that

sup
t∈[0,T ]

ˆ
Dt

∣∣FN (t, h)− f(t, h)
∣∣dh ⩽ CTα

(
L+ η−

3
4
(
N− 1

8 +K
1
2
))
.

Due to (3.3.8) and the fact that FN (0, 0) = 0, we have |FN (t, h)| ⩽ C(t + |h|) uniformly

in N . By FN (0, 0) = 0 and the assumption on ψ in Theorem 3.2.1, we can see ψ(0) = 0.

Since f(0, ·) = ψ and the definition of weak solutions requires f to be Lipschitz, we have

|f(t, h)| ⩽ C(t + |h|). In addition, the measure of the set SK+,R(T−t) \ Dt is bounded by

CT γ−1η. Hence, we have

sup
t∈[0,T ]

ˆ
SK
+,R(T−t)

\Dt

∣∣FN (t, h)− f(t, h)
∣∣dh ⩽ sup

t∈[0,T ]

ˆ
SK
+,R(T−t)

\Dt

CT ⩽ CT γη,

Therefore, we obtain

sup
t∈[0,T ]

ˆ
SK
+,R(T−t)

∣∣FN (t, h)− f(t, h)
∣∣dh ⩽ CTα

(
η + L+ η−

3
4
(
N− 1

8 +K
1
2
))
.

Let us now specify T and η. We set T proportional to M to ensure [0,M ]×SK+,M ⊆ {(t, h) :

t ∈ [0, T ], h ∈ SK+,R(T−t)}. Inserting this T and η = (N− 1
8 +K

1
2 )

4
7 into the above display to
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see

sup
t∈[0,M ]

ˆ
SK+,M

∣∣FN (t, h)− f(t, h)
∣∣dh ⩽ CMα

(
L+N− 1

14 +K
2
7
)
. (3.5.12)

Recall the notation (3.5.5), (3.5.7) and (3.5.11). This gives the desired result (3.2.12).

Step 4. To complete the proof, it remains to verify (3.5.8). Integrating by parts, we have

ˆ
Dt

∣∣∇(FN − FN )
∣∣2 = ˆ

∂Dt

(FN − FN )∇(FN − FN ) · n−
ˆ
Dt

(FN − FN )∆(FN − FN )

⩽ ∥FN − FN∥L∞([0,RT ]×SK+,RT )

(ˆ
∂Dt

∣∣∇(FN − FN )
∣∣+ ˆ

Dt

∣∣∆(FN − FN )
∣∣),

(3.5.13)

Let us estimate the last integral. The lower bound (3.3.12) shows ∆FN ⩾ 0, and the lower

bound (3.3.13) implies that

∆FN + CN− 1
2 |Z||h−1|

3
2 ⩾ 0.

These yield

ˆ
Dt

∣∣∆(FN − FN )
∣∣ ⩽ ˆ

Dt

∣∣∆FN ∣∣+ ∣∣∆FN ∣∣
⩽ CT γN− 1

2 η−
3
2 |Z|+

ˆ
Dt

(
∆FN +∆FN

)
.

Applying integration by parts to the last integral and using (3.3.8) and (3.3.9), we can see

that

ˆ
Dt

(
∆FN +∆FN

)
⩽
ˆ
∂Dt

∣∣∇FN |+ |∇FN | ⩽ CT γ−1
(
1 +N− 1

2 η−
1
2 |Z|

)
.

This display also serves as a bound for the first integral in (3.5.13). Insert the above two
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displays into (3.5.13) to get

ˆ
Dt

∣∣∇(FN − FN )
∣∣2 ⩽ CT γ∥FN − FN∥L∞([0,RT ]×SK+,RT )η

− 3
2

(
1 +N− 1

2 |Z|
)
.

Recall (3.2.8) and (3.5.7). Take expectations on both sides of this inequality and invoke the

Cauchy–Schwarz inequality to conclude (3.5.8).

3.5.2. Existence of weak solutions

To complete the proof of Theorem 3.2.1, we need the following existence result.

Proposition 3.5.2. Under the assumptions in Theorem 3.2.1, there is a unique weak solu-

tion f to (3.2.5) with f(0, ·) = ψ.

Proof. The uniqueness part follows from Proposition 3.4.2. Hence, we only need to prove the

existence. We first show that (FN )N∈N is a Cauchy sequence in the local uniform topology

and then verify that the limit is a weak solution.

Step 1. We show that the sequence (FN )N∈N is Cauchy. We proceed similarly as in the

previous subsection. Recall the definition of rN in (3.5.1) and ϕδ in (3.5.2). Let N,N ′ ∈ N.

Now, setting M = supN∈N ∥FN∥Lip and applying Lemma 3.4.3 to FN and FN ′ , we obtain

d

dt
Jδ(t) ⩽

ˆ
Dt

ϕ′δ
(
FN − FN ′

)
|rN − rN ′ | ⩽

ˆ
Dt

|rN |+ |rN ′ |

where

Jδ(t) =

ˆ
Dt

ϕδ
(
FN − FN ′

)
(t, h)dh.

The rest follows exactly the same procedure after (3.5.4) in the previous section. The only

difference is that we have more terms due to the presence of FN ′ , but they are treated in
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the same way as for FN . Similar to (3.5.12), one can see that eventually we obtain

sup
t∈[0,M ]

ˆ
SK
+,M

∣∣FN (t, h)− FN ′(t, h)
∣∣dh ⩽ CMα

(
Lψ,CM,N +N− 1

14 + (KCM,N/M
β)

2
7

+Lψ,CM,N ′ +N ′− 1
14 + (KCM,N ′/Mβ)

2
7

)
.

Hence, by the assumption of Theorem 3.2.1 on the decay of KM,N and Lψ,M,N , we know

that (FN )N∈N is Cauchy in local L∞
t L

1
h. Due to the argument in Remark 3.2.4, we can

upgrade this to (FN )N∈N being Cauchy in local L∞
t L

∞
h . Let us denote the limit by f .

Step 2. We verify that f is a weak condition by checking that each property listed in

Definition 3.4.1 is satisfied by f and that f(0, ·) = ψ.

Firstly, we verify that f is Lipschitz and satisfies the initial condition. Since FN is Lipschitz

uniformly in N due to (3.3.8), we can conclude that f is Lipschitz. Due to the assumption

limN→∞ Lψ,M,N = 0, we have f(0, ·) = ψ.

Next, we show that f(t, ·) ∈ AH for every t ⩾ 0. By (3.3.11) and (3.3.12), we have that both

FN and f are convex in the temporal variable and convex in the spacial variable. It is well

known that convexity implies convergence of derivatives at each point of differentiability.

The Lipschitzness of f and Rademacher’s theorem imply that f is differentiable almost

everywhere (a.e.). Hence, we can deduce that (∂t,∇)FN converges to (∂t,∇)f pointwise

a.e. Since FN (t, ·) ∈ AH for every t and N , the claim can be verified by passing to the limit.

Lastly, we show that f satisfies (3.2.5) a.e. Since FN is Lipschitz uniformly in N due to

(3.3.8) and H is continuous, the bounded convergence theorem implies that, for any compact

B ⊆ SK++ and t a.e.,

ˆ
B

∣∣∣∂tf − H(∇f)
∣∣∣(t, h)dh = lim

n→∞

ˆ
B

∣∣∣∂tFN − H(∇FN )
∣∣∣(t, h)dh.

We want to show that the right hand side is zero. Recall the definition of Dt in (3.4.2). By

102



choosing T and δ in Dt suitably, we can ensure B ⊆ Dt. Then, by (3.5.1), (3.5.9) and the

assumption limN→∞KM,N = 0 in the statement of Theorem 3.2.1, we conclude that the

right hand side of the above display is zero. Since B and t are arbitrary, we conclude that

∂tf − H(∇f) = 0 a.e.

3.6. Viscosity solutions of Hamilton–Jacobi equations

In this section, we give the precise definition of viscosity solutions. After that, we prove the

comparison principle which ensures the uniqueness of solutions. In addition, we verify that

the Hopf formula is a solution. Classical references include [60, 42]. See also [15, 84]. Here,

we follow the approach in [96].

A function f : R+ × SK+ → R is said to be nondecreasing if f(t, x)− f(t′, x′) ⩾ 0 whenever

t ⩾ t′ and x−x′ ∈ SK+ . A function ψ : SK+ → R is said to be nondecreasing if ψ(x)−ψ(x′) ⩾ 0

whenever x− x′ ∈ SK+ .

Definition 3.6.1.

1. A nondecreasing Lipschitz function f : R+ × SK+ → R is a viscosity subsolution to

(3.2.5) if for every (t, x) ∈ (0,∞) × SK+ and every smooth ϕ : (0,∞) × SK+ → R such

that f − ϕ has a local maximum at (t, x), we have


(
∂tϕ− H(∇ϕ)

)
(t, x) ⩽ 0, if x ∈ SK++,

∇ϕ(t, x) ∈ SK+ , if x ∈ SK+ \ SK++.

2. A nondecreasing Lipschitz function f : R+ × SK+ → R is a viscosity supersolution to

(3.2.5) if for every (t, x) ∈ (0,∞) × SK+ and every smooth ϕ : (0,∞) × SK+ → R such
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that f − ϕ has a local minimum at (t, x), we have


(
∂tϕ− H(∇ϕ)

)
(t, x) ⩾ 0, if x ∈ SK++,

∂tϕ(t, x)− inf H(q) ⩾ 0, if x ∈ SK+ \ SK++,

where the infimum is taken over all q ∈
(
∇ϕ(t, x) + SK+

)
∩ SK+ and |q| ⩽ ∥f∥Lip.

3. A nondecreasing Lipschitz function f : R+ × SK+ → R is a viscosity solution to (3.2.5)

if f is both a viscosity subsolution and supersolution.

Remark 3.6.2. The restriction |q| ⩽ ∥f∥Lip under the infimum in Definition 3.6.1 (2) can be

replaced by |q| ⩽ ∥f∥Lip + c for any c ⩾ 0. Indeed, since f is assumed to be Lipschitz, we

can always restrict H to the set {q ∈ SK+ : |q| ⩽ c′} without altering the equation (3.2.5)

as long as c′ ⩾ ∥f∥Lip. Aside from this heuristic, one can straightforwardly check that the

choice of c does not affect the results in this and the next sections.

Remark 3.6.3. The only properties of H used in this section are the positivity H ⩾ 0, local

Lipschitzness as in (3.6.6) and nondecreasingness given by Lemma 3.4.4. The following two

propositions are still valid for general H satisfying these three properties.

Remark 3.6.4. It is easy to see that, in Definition 3.6.1, replacing the phrases “local maxi-

mum” and “local minimum” by “strict local maximum” and “strict local minimum”, respec-

tively, yields an equivalent definition.

Proposition 3.6.5 (Comparison principle). If u is a subsolution and v is a supersolution

to (3.2.5), then

sup
R+×SK+

(u− v) = sup
{0}×SK+

(u− v).

Proposition 3.6.6 (Hopf formula). Suppose ψ : SK+ → R is convex, Lipschitz and nonde-

creasing. Let f be given in (3.2.14). Then f is a viscosity solution to (3.2.5) with initial
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condition f(0, ·) = ψ.

3.6.1. Proof of Proposition 3.6.5

Let us argue by contradiction and assume

sup
R+×SK+

(u− v) > sup
{0}×SK+

(u− v). (3.6.1)

We start by modifying u. For ε ∈ (0, 1) to be specified later, we set

uε(t, x) = u(t, x) + εtr(x)− Cεt, ∀(t, x) ∈ R+ × SK+

where tr stands for the trace. Let I be the K×K identity matrix. By choosing C large and

then ε small, we can ensure that, if uε − ϕ attains a local maximum at (t, x), we have


(∂tϕ− H(∇ϕ))(t, x) ⩽ −2ε, if x ∈ SK++

(∇ϕ− εI)(t, x) ∈ SK+ , if x ∈ SK+ \ SK++.

(3.6.2)

Since u(t, ·) in nondecreasing for each t, we also have

uε(t, x+ y)− uε(t, x) ⩾ εtr(y), y ∈ SK+ . (3.6.3)

With ε sufficiently small chosen, (3.6.1) still holds with u replaced by uε. Next, we replace

uε by uε− δ
T−t , where δ is chosen small enough and T > 1 is chosen large enough by (3.6.1)

to ensure that

sup
[0,T )×SK+

(uε − v) > sup
{0}×SK+

(uε − v). (3.6.4)

Also, note that (3.6.2) still holds. In addition, we have, for every M > 0,

lim
η→0

sup
[T−η,T )×SK+,M

uε = −∞. (3.6.5)
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Next, we introduce some parameters and auxiliary functions. By the formula for H in (3.2.6),

there is a constant CH such that

∣∣H(a)− H(b)
∣∣ ⩽ CH|a− b|(|a|+ |b|)p−1, ∀a, b ∈ SK+ . (3.6.6)

Let

L = 1 + ∥u∥Lip + ∥v∥Lip, K = CH(4L)
p−1. (3.6.7)

Due to the definition of uε, the following holds for all (t, x) ∈ [0, T )× SK+ ,

uε(t, x) ⩽ C + L|x|, ∥∇uε(t, x)∥ ⩽ L. (3.6.8)

By (3.6.4), there is (t, x) such that

(
uε − v

)
(t, x) > sup

{0}×SK+
(uε − v). (3.6.9)

Let us set

R =
(
|x|2 + 1

) 1
2 +Kt.

Take χ : R → R+ to be a smooth function satisfying

(r − 1)+ ⩽ χ(r) ⩽ r+, |χ′(r)| ⩽ 1, ∀r ∈ R, (3.6.10)

where the positive sign in the subscript indicates taking the positive part. The function χ

can be viewed as a smoothed version of r 7→ r+. Define η : [0, T )× SK+ → R by

η(t, x) = 2Lχ
(
(|x|2 + 1)

1
2 +Kt−R

)
. (3.6.11)
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We claim

sup
[0,T )×SK+

(uε − v − η) = sup
{0}×SK+

(uε − v − η). (3.6.12)

On the other hand, due to (3.6.9) and the definitions of R and η, we have

sup
[0,T )×SK+

(uε − v − η) ⩾
(
uε − v

)
(t, x) > sup

{0}×SK+
(uε − v) ⩾ sup

{0}×SK+
(uε − v − η),

which contradicts (3.6.12). Hence, the proof is complete once the claim (3.6.12) is verified.

Proof of (3.6.12)

Again we argue by contradiction and assume

sup
[0,T )×SK+

(uε − v − η) > sup
{0}×SK+

(uε − v − η). (3.6.13)

We are going to employ the classical trick of “doubling the variables”. For α ∈ (0, 1), we

introduce

Ψα(t, x, t, x
′) = uε(t, x)− v(t′, x′)− ϕα(t, x, t

′, x′), ∀t ∈ [0, T ), t′ > 0, x, x′ ∈ SK+ .

where

ϕα(t, x, t
′, x′) =

1

2α

(
|t− t′|2 + |x− x′|2

)
+ η(t, x).

Step 1. We show that there exists a maximizer (tα, xα, t
′
α, x

′
α) of Ψα, and they converge

as α → 0. To start, we seek an upper bound for Ψα. The nondecreasingness of v gives

−v(t, x) ⩽ −v(0, 0). The definition of η in (3.6.11) shows η(t, x) ⩾ 2L(|x| +Kt − R − 1).

Using these and the first inequality in (3.6.8), we have

Ψα(t, x, t
′, x′) ⩽ C − L|x| − 1

2α

(
|t− t′|2 + |x− x′|2

)
− 2KLt.
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Here and henceforth, we absorb L, K and R into C. Now, one can see the existence of a

maximizer (tα, xα, t
′
α, x

′
α). Then, we have

Ψα(tα, xα, t
′
α, x

′
α) ⩾ Ψα(0, 0, 0, 0) = uε(0, 0)− v(0, 0).

Combine the above two displays to see that, for all α < 1, these points (tα, xα, t
′
α, x

′
α) lie in

a bounded set and

|tα − t′α|2 + |xα − x′α|2 ⩽ Cα.

By passing to a subsequence, we can assume there is t0 and x0 such that tα, t′α → t0 and

xα, x
′
α → x0 as α→ 0.

In view of (3.6.5), we must have t0 < T . The maximality of (tα, xα, t′α, x′α) yields

(
uε − v − η

)
(t0, x0) ⩽ sup

[0,T )×SK+
(uε − v − η)

⩽ Ψα(tα, xα, t
′
α, x

′
α) ⩽ uε(tα, xα)− v(t′α, x

′
α)− η(tα, xα).

Take α→ 0 and use the continuity of uε, v and η to see

(
uε − v − η

)
(t0, x0) = sup

[0,T )×SK+
(uε − v − η).

By (3.6.13), we must have t0 > 0. Henceforth, we fix a sufficiently small α so that tα, t′α > 0.

Step 2. For this fixed α, note that

(t, x) 7→ uε(t, x)− v(t′α, x
′
α)− ϕα(t, x, t

′
α, x

′
α) (3.6.14)
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has a local maximum at (tα, xα). We argue that

xα ∈ SK++. (3.6.15)

Otherwise, there is y ∈ SK+ with |y| = 1 such that

y · xα = 0. (3.6.16)

Under this assumption, we want to derive a contradiction to the fact that the maximum is

achieved (tα, xα). For δ > 0, using (3.6.3), we can see

uε(tα, xα + δy)− ϕα(tα, xα + δy, t′α, x
′
α)−

(
uε(tα, xα)− ϕα(tα, xα, t

′
α, x

′
α)
)

⩾ εδtr(y)− 1

2α

(
2δy · (xα − x′α) + δ2

)
−
(
η(tα, xα + δy)− η(tα, xα)

)
. (3.6.17)

The definition of η in (3.6.11) allows us to compute

∇η(t, x) = x

(|x|2 + 1)
1
2

2Lχ′
(
(|x|2 + 1)

1
2 + Lt−R

)
. (3.6.18)

By (3.6.16), we have y · ∇η(tα, xα) = 0. This along with Taylor’s theorem implies

η(tα, xα + δy)− η(tα, xα) = O(δ2).

Apply this, (3.6.16) and y · x′α ⩾ 0 to see that (3.6.17) is bounded below by

εδtr(y)−O(δ2).

Since ε > 0 and tr(y) > 0, this is strictly positive for δ small. This contradicts the fact that

(3.6.14) achieves a local maximum at (tα, xα). By contradiction, we must have (3.6.15).
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Using this, (3.6.2), and the maximality of (3.6.14) at (tα, xα), we obtain

1

α
(tα − t′α) + ∂tη(tα, xα)− H

(
1

α
(xα − x′α) +∇η(tα, xα)

)
⩽ −2ε. (3.6.19)

Step 3. Still for this fixed α, the function

(t′, x′) 7→ v(t′, x′)− uε(tα, xα) + ϕα(tα, xα, t
′, x′)

attains a local minimum at (t′α, x
′
α). Note that −∇x′ϕα(tα, xα, t

′, x′) = 1
α(xα − x′). We

claim that there is a ∈ SK+ such that

a− 1

α
(xα − x′α) ∈ SK+ , (3.6.20)

|a| ⩽ ∥v∥Lip, (3.6.21)

1

α
(tα − t′α)− H(a) ⩾ −ε. (3.6.22)

If x′α ∈ SK++, then by setting a = 1
α(xα−x

′
α), we clearly have (3.6.20). In this case, the local

minimum is achieved at an interior point x′α. Since v is nondecreasing, we can see 1
α(xα −

x′α) ∈ SK+ and thus a ∈ SK+ . Then (3.6.22) follows from the definition of supersolutions. If

v(t′α, ·) is differentiable at x′α, then the minimality at x′α implies 1
α(xα − x′α) = ∇v(t′α, x′α)

and hence (3.6.21) holds. If x′α is not a point of differentiability, then (3.6.21) still holds by

a regularizing argument.

If x′α ̸∈ SK++, namely x′α ∈ SK+ \ SK++, then the existence of a and (3.6.20)–(3.6.22) directly

follow from the boundary condition in the definition of supersolutions.

Step 4. We compare (3.6.19) with (3.6.22) to derive a contradiction. To start, we derive
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some estimates. For simplicity, we write

b = ∇η(tα, xα).

Recall the definition of the constant L in (3.6.7). Due to (3.6.18) and the second inequality

in (3.6.10), we get |b| ⩽ 2L. By (3.6.21), we have |a| ⩽ L. These along with (3.6.6) yield

∣∣H(a+ b)− H(a)
∣∣ ⩽ CH|b|(4L)p−1.

Using the definition of η in (3.6.11), we can see

∂tη(tα, xα) ⩾ K|∇η(tα, xα)| = K|b|.

The above two displays together with the definition of K in (3.6.7) imply

∂tη(tα, xα)− H(a+ b) + H(a) ⩾ 0. (3.6.23)

On the other hand, from (3.6.19) and (3.6.20), using the monotonicity of H in Lemma 3.4.4,

we have

1

α
(tα − t′α) + ∂tη(tα, xα)− H(a+ b) ⩽ −2ε.

Subtract (3.6.22) from the above display to obtain

∂tη(tα, xα)− H(a+ b) + H(a) ⩽ −ε.

This contradicts (3.6.23) and thus the proof of (3.6.12) is complete.
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3.6.2. Proof of Proposition 3.6.6

Let us rewrite the Hopf formula (3.2.14) as

f(t, x) = sup
z∈SK+

{z · x− ψ∗(z) + tH(z)} (3.6.24)

= (ψ∗ − tH)∗(x). (3.6.25)

Here the superscript ∗ denotes the Fenchel transformation over SK+ , namely,

u∗(x) = sup
y∈SK+

{y · x− u(y)}, ∀x ∈ SK+ . (3.6.26)

We check the following in order: nondecreasingness, initial condition, semigroup property

(or dynamic programming principle), Lipschitzness, f being a subsolution, and f being a

supersolution.

Nondecreasingness

Since the supremum in (3.6.24) is taken over SK+ , it is clear from Lemma 3.3.3 that f(t, ·)

is nondecreasing. By the formula of H in (3.2.6) and the Schur product theorem, we have

H(z) ⩾ 0 for all z ∈ SK+ . Hence, from the formula (3.2.14), we can see f is also nondecreasing

in t.

Verification of the initial condition

The desired identity

ψ(x) = sup
z∈SK+

inf
y∈SK+

{
z · (x− y) + ψ(x)

}
= ψ∗∗(x), ∀x ∈ SK+ .

follows from a version of Fenchel–Moreau identity stated in Proposition 3.9.1
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Semigroup property

Let f be given in (3.6.24). We want to show, for all s ⩾ 0,

f(t+ s, x) = sup
z∈SK+

inf
y∈SK+

{
z · (x− y) + f(t, y) + sH(z)

}
,

or, in a more compact form,

f(t+ s, ·) =
(
f∗(t, ·)− sH

)∗
. (3.6.27)

In view of the Hopf formula (3.6.25), this is equivalent to

(
ψ∗ − (t+ s)H

)∗
=
(
(ψ∗ − tH)∗∗ − sH

)∗
. (3.6.28)

From the definition of the Fenchel transform (3.6.26), it can be seen that, for any u,

u∗∗ ⩽ u. (3.6.29)

Since the Fenchel transform is order-reversing, (3.6.29) implies that

(
(ψ∗ − tH)∗∗ − sH

)∗
⩾
(
ψ∗ − (t+ s)H

)∗
. (3.6.30)

To see the other direction, we use (3.6.29) to get

s

t+ s
ψ∗ +

t

t+ s

(
ψ∗ − (t+ s)H

)∗∗
⩽ ψ∗ − tH.

For any u, it can be readily checked that u∗ is convex and lower semi-continuous. Using the

argument in Section 3.6.2, we can deduce that u∗ is non-decreasing. Hence the left hand

side of the above display satisfies the condition in Proposition 3.9.1. Therefore, taking the
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Fenchel transform twice in the above display and applying Proposition 3.9.1, we have

s

t+ s
ψ∗ +

t

t+ s

(
ψ∗ − (t+ s)H

)∗∗
⩽ (ψ∗ − tH)∗∗.

Reorder terms and then use (3.6.29) to see

(
ψ∗ − (t+ s)H

)∗∗ − (ψ∗ − tH)∗∗ ⩽
s

t

(
(ψ∗ − tH)∗∗ − ψ∗

)
⩽ −sH.

This immediately gives

(
ψ∗ − (t+ s)H

)∗∗
⩽ (ψ∗ − tH)∗∗ − sH.

Taking the Fenchel transform on both sides and invoking Proposition 3.9.1, we have

(
ψ∗ − (t+ s)H

)∗
⩾
(
(ψ∗ − tH)∗∗ − sH

)∗
.

Here, we also used the order-reversing property of the Fenchel transform. This together with

(3.6.30) verifies (3.6.28).

Lipschitzness

Since ψ is Lipschitz, we have ψ∗(z) = ∞ outside the compact set {z ∈ SK+ : |z| ⩽ ∥ψ∥Lip}.

This together with (3.6.24) implies that for each x ∈ SK+ , there is z ∈ SK+ with |z| ⩽ ∥ψ∥Lip

such that

f(t, x) = z · x− ψ∗(z) + tH(z).

This yields that, for any x′ ∈ SK+ ,

f(t, x)− f(t, x′) ⩽ z · (x− x′) ⩽ ∥ψ∥Lip|x− x′|.
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By symmetry, we conclude that f is Lipschitz in x, and the Lipschitz coefficient is uniform

in t.

To show the Lipschitzness in t, we fix any x ∈ SK+ . Then, we have, for some z ∈ SK+ with

|z| ⩽ ∥ψ∥Lip,

f(t, x) = z · x− ψ∗(z) + tH(z) ⩽ f(t′, x) + (t− t′)H(z)

⩽ f(t′, x) + |t′ − t|
(

sup
|z|⩽∥ψ∥Lip

|H(z)|
)
.

Again by symmetry, the Lipschitzness in t is obtained, and its coefficient is independent of

x.

The Hopf formula is a subsolution

Let ϕ : (0,∞) × SK+ → R be smooth. Suppose f − ϕ achieves a local maximum at (t, x) ∈

(0,∞) × SK+ . Since ψ is Lipschitz, we can see ψ∗ is infinite outside a compact set. Hence,

by (3.6.24), there is z ∈ SK+ such that

f(t, x) = z · x− ψ∗(z) + tH(z).

For the case x ∈ SK++, by (3.6.24), we have, for s ∈ [0, t] and h ∈ SK sufficiently small,

f(t, x) ⩽ f(t− s, x+ h)− z · h+ sH(z).

By the assumption on ϕ, we have

f(t− s, x+ h)− ϕ(t− s, x+ h) ⩽ f(t, x)− ϕ(t, x).

for small s ∈ [0, t] and small h ∈ SK . Combine the above two inequalities to get

ϕ(t, x)− ϕ(t− s, x+ h) ⩽ −z · h+ sH(z). (3.6.31)
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Set s = 0 and vary h to see

z = ∇ϕ(t, x). (3.6.32)

Then, we set h = 0 in (3.6.31), take s→ 0 and insert (3.6.32) to obtain

∂tϕ(t, x)− H(∇ϕ(t, x)) ⩽ 0.

If x ∈ SK+ \ SK++, then (3.6.31) still holds for h ∈ SK+ . Set s = 0 and vary h, we can see

a · ∇ϕ(t, x) ⩾ a · z for all a ∈ SK+ . Since z ∈ SK+ , Lemma 3.3.3 implies that ∇ϕ(t, x) ∈ SK+ .

The Hopf formula is a supersolution

The idea of proof in this part can be seen in [84, Proof of Proposition 1]. Let (t, x) ∈

(0,∞) × SK+ be a local minimum point for f − ϕ. Due to (3.6.24), f is convex in both

variables. Since SK+ is also convex, we have, for all (t′, x′) ∈ (0,∞)× SK+ and all λ ∈ [0, 1],

f(t′, x′)− f(t, x) ⩾
1

λ

(
f
(
t+ λ(t′ − t), x+ λ(x′ − x)

)
− f(t, x)

)
.

For any fixed (t′, x′) and sufficiently small λ, the assumption that f−ϕ has a local minimum

at (t, x) gives

f
(
t+ λ(t′ − t), x+ λ(x′ − x)

)
− f(t, x) ⩾ ϕ

(
t+ λ(t′ − t), x+ λ(x′ − x)

)
− ϕ(t, x).

Using the above two displays and setting λ→ 0, we obtain

f(t′, x′)− f(t, x) ⩾ r(t′ − t) +
(
∇ϕ(t, x)

)
· (x′ − x) (3.6.33)

where

r = ∂tϕ(t, x). (3.6.34)
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Before proceeding, we make a digression to convex analysis. Most of the definitions and

results we need are given in Appendix 3.9. For each fixed t ⩾ 0, it can be seen from (3.6.24)

that f(t, ·) is convex. Setting t′ = t in (3.6.33), we have ∇ϕ(t, x) ∈ ∂f(t, x) which stands for

the subdifferential of f(t, ·) at x. Its definition is given in (7.3.2). Invoking Lemma 3.9.6,

we can express

∇ϕ(t, x) = a+ b (3.6.35)

where b ∈ n(x), the outer normal cone at x, defined in (3.9.2); and a belongs to the closed

convex hull of limit points of the form limn→∞∇f(t, xn) where limn→∞ xn = x and f(t, ·)

is differentiable at each xn. Since f is nondecreasing and Lipschitz, we have

a ∈ SK+ , |a| ⩽ ∥f∥Lip. (3.6.36)

By the definition of n(x) and Lemma 3.3.3, it can seen that −b ∈ SK+ . This along with

(3.6.35) implies

a ∈ ∇ϕ(t, x) + SK+ . (3.6.37)

By Lemma 3.9.6, the definition of a and an easy observation that 0 ∈ n(x), we can deduce

that a ∈ ∂f(t, x), which due to the definition of subdifferential in (7.3.2) further implies

f(t, x′)− f(t, x) ⩾ a · (x′ − x), ∀x′ ∈ SK+ .

Set x′ = x in (3.6.33) and use the above display to get

f(t′, x′)− f(t, x) ⩾ r(t′ − t) + a · (x′ − x), ∀t′ ⩾ 0, x′ ∈ SK+ . (3.6.38)
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Now, we return to the proof. For each s ⩾ 0, we define

ηs(x
′) = f(t, x)− rs+ a · (x′ − x), ∀x′ ∈ SK+ .

Setting t′ = t− s in (3.6.38), for s ∈ [0, t], we have

f(t− s, x′) ⩾ ηs(x
′), ∀x′ ∈ SK+ .

Applying the order-reversing property of the Fenchel transform twice, we obtain from the

above display that

(
f∗(t− s, ·)− sH

)∗
⩾
(
η∗s − sH

)∗
.

Due to the semigroup property (3.6.27), this yields

f(t, ·) ⩾
(
η∗s − sH

)∗
, ∀s ∈ [0, t].

By (3.6.36) and the definition of the Fenchel transform in (3.6.26), the above yields

f(t, x) ⩾ a · x− η∗s(a) + sH(a).

On the other hand, using the definition of ηs, we can compute

η∗s(a) = −f(t, x) + rs+ a · x.

Combine the above two displays with (3.6.34) and that these hold for all s ∈ [0, t] to see

(
∂tϕ− H(a)

)
(t, x) ⩾ 0.

If x ∈ SK++, then (3.6.36), (3.6.37) and the nondecreasingness of H in Lemma 3.4.4 imply
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H(a) ⩾ H(∇ϕ(t, x)). If x ∈ SK+ \ SK++, then those same ingredients yield H(a) ⩾ inf H(q)

where the infimum is described in (2) in Definition 3.6.1. These along with the above display

verify that f is a supersolution.

3.7. Convergence to the viscosity solution

The goal of this section is to prove Theorem 3.2.2. We first state the main result of this

section and deduce Theorem 3.2.2 from it.

Proposition 3.7.1. Under the assumptions in Theorem 3.2.2, suppose that a subsequence

of (FN )N∈N converges locally uniformly to some function f : R+ × SK+ → R. Then, f is a

viscosity subsolution to (3.2.5) with f(0, ·) = ψ. If H is convex, then f is also a supersolution

and thus the unique viscosity solution to (3.2.5).

Remark 3.7.2. In fact, any subsequential limit f of (FN )N∈N satisfies the following: if f −ϕ

achieves a strict local maximum at (t, x) ∈ (0,∞) × SK++ for a smooth function ϕ, then it

holds that

(
∂tϕ− H(∇ϕ)

)
(t, x) = 0,

which is stronger than Definition 3.6.1 (1).

Proof of Theorem 3.2.2. By (3.3.12), (3.3.8), (3.3.10) and the assumption that FN (0, ·) con-

verges to ψ pointwise, we have that ψ is convex, Lipschitz and nondecreasing. Hence, Propo-

sition 3.6.6 implies that there is a Lipschitz viscosity solution f to the Hamilton–Jacobi

equation (3.2.5) with f(0, ·) = ψ. Proposition 3.6.5 ensures the uniqueness.

Since FN (0, 0) = 0 for all N and (FN )N⩾1 is Lipschitz uniformly in N due to (3.3.8), the

Arzelà–Ascoli theorem guarantees that any subsequence of (FN )N⩾1 has a further subse-

quence that converges in the local uniform topology to some function g. In addition, we

can see that g is Lipschitz. The assumption on ψ in Theorem 3.2.2 ensures that g(0, ·) = ψ.

Proposition 3.7.1 implies that g is a viscosity subsolution to (3.2.5). The upper bound
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in Theorem 3.2.2 then follows from Proposition 3.6.5. When H is convex, using similar

arguments, we can obtain an lower bound.

We prove the subsolution part of Proposition 3.7.1 and Remark 3.7.2 in Section 3.7.1 and

the supersolution part of Proposition 3.7.1 in Section 3.7.2.

3.7.1. The limit is a subsolution

To lighten notation, we assume FN converges to f locally uniformly. We want to show f

is subsolution to (3.2.5). We recall Remark 3.6.4 and assumes that f − ϕ achieves a strict

local maximum at (t, h) ∈ (0,∞)× SK+ for some smooth function ϕ.

First, we consider the case where h ∈ SK+ \ SK++. Then, there is a sequence
(
(tN , hN )

)
N∈N

in (0,∞)× SK+ such that (tN , hN ) converges to (t, h) and FN − ϕ has a local maximum at

(tN , hN ). Note that a+ hN ∈ SK+ for all a ∈ SK+ . So, we can differentiate FN − ϕ along any

direction a ∈ SK+ to see

a · ∇
(
FN − ϕ

)
(tN , hN ) ⩽ 0, ∀a ∈ SK+ .

In view of (3.3.10), this implies

a · ∇ϕ(tN , hN ) ⩾ 0, ∀a ∈ SK+ .

Setting N → ∞, by Lemma 3.3.3, we have ∇ϕ(t, h) ∈ SK+ , verifying the boundary condition

for subsolutions.

Now, we study the case where h ∈ SK++. In the following, the constant C is allowed to
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depend on t, h, f , ϕ. We set

M = (t ∨ |h|) + 1, (3.7.1)

γ = K(K + 1)/2, (3.7.2)

δN = ∥FN − f∥
1
4

L∞([0,M ]×SK+,M )
+K

1
2
M,N , (3.7.3)

where KM,N is defined in (3.2.8) and SK+,M is given in (3.2.7). By the convergence of FN to

f and the assumption (3.2.13), we have limN→∞ δN = 0. Let us introduce

ϕ̃(t′, h′) = ϕ(t′, h′) + |t′ − t|2 + |h′ − h|2. (3.7.4)

It is immediate that f − ϕ̃ has a local maximum at (t, h). Due to (3.7.3), for all (t′, h′) ∈

[0,M ]× SK+,M , we have

(
FN − ϕ̃

)
(t′, h′) ⩽

(
f − ϕ

)
(t′, h′)− |t′ − t|2 − |h′ − h|2 + δ4N ,(

FN − ϕ̃
)
(t, h) ⩾

(
f − ϕ

)
(t, h)− δ4N .

Since FN converges locally uniformly to f , for N large, there is a sequence of (tN , hN ) in

(0,∞) × SK++, at which FN − ϕ̃ attains a local maximum, and which converges to (t, h).

From the above display and the fact that f − ϕ attains a local maximum at (t, h), we can

deduce that

|tN − t|2 + |hN − h|2 ⩽ 2δ4N . (3.7.5)

By the definition of (tN , hN ), we also have

∂t
(
FN − ϕ̃

)
(tN , hN ) = 0, ∇

(
FN − ϕ̃

)
(tN , hN ) = 0. (3.7.6)
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We want to apply Proposition 3.3.1. However the concentration estimate we have is for

FN − FN not for ∇(FN − FN ). Therefore, we need to do a local average by introducing

DN = SK+,δN , (3.7.7)

GN (t
′, h′) = |DN |−1

ˆ
h′+DN

FN (t
′, h′′)dh′′. (3.7.8)

It is clear that GN converges locally uniformly to f . Hence, there is (t′N , h
′
N ) ∈ (0,∞)×SK++

converging to (t, h) such that GN − ϕ̃ has a local maximum at (t′N , h
′
N ). Consequently, we

have

∂t
(
GN − ϕ̃

)
(t′N , h

′
N ) = 0, ∇

(
GN − ϕ̃

)
(t′N , h

′
N ) = 0, (3.7.9)

a · ∇
(
a · ∇

(
GN − ϕ̃

))
(t′N , h

′
N ) ⩽ 0, ∀a ∈ SK . (3.7.10)

Repeating the argument in the derivation of (3.7.5) yields

|t′N − t|2 + |h′N − h|2 ⩽ 2δ4N . (3.7.11)

We need the following estimates:

ˆ
h′N+DN

E
∣∣∣∇FN −∇FN

∣∣∣2(t′N , h′)dh′ ⩽ Cδγ+1
N , (3.7.12)

ˆ
h′N+DN

∣∣∣∇FN (t′N , h′)−∇GN (t′N , h′N )
∣∣∣2dh′ ⩽ Cδγ+1

N . (3.7.13)

From the definition of H in (3.2.6), we can see that |H(a)−H(b)| ⩽ C|a− b|(|a| ∨ |b|)p−1 for

all a, b ∈ SK+ . By this, Jensen’s inequality and (3.7.13), we have

∣∣∣∣ |DN |−1

ˆ
h′N+DN

H
(
∇FN (t′N , h′)

)
dh′ − H

(
∇GN (t′N , h′N )

)∣∣∣∣
⩽ C

(
|DN |−1

ˆ
h′N+DN

∣∣∣∇FN (t′N , h′)−∇GN (t′N , h′N )
∣∣∣2dh′) 1

2

⩽ Cδ
1
2
N .

(3.7.14)

122



Here, we used the following fact due to (3.7.2) and (3.7.7)

|DN | = CδγN .

Recall the definition of κ in (3.3.1). Due to h ∈ SK++, (3.7.7) and (3.7.11), we know that

κ(h′) ⩽ C for all h′ ∈ h′N + DN and N large. Take average of (∂tFN − H(∇FN ))(t′N , h′)

over h′N +DN , and use Proposition 3.3.1 and (3.7.14) to see

∣∣∣∂tGN − H
(
∇GN

)∣∣∣(t′N , h′N ) ⩽ Cδ
1
2
N

+ C

(
N− 1

4

 
h′N+DN

(
∆FN (t

′
N , h

′) + 1
) 1

4dh′ +

 
h′N+DN

E
∣∣∣∇FN −∇FN

∣∣∣2(t′N , h′)dh′
) 1

2

where
ffl
h′N+DN

= |DN |−1
´
h′N+DN

. By Jensen’s inequality, (3.7.8) and (3.7.10), we have

 
h′N+DN

(
∆FN (t

′
N , ·) + 1

) 1
4 ⩽

(
∆GN (t

′
N , h

′
N ) + 1

) 1
4
⩽ C.

The above two displays along with (3.7.12) give

∣∣∣∂tGN − H
(
∇GN

)∣∣∣(t′N , h′N ) ⩽ C
(
δ

1
2
N +N− 1

8

)
.

Using (3.7.11) and (3.7.9), and sending N to ∞, we obtain

∂tϕ̃− H
(
∇ϕ̃
)
(t, h) = 0.

Due to (3.7.4), the derivatives of ϕ̃ coincide with those of ϕ at (t, h). This finishes the core

of the verification of that f is a subsolution and the claim in Remark 3.7.2.

To complete the proof, we derive (3.7.12) and (3.7.13).

Proof of (3.7.12). For any smooth g : SK+ → R and any D ⊆ SK+ with Lipschitz boundary,
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integration by parts gives

ˆ
D
|∇g|2 =

ˆ
∂D

g∇g · n−
ˆ
D
g∆g, (3.7.15)

where n is the outer normal on ∂D. To lighten our notation, the time variable is always

evaluated at t′N in this proof. Apply (3.7.15) to get

ˆ
h′N+DN

∣∣∣∇FN −∇FN
∣∣∣2 ⩽ ∥FN − FN∥L∞(h′N+DN )

×
(ˆ

∂(h′N+DN )

∣∣∇FN −∇FN
∣∣+ ˆ

h′N+DN

∣∣∆FN −∆FN
∣∣). (3.7.16)

By limN→∞ h′N = h (due to (3.7.11)), h ∈ SK++ and (3.7.7), we have |h′−1| ⩽ C for all

h′ ∈ h′N +DN for large N , Using this, (3.3.12) and (3.3.13), we get, for all h′ ∈ h′N +DN ,

∣∣∆FN −∆FN
∣∣ ⩽ ∆FN +∆FN + CN− 1

2 |Z|.

Applying this and integration by parts to obtain

ˆ
h′N+DN

∣∣∆FN −∆FN
∣∣ ⩽ CδγNN

− 1
2 |Z|+

ˆ
∂(h′N+DN )

∣∣∇FN |+ |∇FN |.

Then, using this display, (3.3.8) and (3.3.9), we can bound the two integrals in (3.7.16) by

Cδγ−1
N (1 +N− 1

2 |Z|). As a result, by taking expectations and invoking the Cauchy–Schwarz

inequality in (3.7.16), we obtain

E
ˆ
h′N+DN

∣∣∣∇FN −∇FN
∣∣∣2 ⩽ Cδγ−1

N

(
E∥FN − FN∥2L∞(h′N+DN )

) 1
2
. (3.7.17)

Recall that the time variable is evaluated at t′N . By (3.7.1), (3.7.11) and (3.7.7), we have

{t′N} × (h′N +DN ) ⊆ [0,M ] × SK+,M for large N . Hence, the desired result (3.7.12) follows

from (3.7.3) and the definition (3.2.8).
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Proof of (3.7.13). To prepare, we start by showing that, for h′ satisfying |h′ − hN | ⩽ C−1,

∣∣∣FN (tN , h′)− FN (tN , hN )− (h′ − hN ) · ∇FN (tN , hN )
∣∣∣ ⩽ C|h′ − hN |2. (3.7.18)

By Taylor expansion, we have

FN (tN , h
′)− FN (tN , hN ) = (h′ − hN ) · ∇FN (tN , hN )

+

ˆ 1

0
(1− r)D2

h′−hNFN (tN , hN + (h′ − hN )r)dr

(3.7.19)

where we write

D2
aFN = a · ∇

(
a · ∇FN

)
, ∀a ∈ SK .

A similar equation also holds with FN replaced by ϕ̃. Take the difference of these two

equations and use (3.7.6) and the fact that FN − ϕ̃ has a local maximum at (tN , hN ) to see

ˆ 1

0
(1− r)D2

h′−hNFN (tN , hN + (h′ − hN )r)dr

⩽
ˆ 1

0
(1− r)D2

h′−hN ϕ̃(tN , hN + (h′ − hN )r)dr.

Since ϕ̃ has locally bounded derivatives, by the above display and (3.3.12), there is C such

that the following holds for all h′ with |h′ − hN | ⩽ C−1

∣∣∣∣∣
ˆ 1

0
(1− r)D2

h′−hNFN (tN , hN + (h′ − hN )r)dr

∣∣∣∣∣ ⩽ C|h′ − hN |2.

Inserting this into (3.7.19) gives (3.7.18).

Now, we are ready to prove (3.7.13). Let us set

gN (h
′) = FN (t

′
N , h

′)− FN (t
′
N , h

′
N )− (h′ − h′N ) · ∇GN (t′N , h′N ).
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Note that, to probe (3.7.13), it is sufficient to estimate
´
h′N+DN

|∇gN |2. Using (3.3.8) and

(3.7.8), we can see

|∇GN (t′, h′)| ⩽ C, ∀t′, h′. (3.7.20)

|∇gN (h′)| ⩽ C, ∀h′ ∈ h′N +DN . (3.7.21)

Apply (3.7.15) to gN to obtain

ˆ
h′N+DN

|∇gN |2 ⩽ ∥gN∥L∞(h′N+DN )

(ˆ
∂(h′N+DN )

∣∣∇gN ∣∣+ ˆ
h′N+DN

∣∣∆gN ∣∣).
By (3.7.21), the first integral on the left is bounded by Cδγ−1

N . Since ∆gN = ∆FN (t
′
N , ·),

by (3.3.12), we can see |∆gN | = ∆gN . Integrating by parts and applying (3.7.21) again,

we deduce that the last integral in the above display is also bounded by Cδγ−1
N . Hence, we

arrive at

ˆ
h′N+DN

|∇gN |2 ⩽ Cδγ−1
N ∥gN∥L∞(h′N+DN ). (3.7.22)

It remains to estimate ∥gN∥L∞(h′N+DN ). We want to compare gN with

FN (tN , h
′)− FN (tN , hN )− (h′ − hN ) · ∇GN (tN , hN ).

To start, using (3.7.8), we can compute, for all a, t′, h′,

a · ∇GN (t′, h′) = |DN |−1

ˆ
DN

a · ∇FN (t′, h′ + h′′)dh′′

= |DN |−1

ˆ
∂DN

FN (t
′, h′ + h′′)a · nS(dh′′) (3.7.23)

where in the last equality we used integration by parts and S denotes the surface measure
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on ∂DN . Now, we estimate

∣∣∣(h′ − hN ) · ∇GN (tN , hN )− (h′ − h′N ) · ∇GN (t′N , h′N )
∣∣∣ (3.7.24)

⩽ |hN − h′N |
∣∣∇GN (tN , hN )∣∣+ ∣∣∣(h′ − h′N ) ·

(
∇GN (tN , hN )−∇GN (t′N , h′N )

)∣∣∣.
The first term after the inequality sign is bounded by |hN − h′N | due to (3.7.20). Using

(3.3.8) and (3.7.23), we can bound the second term by

|DN |−1

ˆ
∂DN

(
|tN − t′N |+ |hN − h′N |

)
|h′ − h′N | ⩽ C|tN − t′N |+ C|hN − h′N |,

for all h′ ∈ h′N +DN . Hence, we conclude that (3.7.24) is bounded by the right hand of the

above display with a larger constant. This along with (3.3.8) implies that

∥gN∥L∞(h′N+DN ) ⩽ C|tN − t′N |+ C|hN − h′N |

+ sup
h′∈h′N+DN

∣∣∣FN (tN , h′)− FN (tN , hN )− (h′ − hN ) · ∇GN (tN , hN )
∣∣∣.

By (3.7.18) and the definition of DN in (3.7.7), the supremum above can be bounded by

C
(
δN + |hN − h′N |

)2
+ sup
h′∈h′N+DN

∣∣(h′ − hN ) · ∇FN (tN , hN )− (h′ − hN ) · ∇GN (tN , hN )
∣∣.

We claim that

sup
h′∈h′N+DN

∣∣(h′ − hN ) · ∇FN (tN , hN )− (h′ − hN ) · ∇GN (tN , hN )
∣∣ ⩽ Cδ2N . (3.7.25)

This along with (3.7.5) and (3.7.11) implies that ∥gN∥L∞(h′N+DN ) ⩽ Cδ2N . Plug this into

(3.7.22), and we obtain (3.7.13).
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To complete the proof, we verify the claim (3.7.25). Using integration by parts, we can see

(h′ − hN ) · ∇FN (tN , hN ) = |DN |−1

ˆ
∂DN

(
h′′ · ∇FN (tN , hN )

)
(h′ − hN ) · nS(dh′′).

Using the formula (3.7.23) and
´
∂DN

c · n = 0 for any constant vector c, we can also get

(h′ − hN )·∇GN (tN , hN ) =

|DN |−1

ˆ
∂DN

(
FN (tN , hN + h′′)− FN (tN , hN )

)
(h′ − hN ) · nS(dh′′).

Taking the difference of the above two equations and using (3.7.18), we can see the left hand

side of (3.7.25) is bounded by

C sup
h′∈h′N+DN

δN |h′ − hN | ⩽ CδN
(
δN + |hN − h′N |

)
.

Now, (3.7.25) follows from (3.7.5) and (3.7.11).

3.7.2. The limit is a supersolution when H is convex

Under the additional assumption that H is convex, we show that any subsequential limit

of FN is a supersolution. For simplicity of notation, we again assume the entire sequence

(FN )N∈N converges locally uniformly to f . We recall Remark 3.6.4 and assume that f − ϕ

achieves a strict local minimum at (t, h) ∈ (0,∞) × SK+ . Recall M from (3.7.1). Let us

redefine

δN = max{N− 1
6 ,K

2
5
M,N}, (3.7.26)

DN = δNI + SK+,δN ,

GN (t
′, h′) = |DN |−1

ˆ
h′+DN

FN (t
′, h′′)dh′′, ∀(t′, h′) ∈ R+ × SK+ . (3.7.27)
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Note that in the definition of GN , the integration is over a region away from h′ to avoid the

singularity present in the right hand side of the estimate in Proposition 3.3.1. It is clear

that GN converges locally uniformly to f . Then, there is a sequence (tN , hN ) ∈ (0,∞)×SK+

such that limN→∞(tN , hN ) = (t, h) and GN − ϕ has a local minimum at (tN , hN ). Since

H is convex, we integrate both sides of the inequality in Proposition 3.3.1 and use Jensen’s

inequality to see

(
∂tGN − H

(
∇GN

))
(tN , hN ) ⩾

 
hN+DN

(
∂tFN − H(∇FN )

)
(tN , h

′)dh′

⩾ −C

( 
hN+DN

|h′−1|
N

1
4

(
∆FN + |h′−1|

) 1
4dh′ +

 
hN+DN

E
∣∣∣∇FN −∇FN

∣∣∣2) 1
2

(3.7.28)

where
ffl
hN+DN

= |DN |−1
´
hN+DN

and the time variable is evaluated at tN in (3.7.28).

Let us estimate the integrals in (3.7.28). The definition of DN implies that

|h′−1| ⩽ Cδ−1
N , ∀h′ ∈ hN +DN . (3.7.29)

Integrate by parts and use (3.3.8) to see

∆GN (tN , hN ) =

 
hN+DN

∆FN (tN , h
′)dh′ ⩽ |DN |−1

ˆ
∂(hN+DN )

∣∣∇FN (tN , ·)∣∣ ⩽ Cδ−1
N .

The above two displays together with Jensen’s inequality and (3.7.26) implies that

 
hN+DN

N− 1
4 |h′−1|

(
∆FN (tN , h

′) + |h′−1|
) 1

4dh′

⩽ CN− 1
4 δ−1
N

(
∆GN (tN , hN ) + δ−1

N

) 1
4

⩽ Cδ
1
4
N . (3.7.30)

To estimate the last integral in (3.7.28), we use the same argument in the proof of (3.7.12).

The only difference is that since now it is possible that h ∈ SK+ \ SK++, the singularity in the

estimate (3.3.9) takes effect. Due to (3.7.29), compared with (3.7.17), there is an additional
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δ
− 1

2
N . For N large, we have

E
ˆ
hN+DN

∣∣∣∇FN −∇FN
∣∣∣2 ⩽ Cδ

γ− 3
2

N

(
E∥FN − FN∥2L∞(hN+DN )

) 1
2

⩽ Cδ
γ− 3

2
N KM,N ⩽ Cδγ+1

N , (3.7.31)

where we used (3.2.8) and (3.7.1) in the penultimate inequality, and (3.7.26) in the last

inequality. Inserting (3.7.30) and (3.7.31) into (3.7.28), we obtain

(
∂tGN − H

(
∇GN

))
(tN , hN ) ⩾ −Cδ

1
8
N . (3.7.32)

First suppose that there are infinitely many (tN , hN ) with hN ∈ SK++. Since first derivatives

of GN coincides with ϕ at those (tN , hN ), by taking N → ∞ and using the smoothness of

ϕ, we obtain from (3.7.32) that

(
∂tϕ− H

(
∇ϕ
))

(t, h) ⩾ 0. (3.7.33)

If there are infinitely many (tN , hN ) with hN ∈ SK+ \ SK++, then we must have h ∈ SK+ \ SK++.

Due to t ∈ (0,∞) and limN→∞ tN = t, for large N , we have tN ∈ (0,∞). Since GN − ϕ has

a local minimum at (tN , hN ), we have

(
∂tGN − ∂tϕ

)
(tN , hN ) = 0, (3.7.34)(

∇GN −∇ϕ
)
(tN , hN ) ∈ SK+ . (3.7.35)

We also used Lemma 3.3.3 in deriving (3.7.35). By the definition of GN in (3.7.27), the

nondecreasingness of FN in (3.3.10), and the uniform Lipschitzness of FN in (3.3.8), we

have, for all N ∈ N,

∇GN ∈ SK+ , |∇GN | ⩽ ∥FN∥Lip ⩽ C, (3.7.36)
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where the last constant C is absolute. In addition, due to (3.3.12), GN is convex in the

second variable, which yields

y · ∇GN (tN , hN ) ⩽ GN (tN , hN + y)−GN (tN , hN ), ∀y ∈ SK+ .

Let a be any subsequential limit of
(
∇GN (tN , hN )

)
N∈N. Replace y by yN = ∇GN (tN , hN )

in the above display and use limN→∞(tN , hN ) = (t, h) and the local uniform convergence of

GN towards f to see

|a|2 ⩽ f(t, h+ a)− f(t, h).

The Lipschitzness of f implies

|a| ⩽ ∥f∥Lip. (3.7.37)

We extract a subsequence from
(
∇GN (tN , hN )

)
N∈N, along which

lim inf
N→∞

H
(
∇GN (tN , hN )

)
is achieved. Denote by a the further subsequential limit of this minimizing sequence. By

this and the continuity of H, we obtain

lim inf
N→∞

H
(
∇GN (tN , hN )

)
= H(a). (3.7.38)

Due to (3.7.35), (3.7.36) and limN→∞(tN , hN ) = (t, h), we also have

a−∇ϕ(t, h) ∈ SK+ , a ∈ SK+ . (3.7.39)

Recall the quantity inf H(q) for the boundary condition in (2) of Definition 3.6.1. By (3.7.37)
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and (3.7.39), we have

H(a) ⩾ inf H(q).

Use this, (3.7.34), (3.7.38) and (3.7.32) to get

(
∂tϕ− inf H(q)

)
(t, h) ⩾ lim

N→∞
∂tGN (tN , hN )− H(a)

= lim
N→∞

∂tGN (tN , hN )− lim inf
N→∞

H
(
∇GN (tN , hN )

)
⩾ lim sup

N→∞

(
∂tGN − H

(
∇GN

))
(tN , hN ) ⩾ 0.

This along with (3.7.33) completes our verification that f is a supersolution.

3.8. Nonsymmetric matrix inference

The goal of this appendix is to demonstrate a case where H is not convex, yet the assumptions

on AH in Theorem 3.2.1 are satisfied. Let X1 and X2 be two random vectors in RN . The

task is to infer the nonsymmetric matrix X1X
⊺
2 from the noisy observation

Y =

√
2t

N
X1X

⊺
2 +W ∈ RN×N . (3.8.1)

Let X = diag(X1, X2) ∈ R2N×2. We can compute

X ⊗X = diag
(
X1 ⊗X1, X1 ⊗X2, X2 ⊗X1, X2 ⊗X2

)
∈ R4N2×4.

Let A = (0, 1, 0, 0) ∈ R4. Then note that the non-zero entries of (X ⊗X)A are those from

X1 ⊗X2, which are exactly the entries of X1X
⊺
2 . As observed in [103], the model (3.8.1) is

equivalent to the model

Y =

√
2t

N
X⊗2A+W ∈ R4N2×1,

which is a special case of (3.1.1).
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By the formula of H in (3.2.6), we can compute H(q) = q11q22 and thus DH(q) = diag(q22, q11)

for all q ∈ S2+. Recall the set A defined above (3.2.11). Then for smooth ϕ ∈ A, using the

basis (3.4.1), we can obtain

∇ · DH(∇ϕ) = 2e11 · ∇(e22 · ∇ϕ).

Hence, formally, AH consists of those ϕ ∈ A whose second order derivative as on the left of

the above is nonnegative. By standard arguments involving test functions, we can see AH

is indeed convex. Then, we show FN (t, ·) ∈ AH for all t and all N . In the proof of (3.3.12),

we used [94, (3.27)] to compute a · ∇(a · ∇FN ). A slight modification of [94, (3.27)] gives

Na · ∇(b · ∇FN )

= E
〈(
a · x⊺x′

)
(b · x⊺x′

)〉
− 2E

〈(
a · x⊺x′

)(
b · x⊺x′′

)〉
+ E

〈
a · x⊺x′

〉 〈
b · x⊺x′

〉
,

for a, b ∈ S2. By the definition of X in this model, under the Gibbs measure ⟨·⟩, we can

write x = diag(x1, x2) with x1, x2 ∈ RN . Replace a and b by e11 and e22 respectively in the

above display to see Ne11 · ∇(e22 · FN ) is given by

E
〈(
x1 · x′1

)
(x2 · x′2

)〉
− 2E

〈(
x1 · x′1

)(
x2 · x′′2

)〉
+ E

〈
x1 · x′1

〉 〈
x2 · x′2

〉
= E

N∑
m,n=1

(
⟨x1,mx2,n⟩2 − 2 ⟨x1,mx2,n⟩ ⟨x1,m⟩ ⟨x2,n⟩+ ⟨x1,m⟩ ⟨x2,n⟩2

)
⩾ 0.

This shows that the assumptions on AH in Theorem 3.2.1 are satisfied despite the fact that

H is not convex in this case.

3.9. Fenchel–Moreau identity

The goal is to prove the following version of the Fenchel–Moreau identity on SK+ . More gen-

eral versions on self-dual cones in possibly infinite dimensional Hilbert spaces can be seen in

[38]. Here, for completeness, we prove this using arguments more specific to matrices. Recall

the Fenchel transformation over SK+ defined in (3.6.26), and the sense of nondecreasingness
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in (3.2.10).

Proposition 3.9.1 (Fenchel–Moreau identity). Let u : SK+ → (−∞,+∞] be a function

not identically equal to +∞. Then, u∗∗ = u if and only if u is convex, l.s.c. (lower semi-

continuous), and nondecreasing.

It is easy to see that v∗ is convex and l.s.c. for any function v. In addition by Lemma 3.3.3,

we can see that v∗ is also nondecreasing. Hence, to prove Proposition 3.9.1, it suffices to

show the following.

Lemma 3.9.2. If u : SK+ → (−∞,+∞] is convex, l.s.c., nondecreasing and not identically

+∞, then u∗∗ = u.

The rest of this section is devoted to proving Lemma 3.9.2. Henceforth, we assume that u

satisfies the condition imposed in this lemma.

3.9.1. Preliminaries

We introduce some notation and classical results. We extend u to SK ∼= RK(K+1)/2 by

setting the value outside SK+ to be ∞. Denote by ⊛ the usual conjugate with the sup over

SK . The extension of u gives u⊛ = u∗. By the regular Fenchel-Moreau theorem, we have

u(x) = sup
y∈SK

{y · x− u∗(y)}, ∀x ∈ SK .

We want to show, whenever x ∈ SK+ , the sup above can be taken over SK+ .

Denote by Ω = domu = {x ∈ SK : u(x) < +∞} the effective domain of u. For any A ⊆ SK ,

intA, clA, bdA and conv stand for the interior, closure, boundary, and convex hull of A,

respectively. For each y ∈ SK , we define the subdifferential of u at x by

∂u(y) = {z ∈ SK : u(y′) ⩾ u(y) + z · (y′ − y), ∀y′ ∈ SK}. (3.9.1)
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The outer normal cone to Ω at y ∈ SK is given by

n(y) = {z ∈ SK : z · (y′ − y) ⩽ 0, ∀y′ ∈ Ω}. (3.9.2)

Define

D = {x ∈ Ω : u is differentiable at x}.

For a ∈ SK and ν ∈ R, we define the affine function La,ν by La,ν(x) = a · x+ ν.

We recall some useful lemmas, all of which are classical.

Lemma 3.9.3. For a convex set A, if y ∈ clA and y′ ∈ intA, then λy + (1 − λ)y′ ∈ intA

for all λ ∈ [0, 1).

Lemma 3.9.4. Let x ∈ SK+ and y ∈ Ω. For every α ∈ (0, 1), set xα = (1− α)x+ αy. Then

limα→0 u(xα) = u(x).

Lemma 3.9.5. The set intΩ \D has Lebesgue measure zero.

Lemma 3.9.6. If intΩ ̸= ∅, then

∂u(y) = cl
(
convA(y)

)
+ n(y), ∀y ∈ Ω,

where A(y) is the set of all limits of sequences
(
∇u(yn)

)∞
n=1

with limn→∞ yn = y and yn ∈ D

for all n.

Lemma 3.9.7. If ∂u(y) ∩ SK+ ̸= ∅, then u∗∗(y) = u(y).

Lemma 3.9.8. For every x ∈ SK , we have u∗∗(x) = supLa,ν(x), where the supremum is

taken over the set {La,ν : a ∈ SK+ , ν ∈ R, La,ν ⩽ u}.

Lemma 3.9.3, 3.9.6, and 3.9.7 can be derived from [105, Theorem 6.1, 25.6, and 23.5 ],

respectively. Lemma 3.9.4 is borrowed from [23, Proposition 9.14]. The density claim in
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Lemma 3.9.5 follows from [105, Theorem 25.5]. The idea to verify the boundedness assertion

can be seen in the proof of [74, Proposition 6.2.2 in Chapter D]. Lemma 3.9.8 can be verified

using the definitions of u∗∗ and supLa,ν(·).

In Section 3.9.2, we prove Lemma 3.9.2 under an additional assumption that intΩ ̸= ∅. We

consider the case intΩ = ∅ in Section 3.9.3.

3.9.2. Case 1: nonempty interior

Assuming intΩ ̸= ∅, we want to show that the identity u∗∗ = u holds for all x ∈ SK+ . We

proceed in steps and show this identity holds on clΩ and then on SK+ .

Analysis on clΩ

At every x ∈ D, due to the nondecreasingness of u, we have a · ∇u(x) ⩾ 0 for all a ∈ SK+ .

Then, Lemma 3.3.3 implies ∇u(x) ∈ SK+ at every x ∈ D. By Lemma 3.9.7, we conclude

u∗∗(x) = u(x) for all x ∈ D.

Now for each x ∈ clΩ, since intΩ is convex and nonempty, by Lemma 3.9.5 and an argument

using Fubini’s theorem, we can see that there is x′ ∈ Ω such that xα = (1− α)x+ αx′ ∈ D

for every α ∈ (0, 1). Since both u∗∗ and u are convex and l.s.c., Lemma 3.9.4 implies that

u∗∗(x) = u(x) for all x ∈ clΩ.

Analysis on SK+

Let x ∈ SK+ \ clΩ. Hence, we have u(x) = ∞. Define

λ′ = sup{λ ∈ [0,+∞) : λx ∈ clΩ}.

By x ̸∈ clΩ, 0 ∈ clΩ and the convexity of clΩ, we must have

λ′ < 1. (3.9.3)

Set x′ = λ′x. It is clear that x′ ∈ clΩ and satisfies (3.9.4). The definition of λ′ also ensures

x′ ̸∈ intΩ. There are two cases, either x′ ∈ Ω or not.
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When x′ /∈ Ω, by u∗∗ = u on clΩ and Lemma 3.9.8, there is a sequence of affine functions

(Lan,νn)
∞
n=1 such that an ∈ SK+ , u ⩾ Lan,νn for all n and u(x′) = limn→∞ Lan,νn(x

′) = ∞.

By the definition of x′ and (3.9.3), we can see

Lan,νn(x) = Lan,νn(x
′) + (1− λ′)an · x ⩾ Lan,νn(x

′).

Hence, we also have u(x) = limn→∞ Lan,νn(x) = ∞. This together with Lemma 3.9.8 shows

u∗∗ = u at this x.

Now, we turn to the case where x′ ∈ Ω. We need the next lemma.

Lemma 3.9.9. For every x ∈ bdΩ satisfying

λx ̸∈ cl ∀λ > 1, (3.9.4)

we have
(
n(x) ∩ SK+

)
\ {0} ≠ ∅.

Since x′ satisfies (3.9.4), this lemma implies that there is z ∈ n(x′) ∩ SK+ with z ̸= 0. The

definition (3.9.2) yields

z · (y − x′) ⩽ 0, ∀y ∈ Ω. (3.9.5)

Since we clearly have 0 ∈ Ω, we have z · x′ ⩾ 0. We claim that actually

z · x′ > 0. (3.9.6)

Otherwise, we have z · x′ = 0. Since there is x0 ∈ intΩ ⊆ SK++, we can see that there is

ε > 0 sufficiently small such that x0 − εz ∈ SK+ . The nondecreasingness of u yields εz ∈ Ω.

Replacing y by εz in (3.9.5) and using z · x′ = 0, we have ε|z|2 ⩽ 0, contradicting z ̸= 0.

Hence, we have (3.9.6).

By u∗∗ = u on clΩ and Lemma 3.9.8, we can find an affine function La,ν with a ∈ SK+ such
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that u ⩾ La,ν . Now, for each ρ ⩾ 0, define

Lρ = La+ρz, ν−ρz·x′ .

Due to (3.9.5), we can see

Lρ(y) = La,ν(y) + ρz · (y − x′) ⩽ La,ν(y) ⩽ u(y), ∀y ∈ Ω.

Since u = ∞ outside Ω, we thus have Lρ ⩽ u. On the other hand, we can compute

Lρ(x) = La,ν(x) + ρz · (x− x′) = La,ν(x) + ρ(λ′−1 − 1)z · x′.

By (3.9.3) and (3.9.6), we have limρ→∞ Lρ(x) = ∞ = u(x). By Lemma 3.9.8, this shows

that u∗∗ = u holds at x ∈ SK+ \ clΩ. Together with previous results, we conclude that

u∗∗ = u holds on SK+ under the assumption intΩ ̸= ∅.

To complete the proof of Lemma 3.9.2 under the additional assumption intΩ ̸= ∅, it remains

to prove Lemma 3.9.9.

Proof of Lemma 3.9.9. Fix x ∈ Ω \ intΩ satisfying (3.9.4).

Step 1. We show that for every Euclidean ball B ⊆ SK centered at x, there is x ∈ SK++∩bdΩ.

By (3.9.4), there is some λ > 1 such that x′ = λx ∈ B \ clΩ. By intΩ ̸= ∅ and Lemma 3.9.3,

there is x′′ ∈ B ∩ intΩ ⊆ SK++. For ρ ∈ [0, 1], set

xρ = ρx′ + (1− ρ)x′′ ∈ B.

Set ρ0 = sup{ρ ∈ [0, 1] : xρ ∈ intΩ}. We can see xρ0 lies in the closure but not the interior

of Ω, and thus xρ0 ∈ B ∩ bdΩ. In addition, since x′ ̸∈ clΩ, we must have ρ0 < 1 and hence

xρ0 ∈ SK++ due to x′′ ∈ SK++. We conclude that xρ0 ∈ B∩SK++∩bdΩ is the point x we want.
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Step 2. By the construction above, we can find a sequence (xn)∞n=1 such that xn ∈ SK++∩bdΩ

and limn→∞ xn = x. We want to show n(xn) ⊆ SK+ using the following lemma.

Lemma 3.9.10. If y ∈ SK++ ∩ bdΩ, then n(y) ⊆ SK+ .

Proof. Since y ∈ bdΩ, using intΩ ̸= ∅ and Lemma 3.9.3, we can find yε ∈ intΩ such that

|yε − y| < ε for each ε > 0. By this and y ∈ SK++, there are ε0, δ0 > 0 such that

yε − δ0I ∈ SK+ , ε ∈ (0, ε0).

This further implies that there is δ > 0 such that

yε − a ∈ SK+ , ∀ε ∈ (0, ε0) ,∀a ∈ SK+ satisfying |a| ⩽ δ.

Since u is nondecreasing and yε ∈ Ω, we have yε − a ∈ Ω for any a described above. Let

z ∈ n(y). The definition (3.9.2) yields z · (yε − a− y) ⩽ 0 and thus

z · a ⩾ −|z|ε.

Sending ε→ 0 and varying a, we conclude using Lemma 3.3.3 that z ∈ SK+ .

This lemma immediately implies that n(xn) ⊆ SK+ . For each n, pick zn ∈ n(xn) ∩ SK+ with

|zn| = 1. By extracting a subsequence, we may assume limn→∞ zn = z for some z ∈ SK+

satisfying |z| = 1. Since zn ∈ n(xn), we have

zn · (y − xn) ⩽ 0, ∀y ∈ SK .

Set n → ∞, recall that limn→∞ xn = x, and we obtain z · (y − x) ⩽ 0 for all y ∈ SK . This

proves Lemma 3.9.9.
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3.9.3. Case 2: empty interior

To complete the proof of Lemma 3.9.2, let us investigate the situation where intΩ = ∅. The

case Ω = {0} is easy to handle. So, we assume intΩ = ∅ and Ω \ {0} ≠ ∅. Set

J = max{rank(x) : x ∈ Ω}, (3.9.7)

where rank(x) is the rank of the matrix x. By Ω \ {0} ≠ ∅, we have J ⩾ 1.

Step 1. We show J < K. Otherwise, there is x ∈ Ω with rank(x) = K. Hence, we have

x ∈ SK++. Therefore, there is δ > 0 such that x− y ∈ SK++, for all y ∈ SK+ with |y| ⩽ δ. This

contradicts the assumption that intΩ = ∅.

For each n ∈ N, we denote the n × n zero matrix by 0n. Fix any x ∈ Ω with rank(x) =

J . Without loss of generality, by an orthogonal transformation, we may assume x =

diag(λ1, λ2, . . . , λJ , 0K−J), where λj > 0 for all 1 ⩽ j ⩽ J .

Step 2. We show that for every y ∈ Ω, there is y◦ ∈ SJ+ such that

y = diag(y◦, 0K−J). (3.9.8)

Otherwise, there is y ∈ Ω with yij ̸= 0 for some i > J or j > J . Since y ∈ SK+ is

positive semidefinite, we must have yii > 0 for some i > J . By reordering, we assume

i = J + 1. Note that this reordering preserves x. We want to show rank(x + y) > J . Let

ŷ = (yij)1⩽i,j⩽J+1 ∈ SJ+1
+ be a portion of y, and x̂ be similarly defined. It suffices to show

rank(x̂+ ŷ) = J + 1. We further reduce this to verifying x̂+ ŷ ∈ SJ+1
++ and thus showing

v⊺(x̂+ ŷ)v > 0 (3.9.9)

for all v ∈ RJ+1 \ {0}.
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First, we consider the case where vj ̸= 0 for some 1 ⩽ j ⩽ J . Since x̂ = diag(λ1, . . . , λJ , 0)

and each λj is positive, we have v⊺x̂v =
∑J

j=1 λjv
2
j > 0, verifying (3.9.9). Now, suppose

vj = 0 for all 1 ⩽ j ⩽ J . Due to v ∈ RJ+1\{0}, we must have vJ+1 ̸= 0. Since yJ+1,J+1 > 0,

we obtain v⊺ŷv = yJ+1,J+1v
2
J+1 > 0. In conclusion, (3.9.9) holds.

Therefore, rank(x̂ + ŷ) = J + 1, and thus rank(x + y) > J . By the convexity of Ω, we see

that 1
2(x + y) ∈ Ω. But this contradicts (3.9.7). Hence, by contradiction, y is of the form

(3.9.8) for all y ∈ Ω.

Step 3. We apply the result in the previous section. Define

C = {diag(y◦, 0K−J) : y
◦ ∈ SJ+} ⊆ SK+ .

By the result from Step 2, we have Ω ⊆ C. Identifying C with SJ+, we can view u as a

map from SJ+ to (−∞,∞]. By (3.9.7), the interior of Ω relative to SJ+ is nonempty. Hence,

applying the result for case with nonempty interior, comparing with u∗∗ = u, we have

u(x) = sup
z∈C

{z · x− u∗(z)}, ∀x ∈ C. (3.9.10)

Since u ⩾ u∗∗, we have u∗∗ = u on C.

Step 4. To complete the proof, we show that u∗∗ = u holds on SK+ \ C. Let us set z =

diag{0J , IK−J} where IK−J is the (K − J)× (K − J) identity matrix. Fix any x ∈ SK+ \ C.

Due to x ̸∈ C, there is some i > J or j > J such that xij ̸= 0. Since x is positive semidefinite,

we must have xii > 0 for some i > J . Therefore, we get

z · x > 0. (3.9.11)

By (3.9.10), there is an affine function La,ν with a ∈ C ⊆ SK+ such that u ⩾ La,ν on C. Now,
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for every ρ ⩾ 0, we define

Lρ = La+ρz,ν .

By the definition of z, we can compute

Lρ(y) = La,ν(y) + z · y = La,ν(y) ⩽ u(y), ∀y ∈ C.

Since u = ∞ outside C, we then get Lρ ⩽ u. On the other hand, (3.9.11) implies that

Lρ(x) = La,ν(y) + ρz · y

converges to ∞ as ρ→ ∞. Then, Lemma 3.9.7 implies u∗∗ = u at x ∈ SK+ \ C.

3.10. Concentration in the special case

In this appendix, we prove a concentration result assuming X has i.i.d. and bounded entries.

The following lemma works for any fixed interaction matrix A ∈ RKp×L in (3.1.1). Recall

the definition of KM,N in (3.2.8).

Lemma 3.10.1. Assume that X consists of i.i.d. entries and |Xij | ⩽ 1 for all i and j.

Then, there is C > 0 such that the following holds for all M ⩾ 1 and n ∈ N,

KM,N ⩽ CN− 1
2
(
M +

√
logN

)
.

3.10.1. Proof of Lemma 3.10.1

The plan is to first obtain an estimate of Eeλ2N |FN−FN |2 for small λ > 0 pointwise at each

(t, h) ∈ [0,M ]× SK+,M . Then, we use an ε-net argument to bound

E sup(t,h)∈[0,M ]×SK+,M
eλ

2N |FN−FN |. The desired result follows from Jensen’s inequality.
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Pointwise estimate

Let (t, h) ∈ [0,M ] × SK+,M . Denote by G = (W,Z) the Gaussian vector consisting of all

Gaussian random variables in FN . We also write EG, EX as the expectation integrating

over G, X, respectively. Let λ > 0 be chosen later. Using the Cauchy–Schwarz inequality,

we have

Eeλ|FN−FN | ⩽ E
(
eλ|FN−EXFN |eλ|EXFN−EX,GFN |

)
=
(
Ee2λ|FN−EXFN |

) 1
2
(
Ee2λ|EXFN−EX,GFN |

) 1
2
. (3.10.1)

To treat the last term, we will use the Gaussian concentration inequality. Let us use the

multi-index notation (3.2.15). By (3.2.3) and (3.2.4), we can compute

∂Wi
FN =

1

N

√
2t

Np−1
⟨x̃i⟩ , ∂ZijFN =

1

N

K∑
k=1

(√
2h
)
kj
⟨xik⟩ .

Here x̃ is defined in (3.2.2). Therefore, by (3.2.1), we have

|∇GFN |2 =
∑
i

|∂Wi
FN |2 +

N∑
i=1

K∑
j=1

|∂ZijFN |2

=
2t

Np+1

〈
x̃ · x̃′

〉
+

2

N2
h ·
〈
x⊺x′

〉
⩽ CMN−1.

Invoking [27, Theorem 5.5], we obtain

EGeλ|EXFN−EX,GFN | ⩽ eCλ
2MN−1

. (3.10.2)

Then, we treat the first two terms in (3.10.1). Let us first compute ∂XijFN . By (3.2.4), we

can compute

∂XijFN =
1

N

〈
2t

Np
∂Xij

(
x̃ · X̃

)
+ 2∂Xij

(
h ·
(
x⊺X

))〉
.
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Due to the boundedness assumption |Xi,·| ⩽
√
K (and thus |xi,·| ⩽

√
K under the distribu-

tion ⟨ · ⟩), we can verify

∣∣∇Xi,·FN
∣∣ ⩽ CMN−1.

Using the boundedness again and [27, Theorem 6.2] (see the penultimate display in its

proof), we obtain

EXeλ|FN−EXFN | ⩽ CeCλ
2M2N−1

. (3.10.3)

In conclusion, (3.10.1), (3.10.2) and (3.10.3), with λ replaced by λ
√
N , yield

Eeλ
√
N |FN−FN | ⩽ CeCλ

2M2
.

Then, [116, Proposition 2.5.2] implies that, for λ sufficiently small,

Eeλ
2N |FN−FN |2 ⩽ CeCλ

2M2
. (3.10.4)

Application of an ε-net argument

The goal is to upgrade (3.10.4) to a bound on E sup(t,h)∈[0,M ]×SK+,M
eλ

2N |FN−FN |2 . The

estimates (3.3.8) and (3.3.9) imply that, for |t− t′|+ |h− h′| ⩽ 1,

|FN (t, h)− FN (t
′, h′)| ⩽ C

(
1 +N− 1

2
(
∥WA⊺∥+ |Z|

))(
|t− t′|

1
2 + |h− h′|

1
2
)
.

For ε ∈ (0, 1], viewing SK+,M as a subset of RK(K+1)/2, we introduce the ε-net

Aε = {ε, 2ε, 3ε . . . }1+K(K+1)/2 ∩
(
[0,M ]× SK+,M

)
.
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Hence, for λ small, we have

E sup
(t,h)∈[0,M ]×SK+,M

eλ
2N |FN−FN |2

⩽ E exp
(
Cλ2ε

(√
N + ∥WA⊺∥+ |Z|

)2)
sup

(t,h)∈Aε

eλ
2N |FN−FN |2

⩽

(
E exp

(
Cλ2ε

(√
N + ∥WA⊺∥+ |Z|

)2)) 1
2
(
E sup

(t,h)∈Aε

e2λ
2N |FN−FN |2

) 1
2

(3.10.5)

where we used the Cauchy–Schwarz inequality in the second inequality. Since |Aε| ⩽

(M/ε)1+K(K+1)/2, using the union bound and (3.10.4), we have,

(
E sup

(t,h)∈Aε

e2λ
2N |FN−FN |2

) 1
2

⩽ C(M/ε)CeCλ
2M2

, λ ∈ R. (3.10.6)

Set ε = C−1N−1 in (3.10.5) with C therein, and use (3.10.6) to see

E sup
(t,h)∈[0,M ]×SK+,M

eλ
2N |FN−FN |2

⩽ C(MN)CeCλ
2M2

[
E exp

(
λ2
(
1 +N− 1

2 (∥WA⊺∥+ |Z|)
)2)] 1

2

.

We claim that, for small λ > 0,

E exp
(
λ2
(
1 +N− 1

2 (∥WA⊺∥+ |Z|)
)2)

⩽ C. (3.10.7)

This immediately gives

E sup
(t,h)∈[0,M ]×SK+,M

eλ
2n|FN−FN |2 ⩽ C(MN)CeCλ

2M2
.
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Finally, using Jensen’s inequality, we conclude that

E sup
(t,h)∈[0,M ]×SK+,M

|FN − FN |2 ⩽ λ−2N−1 log

(
E sup

(t,h)∈[0,M ]×SK+,M

eλ
2N |FN−FN |2

)
⩽ CN−1(M2 + logN),

as desired. The proof will be complete once (3.10.7) is verified.

Proof of (3.10.7)

We want to bound exponential moments of ∥WA⊺∥2 and |Z|2. Using the fact that Z is

standard Gaussian in RN , we have, for λ small,

Eeλ
2N−1|Z|2 ⩽ C. (3.10.8)

Now, we turn to bound Eeλ2N−1∥WA⊺∥2 . For each ε > 0, there is a finite set B ⊆ SNK−1

such that for each y ∈ SNK−1 there is z ∈ B satisfying |y−z| ⩽ ε. In addition, the size of B

is bounded by aNK for some constant a > 0 depending only on ε. The construction of B is

classical and can be seen, for instance, in [116, Corollary 4.2.13]. Using the property of B,

we can see that for each (y1, y2, . . . yp) ∈ (SNK−1)p there is (z1, z2, . . . zp) ∈ Bp such that

∣∣∣(WA⊺) · (y1 ⊗ y2 ⊗ · · · ⊗ yp)− (WA⊺) · (z1 ⊗ z2 ⊗ · · · ⊗ zp)
∣∣∣ ⩽ pε∥WA⊺∥.

By this and fixing ε = 1
2p , from the definition (3.3.7), we obtain

∥WA⊺∥ ⩽ 2 sup
(z1, z2, ... zp)∈Bp

(WA⊺) · (z1 ⊗ z2 ⊗ · · · ⊗ zp).

Note that (WA⊺) · (z1 ⊗ z2 ⊗ · · · ⊗ zp) is a centered Gaussian with variance bounded by a

constant C depending only on A. Therefore, there is γ > 0 such that

P
{
(WA⊺) · (z1 ⊗ z2 ⊗ · · · ⊗ zp) ⩾ t

}
⩽ 2e−γt

2
.
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Combine the above two displays and apply the union bound to see

P
{
eλ

2N−1∥WA⊺∥2 ⩾ t
}
⩽ 2

(
apK

tc

)N

for some constant c > 0 that absorbs λ and γ. Writing b = a
pK
c , we have, for N large,

Eeλ
2N−1∥WA⊺∥2 =

ˆ ∞

0
P{eλ2N−1∥WA⊺∥2 ⩾ t}dt ⩽ b+

ˆ ∞

b
2

(
b

t

)cN
dt = b+

2b

cN − 1
,

which is bounded uniformly for large N . This and (3.10.8) imply (3.10.7).
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CHAPTER 4

Statistical inference of finite-rank tensors

This chapter is essentially borrowed from [37], joint with Jean-Christophe Mourrat and

Hong-Bin Chen.

Abstract. We consider a general statistical inference model of finite-rank tensor products.

For any interaction structure and any order of tensor products, we identify the limit free

energy of the model in terms of a variational formula. Our approach consists of showing

first that the limit free energy must be the viscosity solution to a certain Hamilton-Jacobi

equation.

4.1. Introduction

4.1.1. Setting

Let K,L, p ∈ N and A ∈ RKp×L, which will be kept fixed throughout the paper. For every

N ∈ N, t ⩾ 0 and a random matrix X ∈ RN×K , we consider the inference task of recovering

X from the observation of

Y :=

√
2t

Np−1
X⊗pA+W ∈ RN

p×L, (4.1.1)

where ⊗ denotes the tensor product of matrices, and W ∈ RNp×L, independent of the

randomness of X, consists of independent standard Gaussian entries (we view X⊗p as an

Np-by-Kp matrix). Throughout, the dot product between two vectors or matrices of the

same size is the entry-wise inner product. The associated norm is denoted by | · |. For

convenience of analysis, we assume that the random matrix X almost surely satisfies

|X| ⩽
√
NK. (4.1.2)

For instance, (4.1.2) is satisfied if every entry of X has its absolute value bounded by 1. We

denote the law of X by PXN . Using Bayes’ rule, the law of X conditioned on observing Y is
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the measure proportional to eH◦
N (t,x) dPXN (x), where the Hamiltonian H◦

N is

H◦
N (t, x) :=

√
2t

Np−1
(x⊗pA) · Y − t

Np−1
|x⊗pA|2.

The associated free energy is given by

F ◦
N (t) :=

1

N
log

ˆ
RN×K

eH
◦
N (t,x) dPXN (x).

The mutual information I(X,Y ) between X and Y is an important information-theoretical

quantity, which is equal to EF ◦
N (t) up to a simple additive term. Computing the limit of

the mutual information as N → ∞ allows one to determine the critical value of t below

which the inference task is theoretically impossible. Therefore, the limit of EF ◦
N (t) is the

central object of investigation in many inference models. For more details, we refer to the

discussion in [10].

In order to analyze this model, we start by enriching the system by adding an additional

observation Y = X
√
2h+ Z for h ∈ SK+ , where SK+ is the set of K ×K symmetric positive

semi-definite matrices, and Z ∈ RN×K , independent of all other sources of randomness

previously introduced, consists of i.i.d. standard Gaussian entries. Then, the law of X

conditioned on observing Y and Y is a Gibbs measure proportional to eHN (t,h,x)dPXN (x)

with Hamiltonian

HN (t, h, x) := H◦
N (t, x) +

√
2h · (x⊺Y )− h · (x⊺x).

The corresponding free energy is

FN (t, h) :=
1

N
log

ˆ
RN×K

eHN (t,h,x) dPXN (x). (4.1.3)

We also set FN = EFN . Note that the initial free energy satisfies F ◦
N (t) = FN (t, 0). We let
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H : SK+ → R be the mapping such that, for every q ∈ SK+ ,

H(q) := (AA⊺) · q⊗p. (4.1.4)

Our main result is the identification of the limit free energy, for any given choice of interaction

matrix A and p ∈ N.

Theorem 4.1.1. In addition to (4.1.2), suppose that

•
(
FN (0, ·)

)
N∈N converges pointwise to some C1 function ψ : SK+ → R;

• limN→∞ E∥FN − FN∥2L∞(D) = 0 for every compact D ⊆ [0,∞)× SK+ .

Then, for every (t, h) ∈ [0,∞)× SK+ , we have

lim
N→∞

FN (t, h) = sup
h′′∈SK+

inf
h′∈SK+

{
h′′ · (h− h′) + ψ(h′) + tH(h′′)

}
. (4.1.5)

Remark 4.1.2. The above convergence can be improved into convergence in the local uniform

topology by using that FN is Lipschitz uniformly over N (see Lemma 4.2.1).

We briefly comment on the hypotheses of the theorem. One can see that FN (0, ·) is the

free energy associated with a decoupled system where the only observation Y is linear in X.

Therefore, in many cases, the limit of FN (0, ·) can be computed straightforwardly. In

particular, if PXN is the N -fold tensor product of a fixed probability measure on RK , then

FN (0, ·) in fact does not depend on N , and is C1. The next assumption can be rephrased

as local uniform concentration of FN . Again, this condition is straightforward to verify in

many models, with standard tools available: see for instance [39, Lemma C.1] for the case

when the rows of X are i.i.d. and bounded.

Among our assumptions, perhaps the only surprising one is the requirement that ψ be of

class C1. For certain choices of the nonlinearity H, such as when H is convex, this assumption

is not necessary (see for instance [39]). However, when considering arbitrary choices of A
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and p as we do here, this assumption may be required. In a simpler setting, we illustrate

the usefulness of this assumption in Remark 4.6.3.

4.1.2. Related works

Many inference models can be viewed as special cases of (4.1.1). Indeed, one could argue

that essentially any “fully-connected” inference problem will have the form of (4.1.1) for

some suitable choice of A and p. Among them, the models where the limit free energy

has been studied include the spiked Wigner model [10, 82, 12, 95, 94], the spiked Wishart

model [90, 14, 79, 86, 36], the stochastic block model (or community detection problem)

[82, 87, 104], the inference of second order matrix tensor products [103], and the inference of

higher order vector tensor products [83, 12, 95]. The model closest to (4.1.1) is the inference

of finite-rank even-order tensor products studied in [85]. The case of tensors of odd order

was left open there, see [85, Section 7]. In Section 4.5.2, we apply our main result to this

model, for tensor products of arbitrary order (p ∈ N). For a more detailed discussion on

these models, we refer to the introduction in [39].

Many of the results mentioned above were obtained by the powerful method of adaptive in-

terpolation introduced in [12, 13] and refined in subsequent works. In [103], a novel extension

using interpolation paths parameterized by order-preserving positive semi-definite matrices

was employed to completely describe the limit in the general second order tensor products

model. The order-preserving property ([103, Proposition 4]) has a similar counterpart that

plays a crucial role in this work (Lemma 4.2.2 and Proposition 4.4.7).

The approach taken up in the present paper is based instead on identifying the limit free

energy as the viscosity solution to a certain Hamilton-Jacobi equation. This alternative

approach was introduced in [95, 94], and can also inform the analysis of spin glass models

[92, 98, 96, 93]; related considerations also appeared in the physics literature [69, 71, 22, 21].

The setting of the present paper is identical to that of [39], in which partial results were

obtained. There, for general interaction matrix A and order p, only an upper bound on
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the limit free energy could be proved; a complete identification of this limit could only be

obtained for particular choices of A and p. Here, we close this gap and cover all cases in a

unified approach.

Compared with [39], the main novelty of the present paper is that we will rely on a different

method for the identification of the viscosity solution. This method relies crucially on

the fact that the functions under consideration are convex. We explain this new uniqueness

criterion in the simpler context of Hamilton-Jacobi equations on [0,∞)×Rd in the appendix.

The gist of our work is then to extend this criterion to Hamilton-Jacobi equations posed on

[0,∞) × SK+ , and then to verify that any possible limit of the free energy does satisfy this

criterion.

The rest of the paper is organized as follows. In Section 4.2, we present basic properties

of FN . In particular, we record that FN is convex, nondecreasing, and has nondecreasing

gradients. In Section 4.3, we recall basic facts of convex analysis and prove some useful

results in preparation for the study of the Hamilton-Jacobi equation. Using these, we prove

a convenient criterion for identifying viscosity solutions in Section 4.4. Lastly, Section 4.5

contains the proof of Theorem 4.1.1 and an application to the model (4.5.7).

Acknowledgements

We would like to warmly thank Stefano Bianchini for providing us with the idea for the

proof of Proposition 4.6.2. JCM was partially supported by the NSF grant DMS-1954357.

4.2. Properties of the free energy

In this section, we study basic properties of FN . We start by introducing notation.

For any measurable g : RN×K → Rm for some m ∈ N, we denote by ⟨g(x)⟩ the expectation

of g, coordinatewise, with respect to the Gibbs measure proportional to eHN (t,h,x) dPXN (x),

which can also be written as ⟨g(x)⟩ = E[g(X)|Y, Y ] for Y and Y introduced in the previous

section. Note that the dependence of ⟨ · ⟩ on t, h is suppressed from the notation when there

is no confusion. Within the bracket ⟨ · ⟩, we denote by x′, x′′, x′′′ independent copies of x,
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which are called replicas of x. The transpose operator on matrices is denoted by superscript

⊺.

In addition to SK+ , we denote by SK and SK++, the set of K ×K symmetric matrices, and

symmetric positive definite matrices, respectively. We view SK as an ambient linear space for

SK+ and SK++. By choosing an orthonormal basis with respect to the entry-wise dot product,

we can identify SK with RK(K+1)/2 isometrically. Therefore, differentiation makes sense on

SK as the usual one on Euclidean spaces. Naturally, we also identify the dual space of SK

with itself. For a function g : [0,∞)× SK+ → R which is differentiable at (t′, h′), we denote

by ∂tg(t′, h′) ∈ R its derivative with respect to the first variable, and by ∇g(t′, h′) ∈ SK the

gradient with respect to the second variable.

Using the expression (4.1.3), we can compute that

∂tFN =
1

Np
E
〈
x⊗pA · x′⊗pA

〉
=

1

Np
E
[〈
x⊗pA

〉
·
〈
x⊗pA

〉]
, (4.2.1)

∇FN =
1

N
E
〈
x⊺x′

〉
=

1

N
E [⟨x⟩⊺ ⟨x⟩] . (4.2.2)

This computation involves the Nishimori identity, the Gaussian integration by parts, and

the independence of replicas with respect to the Gibbs measure. For details, we refer to [39,

(3.5)-(3.6)]. Recalling the definition of H in (4.1.4), we obtain that FN satisfies

∂tFN − H
(
∇FN

)
=

1

Np

(
E
〈
H(x⊺x′)

〉
− H

(
E⟨x⊺x′⟩

))
,

and the right-hand side is expected to be small when N is large. Hence, FN can be viewed

to approximately satisfy the Hamilton-Jacobi equation

∂tf − H(∇f) = 0 in [0,∞)× SK+ . (4.2.3)

This is the key insight for the Hamilton-Jacobi equation approach. Later, we will show that

indeed FN converges to the unique solution to (4.2.3); and then that this solution admits
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the variational representation appearing on the right side of (4.1.5).

In the remaining two subsections, we collect useful properties of derivatives of FN and prove

that FN is convex.

4.2.1. Derivatives of free energy

We record basic results on the derivatives of FN .

Lemma 4.2.1. For each N ∈ N, the function FN is C1 and the following holds:

sup
N∈N, (t,h)∈[0,∞)×SK+

∣∣(∂t,∇)FN
∣∣(t, h) <∞;

(∂t,∇)FN (t, h) ∈ [0,∞)× SK+ , ∀N ∈ N, (t, h) ∈ [0,∞)× SK+ .

Proof. It follows from (4.2.1) and (4.2.2), along with the assumption (4.1.2).

The first display in Lemma 4.2.1 ensures that FN is Lipschitz uniformly in N . The second

display indicates that (∂t,∇)FN is “nonnegative” in the sense of the following partial orders.

On SK and on R× SK , we declare

h1 ⩽ h2 ⇐⇒ h2 − h1 ∈ SK+ ; (4.2.4)

(t1, h1) ⩽ (t2, h2) ⇐⇒ (t2, h2)− (t1, h1) ∈ [0,∞)× SK+ . (4.2.5)

As a consequence of Lemma 4.2.1 and the mean value theorem, we have that

FN is nondecreasing, ∀N (4.2.6)

in the sense given in (4.2.5).

The next result shows that (∂t,∇)FN is “nondecreasing”.
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Lemma 4.2.2. For each N ∈ N, for every (t1, h1) ⩽ (t2, h2), it holds that

(∂t,∇)FN (t1, h1) ⩽ (∂t,∇)FN (t2, h2).

Proof. For k = 1, 2, we set

Yk :=

(√
2tk
Np−1

X⊗pA+Wk , X
√
2hk + Zk

)

whereWk and Zk consist of i.i.d. standard Gaussian random variables. For k = 1, 2, denoting

⟨ · ⟩ evaluated at (tk, hk) by ⟨ · ⟩k, we have

⟨g(x)⟩k = E[g(X) |Yk] (4.2.7)

for any measurable function g satisfying E|g(X)| <∞. For any matrix y, we write c(y) :=

y⊺y. Note that c(X⊗pA) ∈ RL×L and c(X) ∈ RK×K . Then, we have

(∂t,∇)FN (tk, hk) = E
(

1

Np
tr c

(〈
X⊗pA

〉
k

)
,

1

N
c (⟨X⟩k)

)
.

Hence, it suffices to show that, for any measurable g satisfying E|g(X)| <∞,

E c (⟨g(X)⟩1) ⩽ E c (⟨g(X)⟩2) . (4.2.8)

Indeed, in view of the previous display, the desired result follows from taking g to be g(q) =

q⊗pA and then the identity map.

To compare the two sides in (4.2.8), we introduce

Y ′ :=

(√
2t2 − 2t1
Np−1

X⊗pA+W ′, X
√
2h2 − 2h1 + Z ′

)
,

whereW ′ and Z ′ have i.i.d. standard Gaussian entries, independent of randomness previously
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introduced. We claim that

E[g(X) |Y2]
d
= E[g(X) |Y1, Y ′], (4.2.9)

where the equality holds in the sense of probability distributions. Temporarily assuming

this, and using that E[g(X) |Y1] = E
[
E[g(X) |Y1, Y ′]

∣∣Y1], we can verify, analogously to a

bias-variance decomposition, that

E c
(
E[g(X) |Y1, Y ′]

)
= E c

(
E[g(X) |Y1, Y ′]− E[g(X) |Y1]

)
+ E c

(
E[g(X) |Y1]

)
.

Since the first term on the right is a positive semi-definite matrix, we get that

E c
(
E[g(X) |Y1, Y ′]

)
⩾ E c

(
E[g(X) |Y1]

)
.

In view of (4.2.7) and (4.2.9), this yields (4.2.8) and thus the desired result.

It remains to prove (4.2.9). The quantities on both sides can be written as integrations of

f with respect to Gibbs measures with a common reference measure PXN (the law of X).

Hence, it suffices to compare the Hamiltonians. The Hamiltonian for the left-hand side can

be computed to be

2t2
Np−1

(x⊗pA) · (X⊗pA) +
1√
Np−1

(x⊗pA) ·
√
2t2W2 −

t2
Np−1

|x⊗pA|2

+2h2 · (x⊺X) + (Z2

√
2h2) · x− h2 · (x⊺x),

while the Hamiltonian for the right-hand side is

2t2
Np−1

(x⊗pA) · (X⊗pA) +
1√
Np−1

(x⊗pA) ·
(√

2t1W1 +
√
2t2 − 2t1W

′
)
− t2
Np−1

|x⊗pA|2

+2h2 · (x⊺X) +
(
Z1

√
2h1 + Z ′

√
2h2 − 2h1

)
· x− h2 · (x⊺x).

Since W1,W2,W
′, Z1, Z2, Z

′ all consist of i.i.d. standard Gaussian entries, we can conclude
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that the two Hamiltonians have the same distribution, which implies (4.2.9).

4.2.2. Convexity

In this subsection, we show the following.

Lemma 4.2.3. For each N ∈ N, the function FN : [0,∞)× SK+ → R is convex.

Proof. We want to show that for every (s, a) ∈ R× SK and every (t, h) ∈ [0,∞)× SK+ ,

(
s∂t + a · ∇

)2
FN (t, h) ⩾ 0.

For brevity, we set y =
√

2
Np−1x

⊗pA and similarly for replicas of x. We can compute that

s2∂2t FN (t, h) =
2s2

N
E
〈
(y · y′)(y · y′ − 2y · y′′ + y′′ · y′′′)

〉
,

s∂t
(
a · ∇FN (t, h)

)
=

2s

N
E
〈
(a · x⊺x′)(y · y′ − 2y · y′′ + y′′ · y′′′)

〉
,

(a · ∇)2FN (t, h) =
2

N
E
〈
(a · x⊺x′)(a · x⊺x′ − 2a · x⊺x′′ + a · x′′⊺x′′′)

〉
.

Again, this computation uses the Nishimori identity and the Gaussian integration by parts.

Details for deriving the third identity above can be seen in the derivation of [94, (3.27)].

The two other identities can be computed by following the same procedure. Let I be the

identity matrix of the same size as y⊺y′. Setting b = diag(a, sI), z = diag(x, y) and similarly

for replicas, we have b · z⊺z′ = sy · y′ + a · x⊺x′ (where the matrix product is carried out

prior to the dot product). In this notation, adding the above identities together and using

the symmetry between replicas, we have

(
s∂t + a · ∇

)2
FN (t, h) =

2

N
E
〈
(b · z⊺z′)2 − 2(b · z⊺z′)(b · z⊺z′′) + (b · z⊺z′)(b · z′′⊺z′′′)

〉
=

2

N
E
〈
(b⊗ b) ·

(
z⊺z′ ⊗ z⊺z′ − 2z⊺⟨z′⟩ ⊗ z⊺⟨z′⟩+ ⟨z⟩⊺⟨z′⟩ ⊗ ⟨z⟩⊺⟨z′⟩

)〉
.
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Writing z = z − ⟨z⟩ and similarly for replicas, we obtain that the above is equal to

2

N
E
〈
(b⊗ b) ·

(
z⊺z′ ⊗ z⊺z′ − z⊺⟨z′⟩ ⊗ z⊺⟨z′⟩

)〉
.

Since b is symmetric, we can see that

(b⊗ b) · (z⊺⟨z′⟩ ⊗ z⊺⟨z′⟩) = (b⊗ b) · (⟨z′⟩⊺z ⊗ ⟨z′⟩⊺z).

Using the symmetry between replicas, we conclude from the above three displays that

(
s∂t + a · ∇

)2
FN (t, h) =

2

N
E
〈
(b⊗ b) ·

(
z⊺z′ ⊗ z⊺z′

)〉
⩾ 0.

4.3. Some results of convex analysis

As mentioned above, our approach to proving Theorem 4.1.1 relies on the identification of

the limit of FN as the unique viscosity solution to (4.2.3). The uniqueness criterion we

will use for this purpose is inspired by that described in Appendix 4.6. Compared with

the setting explored there, equation (4.2.3) poses additional difficulties that are caused by

the fact that the domain SK+ of the “space” variable has a boundary. This is compounded

by the fact that the relevant order on SK+ is not total. The main purpose of this section

is to demonstrate Proposition 4.3.9, which states that, despite this, the subgradient of a

nondecreasing convex function with nondecreasing gradients always has a maximal element

(and this maximal element has further good properties). This proposition will be particularly

handy in Section 4.4.

4.3.1. Preliminaries

We start by recalling basic definitions and results from convex analysis. Since we need

results for both functions defined on SK+ and functions on [0,∞)×SK+ , we consider a slightly

more general setting in this subsection and specialize into these two spaces when needed.
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Let H be a finite-dimensional Hilbert space. The associated inner product is denoted by a

dot product, and the norm by | · |. Since H can be isometrically identified with a Euclidean

space, the usual notion of differentiability for any function u : H → R still makes sense.

If u is differentiable at x ∈ H , we denote by Du(x) its differential at x. We also identify

H with its dual and thus Du(x) ∈ H . For the purpose of this work, the space H will be

taken to be either R× SK or SK , and, correspondingly, D will be taken to be either (∂t,∇)

or ∇.

Let u : H → R ∪ {∞} be a convex function. We define its subdifferential at x ∈ H by

∂u(x) :=
{
y ∈ H : u(x′) ⩾ u(x) + y · (x′ − x), ∀x′ ∈ H

}
. (4.3.1)

The effective domain of u is

domu := {x ∈ H : u(x) <∞}.

The function u is called proper if domu ̸= ∅. The outer normal cone to a subset S ⊆ H

at x ∈ H is given by

nS (x) :=
{
y ∈ H : y · (x′ − x) ⩽ 0, ∀x′ ∈ S

}
. (4.3.2)

The following result characterizes the subdifferential as the sum of the outer normal cone

and the set of accumulation points of differentials at nearby differentiable points; we refer

to [105, Theorem 25.6] for a proof.

Lemma 4.3.1. Let u : H → R ∪ {∞} be a proper lower semi-continuous convex function

such that domu has nonempty interior. Then, for every x ∈ H ,

∂u(x) = cl(convS) + ndomu(x).
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where S is the set of all limits of sequences of the form
(
Du(xi)

)
i∈N such that u is differen-

tiable at xi and limi→∞ xi = x.

Note that when x is in the interior of domu, we have ndomu(x) = {0}.

We also record two classical results which, while not relevant to the proof of Proposition 4.3.9,

will be useful later on. The first one characterizes the subdifferential of the sum of two convex

functions, assuming that one of them is differentiable for simplicity. The second one states

a correspondence between elements of the subdifferential at a point and smooth functions

that “touch the convex function from below”.

Lemma 4.3.2. Let u : H → R ∪ {∞} be a proper lower semi-continuous convex func-

tion such that domu has nonempty interior. Let v : H → R be convex and differentiable

everywhere. Set u′ = u+ v. Then, domu = domu′ and, for every x ∈ domu, it holds that

∂u′(x) = ∂u(x) +
{
Dv(x)

}
.

Proof. The first claim is obvious due to the finiteness of v. To see the second claim, we

start by noting that due to domu = domu′, the outer normal cone to domu is the same as

the outer normal cone to domu′ at every point. The differentiability of v implies that u′ is

differentiable at some point x′ if and only if u is also differentiable at x′. Hence, the second

claim follows from Lemma 4.3.1.

Lemma 4.3.3. Let u : H → R ∪ {∞} be convex. Then, p ∈ ∂u(x) for some x if and only

if there exists a smooth function ϕ : H → R such that u−ϕ achieves its minimum at x and

Dϕ(x) = p.

Proof. Assuming p ∈ ∂u(x), we can deduce from the definition of subdifferential that u− ϕ

achieves its minimum at x for ϕ : y 7→ p · y. Now, let us assume the converse. The convexity

160



of u implies that

u(x′)− u(x) ⩾
1

λ

(
u
(
x+ λ(x′ − x)

)
− u(x)

)
, ∀x′, ∀λ ∈ (0, 1].

Using the minimality of u−ϕ at x and the differentiability of ϕ at x, we can obtain Dϕ(x) ∈

∂u(x) by sending λ→ 0.

To apply these results to the study of solutions to (4.2.3), we make the following remark.

Remark 4.3.4. Any convex function f : [0,∞)×SK+ → R can be extended in a standard way

to a convex function f : R × SK → R ∪ {∞} by setting f = f on [0,∞) × SK+ and f = ∞

elsewhere. Note that f is proper and its effective domain is [0,∞)×SK+ which has nonempty

interior. If f is continuous, then f is lower semi-continuous. In the following, we do not

distinguish between f and its standard extension. Then, the notions and results discussed

above can be applied to f by setting H = R×SK and D = (∂t,∇). Similar treatments can

be taken for any convex function ψ : SK+ → R.

Finally, since we will work with functions defined on SK+ and [0,∞) × SK+ , we record these

two simple lemmas.

Lemma 4.3.5. For every a ∈ SK , we have a ∈ SK+ if and only if a · b ⩾ 0 for all b ∈ SK+ .

Lemma 4.3.6. For every t ⩾ 0 and x ∈ SK+ , we have nSK+
(x) ⊆ −SK+ and n[0,∞)×SK+

(t, x) ⊆

−([0,∞)× SK+ ).

The first lemma is an application of the diagonalizability of real symmetric matrices (see

e.g. [94, Lemma 2.2]), and the second lemma is a consequence of the first lemma and the

definition of outer normal cones in (4.3.2).

4.3.2. Nondecreasing gradients

The key result of this subsection is Proposition 4.3.9. To state it, it is convenient to introduce

the following definitions. Recall the partial orders defined in (4.2.4) and (4.2.5).
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Definition 4.3.7 (Nondecreasingness). A real-valued function g defined on SK+ or [0,∞)×

SK+ is said to be nondecreasing if g(y1) ⩽ g(y2) whenever y1 ⩽ y2.

Definition 4.3.8 (Nondecreasing gradients). A Lipschitz function f : [0,∞) × SK+ → R

is said to have nondecreasing gradients if, for every (t1, x1) and (t2, x2) that are points of

differentiability of f and satisfy (t1, x1) ⩽ (t2, x2), it holds that

(∂t,∇)f(t1, x1) ⩽ (∂t,∇)f(t2, x2). (4.3.3)

Recall that, by Rademacher’s theorem, a Lipschitz function is differentiable almost every-

where. Here is the main result of this section.

Proposition 4.3.9. Suppose that f : [0,∞)× SK+ → R is nondecreasing, Lipschitz, convex,

and has nondecreasing gradients. Then, for every (t, x) ∈ [0,∞) × SK+ , there exists (b, q) ∈

∂f(t, x) ∩ [0,∞)× SK+ such that |(b, q)| ⩽ ∥f∥Lip and

for every (a, p) ∈ ∂f(t, x), (a, p) ⩽ (b, q). (4.3.4)

In addition, if f satisfies (4.2.3) on a dense set, then (b, q) can be chosen to satisfy b−H(q) =

0.

Remark 4.3.10. In the statement of Proposition 4.3.9, the precise interpretation of the phrase

that f satisfies (4.2.3) on a dense set is that the set

{
(t, x) ∈ (0,∞)× SK++ : f is differentiable at (t, x) and (∂tf − H(∇f)) (t, x) = 0

}
is dense in [0,∞)×SK+ . We point out that one could equivalently replace this condition by the

condition that f satisfies (4.2.3) at every point of differentiability in (0,∞)× SK++. Indeed,

one direction of this equivalence is immediate, since every Lipschitz function is differentiable

almost everywhere. Conversely, if (t, x) ∈ (0,∞)×SK++ is a point of differentiability of f , one

can find a sequence of points (tn, xn) that converge to (t, x) and such that (4.2.3) is satisfied
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at (tn, xn). Then every subsequential limit of (∂tf,∇f)(tn, xn), say (a, p) ∈ R×SK , satisfies

a−H(p) = 0, and one can check that (a, p) ∈ ∂f(t, x). But since f is differentiable at (t, x)

and (t, x) is in the interior (implying that the outer normal cone is {0}), the subdifferential

∂f(t, x) is the singleton {(∂t,∇)f(t, x)}.

Proof of Proposition 4.3.9. Let (t, x) ∈ [0,∞) × SK+ . We start by fixing some (s0, y0) ∈

(0,∞)× SK++ such that |(s0, y0)| = 1. Note that

(t, x) + λ(s0, y0) ∈ [0,∞)× SK+ , ∀λ ⩾ 0.

Since f is differentiable a.e. on [0,∞) × SK+ , we can find a sequence (t0,j , x0,j)j∈N of differ-

entiable points such that

∣∣(t0,j , x0,j)− ((t, x) + j−1(s0, y0)
)∣∣ ⩽ j−2, ∀j ∈ N. (4.3.5)

If, in addition, f satisfies (4.2.3) on a dense set, then clearly we can choose (t0,j , x0,j)j∈N

from that set. Since f is Lipschitz, by passing to a subsequence, we may assume that

limj→∞(∂t,∇)f(t0,j , x0,j) exists. Denote this limit by (b, q). By Lemma 4.3.1, we know that

(b, q) ∈ ∂f(t, x). It is clear that |(b, q)| ⩽ ∥f∥Lip. Since f is nondecreasing, we also have

that (b, q) ∈ [0,∞)× SK+ . Continuity of H implies that b− H(q) = 0 if f satisfies (4.2.3) on

a dense set. It remains to show (4.3.4).

We apply Lemma 4.3.1 to the standard extension of f (see Remark 4.3.4). Note that

dom f = [0,∞) × SK+ . Let S be the corresponding set at (t, x) in this lemma. Then, due

to this and Lemma 4.3.6, for each (a, p) ∈ ∂f(t, x), there is (a′, p′) ∈ cl(convS) such that

(a, p) ⩽ (a′, p′). Therefore, it suffices to prove (4.3.4) for (a, p) ∈ cl(convS). In fact, since

the condition on (a, p) in (4.3.4) is stable under convex combinations and passage to the

limit, it suffices to show (4.3.4) for every (a, p) ∈ S.

Let (a, p) ∈ S. By definition of S, there exists a sequence ((ti, xi))i∈N converging to (t, x)
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such that

lim
i→∞

(∂t,∇)f(ti, xi) = (a, p). (4.3.6)

Due to our choice of (s0, y0), we can see that for sufficiently large j there is i(j) ∈ N such

that

(ti, xi) ⩽ (t0,j , x0,j), ∀i ⩾ i(j). (4.3.7)

Indeed, since (s0, y0) is strictly positive, there is C > 0 such that

C−1|(a′, p′)| ⩽ (a′, p′) · (s0, y0) ⩽ C|(a′, p′)|, ∀(a′, p′) ∈ [0,∞)× SK+ .

By this and (4.3.5), we have that, for every a ∈ [0,∞)× SK+ ,

a ·
(
(t0,j , x0,j)− (t, x)− 1

2j
(s0, y0)

)
⩾

1

2j
a · (s0, y0)− j−2|a| ⩾ |a|

(
1

2Cj
− 1

j2

)
.

The right-hand side is nonnegative for sufficiently large j. Lemma 4.3.5 thus implies that

(t0,j , x0,j)− (t, x) ⩾
1

2j
(s0, y0).

On the other hand, similar arguments yield that, for sufficiently large i (in terms of j),

(ti, xi)− (t, x) ⩽
1

2j
(s0, y0).

The two previous displays justify (4.3.7). Using (4.3.6), (4.3.7) and the property (4.3.3), by

first sending i→ ∞ and then j → ∞, we obtain that

(a, p) ⩽ lim
j→∞

(∂t,∇)f(t0,j , x0,j) = (b, q),

as desired.
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4.4. Viscosity solutions

In this section, we study the Hamilton-Jacobi equation (4.2.3). First, we give the precise

definition of viscosity solutions. Then, we recall the uniqueness and existence of viscosity

solutions ensured by the comparison principle and the fact that the Hopf formula gives

a viscosity solution. We next turn to the main goal of this section, which is to prove

Proposition 4.4.7. This proposition provides us with a convenient sufficient condition for

checking whether a function is the unique viscosity solution. This is instrumental in our

proof of the convergence of the free energy in Section 4.5.

Recall that the notion of nondecreasing functions was introduced in Definition 4.3.7.

Definition 4.4.1 (Viscosity solutions).

1. A nondecreasing Lipschitz function f : [0,∞) × SK+ → R is a viscosity subsolution to

(4.2.3) if for every (t, h) ∈ (0,∞) × SK+ and every smooth ϕ : (0,∞) × SK+ → R such

that f − ϕ has a local maximum at (t, h), we have


(
∂tϕ− H(∇ϕ)

)
(t, h) ⩽ 0, if h ∈ SK++,

∇ϕ(t, h) ∈ SK+ , if h ∈ SK+ \ SK++.

2. A nondecreasing Lipschitz function f : [0,∞) × SK+ → R is a viscosity supersolution

to (4.2.3) if for every (t, h) ∈ (0,∞)×SK+ and every smooth ϕ : (0,∞)×SK+ → R such

that f − ϕ has a local minimum at (t, h), we have


(
∂tϕ− H(∇ϕ)

)
(t, h) ⩾ 0, if h ∈ SK++,

∂tϕ(t, h)− inf H(q) ⩾ 0, , if h ∈ SK+ \ SK++,

where the infimum is taken over all q ∈
(
∇ϕ(t, h) + SK+

)
∩ SK+ and |q| ⩽ ∥f∥Lip.

3. A nondecreasing Lipschitz function f : [0,∞)×SK+ → R is a viscosity solution to (4.2.3)
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if f is both a viscosity subsolution and supersolution.

Remarks 4.4.3 and 4.4.4 below aim to provide a somewhat more intuitive understanding of

Definition 4.4.1. Before doing so, we record the following observation.

Lemma 4.4.2. The function H : SK+ → R given in (4.1.4) is nondecreasing.

Proof. Let a, b ∈ SK+ be such that a ⩽ b. Recalling that the tensor product of two positive

semidefinite matrices is positive semidefinite, see for instance [117, Theorem 7.20], one can

show by induction on p that a⊗p ⩽ b⊗p. Since AA⊺ ∈ SKp

+ , we can use Lemma 4.3.5 to

obtain that H(a) ⩽ H(b), as desired.

Remark 4.4.3. Given a nondecreasing Lipschitz function f , define the extension of H by

H(p) := inf
{
H(q) : q ⩾ p, q ∈ SK+ , |q| ⩽ ∥f∥Lip

}
, ∀p ∈ SK . (4.4.1)

As usual, the infimum over an empty set is understood to be ∞. Note that H : SK →

R ∪ {∞} is lower semi-continuous and agrees with H on SK+ due to Lemma 4.4.2. Then,

Definition 4.4.1 (2) can be reformulated as follows: f is a viscosity supersolution if for every

(t, h) ∈ (0,∞)×SK+ and every smooth ϕ : (0,∞)×SK+ such that f −ϕ has a local minimum

at (t, h), we have

(
∂tϕ− H(∇ϕ)

)
(t, h) ⩾ 0.

Note that, in this formulation, we do not need to distinguish between h ∈ SK++ and h ∈

SK+ \ SK++.

Remark 4.4.4. Further simplifications of boundary conditions can be made. After the sub-

mission of this paper, [41] considers solutions defined to satisfy the equation in the viscosity

sense everywhere including the boundary without any additional boundary condition im-

posed. Under this definition, the comparison principle and the existence of solutions still
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hold. Moreover, the solution admits a representation by the Hopf–Lax formula given the

convexity of the nonlinearity, or the Hopf formula given the convexity of the initial condition.

All properties needed in this work are still satisfied. One can work with this definition, and

the main results in this work are still valid.

Let us briefly describe the simplification. Due to Lipschitzness of FN uniformly in N

(Lemma 4.2.1), we can work with a regularized nonlinearity Hreg : SD+ → R which coincides

with H on a ball intersected with SD+ with sufficiently large radius. In a similar way as in [41,

Lemma 4.2], Hreg can be constructed to be Lipschitz and nondecreasing. Then, we extend

Hreg to

Hext(p) := inf
{
Hreg(q) : q ⩾ p, q ∈ SK+

}
, ∀p ∈ SK .

One can check, similarly as in [41, Lemma 4.4], that Hext is Lipschitz and and nondecreasing.

Then, the conditions for viscosity subsolutions and supersolutions can be replaced by

(
∂tϕ− Hext(∇ϕ)

)
(t, h) ⩽ 0,(

∂tϕ− Hext(∇ϕ)
)
(t, h) ⩾ 0,

respectively, without the need to distinguish between h ∈ SK+ \ SK++ and h ∈ SK++. The key

property needed for this simplification in [41] is the monotonicity of the nonlinearity.

We turn to the well-posedness of equation (4.2.3). We first state a comparison principle,

which ensures in particular that there is at most one viscosity solution with a given initial

condition.

Proposition 4.4.5 (Comparison principle). If u is a subsolution and v is a supersolution

to (4.2.3), then

sup
[0,∞)×SK+

(u− v) = sup
{0}×SK+

(u− v).
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For suitable initial conditions, the viscosity solution admits the following variational repre-

sentation.

Proposition 4.4.6 (Hopf formula). Let ψ : SK+ → R be convex, Lipschitz and nondecreasing,

and let f be given by

f(t, h) := sup
h′′∈SK+

inf
h′∈SK+

{
h′′ · (h− h′) + ψ(h′) + tH(h′′)

}
, ∀(t, h) ∈ [0,∞)× SK+ .

Then, the function f is a viscosity solution to (4.2.3) with initial condition f(0, ·) = ψ.

For the proofs of these two propositions, we refer to [39, Section 6].

In the remainder of this section, for convenience, we will use x, y as spatial variables in place

of h, which should not be confused with the notation for random variables under the Gibbs

measure ⟨ · ⟩ in Section 4.2.

4.4.1. Identification criterion

The following result gives a convenient criterion for a function to be a viscosity solution.

Proposition 4.4.7. Let f : [0,∞)×SK+ → R be nondecreasing, Lipschitz, convex, and have

nondecreasing gradients. Suppose that ψ = f(0, ·) is C1 and that f satisfies (4.2.3) on a

dense subset. Then, f is a viscosity solution to (4.2.3) with initial condition ψ.

For the reader’s convenience, the idea for the proof of this proposition is also presented

in the simpler setting of Hamilton-Jacobi equations on [0,∞) × Rd in Appendix 4.6. Two

essential ingredients for this argument are the C1 assumption of the initial condition and the

convexity of f . At least in the simpler context explored in Appendix 4.6, both assumptions

are necessary; see in particular Remark 4.6.3 there.

Compared with the Euclidean setting discussed in Appendix 4.6, the existence of the bound-

ary of SK+ complicates the arguments. Indeed, in view of Lemma 4.3.1, on the boundary,

the subdifferential contains an additional component from the outer normal cone. There-
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fore, if p ∈ ∂ψ(y) for a boundary point y, we cannot identify p with ∇ψ(y). The identity

p = ∇ψ(y) is important in Step 2 of the proof of Proposition 4.6.2. It turns out that for

Proposition 4.4.7, a work-around is available by exploiting the assumption that the function

f has nondecreasing gradients.

As preparation for this, we use Proposition 4.3.9 to prove the following lemma. This lemma

can be interpreted as stating that we can always “lift” a subdifferential p ∈ ∂ψ(y) to a

subdifferential (b, p) ∈ ∂f(0, y) which is dominated by some (b, p′) ∈ ∂f(0, y) satisfying the

Hamilton-Jacobi equation. This lemma is needed due to the presence of boundary. Indeed,

on [0,∞)×Rd, the existence of such a “lift” is automatic, which can be seen in Step 2 of the

proof of Proposition 4.6.2.

Lemma 4.4.8. Under the assumptions in Proposition 4.4.7, for every y ∈ SK+ and every

p ∈ ∂ψ(y), there is (b, p′) ∈ [0,∞)× SK+ such that (b, p) ∈ ∂f(0, y), p′ ⩾ p, |(b, p′)| ⩽ ∥f∥Lip

and b− H(p′) = 0.

Proof. Since ψ : SK+ → R is C1, by Lemma 4.3.1 and setting p′ = ∇ψ(y), we have

∂ψ(y) = {p′}+ nSK+
(y).

This implies that

p = p′ + n (4.4.2)

for some

n ∈ nSK+
(y). (4.4.3)

Due to Lemma 4.3.6, we have −n ∈ SK+ , that is,

p ⩽ p′. (4.4.4)

169



The same argument also yields that,

for every q′ ∈ ∂ψ(y), q′ ⩽ p′. (4.4.5)

Since f is nondecreasing, we have that, for all (t′, x′) ∈ [0,∞)× SK+ ,

f(t′, x′)− f(0, y) ⩾ f(0, x′)− f(0, y) = ψ(x′)− ψ(y),

which due to the convexity of ψ implies that (0, p′) ∈ ∂f(0, y). Let

(b, q) ∈ ∂f(0, y) (4.4.6)

be as described in Proposition 4.3.9, for f at the point (0, y). Then, the following properties

hold

(0, p′) ⩽ (b, q), (4.4.7)

|(b, q)| ⩽ ∥f∥Lip, b− H(q) = 0. (4.4.8)

Since f(0, ·) = ψ, we must have q ∈ ∂ψ(y). Combining (4.4.5) and (4.4.7), we see that

p′ = q. (4.4.9)

We are now ready to conclude. By (4.4.3) and the definition of outer normal in (4.3.2), we

can verify that

(0, n) ∈ n[0,∞)×SK+
(0, y).

This along with Lemma 4.3.1, (4.4.6) and (4.4.9) implies

(b, p′ + n) ∈ ∂f(0, y).
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The lemma then follows from this display, (4.4.2), (4.4.4), (4.4.8) and (4.4.9).

We are now ready to prove our criterion for the identification of solutions.

Proof of Proposition 4.4.7. We check that f must be a subsolution to (4.2.3). Let ϕ ∈

C∞((0,∞)×SK+ ), and (t, x) ∈ (0,∞)×SK+ be such that f−ϕ has a local maximum at (t, x).

If x ∈ SK+ \ SK++, since, for each a ∈ SK+ and sufficiently small ε > 0,

0 ⩽ f(t, x+ εa)− f(t, x) ⩽ ϕ(t, x+ εa)− ϕ(t, x),

we must have a · ∇ϕ(t, x) ⩾ 0 for all a ∈ SK+ . By Lemma 4.3.5, this implies that ∇ϕ(t, x) ∈

SK+ . If x ∈ SK++, then we have,

f(t′, x′)− f(t, x) ⩽ (t′ − t)∂tϕ(t, x) + (x′ − x) · ∇ϕ(t, x) + o(|t′ − t|+ |x′ − x|).

This implies that the subdifferential ∂f(t, x) is the singleton {(∂tϕ,∇ϕ)(t, x)}, and thus

that f is differentiable at (t, x), with (∂tf,∇f)(t, x) = (∂tϕ,∇ϕ)(t, x). Using also Re-

mark 4.3.10, we deduce that

(
∂tϕ− H(∇ϕ)

)
(t, x) =

(
∂tf − H(∇f)

)
(t, x) = 0,

as desired.

Now we want to show that f is a supersolution to (4.2.3). Fix any (t, x), and any

(a, p) ∈ ∂f(t, x). (4.4.10)

Recall Remark 4.4.3 and the extension H defined there. Taking (t, x) and ϕ as in Defini-

tion 4.4.1 (2), we can use Lemma 4.3.3 to see that (∂tϕ(t, x),∇ϕ(t, x)) ∈ ∂f(t, x). Therefore,

171



it suffices to show that

a− H(p) ⩾ 0. (4.4.11)

We proceed in four steps.

Step 1. We claim that, for every ε > 0, the following infimum

inf
y∈SK+

(
fε(0, y)− y · p

)
(4.4.12)

is achieved, where, for every (s, y) ∈ [0,∞)× SK+ , we have set

fε(s, y) := f(s, y) + ε
√
1 + |y|2.

Note that we are working with a slightly different perturbation of f from the one in Step 3

in the proof of Proposition 4.6.2. The purpose is to ensure that the perturbative term

is differentiable everywhere so that Lemma 4.3.2 is applicable. One can verify that y 7→√
1 + |y|2 is convex, and thus so is fε. By the definition of subdifferentials, we have

f(0, y)− f(t, x) ⩾ (a, p) · (−t, y − x), ∀y ∈ SK+ ,

which implies that

fε(0, y)− y · p ⩾ ε
√
1 + |y|2 + f(t, x)− (a, p) · (t, x), ∀y ∈ SK+ .

Hence, the left-hand side of the inequality above is bounded below and tends to infinity as

|y| tends to infinity. Therefore, a minimizer exists and we denote it by yε ∈ SK+ .

Step 2. We show

lim
ε→0

ε
√
1 + |yε|2 = 0. (4.4.13)
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We first observe that

lim sup
ε→0

inf
y∈SK+

(
f(0, y) + ε

√
1 + |y|2 − y · p

)
= inf

y∈SK+
(f(0, y)− y · p) . (4.4.14)

Indeed, for any δ > 0, there is y ∈ SK+ such that

f(0, y)− y · p ⩽ inf(f(0, y)− y · p) + δ/2,

and we can choose ε > 0 small enough such that, for every ε ∈ (0, ε),

f(0, y) + ε
√
1 + |y|2 − y · p ⩽ inf(f(0, y)− y · p) + δ.

This implies that

lim sup
ε→0

inf
y∈SK+

(
f(0, y) + ε

√
1 + |y|2 − y · p

)
⩽ inf

y∈SK+
(f(0, y)− y · p) ,

and the other direction of the inequality in (4.4.14) is obvious. Since yε achieves the infimum

on the left-hand side of (4.4.14) and also satisfies

f(0, yε)− yε · p ⩾ inf
y∈SK+

(f(0, y)− y · p) ,

we conclude that (4.4.13) holds.

Step 3. Let ψε := fε(0, ·), so that ψε = ψ + ε
√

1 + | · |2. Since yε achieves the infimum

in (4.4.12), we have that p ∈ ∂ψε(yε). Lemma 4.3.2 implies that

p = pε +
εyε√

1 + |yε|2

for some pε ∈ ∂ψ(yε). In particular, we have

|p− pε| ⩽ ε. (4.4.15)
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By Lemma 4.4.8 applied to pε, there exists (bε, p
′
ε) ∈ [0,∞)× SK+ such that

(bε, pε) ∈ ∂f(0, y), (4.4.16)

pε ⩽ p′ε, p′ε ∈ SK+ , |p′ε| ⩽ ∥f∥Lip (4.4.17)

bε − H(p′ε) = 0. (4.4.18)

Step 4. We are now ready to prove (4.4.11). Define h : λ 7→ f (λ(t, x) + (1− λ)(0, yε))

on [0, 1]. Clearly, h is convex. By (4.4.16), the right derivative of h at 0 satisfies

h′+(0) ⩾ bεt+ pε · (x− yε).

On the other hand, due to (4.4.10), the left derivative at 1 satisfies

h′−(1) ⩽ at+ p · (x− yε).

By convexity of h, we must have h′+(0) ⩽ h′−(1). This along with (4.4.15) and (4.4.13)

implies that, as ε tends to zero,

a ⩾ bε + o(1).

By (4.4.18), the definition of H in (4.4.1), and (4.4.17), we have that

bε = H(p′ε) ⩾ H(pε).

Using that H is lower semi-continuous and (4.4.15) together with the two previous displays

yields that

a ⩾ H(p) + o(1),

and (4.4.11) follows by letting ε tend to zero.
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In the corollary below, we rephrase our criterion for identifying solutions in the following

way: instead of asking for the equation to be valid on a dense subset, we ask that it be

valid at any point at which the candidate function can be touched from above by a smooth

function. As will be seen in the next section, the main advantage to this formulation is

that, by convexity, we automatically benefit from a control on the Hessian of the candidate

function at the contact point.

Corollary 4.4.9. Let f : [0,∞) × SK+ → R be nondecreasing, Lipschitz, convex, and have

nondecreasing gradients. Suppose that ψ = f(0, ·) is C1, and that the following property

holds: for every ϕ ∈ C∞((0,∞)× SK+ ) and (t, x) ∈ (0,∞)× SK++ such that f − ϕ achieves a

strict local maximum at (t, x), we have

(∂tϕ− H(∇ϕ))(t, x) = 0.

Then f is a viscosity solution to (4.2.3).

Proof. Let ϕ and (t, x) be as in the statement of the corollary. Since f is convex, we have

that, for any (a, p) ∈ ∂f(t, x) and (t′, x′) ∈ (0,∞)× SK+ ,

a(t′ − t) + p · (x′ − x) ⩽ f(t′, x′)− f(t, x)

⩽ ∂tϕ(t, x)(t
′ − t) +∇ϕ(t, x) · (x′ − x) + o(|t′ − t|+ |x′ − x|).

It then follows that f is differentiable at (t, x) and the derivatives of f at (t, x) coincide with

those of ϕ. By Proposition 4.4.7 and Remark 4.3.10, it therefore suffices to show that the

set

{
(t, x) ∈ (0,∞)× SK++ : ∃ϕ ∈ C∞((0,∞)× SK+ ) s.t. (t, x) is a local maximum of f − ϕ

}
(4.4.19)

is dense in [0,∞) × SK+ . (The additional restriction that the local maximum be strict is

easily addressed a posteriori.) Since the closure of (0,∞) × SK++ is [0,∞) × SK+ , it suffices
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to show that the set in (4.4.19) is dense in (0,∞)× SK++. We fix any (t, x) ∈ (0,∞)× SK++,

and for every α ⩾ 1, we define

ϕα : (t′, x′) 7→ α

2
(t′ − t)2 +

α

2
|x′ − x|2.

Since f is Lipschitz, we can verify that f − ϕα achieves a global maximum at some point

(tα, xα). Using the Lipschitzness of f and that (f − ϕα)(tα, xα) ⩾ (f − ϕα)(t, x), we can

show that there is a constant C <∞ such that for every α ⩾ 1,

|tα − t|+ |xα − x| ⩽ C

α
.

This implies that limα→∞(tα, xα) = (t, x). Also, since (t, x) ∈ (0,∞) × SK++, we have that

(tα, xα) ∈ (0,∞) × SK++ for every sufficiently large α. Hence (tα, xα) belongs to the set

in (4.4.19), and we conclude that the set in (4.4.19) is a dense subset of [0,∞)× SK+ .

4.5. Convergence and application

The main goal of this section is to prove Theorem 4.1.1, using the tools developed in the

previous section. For illustration, we also apply the theorem to a specific model.

4.5.1. Convergence

In view of Proposition 4.4.6, Theorem 4.1.1 follows from the next theorem.

Theorem 4.5.1. Under the conditions of Theorem 4.1.1, the function FN converges point-

wise to the unique viscosity solution to (4.2.3) with initial condition ψ.

In order to prove this result, we start by recalling from [39, Proposition 3.1] (cf. also [94,

Proposition 1.2]) that the function FN satisfies an approximate form of the equation. In

(4.5.1), we implicitly understand that the relevant functions are evaluated at (t, h) ∈ [0,∞)×

SK+ .

Proposition 4.5.2 (Approximate Hamilton-Jacobi equation). There exists C < ∞ such
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that for every N ⩾ 1 and uniformly over [0,∞)× SK+ ,

∣∣∂tFN − H(∇FN )
∣∣2 ⩽ Cκ(h)N− 1

4
(
∆FN + |h−1|

) 1
4 + CE

[∣∣∇FN −∇FN
∣∣2] , (4.5.1)

where κ is the condition number of h ∈ SK+ given by

κ(h) :=

 |h||h−1|, if h ∈ SK++,

+∞ otherwise.

Proof of Theorem 4.5.1. Since FN is Lipschitz uniformly in N by Lemma 4.2.1, the Arzelá-

Ascoli theorem implies that, for every subsequence of (FN )n∈N, there is a further subse-

quence converging to some function f in the local uniform topology. It suffices to show that

f is a viscosity solution to (4.2.3) and the uniqueness is ensured by Proposition 4.4.5. For

convenience, we assume that the whole sequence (FN )N∈N converges to f .

Lemmas 4.2.1 and 4.2.3 (see also (4.2.6)) ensure that f is nondecreasing, Lipschitz and

convex. Since FN and f are convex, we have

lim
N→∞

(∂t,∇)FN (t, h) = (∂t,∇)f(t, h)

at every differentiable point (t, h) of f (indeed, any limit point of (∂t,∇)FN (t, h) must belong

to the subdifferential of f at (t, h), which is a singleton if f is differentiable at (t, h)). This

along with Lemma 4.2.2 yields that f has nondecreasing gradients. Let (t, h) ∈ (0,∞)×SK++

and ϕ ∈ C∞((0,∞) × SK+ ) be such that f − ϕ has a strict local maximum at (t, h). By

Corollary 4.4.9, it suffices to show that

(∂tϕ− H(∇ϕ))(t, h) = 0. (4.5.2)

Since FN converges locally uniformly to f , there exists (tN , hN ) ∈ [0,∞) × SK+ such that

FN − ϕ has a local maximum at (tN , hN ), and (tN , hN ) converges to (t, h) as N tends to
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infinity. Since (t, h) ∈ (0,∞)× SK++, each (tN , hN ) also ultimately belongs to (0,∞)× SK++,

and without loss of generality, we can assume that every (tN , hN ) remains a positive distance

away from the boundary of [0,∞)× SK+ , uniformly over N . Notice that

(∂tFN − ∂tϕ)(tN , hN ) = 0 and (∇FN −∇ϕ)(tN , hN ) = 0. (4.5.3)

Throughout the rest of the proof, we use the letter C <∞ to denote a constant whose value

may change from one occurrence to the next, and is allowed to depend on (t, h) and ϕ. We

decompose the argument into three steps.

Step 1. We show that for every h′ ∈ SK+ with |h′| ⩽ C−1, we have

0 ⩽ FN (tN , hN + h′)− FN (tN , hN )− h′ · ∇FN (tN , hN ) ⩽ C|h′|2. (4.5.4)

The first inequality follows from the convexity of FN . To derive the second inequality, we

start by writing Taylor’s formula:

FN (tN , hN + h′)− FN (tN , hN )

= h′ · ∇FN (tN , hN ) +
ˆ 1

0
(1− s)h′ · ∇

(
h′ · ∇FN

)
(tN , hN + sh′) ds. (4.5.5)

The same formula also holds if we substitute FN by ϕ throughout. Since FN −ϕ has a local

maximum at (tN , hN ), we have for every |h′| ⩽ C−1 that

FN (tN , hN + h′)− FN (tN , hN ) ⩽ ϕ(tN , hN + h′)− ϕ(tN , hN ).

Using also (4.5.3), we obtain that

ˆ 1

0
(1− s)h′ · ∇

(
h′ · ∇FN

)
(tN , hN + sh′) ds ⩽

ˆ 1

0
(1− s)h′ · ∇

(
h′ · ∇ϕ

)
(tN , hN + sh′) ds.

Since the function ϕ is smooth, the right side of this inequality is bounded by C|h′|2. Using
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(4.5.5) once more, we obtain (4.5.4).

Step 2. Let

D :=
{
(t′, h′) ∈ [0,∞)× SK+ : |t′ − t| ⩽ C−1 and |h′ − h| ⩽ C−1

}
.

In this step, we show that

E
[
|∇FN −∇FN |2(tN , hN )

]
⩽ C

(
E
[
sup
D

|FN − FN |2
]) 1

2

. (4.5.6)

We recall from [39, (3.13)] that, for every a ∈ SK and (t′, h′) ∈ [0,∞) × SK+ such that

|h′ − h| ⩽ C−1, we have

a · ∇(a · ∇FN )(t′, h′) ⩾ −C|a|2 |Z|√
N
,

and that Z ∈ RN×K is the matrix of independent standard Gaussians appearing in the

definition of Y (see the second paragraph in Section 4.1.1). Applying Taylor’s formula as in

Step 1, it is readily verified that for every |h′| ⩽ C−1, we have

FN (tN , hN + h′) ⩾ FN (tN , hN ) + h′ · ∇FN (tN , hN )− C|h′|2 |Z|√
N
.

Combining this with (4.5.4), we obtain that, for every |h′| ⩽ C−1,

h′ ·
(
∇FN −∇FN

)
(tN , hN ) ⩽ 2 sup

D
|FN − FN |+ C|h′|2

(
1 +

|Z|√
N

)
.

For some deterministic λ ∈ [0, C−1] to be determined, we fix the random matrix

h′ := λ

(
∇FN −∇FN

)
(tN , hN )

|
(
∇FN −∇FN

)
(tN , hN )|

,

so that

λ|∇FN −∇FN |(tN , hN ) ⩽ 2 sup
D

|FN − FN |+ Cλ2
(
1 +

|Z|√
N

)
.
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Squaring this expression and taking the expectation yields

λ2E
[
|∇FN −∇FN |2(tN , hN )

]
⩽ 8E

[
sup
D

|FN − FN |2
]
+ Cλ4E

[(
1 +

|Z|√
N

)2
]
.

Since E[|Z|2] = NK, choosing λ4 = E
[
supD |FN − FN |2

]
yields (4.5.6).

Step 3. Recall that we assume that E
[
supD |FN − FN |2

]
tends to zero as N tends to infinity.

By Proposition 4.5.2, (4.5.4), and (4.5.6), we obtain that

lim
N→∞

(
∂tFN − H(∇FN )

)
(tN , hN ) = 0.

Using also (4.5.3) and the fact that the function ϕ is smooth, this yields (4.5.2), and thus

completes the proof.

4.5.2. Application

We study the model considered in [85], which corresponds to (4.1.1) with L = 1, p ∈ N,

and A ∈ RKp×1 given by Aj = 1 if j1 = j2 = · · · = jp and zero otherwise. Here, we used

the multi-index notation j = (j1, j2, . . . , jp) ∈ {1, . . . ,K}p. Explicitly, this model can be

expressed as

Yi =

√
2t

Np−1

K∑
j=1

p∏
n=1

Xin,j +Wi, i ∈ {1, · · · , N}p, (4.5.7)

where X ∈ RN×K is assumed to have i.i.d. row vectors with norms bounded by
√
K almost

surely. Hence, the condition in (4.1.2) is satisfied. For even p, the limit of the free energy

associated with this model has been proved to satisfy a variational formula in [85]. When p

is odd, the situation is more difficult; in [39], it was only proven that the limit is bounded

above by a variational formula. Here, we will apply Theorem 4.1.1 to treat both even and

odd values of p.
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Recall the definition of H in (4.1.4). In this case, the nonlinearity H is given by

H(q) =
K∑

k,k′=1

(qk,k′)
p, ∀q ∈ SK+ . (4.5.8)

Since row vectors of X are i.i.d., we have FN (0, ·) = F 1(0, ·) for all N ∈ N. Setting

ψ := F 1(0, ·) and using the formula for FN in (4.1.3), we have

ψ(h) = E log

ˆ
R1×K

exp

(
2h · (x⊺X1,·) +

√
2h · (x⊺Z)− h · (x⊺x)

)
dP (x), ∀h ∈ SK+ ,

(4.5.9)

where P is the law of the first row vector X1,· = (X1,k)1⩽k⩽K . By Lemma 4.2.1, ψ is C1. The

concentration condition limN→∞ E∥FN −FN∥2L∞(D) = 0 for each compact D ⊆ [0,∞)×SK+

is proved in [39, Lemma C.1]. Hence, the next result follows from Theorem 4.1.1.

Corollary 4.5.3. Under the assumption (4.1.2), in the model described above with p ∈ N,

it holds that, for every (t, h) ∈ [0,∞)× SK+ ,

lim
N→∞

FN (t, h) = sup
h′′∈SK+

inf
h′∈SK+

{
h′′ · (h− h′) + ψ(h′) + tH(h′′)

}
,

for H and ψ given in (4.5.8) and (4.5.9), respectively.

4.5.3. Simplification of the variational formula

We describe a way of simplifying the formula (4.1.5) under the additional assumption that

the mapping H in (4.1.4) only depends on the diagonal entries of its argument.

We introduce the linear map diag : RK → SK defined by diagx = diag(x1, . . . , xK). Its

adjoint diag∗ : SK → RK is given by diag∗h = (h11, . . . , hKK) for h ∈ SK . Note that

diag∗diag is the identity map on RK , and diagdiag∗h = diag(h11, . . . , hKK) for every h ∈ SK .

The additional assumption on H can be reformulated as

H(q) = H(diagdiag∗q), ∀q ∈ SK+ . (4.5.10)
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For x, x′ ∈ RK , we write x · x′ =
∑K

i=1 xix
′
i. We set RK+ = [0,∞)K . Note that diag(RK+ )

contains exactly the diagonal matrices in SK+ . For FN given in (4.1.3), we want to show

that, under the assumptions of Theorem 4.1.1 and for every t ⩾ 0 and x ∈ RK+ , we have

lim
N→∞

FN (t, diagx) = sup
x′′∈RK

+

inf
x′∈RK

+

{
x′′ ·

(
x− x′

)
+ ψ

(
diagx′

)
+ tH

(
diagx′′

) }
. (4.5.11)

In particular, setting x = 0, we obtain a simpler representation of the limit of the original

free energy F ◦
N .

The proof of this statement can be achieved by working with the following Hamilton–Jacobi

equation:

∂tg − H(diag∇g) = 0, on [0,∞)× RK+ . (4.5.12)

The well-posedness of this equation and the representation of the solution by the Hopf for-

mula can be established in a similar way (see [41, Section 2]). A corresponding identification

criterion for solutions, as stated in Proposition 4.4.7, can also be obtained. There, the par-

tial order defining the notion of nondecreasingness, as in (4.2.4) and (4.2.5), is now induced

by the cone RK+ . Lastly, for any differentiable function ϕ : SK+ → R, we can verify that,

∇ϕdiag(x) = diag∗∇ϕ(h)
∣∣
h=diagx

, ∀x ∈ RK+ ,

where ϕdiag : RK+ → R is given by ϕdiag = ϕ(diag · ).

Hence, setting F diag
N (t, x) = FN (t, diagx), and using Proposition 4.5.2 and (4.5.10), we can

see that F diag
N approximately solves (4.5.12) and that a similar estimate in Proposition 4.5.2

holds for F diag
N . Then, the same argument as in the proof of Theorem 4.5.1 yields that F diag

N

converges to the unique viscosity solution of (4.5.12) with initial condition ψ(diag · ). Due to

the convexity of ψ(diag · ), the solution admits a representation by the Hopf formula, which

is exactly the right-hand side in (4.5.11).
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As a concrete example inspired by [6], suppose as in the previous subsection that X ∈ RN×K

has i.i.d. row vectors with norm bounded by
√
K, but this time we observe, for each i, j ∈

{1, . . . , N} and k ∈ {1, . . . ,K − 1}, the quantity

√
2t

N
Xi,kXj,k+1 +Wi,j,k,

where (Wi,j,k)i,j⩽N,k<K are independent standard Gaussians, independent of X. This can be

mapped into our setting by choosing p = 2, L = K−1, A ∈ RK2×(K−1) given by A(k,l),r = 1

if r = k = l − 1 and zero otherwise. With this choice of A, the function H takes the form

H(q) =
K−1∑
k=1

qk,k qk+1,k+1 = H(diagdiag∗q), ∀q ∈ SK+ .

We thus obtain that the limit free energy F ◦
N (t) = FN (t, 0) is given by

lim
N→∞

F ◦
N (t) = sup

x′∈RK
+

inf
x∈RK

+

{
ψdiag(x)− x · x′ + t

K−1∑
k=1

x′kx
′
k+1

}
. (4.5.13)

Moreover, under the additional assumption that the coordinates of the vector (X1,k)1⩽k⩽K

are independent, the initial condition ψdiag can be decomposed into a sum of functions of

one variable: there exist convex and nondecreasing functions ψ1, . . . , ψK : R+ → R such

that for every x ∈ RK+ ,

ψdiag(x) =

K∑
k=1

ψk(xk).

(Cases in which different layers have different lengths, say for instance Xi,k = 0 for every i >

αkN for some fixed αk ∈ (0, 1), can be covered as well, and this translates into multiplying

each ψk by a suitable scalar.) Under these conditions, the formula (4.5.13) can be further sim-

plified, as we now explain. For each x ∈ RK , we denote by xo = (x1, x3, . . . , x2·⌊(K−1)/2⌋+1)

and xe = (x2, x4, . . . , x2·⌊K/2⌋) respectively the odd and even coordinates of the vector x,
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and for each k ∈ {1, . . . ,K} and y ⩾ 0, we set

ψ∗
k(y) := sup

x⩾0
(xy − ψk(x)).

By [105, Theorem 12.4], we have that ψ∗∗
k = ψk. Moreover, we can write

inf
xe

{
K∑
k=1

ψk(xk)− x · x′ + t

K−1∑
k=1

x′kx
′
k+1

}
=
∑
k odd

(
ψk(xk)− xkx

′
k

)
−
∑
k even

ψ∗
k(x

′
k)

+ t
K−1∑
k=1

x′kx
′
k+1,

and observe that the optimization problems over xo and x′e are separated. We can thus

interchange supx′e and infxo to get that

lim
N→∞

F ◦
N (t) = sup

x′o

inf
xo

sup
x′e

{∑
k odd

(
ψk(xk)− xkx

′
k

)
−
∑
k even

ψ∗
k(x

′
k) + t

K−1∑
k=1

x′kx
′
k+1

}

= sup
x′o

inf
xo

{∑
k odd

(
ψk(xk)− xkx

′
k

)
+
∑
k even

ψk
(
tx′k−1 + tx′k+1

)}
,

using that ψ∗∗
k = ψk, and with the understanding that xK+1 = 0. Similar formulas were

first obtained in [6].

4.6. On convex viscosity solutions

The goal of this section is to demonstrate the workings of a convenient uniqueness criterion

for Hamilton-Jacobi equations, in the simpler context of equations posed on [0,∞) × Rd.

This criterion states that, if the function under consideration is convex, then we can assert

that it is the viscosity solution of some Hamilton-Jacobi equation as soon as it satisfies

the equation on a dense subset and the initial condition is of class C1. This criterion is

generalized to equations posed on [0,∞)× SK+ in Proposition 4.4.7.

Let H : Rd → R be a smooth function. We start by recalling the notion of viscosity solutions

to

∂tf − H(∇f) = 0 on [0,∞)× Rd. (4.6.1)
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Definition 4.6.1.

1. A continuous function f : [0,∞) × Rd → R is a viscosity subsolution to (4.2.3) if for

every (t, h) ∈ (0,∞)×Rd and every smooth ϕ : (0,∞)×Rd → R such that f − ϕ has

a local maximum at (t, h), we have

(
∂tϕ− H(∇ϕ)

)
(t, h) ⩽ 0.

2. A continuous function f : [0,∞)×Rd → R is a viscosity supersolution to (4.2.3) if for

every (t, h) ∈ (0,∞)×Rd and every smooth ϕ : (0,∞)×Rd → R such that f − ϕ has

a local minimum at (t, h), we have

(
∂tϕ− H(∇ϕ)

)
(t, h) ⩾ 0.

3. A continuous function f : [0,∞)×Rd → R is a viscosity solution to (4.2.3) if f is both

a viscosity subsolution and supersolution.

The main goal of this section is to prove the following proposition.

Proposition 4.6.2. Let f : [0,∞) × Rd → R be Lipschitz and convex. Suppose that f

satisfies (4.6.1) on a dense subset of (0,∞)×Rd, and that the initial condition f(0, ·) is C1.

Under these conditions, the function f is a viscosity solution to (4.6.1) with initial condition

f(0, ·).

Remark 4.6.3. In Proposition 4.6.2, the assumption that f(0, ·) be C1 is necessary. Indeed,

notice for instance that

f(t, x) := |x| − t

is convex and satisfies

∂tf + |∇f |2 = 0
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at every point of differentiability of f . However, since the null function is clearly a solution,

the statement that f is also a solution would contradict the maximum principle. Instead,

the viscosity solution to this equation with same initial condition is given by the Hopf-Lax

formula

(t, x) 7→ inf
y∈R

(
|y|+ |y − x|2

4t

)
=


|x|2
4t if |x| ⩽ 2t,

|x| − t if |x| > 2t.

Proof of Proposition 4.6.2. Recall the definition of subdifferential in (4.3.1). We decompose

the proof into three steps.

Step 1. We check that f must be a subsolution to (4.6.1). Let ϕ ∈ C∞((0,∞) × Rd), and

(t, x) ∈ (0,∞)× Rd be such that f − ϕ has a local maximum at (t, x). We then have

f(t′, x′)− f(t, x) ⩽ (t′ − t)∂tϕ(t, x) + (x′ − x) · ∇ϕ(t, x) + o(|t′ − t|+ |x′ − x|).

This along with the convexity of f implies that the subdifferential ∂f(t, x) is the single-

ton {(∂tϕ,∇ϕ)(t, x)}, and thus that f is differentiable at (t, x), with (∂tf,∇f)(t, x) =

(∂tϕ,∇ϕ)(t, x). Using similar arguments as in Remark 4.3.10, we deduce that

(∂tϕ− H(∇ϕ)) (t, x) = (∂tf − H(∇f)) (t, x) = 0,

as desired.

Step 2. In the next two steps, we show that f is a supersolution to (4.6.1). Let (a, p) ∈

∂f(t, x). In view of Lemma 4.3.3, it is sufficient to show that

a− H(p) ⩾ 0. (4.6.2)

Since (a, p) ∈ ∂f(t, x) and f is convex, we have for every (t′, x′) ∈ [0,∞)× Rd that

f(t′, x′) ⩾ f(t, x) + (t′ − t)a+ (x′ − x) · p.
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In particular, the mapping y 7→ f(0, y)−y ·p is bounded from below. In this step, we assume

that the infimum

inf
y∈Rd

(f(0, y)− y · p) (4.6.3)

is achieved, and we denote by y a point realizing the infimum. By arguing as in Re-

mark 4.3.10, we see that there exists (b, p′) ∈ ∂f(0, y) such that b− H(p′) = 0. Since f(0, ·)

is C1 and y realizes (4.6.3), we must have p′ = ∂yf(0, y) = p, and thus (b, p) ∈ ∂f(0, y) with

b− H(p) = 0.

Due to the convexity of f , the mapping g : λ 7→ f (λ(t, x) + (1− λ)(0, y)) is convex over the

interval [0, 1]. Since (b, p) ∈ ∂f(0, y), the right derivative of g at 0 satisfies

g′+(0) ⩾ bt+ p · (x− y).

Due to (a, p) ∈ ∂f(t, x), the left derivative at 1 satisfies

g′−(1) ⩽ at+ p · (x− y).

By convexity of g, we must have g′+(0) ⩽ g′−(1), and thus a ⩾ b. Recalling that b−H(p) = 0,

we obtain (4.6.2), as desired.

Step 3. To conclude, there remains to consider the case when the infimum in (4.6.3) is not

achieved. For every ε > 0, we consider

inf
y∈Rd

(f(0, y) + ε|y| − y · p) .

This infimum is achieved at a point yε ∈ Rd, and

|∇f(0, yε)− p| ⩽ ε. (4.6.4)
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Moreover,

lim sup
ε→0

inf
y∈Rd

(f(0, y) + ε|y| − y · p) = inf
y∈Rd

(f(0, y)− y · p) ,

and

f(0, yε)− yε · p ⩾ inf
y∈Rd

(f(0, y)− y · p) ,

so that

lim
ε→0

ε|yε| = 0. (4.6.5)

Following the argument in Step 2, we can find bε ∈ R such that (bε,∇f(0, yε)) ∈ ∂f(0, yε)

and bε − H(∇f(0, yε)) = 0. Continuing as in Step 2, we then obtain that

bεt+∇f(0, yε) · (x− yε) ⩽ at+ p · (x− yε).

Using (4.6.4) and (4.6.5), we deduce that, as ε tends to zero,

a ⩾ bε + o(1).

Recalling that bε − H(∇f(0, yε)) = 0, and using again (4.6.4) and the continuity of H, we

obtain (4.6.2).
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CHAPTER 5

Limiting free energy of multi-layer generalized linear models

This chapter is essentially borrowed from [40], joint with Hong-Bin Chen.

Abstract. We compute the high-dimensional limit of the free energy associated with a multi-

layer generalized linear model. Under certain technical assumptions, we identify the limit

in terms of a variational formula. The approach is to first show that the limit is a solution

to a Hamilton–Jacobi equation whose initial condition is related to the limiting free energy

of a model with one fewer layer. Then, we conclude by an iteration.

5.1. Introduction

5.1.1. Setting

Let us describe the model. For n ∈ N, letX be an Rn-valued random vector with distribution

PX , serving as the original signal. Fix any L ∈ N as the number of layers. For l ∈

{0, 1, 2, . . . , L}, let nl = nl(n) ∈ N be the dimension of the signal at the l-th layer. We

assume that n0 = n and

lim
n→∞

nl
n

= αl > 0, (5.1.1)

for some αl > 0. In particular, we have that α0 = 1.

For each l ∈ {1, 2, . . . , L}, let

• φl : R× Rkl → R be a measurable function for some fixed kl ∈ N (independent of n);

• (A
(l)
j )1⩽j⩽nl

be a finite sequence of Rkl-valued random vectors, all together with law

PA(l) ;

• Φ(l) be an nl × nl−1 random matrix with law PΦ(l) .
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For l′ ⩾ l, we also write

A[l,l′] =
(
A(m)

)
l⩽m⩽l′

, Φ[l,l′] =
(
Φ(m)

)
l⩽m⩽l′

, (5.1.2)

and denote their laws by PA[l,l′] and PΦ[l,l′] , respectively.

Starting with X(0) = X, we iteratively define, for each l ∈ {1, . . . , L},

X
(l)
j = φl

(
1

√
nl−1

nl−1∑
k=1

Φ
(l)
jkX

(l−1)
k , A

(l)
j

)
, ∀1 ⩽ j ⩽ nl.

Viewing the action of φl component-wise, we also write

X(l) = φl

(
1

√
nl−1

Φ(l)X(l−1), A(l)

)
. (5.1.3)

For β ⩾ 0, the observable is given by

Y ◦ =
√
βX(L) + Z (5.1.4)

where Z is an nL-dimensional standard Gaussian vector. The inference task is to recover X

based on the knowledge of Y ◦, (φl)1⩽l⩽L and Φ[1,L].

Using (5.1.3) iteratively, we can find a deterministic function ζL−1 such that X(L−1) =

ζL−1(X,A
[1,L−1],Φ[1,L−1]). We introduce the shorthand notation:

x(L−1) = ζL−1

(
x, a,Φ[1,L−1]

)
, ∀x ∈ Rn, a =

(
a(1), . . . , a(L−1)

)
∈
L−1∏
l=1

Rnl×kl . (5.1.5)

We emphasize that x(L−1) is random due to the presence of Φ[1,L−1] and also depends on the

input x and a. By Bayes’ rule, the law of (X,A[1,L−1]) conditioned on (Y ◦,Φ[1,L]) is given
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by

1

Z◦
β,L,n

Pβ,L,n
(
Y ◦
∣∣∣∣ 1
√
nL−1

Φ(L)x(L−1)

)
dPX(x)dPA[1,L−1](a)

where

Pβ,L,n(y|z) =
ˆ
e−

1
2
|y−

√
βφL(z,a

(L))|2dPA(L)

(
a(L)

)
, ∀y, z ∈ RnL , (5.1.6)

Z◦
β,L,n =

ˆ
Pβ,L,n

(
Y ◦
∣∣∣∣ 1
√
nL−1

Φ(L)x(L−1)

)
dPX(x)dPA[1,L−1](a). (5.1.7)

The normalizing factor Z◦
β,L,n is called the partition function. The central object to study

is the free energy

F ◦
β,L,n =

1

n
logZ◦

β,L,n. (5.1.8)

To compute the limit of EF ◦
β,L,n as n→ ∞, we make the following assumptions:

(H1) X has i.i.d. entries, and the law of X1 is supported on [−1, 1], independent of n and

satisfies that X1 ̸= 0 with positive probability;

(H2) for every l ∈ {1, . . . , L}, φl is bounded, not identically zero, and continuously differ-

entiable with bounded derivatives up to the 2l-th order;

(H3) for every l ∈ {1, . . . , L}, Φ(l) consists of independent standard Gaussian entries, and

(A
(l)
j )1⩽j⩽nl

consists of i.i.d. Rkl-valued random vectors with a fixed law and bounded

a.s.

To state the main result, we need more definitions. Throughout this work, we set

R+ = [0,∞). (5.1.9)
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For every l ∈ {0, 1, . . . , L} and n ∈ N, define

ρl,n =
1

nl
E
∣∣∣X(l)

∣∣∣2 . (5.1.10)

Due to Lemma 5.5.1 to be proved later, the following limit exists

lim
n→∞

ρl,n = ρl (5.1.11)

for some ρl > 0 with explicit expression. Let PX1 be the law of X1 and Z ′
1 be a standard

Gaussian random variable. Set

Ψ0(r) = E log

ˆ
R
erX1x1+

√
rZ′

1x1−
r
2
|x1|2dPX1(x1), ∀r ∈ R+. (5.1.12)

For every l ∈ {1, . . . , L}, ρ ⩾ 0 and h = (h1, h2) ∈ [0, ρ]× R+, define Ψl(h; ρ) to be

E log

ˆ
P̃h2,l

(√
h2φl

(√
h1V1 +

√
ρ− h1W1, A

(l)
1

)
+ Z1

∣∣∣√h1V1 +√ρ− h1w
)
dPW1(w),

(5.1.13)

where V1,W1, Z1 are independent standard Gaussian random variables and

P̃h2,l(y|z) =
ˆ
Rkl

e−
1
2
|y−

√
h2φl(z,a

(l)
1 )|2dP

A
(l)
1

(
a
(l)
1

)
, ∀y, z ∈ R. (5.1.14)

Now, we are ready to state the main result.

Theorem 5.1.1. Under assumptions (H1)–(H3), it holds that

lim
n→∞

EF ◦
β,L,n = sup

z(L)

inf
y(L)

sup
z(L−1)

inf
y(L−1)

· · · sup
z(1)

inf
y(1)

ϕL

(
β; y(1), · · · , y(L); z(1), · · · , z(L)

)
(5.1.15)

where supz(l) is taken over z(l) ∈ R+× [0,
αl−1ρl−1

2 ], infy(l) is taken over y(l) ∈ [0, ρl−1]×R+,
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and

ϕL

(
β; y(1), · · · , y(L); z(1), · · · , z(L)

)
(5.1.16)

= αLΨL

(
y
(L)
1 , β; ρL−1

)
+

L−1∑
l=1

αlΨl

(
y
(l)
1 , y

(l+1)
2 ; ρl−1

)
+Ψ0

(
y
(1)
2

)
+

L∑
l=1

(
−y(l) · z(l) + 2

αl−1
z
(l)
1 z

(l)
2

)
+

L∑
l=2

αl−1

2

(
1 + ρl−1y

(l)
2

)
.

We briefly comment on hypotheses (H1)–(H3).

The nonzero assumptions in (H1) and (H2) are reasonable in the setting of statistical in-

ference where only non-constant signals are interesting. They are also purely technical in

order to ensure that ρl in (5.1.11) is nonzero and thus some domain (defined in (5.2.1)) we

work on is non-degenerate. In general, one can always consider a reduced model obtained

from the original one by starting from the first layer after which all layers including itself

contain nonzero signals. Alternatively, small constants can be added to fulfill the nonzero

assumptions, and the effect of these constants are traceable through explicit formulae.

The assumption that X has i.i.d. entries in (H1) and the assumption on the differentiability

of φl in (H2) are mainly used in deriving concentration results in Section 5.5. We believe

that results similar to Theorem 5.1.1 are still valid under different or weaker assumptions.

For instance, when X is uniformly distributed on the centered n-sphere with radius
√
n,

concentration results needed here are expected to hold. The high order of differentiability

in (H2) is needed in an iterative application of the Gaussian integration by parts due to the

presence of multiple layers. We remark that in the 2-layer setting, a careful treatment only

needs φ1 and φ2 to be twice continuously differentiable with bounded derivatives, as done

in [65], while (H2) requires φ2 to be continuously differentiable up to the fourth order. Since

we are considering general cases, we resort to (H2) for convenience.

On the other hand, many results in this work do not require assumptions as strong as (H1)
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and (H2). Hence, whenever possible, we will instead assume the following, together with

(H3):

(h1) for every n ∈ N, |X| ⩽
√
n a.s.;

(h2) for every l ∈ {1, . . . , L}, φl is bounded and twice continuously differentiable with

bounded derivatives.

5.1.2. Related works

Generalized linear models are relevant in many fields including signal processing, statistical

learning, and neural networks. Its multi-layer setup models a type of feed-forward neural

network, which captures some of the key features of deep learning. For more details on

these connections, we refer to [11, 65] and references therein. Recent progress in rigorous

studies of information-theoretical aspects of these models have been made using methods

originated from statistical physics. The mutual information of a model, a key quantity in

these investigations, is related to the free energy via a simple additive relation. Therefore,

the high-dimensional limit of the free energy is the central object in these approaches.

Variational formulae for the free energy have been rigorously proven in the one-layer setting

in [11] and the two-layer setting in [65].

The two works just mentioned above employed the powerful adaptive interpolation method

introduced in [12, 13], which can be seen as an evolution from the classic interpolation

method in statistical physics. This new method has proven to be successful and versatile in

treating many different models and settings [52, 14, 86, 85, 103].

The approach adopted in this work is based on identifying an enriched version of the original

free energy with a solution to a certain Hamilton–Jacobi equation determined by the model.

This approach was first introduced in [95, 94] and has been applied also to the study of spin

glass models [97, 98, 96, 93]. Similar considerations in physics also appeared in [69, 71, 22,

21].

In treating statistical inference problems, two notions of solutions have been considered. One
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is the viscosity solution used in [95, 39, 37], and the other is the weak solution in [94, 36, 39].

In this paper, we take the latter approach due to the convenience and simplicity in dealing

with boundary conditions under the notion of weak solutions.

Compared with [94, 36, 39], the novelty here lies in an iterative argument to treat the multi-

layer setting. Let us explain this briefly. After enriching the L-layer model and verifying

some concentration results, we can show that the corresponding free energy converges to the

unique solution of a certain Hamilton–Jacobi equation whose initial condition is determined

by the limiting free energy associated with the (L−1)-layer model. Then, the desired result

naturally follows from an iteration of this result applied to each layer. Apart from this,

different from [94, 36, 39], the Hamilton–Jacobi equation considered here is defined over a

domain where the range of spacial variables depends on time. Accordingly, treatments used

previously have to be adjusted.

The rest of the paper is organized as follows. In Section 5.2, we enrich the model and derive

that the enriched free energy satisfies an approximate Hamilton–Jacobi equation. We also

record some basic properties of the derivatives of the free energy. In Section 5.3, we give

the definition of weak solutions and prove the existence and uniqueness. In particular, the

existence is furnished by a variational formula known as the Hopf formula. Using these,

we prove the key convergence result of the enriched free energy in Section 5.4, which is

used in an iterative argument to prove Theorem 5.1.1. Lastly, we collect auxiliary results in

Section 5.5, including the convergence in (5.1.11), concentration of the norm of X(L), and

concentration of the free energy.
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5.2. Approximate Hamilton–Jacobi equations

In this section, we enrich the model and derive that the associated free energy satisfies an

approximate Hamilton–Jacobi equation, which is stated in Proposition 5.2.1. We also record
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basic properties of derivatives of the free energy in Lemma 5.2.2.

5.2.1. Enrichment

Recall the notation R+ in (5.1.9) and ρl,n defined in (5.1.10). For ρ > 0, define

Ωρ = {(t, h1, h2) ∈ R3
+ : h1 ⩽ ρ(1− t), t ⩽ 1} (5.2.1)

where there is no restriction on h2. For (t, h) ∈ ΩρL−1,n , define

S =

√
t

nL−1
Φ(L)X(L−1) +

√
h1V +

√
ρL−1,n − ρL−1,nt− h1W, (5.2.2)

s =

√
t

nL−1
Φ(L)x(L−1) +

√
h1V +

√
ρL−1,n − ρL−1,nt− h1w, (5.2.3)

Y =
√
βφL

(
S,A(L)

)
+ Z, (5.2.4)

Y ′ =
√
h2X

(L−1) + Z ′, (5.2.5)

where w ∈ RnL , x(L−1) is given in (5.1.5), V,W are independent nL-dimensional standard

Gaussian vectors, Z is given in (5.1.4), and Z ′ is an nL−1-dimensional standard Gaussian

vector. Due to (5.1.5) and (5.2.3), s depends on (x,w, a,Φ[1,L], V ).

Recall Pβ,L,n given in (5.1.6). We introduce the following Hamiltonian

Hβ,L,n(x,w, a) = logPβ,L,n
(
Y
∣∣s)+√h2Y ′ · x(L−1) − h2

2

∣∣∣x(L−1)
∣∣∣2 , (5.2.6)

where x ∈ Rn, w ∈ RnL , a and x(L−1) are given in (5.1.5). Define the associated partition

function

Zβ,L,n =

ˆ
eHβ,L,n(x,w,a)dPX(x)dPW (w)dPA[1,L−1](a) (5.2.7)

and consider the corresponding free energy

Fβ,L,n =
1

n
logZβ,L,n (5.2.8)
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and F β,L,n = EFβ,L,n where E is over Y, Y ′, V,Φ[1,L] (recall that x(L−1) depends on Φ[1,L−1]

as in (5.1.5)). The domain of Fβ,L,n is ΩρL−1,n defined in (5.2.1).

We often make the dependence of Fβ,L,n on (t, h) ∈ ΩρL−1,n explicit, and write Fβ,L,n(t, h).

Comparing with the definitions of Z◦
β,L,n in (5.1.7) and F ◦

β,L,n in (5.1.8), we can verify that

Z◦
β,L,n = Zβ,L,n(1, 0) and F ◦

β,L,n = Fβ,L,n(1, 0) evaluated at t = 1, h = 0. Hence, we view

Fβ,L,n as the free energy associated with an enriched model. Note that the following holds

EF ◦
β,L,n = F β,L,n(1, 0). (5.2.9)

Throughout this work, we interpret t as the “temporal variable” and h = (h1, h2) as the

“spacial variable”. Moreover, we use the short hand notation ∂i = ∂hi for i = 1, 2, and

denote by ∇ = (∂1, ∂2) the gradient operator. Define HL : R2 → R by

HL(p) =
2

αL−1
p1p2. (5.2.10)

The main goal is to prove the following proposition.

Proposition 5.2.1. Assume (h1), (h2) and (H3) for some L ∈ N. For every β ⩾ 0 and

every n ∈ N, the function (t, h) 7→ F β,L,n(t, h) is differentiable in ΩρL−1,n \{h1 = ρL−1,n(1−

t)} and there is a constant C such that, for all (t, h) ∈ ΩρL−1,n \ {h1 = ρL−1,n(1− t)},

∣∣∂tF β,L,n − HL
(
∇F β,L,n

)∣∣ ⩽ C

(
1

n
∂22F β,L,n + E

(
∂2Fβ,L,n − ∂2F β,L,n

)2) 1
2

+ an,

where

an ⩽ C

nE(∣∣X(L−1)
∣∣2

nL−1
− ρL−1,n

)2
 1

2 (
E
(
Fβ,L,n − F β,L,n

)2) 1
2
+ C

∣∣∣nL−1

n
− αL−1

∣∣∣ .
(5.2.11)
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This suggests that the limiting Hamilton–Jacobi equation should be

∂tf − HL(∇f) = 0, (5.2.12)

which will be studied in the next section.

5.2.2. Proof of Proposition 5.2.1

Recall Pβ,L,n defined in (5.1.6). For simplicity of notation, we write H = Hβ,L,n, Z = Zβ,L,n,

F = Fβ,L,n, P = Pβ,L,n and ρ = ρL−1,n. For any measurable function g : Rn × RnL ×

(
∏L−1
l=1 Rnl×kl) → R, we define

⟨g(x,w, a)⟩ = 1

Z

ˆ
g(x,w, a)eH(x,w,a)dPX(x)dPW (w)dPA[1,L−1](a).

In other words, ⟨ · ⟩ is the Gibbs measure with Hamiltonian H and reference measure

dPX(x)dPW (w)dPA[1,L−1](a).

Preliminaries

We will repeatedly use two basic tools in our computations: the Gaussian integration by

parts and the Nishimori identity. The simplest form of the Gaussian integration by parts

can be stated as follows. For a standard Gaussian random variable U and a differentiable

function g : R → R satisfying E|g′(U)| <∞, it holds that

E[Ug(U)] = Eg′(U),

which can be seen easily by rewriting the expectation as an integration with respect to the

Gaussian density and performing the classic integration by parts. For the purpose of this

work, a straightforward extension of the above to standard Gaussian vectors is sufficient.

Using the definition of H and Bayes’ rule, we can see that the law of X,W,A[1,L−1] condi-
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tioned on Y, Y ′, V,Φ[1,L] is given exactly by the Gibbs measure ⟨ · ⟩, namely,

〈
g
(
x,w, a, Y, Y ′, V,Φ[1,L]

)〉
= E

[
g
(
X,W,A[1,L−1], Y, Y ′, V,Φ[1,L]

) ∣∣∣Y, Y ′, V,Φ[1,L]
]
,

for suitable measurable function g. The above immediately implies the Nishimori identity

that, for suitable g,

E
〈
g
(
x,w, a, Y, Y ′, V,Φ[1,L]

)〉
= Eg

(
X,W,A[1,L−1], Y, Y ′, V,Φ[1,L]

)
.

Independent copies of (x,w, a) with respect to the Gibbs measure are called replicas and

often denoted as (x′, w′, a′), (x′′, w′′, a′′), etc. When multiple replicas are present, the above

identity can be extended in a straightforward way allowing us to replace one set of the

replicas by (X,W,A[1,L−1]), and vice versa. For instance, we have that

E
〈
g
(
x,w, a, x′, w′, a′, Y, Y ′, V,Φ[1,L]

)〉
= E

〈
g
(
x,w, a,X,W,A[1,L−1], Y, Y ′, V,Φ[1,L]

)〉
.

Computation of ∂tF

Recall H(x,w, a) in (5.2.6) and let us also write

H(x,w, a; y, y′) = logP(y|s) +
√
h2y

′ · x(L−1) − h2
2

∣∣∣x(L−1)
∣∣∣2 .

Hence, we have that H(x,w, a) = H(x,w, a;Y, Y ′), and for each fixed x,w, y, y′, the only

randomness of H(x,w, a; y, y′) comes from Φ[1,L] (in s and x(L−1)) and V (in s).

We can verify that the conditioned law of (Y, Y ′) given (Φ[1,L], V ) is given by

(
1

(2π)
nL
2

ˆ
eH(x,w,a;y,y′)dPX(x)dPW (w)dPA[1,L−1](a)

)
dydy′, (5.2.13)
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where we recall that W is Gaussian. Recall the partition function (5.2.7) and we introduce

Z(y, y′) =

ˆ
eH(x,w,a;y,y′)dPX(x)dPW (w)dPA[1,L−1](a).

Then, note that Z = Z(Y, Y ′) and the only randomness of Z(y, y′) is from Φ[1,L] and V .

We introduce the shorthand notation

dP̃y,y′ =
1

(2π)
nL
2

dy dy′ dPX(x̃) dPW (w̃) dPA[1,L−1](ã) (5.2.14)

which is a measure that integrates y, y′ and all variables with tildes x̃, w̃, ã. Using these and

(5.2.8), we can write that

F =
1

n
E
[ˆ

eH(x̃,w̃,ã;y,y′) logZ(y, y′)dP̃y,y′

]
(5.2.15)

where the expectation E is taken over the remaining randomness, namely, Φ[1,L] and V .

To lighten the notation further, we write H(–̃; y, y′) = H(x̃, w̃, ã; y, y′) and H(–; y, y′) =

H(x,w, a; y, y′).

Due to the dependence of H(–̃; y, y′) and Z(y, y′) on t, differentiating F as in (5.2.15) with

respect to t yields that

∂tF =
1

n
E
[ˆ

dP̃y,y′
(
∂tH(–̃; y, y′)

)
eH(–̃;y,y′) logZ(y, y′)

]
+

1

n
E
[
⟨∂tH(–; y, y′)

∣∣
y=Y, y′=Y ′⟩

]
= It + IIt. (5.2.16)

Here on the second line, the Gibbs measure is the one associated with the Hamiltonian

(5.2.6) and thus only integrates over the variables x,w, a. To evaluate the above, we define

uy(x) = logP(y|x) (5.2.17)
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and denote by ∇uy and ∆uy the gradient and Laplacian of uy with differentiation in x,

respectively. Then, using (5.2.3) and (5.2.6), we can compute that

∂tH(–; y, y′) =
(
∂ts
)
· ∇uy(s)

=
1

2

(
1√
tnL−1

Φ(L)x(L−1) − ρ√
ρ(1− t)− h1

w

)
· ∇uy(s). (5.2.18)

We write s̃ and x̃(L−1) to be s and x(L−1), respectively, with x,w, a therein replaced by

x̃, w̃, ã. Hence, we have that It is equal to

1

2n
E
[ˆ

dP̃y,y′

(
1√
tnL−1

Φ(L)x̃(L−1) − ρ√
ρ(1− t)− h1

w̃

)
· ∇uy(s̃)eH(–̃;y,y′) logZ(y, y′)

]
.

Recall that s̃ and H(–̃; y, y′) depend on Φ(L) and w̃, and that Z(y, y′) depends on Φ(L).

Since w̃ under dP̃y,y′ and Φ(L) under E are standard Gaussian vectors, we can obtain by

performing the Gaussian integration by parts with one w̃ and Φ(L) that

It = a′n +
1

2n
E
[

1

Z(y, y′)

ˆ
dP̃y,y′dPX(x)dPW (w)dPA[1,L−1](a)(

1

nL−1
x̃(L−1) · x(L−1)

)(
∇uy(s̃) · ∇uy(s)

)
eH(–̃;y,y′)eH(–;y,y′)

]
= a′n +

1

2
E
〈(

1

nL−1
X(L−1) · x(L−1)

)(
1

n
∇uY (S) · ∇uY (s)

)
⟩ (5.2.19)

where

a′n =
1

2n
E
[ˆ

dP̃y,y′

(
1

nL−1

∣∣∣x̃(L−1)
∣∣∣2 − ρ

)(
∆uy(s̃) + |∇uy(s̃)|2

)
eH(–̃;y,y′) logZ(y, y′)

]
=

1

2n
E
[(

1

nL−1

∣∣∣X(L−1)
∣∣∣2 − ρ

)(
∆uY (S) + |∇uY (S)|2

)
logZ(Y, Y ′)

]
. (5.2.20)

Here, in deriving (5.2.19) and (5.2.20), we used (5.2.14) and the observation that replacing

x̃, w̃, ã by X,W,A[1,L−1] in x̃(L−1), s̃ yields X(L−1), S. We claim that IIt = 0 and postpone
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its proof. Then, combining the above gives that

∂tF =
1

2
E
〈(

1

nL−1
X(L−1) · x(L−1)

)(
1

n
∇uY (S) · ∇uY (s)

)
⟩+ a′n. (5.2.21)

Computation of ∂1F

Similarly, by (5.2.15), we have that

∂1F =
1

n
E
[ˆ

dP̃y,y′
(
∂1H(–̃; y, y′)

)
eH(–̃;y,y′) logZ(y, y′)

]
+

1

n
E
[
⟨∂1H(–; y, y′)

∣∣
y=Y, y′=Y ′⟩

]
= Ih1 + IIh1 . (5.2.22)

To compute Ih1 , we start with

∂1H(–; y, y′) =
(
∂1s
)
· ∇uy(s)

=
1

2

(
1√
h1
V − 1√

ρ(1− t)− h1
w

)
· ∇uy(s), (5.2.23)

which gives that

Ih1 =
1

2n
E
[ˆ

dP̃y,y′

(
1√
h1
V − 1√

ρ(1− t)− h1
w̃

)
· ∇uy(s̃)eH(–̃;y,y′) logZ(y, y′)

]
.

Using Gaussian integration by parts on V and w̃, we obtain that

Ih1 =
1

2n
E
[ˆ

dP̃y,y′
(
1− 1

)(
∆uy(s̃) + |∇uy(s̃)|2

)
eH(–̃;y,y′) logZ(y, y′)

]
+

1

2n
E
[

1

Z(y, y′)

ˆ
dP̃y,y′dPX(x)dPW (w)dPA[1,L−1](a)

∇uy(s̃) · ∇uy(s)eH(–̃;y,y′)eH(–;y,y′)
]

=
1

2n
E ⟨∇uY (S) · ∇uY (s)⟩ .
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Here, in the last equality, we used the same argument as in obtaining (5.2.19). Again, we

claim that IIh1 = 0 and postpone its proof. This together with the above yields that

∂1F =
1

2
E
〈
1

n
∇uY (S) · ∇uY (s)

〉
. (5.2.24)

Computation of ∂2F

Using (5.2.6), (5.2.7) and (5.2.8), we can compute that

∂2F =
1

n
⟨∂2H(x,w, a)⟩ = 1

2n
⟨2X(L−1) · x(L−1) +

1√
h2
Z ′ · x(L−1) − x(L−1) · x(L−1)⟩.

(5.2.25)

Using Gaussian integration by parts on Z ′ and the Nishimori identity, we get that

∂2F =
1

2n
E⟨2X(L−1) · x(L−1) +

(
x(L−1) − x′

(L−1)
)
· x(L−1) − x(L−1) · x(L−1)⟩

=
1

2n
E⟨X(L−1) · x(L−1)⟩, (5.2.26)

where x′(L−1) is a replica of x(L−1) obtained by replacing x, a in (5.1.5) by replicas x′, a′.

Deriving the equation

By (5.2.10), (5.2.24) and (5.2.26), we have

∣∣∣∣HL(∇F )− 1

2
E
〈

1

nL−1
X(L−1) · x(L−1)

〉
E
〈
1

n
∇uY (S) · ∇uY (s)

〉∣∣∣∣
=

∣∣∣∣1− αL−1n

nL−1

∣∣∣∣ ∣∣HL(∇F )∣∣ .
By (5.2.46) and (5.2.47) both proved later and assumption (5.1.1), the above is bounded by

C|nL−1

n − αL−1|. This along with (5.2.21) implies that

∣∣∂tF − HL(∇F )
∣∣ ⩽ 1

2

√
bn + |a′n|+ C

∣∣∣nL−1

n
− αL−1

∣∣∣ .
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where

bn = VarE⟨ · ⟩
[

1

nL−1
X(L−1) · x(L−1)

]
VarE⟨ · ⟩

[
1

n
∇uY (S) · ∇uY (s)

]

with variances taken with respect to E ⟨ · ⟩. Then, the desired results follows, once we prove

that

|a′n| ⩽ C

nE(∣∣X(L−1)
∣∣2

nL−1
− ρ

)2
 1

2 (
E
(
F − F

)2) 1
2
, (5.2.27)

VarE⟨ · ⟩
[
1

n
∇uY (S) · ∇uY (s)

]
⩽ C, (5.2.28)

VarE⟨ · ⟩
[

1

nL−1
X(L−1) · x(L−1)

]
⩽ C

(
1

n
∂22F + E

(
∂2F − ∂2F

)2)
. (5.2.29)

To complete the proof, it remains to verify that IIt = IIh1 = 0 and prove the above

assertions.

Evaluating IIt and IIh1

Recall the definition of IIt in (5.2.16). By the Nishimori identity, we have that

IIt =
1

n
E
〈
∂tH(x,w, a; y, y′)|y=Y, y′=Y ′

〉
=

1

n
E
[
∂tH

(
X,W,A[1,L−1]; y, y′

) ∣∣∣
y=Y, y′=Y ′

]
.

Using (5.2.18) and the conditional law of (Y, Y ′) in (5.2.13) together with the notation dP̃y,y′

given in (5.2.14), we obtain that

IIt =
1

2n
E

[(
1√
tnL−1

Φ(L)X(L−1) − ρ√
ρ(1− t)− h1

W

)
· ∇uY (S)

]

=
1

2n
E

[ˆ
dP̃y,y′e

H(–̃;y,y′)

(
1√
tnL−1

Φ(L)x̃(L−1) − ρ√
ρ(1− t)− h1

w̃

)
· ∇uy(s̃)

]

=
1

2n
E

[ ˆ
dP̃y,y′e

H(–̃;y,y′)
(

1

nL−1

∣∣∣x̃(L−1)
∣∣∣2 − ρ

)(
∆uy(s̃) + |∇uy(s̃)|2

)]

where in the third equality we used the Gaussian integration by parts on Φ(L) and w̃ (recall

that under dP̃y,y′ , w̃ is a standard Gaussian vector).
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Due to the definition of uy in (5.2.17), we can compute that

∆uy(s̃) + |∇uy(s̃)|2 =
∆P(y|s̃)
P(y|s̃)

, (5.2.30)

where we recall that all derivatives are carried out in the second argument. Hence, we get

that

IIt =
1

2n
E
[(

1

nL−1

∣∣∣X(L−1)
∣∣∣2 − ρ

)
E
[
∆P(Y |S)
P(Y |S)

∣∣∣∣X(L−1), S

]]
. (5.2.31)

In view of the definition of Y in (5.2.4) and the formula for P in (5.1.6), we can see that,

conditioned on X(L−1), S, the law of Y has a Lebesgue density given by (2π)−
nL
2 P(y|S),

namely, for any bounded measurable function g,

E
[
g
(
Y,X(L−1), S

) ∣∣∣X(L−1), S
]
=

1

(2π)
nL
2

ˆ
g
(
y,X(L−1), S

)
P(y|S)dy. (5.2.32)

Let us write

∆P(y|S) =
nL∑
j=1

∂2jP(y|S) (5.2.33)

where again the derivatives are in the second argument. We can compute that

∂2jP(y|S) =
ˆ

Γj

(
yj , Sj , a

(L)
j

)
e−

1
2
|y−

√
βφL(S,a

(L))|2dPA(L)

(
a(L)

)
(5.2.34)

with

Γj

(
yj , Sj , a

(L)
j

)
= β

((
yj −

√
βφj

)2
− 1

)(
φ′
j

)2
+
√
β
(
yj −

√
βφj

)
φ′′
j (5.2.35)

where we used the shorthand notation φj = φL(Sj , a
(L)
j ), φ′

j = φ′
L(Sj , a

(L)
j ), and φ′′

j =

φ′′
L(Sj , a

(L)
j ). Recall that φL acts component-wise on (S, a(L)), namely, φL(S, a(L)) =

(φL(Sj , a
(L)
j ))1⩽j⩽nL . Using this and the assumption that (A(L)

j )1⩽j⩽nL are i.i.d. as in (H3),

205



we have that

∂2jP(y|S)
P(y|S)

=

´
Γj

(
yj , Sj , a

(L)
j

)
e−

1
2
|yj−

√
βφL(Sj ,a

(L)
j )|2dP

A
(L)
j

(
a
(L)
j

)
´
e−

1
2
|yj−

√
βφL(Sj ,a

(L)
j )|2dP

A
(L)
j

(
a
(L)
j

) . (5.2.36)

Using this, (5.2.34) and (5.2.35), we can see that

1

(2π)
nL
2

ˆ
∂2jP(y|S)
P(y|S)

P(y|S)dy = 0, (5.2.37)

1

(2π)
nL
2

ˆ
∂2i P(y|S)
P(y|S)

∂2jP(y|S)
P(y|S)

P(y|S)dy = 0, i ̸= j. (5.2.38)

The second equation will be used later. Now, by (5.2.32) and (5.2.37), we have that

E

[
∂2jP(Y |S)
P(Y |S)

∣∣∣∣X(L−1), S

]
= 0, ∀j ∈ {1, . . . , nL},

which together with (5.2.31) implies that IIt = 0.

It remains to show IIh1 = 0. Recall the definition of IIh1 in (5.2.22). The Nishimori identity

gives that

IIh1 =
1

n
E
[
∂1H

(
X,W,A[1,L−1]; y, y′

) ∣∣∣
y=Y, y′=Y ′

]
.

Using (5.2.23) and a similar argument used above, we have that

IIh1 =
1

2n
E
[ˆ

dP̃y,y′

(
1√
h1
V − 1√

ρ(1− t)− h1
w̃

)
· ∇uy(s̃)eH(–̃;y,y′)

]
=

1

2n
E
[ˆ

dP̃y,y′ (1− 1)
(
∆uy(s̃) + |∇uy(s̃)|2

)
eH(–̃;y,y′)

]
= 0

where the second equality follows from the Gaussian integration by parts applied to V and

w̃.
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Proof of (5.2.27)

Using (5.2.8) and a computation similar to (5.2.30), we rewrite a′n in (5.2.20) as

a′n =
1

2
E

[(
1

nL−1

∣∣∣X(L−1)
∣∣∣2 − ρ

))∆P(Y |S)
P(Y |S)

F

]
.

Since IIt = 0 as shown above, using the formula (5.2.31), we then have

a′n =
1

2
E

[(
1

nL−1

∣∣∣X(L−1)
∣∣∣2 − ρ

))∆P(Y |S)
P(Y |S)

(
F − F

) ]
.

By the Cauchy–Schwarz inequality,

|a′n| ⩽
1

2

(
E

[(
1

nL−1

∣∣∣X(L−1)
∣∣∣2 − ρ

))2(∆P(Y |S)
P(Y |S)

)2
]) 1

2 (
E
(
F − F

)2) 1
2
. (5.2.39)

Now, to prove (5.2.27), it suffices to bound the first expectation on the right.

By (5.2.32), we have that

E

[(
∆P(Y |S)
P(Y |S)

)2
∣∣∣∣∣X(L−1), S

]
=

1

(2π)
nL−1

2

ˆ (
∆P(y|S)
P(y|S)

)2

P(y|S)dy.

Recall the notation (5.2.33). Then, (5.2.38) implies that

E

[(
∆P(Y |S)
P(Y |S)

)2
∣∣∣∣∣X(L−1), S

]
=

1

(2π)
nL−1

2

nL∑
j=1

ˆ (
∂2jP(y|S)
P(y|S)

)2

P(y|S)dy.

Using Jensen’s inequality to the integral in (5.2.36), we have that

ˆ (
∂2jP(y|S)
P(y|S)

)2

P(y|S)dy ⩽
ˆ (

Γj

(
yj , Sj , a

(L)
j

))2
e−

1
2
|y−

√
βφL(S,a)|2dPA(L)(a)dy.
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By the boundedness assumption in (h2) and the formula for Γj in (5.2.35), we obtain that

E

[(
∆P(Y |S)
P(Y |S)

)2
∣∣∣∣∣X(L−1), S

]
⩽ CnL,

which implies that

E

[(
1

nL−1

∣∣∣X(L−1)
∣∣∣2 − ρ

)2(∆P(Y |S)
P(Y |S)

)2
]
⩽ CnLE

(
1

nL−1

∣∣∣X(L−1)
∣∣∣2 − ρ

)2

.

Inserting this to (5.2.39) yields (5.2.27).

Proof of (5.2.28)

Recalling the definitions of u in (5.2.17) and P in (5.1.6), we can see that

∇uY (s) =

´ (
Yj − φL

(
sj , a

(L)
j

))
φ′
L

(
sj , a

(L)
j

)
e−

1
2
|Y−

√
βφL(s,a

(L))|2dPA(L)

(
a(L)

)
´
e−

1
2
|Y−

√
βφL(s,a(L))|2dPA(L)

(
a(L)

)


1⩽j⩽nL

where φ′ is the derivative with respect to its first argument. Recall the definition of Y in

(5.2.4). Using the boundedness of φL and its derivatives ensured by (h2), we can see that

|∇uY (s)| ⩽ C(
√
nL + |Z|). (5.2.40)

This computation also gives that

|∇uY (S)| ⩽ C(
√
nL + |Z|)

which together with (5.2.40) verifies (5.2.28).

Proof of (5.2.29)

For simplicity, we write

X = X(L−1), x = x(L−1). (5.2.41)
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Using the formula for ∂2F in (5.2.25), we can compute that

n∂22F =
〈
(∂2H(x,w, a))2

〉
− ⟨∂2H(x,w, a)⟩2 − 1

4h
3
2
2

〈
Z ′ · x

〉
(5.2.42)

Inserting (5.2.25) into the second term on the right and applying the Gaussian integration

by parts to the last term, we obtain that

n∂22F = E
〈
(∂2H(x,w, a))2

〉
− n2E(∂2F )2 −

1

4h2
E
〈
|x|2
〉
+

1

4h2
E| ⟨x⟩ |2, (5.2.43)

where, to get the last term, we also invoked the Nishimori identity. We claim that

E
〈
(∂2H(x,w, a))2

〉
⩾

1

4
E
〈
(x · x′)2

〉
+

1

4h2
E
〈
|x|2
〉
, (5.2.44)

and postpone its proof. Now, insert (5.2.44) into (5.2.43) to see that

n∂22F ⩾
1

4
E
〈
(x · x′)2

〉
− n2E(∂2F )2.

By (5.2.26), we have that

VarE⟨ · ⟩
[
X(L−1) · x(L−1)

]
= E

〈
(x · x′)2

〉
− (E

〈
x · x′

〉
)2 = E

〈
(x · x′)2

〉
− 4n2(∂2Fn)

2.

Then, (5.2.29) follows from the above two displays along with (5.1.1).

It remains to derive (5.2.44). Using the expression of ∂2H in (5.2.25), we have that

E
〈
(∂2H(x,w, a))2

〉
= E

〈(
1

2
√
h2
Z ′ · x+ x ·X − 1

2
|x|2
)2
〉

= E
〈 1

4h2
(Z ′ · x)2 + (x ·X)2 +

1

4
|x|4

+
1√
h2

(Z ′ · x)(x ·X)− 1

2
√
h2

(Z ′ · x)|x|2 − (x ·X)|x|2
〉 (5.2.45)
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The first term on the last line can be rewritten as

E
〈

1

4h2
(Z ′ · x)2

〉
=

nL−1∑
i,j=1

1

4h2
E
〈
Z ′
iZ

′
jxixj

〉
.

If i ̸= j, the Gaussian integration by parts yields that

1

h2
E
〈
Z ′
iZ

′
jxixj

〉
= E

〈
xixj(xi − x′i)(xj + x′j − 2x′′j )

〉
.

If i = j, we have that

1

h2
E
〈
Z ′
iZ

′
ixixi

〉
= E

〈
xixi(xi − x′i)(xi + x′i − 2x′′i )

〉
+

1

h2
E
〈
x2i
〉
.

The above three displays combined give that

E
〈

1

4h2
(Z ′ · x)2

〉
=

1

4
E
〈
|x|4 − 2|x|2(x · x′)− (x · x′)2 + 2(x · x′)(x · x′′)

〉
+

1

4h2
E
〈
|x|2
〉
.

Other terms can be computed using the Nishimori identity and the Gaussian integration by

parts. We shall omit the details but only list the results:

E
〈
(x ·X)2

〉
= E

〈
(x · x′)2

〉
,

E
〈

1√
h2

(Z ′ · x)(x ·X)

〉
= E

〈
|x|2(x · x′)− (x · x′)(x · x′′)

〉
,

E
〈

1√
h2

(Z ′ · x)|x|2
〉

= E
〈
|x|4 − |x|2(x · x′)

〉
,

E
〈
(x ·X)|x|2

〉
= E

〈
|x|2(x · x′)

〉
.

Inserting these computations into (5.2.45) yields that

E
〈
(∂2H(x,w, a))2

〉
=

1

4
E
〈
(x · x′)2

〉
+

1

2
E
〈
(x · x′)2 − (x · x′)(x · x′′)

〉
+

1

4h2
E
〈
|x|2
〉
.
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Apply the Cauchy–Schwarz inequality and the symmetry of replicas to see that

E
〈
(x · x′)(x · x′′)

〉
⩽

1

2
E
〈
(x · x′)2

〉
+

1

2
E
〈
(x · x′′)2

〉
= E

〈
(x · x′)2

〉
.

These two displays imply (5.2.44).

5.2.3. Estimates of derivatives

We collect useful properties of derivatives of F β,L,n and Fβ,L,n in the following lemma.

Lemma 5.2.2. Assume (h1), (h2) and (H3) for some L ∈ N. For every β ⩾ 0 and

every n ∈ N, there is a constant C such that the following holds for all n ∈ N and all

(t, h) ∈ ΩρL−1,n \ {h1 = ρL−1,n(1− t)},

∂1F β,L,n ∈ [0, C]; (5.2.46)

∂2F β,L,n ∈
[
0,
nL−1ρL−1,n

2n

]
⊆ [0, C]; (5.2.47)

|∂2Fβ,L,n| ⩽ C

(
1 + n−

1
2h

− 1
2

2 |Z ′|
)
; (5.2.48)

∂i∂jF β,L,n ⩾ 0, ∀i, j = 1, 2; (5.2.49)

∂22Fβ,L,n ⩾ −Cn−
1
2h

− 3
2

2 |Z ′|. (5.2.50)

Let us prove these assertions. Again, for simplicity, we write F = Fβ,L,n in the proofs below.

Proof of (5.2.46)

By (5.2.24) and the Nishimori identity, we can see that

∂1F =
1

2n
E |⟨∇uY (s)⟩|2 ⩾ 0.

Due to (5.2.40), it is also bounded.
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Proof of (5.2.47)

The first range follows from the formula for ∂2F in (5.2.26), the definition of ρL−1,n in

(5.1.10), the Cauchy–Schwarz inequality and the Nishimori identity. The boundedness is

clear from the observation that there is a constant C such that, a.s.,

∣∣∣X(L−1)
∣∣∣ , ∣∣∣x(L−1)

∣∣∣ ⩽ C
√
n (5.2.51)

which is ensured by (5.1.1), (h1) and (h2).

Proof of (5.2.48)

In view of (5.2.25), this is valid due to (5.2.51).

Proof of (5.2.49)

We first show that ∂1∂2F ⩾ 0. Recall the formula for ∂1F in (5.2.24). Let use write

u = ∇uY (s) and U = ∇uY (S). We also adopt the notation (5.2.41). Then, we compute

that

∂1∂2F = (2n)−1∂2E
〈
u · U

〉
= (4n)−1E⟨(u · U)

(
(h2)

− 1
2Z ′ · x+ 2x ·X − x · x

)
− (u · U)

(
(h2)

− 1
2Z ′ · x′ + 2x′ ·X − x′ · x′

)
⟩.

Perform the Gaussian integration by parts on Z ′ to get that

∂1∂2F = (4n)−1E⟨(u · U)
(
(x− x′) · x+ 2x ·X − x · x

)
− (u · U)

(
(x+ x′ − 2x′′) · x′ + 2x′ ·X − x′ · x′

)
⟩.
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Using the Nishimori identity to replace U and X by replicas and invoking the symmetry of

replicas, we arrive at

∂1∂2F = (2n)−1E
〈
(u · u′)(x · x′)− 2(u · u′)(x · x′′) + (u · u′)(x′′ · x′′′)

〉
= (2n)−1E

∣∣ ⟨ux⊺⟩ − ⟨u⟩ ⟨x⟩⊺
∣∣2 ⩾ 0.

The computation for ∂22F ⩾ 0 is exactly the same with U, u above replaced by X,x. The

verification of ∂21F ⩾ 0 follows the same procedure but is computationally more involved.

We refer to the proof of [11, Proposition 18 in its supplementary material] for details.

Proof of (5.2.50)

Notice that the first two terms on the right of formula (5.2.42) for ∂22F form a variance.

Then, the desired lower bound follows from (5.2.51).

5.3. Weak solutions

We consider the equation (6.1.2) over Ωρ defined in (5.2.1) for some ρ > 0. We give the

definition of weak solutions, and prove the uniqueness and existence of weak solutions.

Uniqueness is ensured by Proposition 5.3.2. Proposition 5.3.3 furnishes the existence part

by providing a variational formula known as the Hopf formula. After stating these, we prove

the two propositions in the ensuing subsections.

We endow measurable subsets of Euclidean spaces with the Lebesgue measure. In what

follows, the phrase “almost everywhere” or “almost every” (a.e.) is understood with respect

to the Lebesgue measure. We denote by intΩρ the interior of Ωρ. In this section, for

convenience, we also denote the spacial variable by x instead of h.

Definition 5.3.1. For L ∈ N and ρ > 0, a function f : Ωρ → R is a weak solution of (6.1.2)

if

1. f is Lipschitz, and ∂1f ⩾ 0, ∂2f ∈ [0,
αL−1ρ

2 ] a.e.;

2. f satisfies (6.1.2) a.e.;
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3. for all (t, x) ∈ intΩρ and all sufficiently small λ ⩾ 0, it holds that

f(t, x+ λe1 + λe2) + f(t, x)− f(t, x+ λe1)− f(t, x+ λe2) ⩾ 0. (5.3.1)

By Rademacher’s theorem, condition (1) implies that f is differentiable a.e. Condition (2)

is understood in the sense that, outside a set with zero measure, f is differentiable and its

derivatives satisfy equation (6.1.2). In (3), {e1, e2} is the standard basis for R2. Condition (3)

can be interpreted as a type of partial convexity. For a smooth radial bump function

ξ : R2 → R supported on the unit disk satisfying ξ ∈ [0, 1] and
´
ξ = 1, introduce, for every

ε ∈ (0, 1),

ξε(x) = ε−2ξ
(
ε−1x

)
, ∀x ∈ R2. (5.3.2)

If f is a weak solution, then condition (3) along with the continuity of f implies that

∂1∂2(f(t, ·) ∗ ξε)(x) ⩾ 0, (5.3.3)

for every (t, x) in

Ωρ,ε =

{
t ∈

[
0, 1− 2

ρ
ε

]
, x1 ∈ [ε, ρ(1− t)− ε], x2 ∈ [ε,∞)

}
, (5.3.4)

where the convolution in (5.3.3) is taken in terms of the spacial variable.

The main results of this section are stated below.

Proposition 5.3.2. Given a Lipschitz function ψ : [0, ρ] × R+ → R, there is at most one

weak solution f of (6.1.2) satisfying f(0, ·) = ψ.

Proposition 5.3.3. Let ψ1 : [0, ρ] → R and ψ2 : R+ → R be Lipschitz, nondecreasing and
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convex. In addition, suppose that

∂2ψ2 ∈
[
0,
αL−1ρ

2

]
, a.e. (5.3.5)

Define ψ : [0, ρ]× R+ → R by

ψ(x) = ψ1(x1) + ψ2(x2), ∀x ∈ [0, ρ)× R+. (5.3.6)

Then, the formula

f(t, x) = sup
z∈R+×[0,

αL−1ρ

2
]

inf
y∈[0,ρ]×R+

{z · (x− y) + ψ(y) + tHL(z)}, ∀(t, x) ∈ Ωρ, (5.3.7)

gives a weak solution of (6.1.2) satisfying f(0, ·) = ψ.

The expression in (5.3.7) is known as the Hopf formula [15, 84].

5.3.1. Proof of Proposition 5.3.2

The idea of this proof can be seen in [60, Section 3.3.3]. Let f and g be weak solutions to

(6.1.2). Setting w = f − g, we have that

∂tw = HL(∇f)− HL(∇g) = b · ∇w

where the vector b is given by

b =
2

αL−1

(
∂2g, ∂1f

)
. (5.3.8)

For some smooth function ϕ : R+ → R+ to be chosen later, we set v = ϕ(w), which, by the

chain rule, satisfies that

∂tv = b · ∇v. (5.3.9)
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Then, we regularize b by setting bε = b ∗ ξε for the mollifier ξε introduced in (5.3.2), where

we understand that the convolution is taken with respect to the spacial variable. On Ωρ,ε

given in (5.3.4), the equation (5.3.9) can be rewritten as

∂tv = div(vbε)− v div bε + (b− bε) · ∇v. (5.3.10)

Before proceeding further, we need to estimate some terms related to this display.

Definition 5.3.1 (3) and (5.3.3) imply that, for all (t, x) ∈ Ωρ,ε,

∂1∂2fε(t, x), ∂1∂2gε(t, x) ⩾ 0,

and thus

div bε ⩾ 0, ∀(t, x) ∈ Ωρ,ε. (5.3.11)

By the definitions of fε and gε, we also have that

|∇fε| ⩽ ∥f∥Lip, |∇gε| ⩽ ∥g∥Lip. (5.3.12)

Let us fix a constant R to satisfy

R > sup
{
|∇HL(p)| : p ∈ R2

+, |p| ⩽ ∥f∥Lip + ∥g∥Lip
}
. (5.3.13)

Fix any η > 0 and define, for t ∈ [0, 1− 2
ρη],

Dt = [η, ρ(1− t)− η]× [η,R(1− t)], (5.3.14)

Γ1,t = [η, ρ(1− t)− η]× {R(1− t)},

Γ2,t = {ρ(1− t)− η} × [η,R(1− t)].
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Now, we introduce, for t ∈ [0, 1− 2
ρη],

J(t) =

ˆ
Dt

v(t, x)dx.

We emphasize that J depends on η. Choose ε < η to ensure that
⋃
t∈[0,1− 2

ρ
η]({t}×Dt) ⊆ Ωρ,ε.

Using (5.3.10) and integration by parts on the integral of div(vbε), we can compute that

d

dt
J(t) =

ˆ
Dt

∂tv −R

ˆ
Γ1,t

v − ρ

ˆ
Γ2,t

v

=

ˆ
Γ1,t

(n · bε −R)v +

ˆ
Γ2,t

(n · bε − ρ)v

+

ˆ
∂Dt\Γt

(n · bε)v +
ˆ
Dt

v(−div bε) +

ˆ
Dt

(b− bε) · ∇v,

where n stands for the outer normal vector. Then, n = (0, 1) on Γ1,t and n = (1, 0) on

Γ2,t. We treat the integrals after the second equality individually. Due to (5.3.8), (5.3.12)

and (5.3.13), the first integral is nonpositive. By Definition 5.3.1 (1) and (5.3.8), the second

integral is nonpositive. Note that on ∂Dt \ Γt, we have −n ∈ R2
+. By Definition 5.3.1 (1),

we can infer from the definition of bε that bε ∈ R2
+ on ∂Dt \Γt, which implies that the third

integral is nonpositive. In view of (5.3.11), the fourth integral is again nonpositive. The last

one is oε(1). Therefore, sending ε→ 0, we conclude that, for t ∈ [0, 1− 2
ρη],

d

dt
J(t) ⩽ 0. (5.3.15)

Since w(0, x) = f(0, x) − g(0, x) = 0, we have ∥w(δ, ·)∥∞ ⩽ δ(∥f∥Lip + ∥g∥Lip), for each

δ > 0. Let us choose ϕ = ϕδ to satisfy


ϕδ(z) = 0, if |z| ⩽ δ(∥f∥Lip + ∥g∥Lip),

ϕδ(z) > 0, otherwise.
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Therefore, due to v = ϕδ(w), we have that

J(δ) =

ˆ
Dδ

v(δ, x)dx =

ˆ
Dδ

ϕδ(w(δ, x))dx = 0.

Since J(t) is nonnegative, (5.3.15) implies that Jδ(t) = 0 for all t ∈ [δ, 1− 2
ρη]. This together

with the definition of ϕ guarantees that

|f(t, x)− g(t, x)| ⩽ δ(∥f∥Lip + ∥g∥Lip), ∀x ∈ Dt, ∀t ∈
[
δ, 1− 2

ρ
η

]
.

Recall the definition of Dt in (5.3.14) which depends on η. Taking δ → 0, η → 0 and

R→ ∞, we conclude that f = g.

5.3.2. Proof of Proposition 5.3.3

Let us extend ψ1 to be defined on R+ by setting

ψ1(x1) = ∞, ∀x1 ∈ R+ \ [0, ρ]. (5.3.16)

Then, ψ1 is still convex and nondecreasing. For u : R2
+ → R ∪ {∞}, the Fenchel transfor-

mation is defined by

u∗(x) = sup
y∈R2

+

{y · x− u(y)}, ∀x ∈ R2
+. (5.3.17)

Hence, we can rewrite the Hopf formula (5.3.7) as

f(t, x) = sup
z∈R+×[0,

αL−1ρ

2
]

inf
y∈R2

+

{
z · (x− y) + ψ(y) + tHL(z)

}
= sup

z∈R+×[0,
αL−1ρ

2
]

{z · x− ψ∗(z) + tHL(z)}.
(5.3.18)
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We first show that f is indeed finite on Ωρ. From (5.3.6), it follows that

ψ∗(z) = ψ∗
1(z1) + ψ∗

2(z2), ∀z ∈ R2
+, (5.3.19)

where the Fenchel transforms on the right-hand side are for functions defined on R+ which are

defined analogously to (5.3.17). By the assumption that ψ1 is Lipschitz and nondecreasing,

there is some R ⩾ 0 such that

0 ⩽ ψ1(r)− ψ(r′) ⩽ R(r − r′), ∀r ⩾ r′, r, r′ ∈ [0, ρ].

Due to the extension in (5.3.16), we have that

ψ∗
1(z1) = sup

y1∈[0,ρ]
{y1z1 − ψ1(y1)}.

The above two displays imply that

ψ∗
1(z1) = ρz1 − ψ1(ρ), ∀z1 ⩾ R. (5.3.20)

On the other hand, due to (5.3.5),

ψ∗
2(z2) = ∞, ∀z2 >

αL−1ρ

2
. (5.3.21)

Using this, (5.3.19) and the expression of HL in (5.2.10), we rewrite (5.3.18) as

f(t, x) = sup
z2∈[0,

αL−1ρ

2
]

{
z2x2 − ψ∗

2(z2) + sup
z1∈R+

{
z1x1 − ψ∗

1(z1) +
2t

αL−1
z1z2

}}
. (5.3.22)

We show that the second sup can be restricted to z1 ∈ [0, R]. Given (t, x) ∈ Ωρ, we have

that x1 ∈ [0, ρ(1− t)] due to the definition of Ωρ in (5.2.1). This implies that

x1 +
2t

αL−1
z2 − ρ ⩽ 0, ∀(t, x) ∈ Ωρ, z2 ∈

[
0,
αL−1ρ

2

]
,
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which together with (5.3.20) shows that

sup
z1∈[R,∞)

{
z1x1 − ψ∗

1(z1) +
2t

αL−1
z1z2

}
= sup

z1∈[R,∞)

{(
x1 +

2t

αL−1
z2 − ρ

)
z1 + ψ1(ρ)

}
⩽

(
x1 +

2t

αL−1
z2 − ρ

)
R+ ψ1(ρ) = Rx1 − ψ∗

1(R) +
2t

αL−1
Rz2,

In other words, the above sup is achieved at z1 = R. Hence, the second sup in (5.3.22) can

be taken over z1 ∈ [0, R] and thus the sup in (5.3.18) can be restricted to z belonging to the

compact set

K = [0, R]×
[
0,
αL−1ρ

2

]
. (5.3.23)

Therefore, due to the easy observation that ψ∗ is nondecreasing and lower semi-continuous,

we can see that f is finite on Ωρ, and furthermore, for every (t, x) ∈ Ωρ,

f(t, x) = z · x− ψ∗(z) + tHL(z), ∃z ∈ K. (5.3.24)

In the following, we verify that (5.3.18) is a weak solution by checking the initial condition,

and conditions (1), (2), (3) in Definition 5.3.1.

Initial condition

Using (5.3.19) and (5.3.21), the expression in (5.3.18) at t = 0 becomes

f(0, x) = sup
z∈R2

+

{z · x− ψ∗(z)} = ψ∗∗(x).

Since it is clear from the assumption that the extended ψ is lower semi-continuous, nonde-

creasing and convex, the Fenchel–Moreau biconjugation identity (cf. [105, Theorem 12.4],

and [38, Theorem 2.2] for more general cones) ensures that

ψ(x) = ψ∗∗(x), ∀x ∈ R2
+.
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In particular, we have f(0, ·) = ψ on Ωρ.

Condition (1)

Let (t, x) ∈ Ωρ and z ∈ K be given by (5.3.24). Using this and (5.3.18) for (t′, x′) ∈ Ωρ, we

have

f(t, x)− f(t′, x′) ⩽ z · (x− x′) + HL(z)(t− t′). (5.3.25)

A similar equality holds for some z′ ∈ K when interchanging (t, x), (t′, x′). By the compact-

ness of K, we can see that f is Lipschitz. Due to Rademacher’s theorem, f is differentiable

a.e. Using (5.3.25) and the definition of K in (5.3.23), we can also see that

∂1f ∈ [0, R], ∂2f ∈ [0,
αL−1ρ

2
], a.e.,

which completes the verification of Definition 5.3.1 (1).

Condition (2)

We want to verify that (5.3.18) satisfies (6.1.2) almost everywhere. Let (t, x) be a point at

which f is differentiable. We can assume that (t, x) ∈ intΩρ ⊆ (0,∞)3, because otherwise

(t, x) belongs to a set with Lebesgue measure zero. Let z be given by (5.3.24). By this and

(5.3.18), for s ∈ R and h ∈ R2 sufficiently small,

f(t+ s, x+ h)− f(t, x) ⩾ z · h+ sHL(z). (5.3.26)

Set s = 0 and vary h to see that

z = ∇f(t, x).

Then, we set h = 0 in (5.3.26), vary s and use the above display to obtain

∂tf(t, x) = HL(∇f(t, x)).
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Condition (3)

Let (t, x) ∈ intΩρ and λ ∈ R be sufficiently small. Due to (5.3.24), there are z, z′ such that

f(t, x+ λe1) = z · (x+ λe1)− ψ∗(z) + tHL(z),

f(t, x+ λe2) = z′ · (x+ λe2)− ψ∗(z′) + tHL(z
′).

(5.3.27)

Case 1: (z1, z2) ⩽ (z′1, z
′
2) or (z1, z2) ⩾ (z′1, z

′
2). Let us only treat the latter case. The other

case is similar. Using (5.3.18), we have

f(t, x+ λe1 + λe2) ⩾ z · (x+ λe1 + λe2)− ψ∗(z) + tHL(z),

f(t, x) ⩾ z′ · x− ψ∗(z′) + tHL(z
′).

This along with (5.3.27) implies that the left hand side of (5.3.1) is bounded below by

λz · e2 − λz′ · e2 = λ(z2 − z′2) ⩾ 0.

Case 2: neither (z1, z2) ⩽ (z′1, z
′
2) nor (z1, z2) ⩾ (z′1, z

′
2). This condition implies that

(z1 − z′1)(z2 − z′2) < 0. (5.3.28)

Let z̃ = (z1, z
′
2) and z̃′ = (z′1, z2). By (5.3.18), for each δ > 0, there are y, y′ ∈ R2

+ such that

f(t, x+ λe1 + λe2) ⩾ z̃ · (x+ λe1 + λe2 − y) + ψ(y) + tHL(z̃)− δ,

f(t, x) ⩾ z̃′ · (x− y′) + ψ(y′) + tHL(z̃
′)− δ.

(5.3.29)

We set

ỹ = (y1, y
′
2), ỹ′ = (y′1, y2).
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Note that

z̃ · y + z̃′ · y′ − z · ỹ − z′ · ỹ′ = 0. (5.3.30)

From (5.3.27), we also have

f(t, x+ λe1) ⩽ z · (x+ λe1 − ỹ) + ψ(ỹ) + tHL(z),

f(t, x+ λe2) ⩽ z′ · (x+ λe2 − ỹ′) + ψ(ỹ′) + tHL(z
′).

(5.3.31)

To get a lower bound for the left hand side of (5.3.1), we start by observing that, due to

(5.3.30),

z̃ · (x+ λe1 + λe2 − y) + z̃′ · (x− y′)− z · (x+ λe1 − ỹ)− z′ · (x+ λe2 − ỹ′)

= (z̃ + z̃′ − z − z′) · x− (z̃ · y + z̃′ · y′ − z · ỹ − z′ · ỹ′) + λ(z1 + z′2 − z1 − z′2)

= 0.

This along with (5.3.29) and (5.3.31) implies that the left hand side of (5.3.1) can be bounded

from below by

ψ(y) + ψ(y′)− ψ(ỹ)− ψ(ỹ′) + t
(
HL(z̃) + HL(z̃

′)− HL(z)− HL(z
′)
)
− 2δ.

From (5.3.6), we can see

ψ(y) + ψ(y′)− ψ(ỹ)− ψ(ỹ′) = 0.

Lastly, due to (5.3.28) and the definition of HL in (5.2.10), we can compute that

HL(z̃) + HL(z̃
′)− HL(z)− HL(z

′) = − 2

αL−1
(z1 − z′1)(z2 − z′2) > 0.

The above three displays imply that the left hand side of (5.3.1) is bounded from below by
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−2δ. The desired result follows by sending δ → 0.

5.4. Convergence of the free energy

The goal of this section is to prove Theorem 5.1.1. The key tool is Proposition 5.4.1 stated

below, which ensures the convergence of F β,L,n given the convergence of F β,L,n(0, ·) and

some additional conditions. The object F β,L,n(0, ·) is closely related to the free energy

associated with the (L− 1)-layer model. Hence, an iteration is employed in Section 5.4.1 to

complete the proof of Theorem 5.1.1.

Recall the definition of ρL−1,n in (5.1.10) and of domain Ωρ, for ρ > 0, in (5.2.1).

Proposition 5.4.1. Assume (h1), (h2) and (H3) for some L ∈ N. Suppose that the following

holds:

1. the limit (5.1.11) for l = L− 1 exists for some ρL−1 > 0;

2. there is a continuous ψβ,L : [0, ρL−1]× R+ → R such that

lim
n→∞

F β,L,n(0, h) = ψβ,L(h), ∀h ∈ [0, ρL−1)× R+,

and there is a weak solution fβ,L to (6.1.2) on ΩρL−1 satisfying fβ,L(0, ·) = ψβ,L;

3. there is C > 0 such that

E

(∣∣X(L−1)
∣∣2

nL−1
− ρL−1,n

)2
 ⩽

C

n
, ∀n ∈ N;

4. for every M ⩾ 1,

lim
n→∞

sup
t∈[0,1],

h1∈[0, ρL−1,n(1−t)]

E
[∥∥Fβ,L,n − F β,L,n

∥∥2
L∞
h2

([0,M ])
(t, h1)

]
= 0.
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Then, for every ρ′ ∈ (0, ρL−1),

lim
n→∞

F β,L,n(t, h) = fβ,L(t, h), ∀(t, h) ∈ Ωρ′ .

We restrict to the domain Ωρ′ because the pointwise limit of F β,L,n may not be well-defined

on boundary points of ΩρL−1 (recall that F β,L,n is defined on ΩρL−1,n). The proof of this

proposition is postponed to Section 5.4.2.

5.4.1. Iteration

Let us prove Theorem 5.1.1 using Proposition 5.4.1 together with some technical results

postponed to Section 5.5.

Assuming that (H1)–(H3) hold for the model with L0 layers, then these assumptions au-

tomatically hold for all L ∈ {1, . . . , L0}. Hence, for all L ∈ {1, . . . , L0}, conditions (1),

(3), (4) in Proposition 5.4.1 are guaranteed to hold by Lemmas 5.5.1, 5.5.2 and 5.5.4, re-

spectively. We will apply Proposition 5.4.1 iteratively to prove Theorem 5.1.1. Recall the

definitions of F ◦
β,L,n, Ψ0, Ψl, Fβ,L,n in (5.1.8), (5.1.12), (5.1.13), (5.2.8), respectively, and

also the important relation (5.2.9), which implies that

lim
n→∞

EF ◦
β,L,n = lim

n→∞
F β,L,n(1, 0), (5.4.1)

whenever one of the limits exists. Also recall the definition of αl in (5.1.1).

Before proceeding, let us record the following result. Comparing the definitions of (5.1.6)

and (5.1.14), and using the fact that A(L) has i.i.d. components due to (H3), we can see

that, for every β, L, n,

Pβ,L,n(y|z) =
nL∏
j=1

P̃β,L(yj |zj), ∀y, z ∈ RnL . (5.4.2)
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We start with L = 1. Using (5.2.2)–(5.2.8) with L replaced by 1, we can compute that

F β,1,n(0, h) =
1

n
E log

ˆ
Pβ,1,n

(
Y(1)

∣∣∣√h1V +
√
ρ0,n − h1w

)
dPW (w)

+
1

n
E log

ˆ
eh2X·x+

√
h2Z′·x−h2

2
|x|2dPX(x)

where

Y(1) =
√
βφ1

(√
h1V +

√
ρ0,n − h1W,A

(1)
)
+ Z,

V,W,Z are independent n1-dimensional standard Gaussian vectors, and Z ′ is an

n-dimensional Gaussian vector. By (5.4.2), the definitions of Ψ0,Ψ1 in (5.1.12), (5.1.13),

and the fact that X,V,W have i.i.d. entries (see (H1) for the claim about X), the above can

be rewritten as

F β,1,n(0, h) =
n1
n
Ψ1(h1, β; ρ0,n) + Ψ0(h2),

which, by (5.1.1) and (5.1.11), converges pointwise to

ψβ,1(h) = α1Ψ1(h1, β; ρ0) + Ψ0(h2).

The results collected in Lemma 5.2.2 allow us to verify that ψβ,1 satisfies all the conditions

imposed in Proposition 5.3.3. Indeed, the above display shows that the decomposition as in

(5.3.6) exists, and both components are Lipschitz, nondecreasing and convex due to (5.2.46),

(5.2.47) and (5.2.49). Moreover, (5.3.5) is ensured by (5.2.47), (5.1.1), (5.1.11). Hence,

Proposition 5.3.3 yields the existence of a weak solution fβ,1 satisfying fβ,1(0, ·) = ψβ,1

given by the formula (5.3.7) with L, ρ, ψ there replaced by 1, ρ0, ψβ,1, namely,

fβ,1(t, h) = sup
z(1)∈R+×[0,

α0ρ0
2

]

inf
y(1)∈[0,ρ0]×R+

{
z(1) ·

(
h− y(1)

)
+ ψβ,1

(
y(1)
)
+ tH1

(
z(1)
)}

for every (t, h) ∈ Ωρ0 . Inserting the previous display and the formula for H1 in (5.2.10) into
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the above, and evaluating at (t, h) = (1, 0) yield that

fβ,1(1, 0) = sup
z(1)

inf
y(1)

{
α1Ψ1

(
y
(1)
1 , β; ρ0

)
+Ψ0

(
y
(1)
2

)
− y(1) · z(1) + 2

α0
z
(1)
1 z

(1)
2

}

which exactly matches the right-hand side of (5.1.15) for L = 1.

The above discussion also validates condition (2) in Proposition 5.4.1. Therefore, applying

this proposition yields that

lim
n→∞

F β,1,n(1, 0) = fβ,1(1, 0).

Using (5.4.1), this proves (5.1.15) for L = 1.

Now, we assume that (5.1.15) is verified for L − 1. Using (5.2.2)–(5.2.8), we can compute

that

F β,L,n(0, h) =
1

n
E log

ˆ
Pβ,L,n

(
Y(L)

∣∣∣√h1V +
√
ρL−1,n − h1w

)
dPW (w)

+
1

n
E log

ˆ
e
√
h2Y ′·x(L−1)−h2

2
|x(L−1)|2dPX(x)dPA[1,L−1](a)

= I1 + I2

where

Y(L) =
√
βφL

(√
h1V +

√
ρL−1,n − h1W,A

(L)
)
+ Z.

By (5.4.2) and the definition of ΨL given in (5.1.13), I1 = nL
n ΨL(h1, β; ρL−1,n). Completing

the square, we can rewrite I2 as

I2 =
1

n
E log

ˆ
e−

1
2
|Y ′−

√
h2x(L−1)|2dPX(x)dPA[1,L−1](a) +

1

n
E log e

1
2
|Y ′|2 . (5.4.3)

Recall the definition of x(L−1) in (5.1.5). We can define x(L−2) in the same fashion and it is
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related to x(L−1) via

x(L−1) = φL−1

(
1

√
nL−2

Φ(L−1)x(L−2), a(L−1)

)
.

Inserting this and dPA[1,L−1] = dPA(L−1)dPA[1,L−2] to (5.4.3), and using (5.1.6) with β, L

replaced by h2, L− 1, we can see that the first term in (5.4.3) is given by

1

n
E log

ˆ
Ph2,L−1,n

(
Y ′
∣∣∣∣ 1
√
nL−2

Φ(L−1)x(L−2)

)
dPX(x)dPA[1,L−2](a).

Recall the definition of Y ′ in (5.2.5). Comparing it with (5.1.4), we can see that Y ′ is exactly

the observable for the (L − 1)-layer model with β = h2. In view of the definition of the

original free energy in (5.1.8), we can see that the above display is exactly EF ◦
h2,L−1,n. Now,

we turn to the second term in (5.4.3). Using the definitions of Y ′ in (5.2.5) and ρL−1,n in

(5.1.10), we can compute that this term is equal to

1

2n
E|Y ′|2 = nL−1

2n
(1 + ρL−1,nh2).

We conclude that

F β,L,n(0, h) =
nL
n
ΨL(h1, β; ρL−1,n) + EF ◦

h2,L−1,n +
nL−1

2n
(1 + ρL−1,nh2),

which, by the induction assumption, converges pointwise on [0, ρL−1)× R+ to

ψβ,L(h) = αLΨL(h1, β; ρL−1) + f◦h2,L−1 +
αL−1

2
(1 + ρL−1h2)

where f◦h2,L−1 is the right-hand side of (5.1.15) with β, L replaced by h2, L− 1, namely,

f◦h2,L−1 = sup
z(L−1)

inf
y(L−1)

sup
z(L−2)

inf
y(L−2)

· · · sup
z(1)

inf
y(1)

ϕL−1

(
h2; y

(1), · · · , y(L−1); z(1), · · · , z(L−1)
)

with ϕL−1 defined analogously as in (5.1.16).
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Again, as argued in the base case, Lemma 5.2.2 enables us to verify all conditions in Propo-

sition 5.3.3, which gives a weak solution fβ,L satisfying fβ,L(0, ·) = ψβ,L. Moreover, fβ,L is

given by the formula (5.3.7) with ρ, ψ there replaced by ρL−1, ψβ,L, namely,

fβ,L(t, h) = sup
z(L)

inf
y(L)

{
z(L) ·

(
h− y(L)

)
+ ψβ,L

(
y(L)

)
+ tHL

(
z(L)

)}

for every (t, h) ∈ ΩρL−1 , where sup is taken over z(L) ∈ R+ × [0,
αL−1ρL−1

2 ] and inf is taken

over y(L) ∈ [0, ρL−1]× R+. Inserting the previous two displays and the expression of HL in

(5.2.10) into the above, and evaluating at (t, h) = (1, 0), we obtain that

fβ,L(1, 0) = sup
z(L)

inf
y(L)

sup
z(L−1)

inf
y(L−1)

· · · sup
z(1)

inf
y(1)

{
− y(L) · z(L) + αLΨL

(
y
(L)
1 , β; ρL−1

)
+ ϕL−1

(
y
(L)
2 ; y(1), · · · , y(L−1); z(1), · · · , z(L−1)

)
+
αL−1

2

(
1 + ρL−1y

(L)
2

)
+

2

αL−1
z
(L)
1 z

(L)
2

}
.

We can verify that the expression inside the curly brackets is given by (5.1.16), and thus

fβ,L(1, 0) is exactly the right-hand side of (5.1.15).

Again, the above verifies condition (2) and allows us to apply Proposition 5.4.1 to obtain

that

lim
n→∞

F β,L,n(1, 0) = fβ,L(1, 0)

which along with (5.4.1) gives (5.1.15) and completes the proof of Theorem 5.1.1.

5.4.2. Proof of Proposition 5.4.1

For lighter notation, we suppress some of the subscripts and simply write

Fn = Fβ,L,n, ψ = ψβ,L, f = fβ,L, ρ = ρL−1, ρn = ρL−1,n.
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We remark that it suffices to show

lim
n→∞

sup
t∈[0,1]

ˆ
En,t(R)

∣∣Fn(t, h)− f(t, h)
∣∣dh = 0 (5.4.4)

for every R > 0, where

En,t(R) = [0, (ρ ∧ ρn)(1− t)]× [0, R(1− t)]. (5.4.5)

Indeed, for every ρ′ < ρ, we have ρ′ < ρ ∧ ρn for sufficiently large n due to assumption (1).

Then, (5.4.4) together with Fubini’s theorem implies that the integral of |Fn − f | over

Ωρ′ ∩ {h2 ⩽ R(1− t)} decays to 0 as n→ ∞, which further implies that Fn converges to f

pointwise a.e. on Ωρ′ ∩ {h2 ⩽ R(1− t)}. By enlarging R, we conclude that this convergence

holds pointwise everywhere on Ωρ′ .

Let us show (5.4.4). Henceforth, we denote by C a positive constant independent of n, t, h,

which may change from instance to instance. We also absorb R and ρ into C. Define

wn = Fn − f and

rn = ∂tFn − HL(∇Fn). (5.4.6)

Then, by the definition of HL in (5.2.10), we have that

∂twn = bn · ∇wn + rn (5.4.7)

where

bn = (bn,1, bn,2) =
2

αL−1
(∂2f, ∂1Fn). (5.4.8)

For δ ∈ (0, 1), let ϕδ : R → R+ be given by

ϕδ(x) =
(
δ + x2

) 1
2 , ∀x ∈ R, (5.4.9)
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which serves as a smooth approximation of the absolute value. Take vn = ϕδ(wn) and

multiply both sides of (5.4.7) by ϕ′δ(wn) to see

∂tvn = bn · ∇vn + ϕ′δ(wn)rn (5.4.10)

The Lipschitzness of f and that of Fn uniform in n due to (5.2.46) and (5.2.47) imply that,

uniformly in n, δ,

|∇vn| ⩽ C. (5.4.11)

By limn→∞ Fn(0, 0) = ψ(0) = f(0, 0) due to assumption (2), we also get from the afore-

mentioned Lipschitzness that

sup
Ωρ∧ρn∩{h2⩽R}

|Fn − f | ⩽ C (5.4.12)

uniformly in n, which implies that, uniformly in n, δ,

sup
Ωρ∧ρn∩{h2⩽R}

|vn| ⩽ C. (5.4.13)

Recall the mollifier ξε given in (5.3.2) and that the mollification is well-defined on domain

Ωρ∧ρn,ε described in (5.3.4). Let us regularize bn by setting bεn,i = bn,i ∗ ξε, with the convo-

lution taken in h. For (t, h) ∈ Ωρ∧ρn,ε, we can rewrite (5.4.10) as

∂tvn = div(vnb
ε
n)− vndivb

ε
n + (bn − bεn) · ∇vn + ϕ′δ(wn)rn. (5.4.14)

By (5.4.8), (5.2.46), (5.2.47) and Definition 5.3.1 (1), there is C > 0 such that the following
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hold for all n, all ε ∈ (0, 1) and all (t, h) ∈ Ωρ∧ρn,ε,

∥bn − bεn∥∞ = oε(1); (5.4.15)

∥bεn∥∞ ⩽ ∥bn∥∞ ⩽ C;

bεn,1 ∈ [0, ρ], bεn,2 ∈ [0, C]. (5.4.16)

Using (5.2.49) and (3) in Definition 5.3.1, we also have that, for (t, h) ∈ Ωρ∧ρn,ε,

divbεn =
2

αL−1

(
∂1∂2

(
f ∗ ξε

)
+ ∂1∂2

(
Fn ∗ ξε

))
⩾ 0. (5.4.17)

Fix R > supn,ε ∥bεn∥∞. In the following, we absorb R into C. Let η > 0 be specified later.

Consider the following sets, indexed by t ∈ [0, 1− 2
ρ∧ρn η],

Dt = [η, (ρ ∧ ρn)(1− t)− η]× [η,R(1− t)], (5.4.18)

Γ1,t = [η, (ρ ∧ ρn)(1− t)− η]× {R(1− t)},

Γ2,t = {(ρ ∧ ρn)(1− t)− η} × [η,R(1− t)],

where, for simplicity, we suppressed the dependence on n, η in the notation.

Let us consider the object

Jδ(t) =

ˆ
Dt

vn(t, h)dh =

ˆ
Dt

ϕδ
(
wn(t, h)

)
dh. (5.4.19)

Choose ε < η to ensure that
⋃
t∈[0,1− 2

ρ∧ρn
η]({t}×Dt) ⊆ Ωρ∧ρn,ε. Differentiate Jδ(t) in t and
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use (5.4.14) to see

d

dt
Jδ(t) =

ˆ
Dt

∂tvn −R

ˆ
Γ1,t

vn − ρ ∧ ρn
ˆ
Γ2,t

vn

=

ˆ
Γ1,t

(n · bεn −R)vn +

ˆ
Γ2,t

(n · bεn − ρ ∧ ρn)vn

+

ˆ
∂Dt\(Γ1,t∪Γ2,t)

(n · bεn)vn +
ˆ
Dt

(
− vndivb

ε
n + (bn − bεn) · ∇vn + ϕ′δ(wn)rn

)
.

Here in the second identity, we used integration by parts on the integral of div(vnbεn). The

first integral on the second line is nonpositive due to the choice of R. Then second integral

on that line is bounded from above by C|ρn − ρ| due to (5.4.13), (5.4.16) and the fact that

on Γ2,t the outer normal n = (1, 0). On the last line of the display, the first integral is

nonpositive due to that n ∈ −R2
+ on ∂Dt \ (Γ1,t ∪Γ2,t), and (5.4.16). It is clear from (5.4.9)

that ∥ϕ′δ∥∞ ⩽ 1. By this, (5.4.11), (5.4.15) and (5.4.17), the integrand in the last integral

is bounded from above by C(oε(1) + |rn|). Therefore, sending ε → 0, we conclude that, for

t ∈ [0, 1− 2
ρ∧ρn η],

d

dt
Jδ(t) ⩽ C|ρn − ρ|+

ˆ
Dt

|rn|. (5.4.20)

Recall the definition of rn in (5.4.6). Proposition 5.2.1 gives an upper bound for |rn|, which

along with Jensen’s inequality gives that

ˆ
Dt

|rn| ⩽ C

( ˆ
Dt

1

n
∂22Fn + E

ˆ
Dt

(
∂2Fn − ∂2Fn

)2) 1
2

+ an (5.4.21)

for an bounded as in (5.2.11). In view of (5.2.47), the first integral on the right-hand side

of (5.4.21) can be bounded by Cn−1. For the last integral in (5.4.21), we will show that

E
ˆ
Dt

∣∣∂2(Fn − Fn)
∣∣2 ⩽ ∆2

1,nη
− 1

2 , (5.4.22)
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for some ∆1,n converging to 0 as n→ ∞. These estimates imply that

ˆ
Dt

|rn| ⩽ C(n−
1
2 +∆1,nη

− 1
4 + an).

This along with (5.4.20) implies that

Jδ(t) ⩽ Jδ(0) + C(|ρn − ρ|+ n−
1
2 +∆1,nη

− 1
4 + an), t ∈

[
0, 1− 2

ρ ∧ ρn
η

]
.

Note that limn→∞ |ρn − ρ| = 0 by assumption (1) and limn→∞ an = 0 due to (5.2.11),

assumptions (3) and (4), and (5.1.1). By (5.4.9) and (5.4.19), we have that

lim
δ→0

Jδ(0) =

ˆ
D0

∣∣Fn(0, h)− f(0, h)
∣∣dh

which converges to 0 as n → ∞ by assumption (2), (5.4.12) and the bounded convergence

theorem. Hence, sending δ → 0, we derive that

sup
t∈[0,1− 2

ρ∧ρn
η]

ˆ
Dt

∣∣Fn(t, h)− f(t, h)
∣∣dh ⩽ C

(
∆1,nη

− 1
4 +∆2,n

)
,

for some ∆2,n that decays to 0 as n → ∞. We want to extend the above result from

integrating over Dt to En,t(R) for t ∈ [0, 1]. The definitions of En,t(R) in (5.4.5) and Dt in

(5.4.18) give that

|En,t(R) \Dt| ⩽ Cη, ∀t ∈
[
0,

2

ρ ∧ ρn
η

]
,

|En,t(R)| ⩽ Cη, ∀t ∈
[

2

ρ ∧ ρn
η, 1

]
.
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These along with (5.4.12) yield that

sup
t∈[0,1− 2

ρ∧ρn
η]

ˆ
En,t(R)\Dt

∣∣Fn(t, h)− f(t, h)
∣∣dh ⩽ Cη,

sup
t∈[1− 2

ρ∧ρn
η,1]

ˆ
En,t(R)

∣∣Fn(t, h)− f(t, h)
∣∣dh ⩽ Cη.

Therefore, we obtain that

sup
t∈[0,1]

ˆ
En,t(R)

∣∣Fn(t, h)− f(t, h)
∣∣dh ⩽ C

(
η +∆1,nη

− 1
4 +∆2,n

)
.

Insert η = ∆
4
5
1,n into the above display to see that the right-hand side of the above is bounded

by C(∆
4
5
1,n +∆2,n), which gives the desired result (5.4.4).

It remains to verify (5.4.22).

Proof of (5.4.22)

By writing

E
ˆ
Dt

∣∣∂2(Fn − Fn)
∣∣2 = ˆ (ρ∧ρn)(1−t)

η

(
E
ˆ R(1−t)

η

∣∣∂2(Fn − Fn)
∣∣2dh2)dh1,

it suffices to show that the term inside the parentheses is o(1)η−
1
2 uniformly in t, h1. Now,

let us fix any (t, h1) and investigate the integration with respect to h2. Integration by parts
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yields that

ˆ R(1−t)

η

∣∣∂2(Fn − Fn)
∣∣2 = (Fn − Fn)∂2(Fn − Fn)

∣∣
h2=R(1−t) − (Fn − Fn)∂2(Fn − Fn)

∣∣
h2=η

−
ˆ R(1−t)

η
(Fn − Fn)∂

2
2(Fn − Fn)

⩽ ∥Fn − Fn∥L∞
h2

([0,R])

(∣∣∣∂2(Fn − Fn)
∣∣
h2=R(1−t)

∣∣∣+ ∣∣∣∂2(Fn − Fn)
∣∣
h2=η

∣∣∣
(5.4.23)

+

ˆ R(1−t)

η

∣∣∂22(Fn − Fn)
∣∣).

Let us estimate the last integral. By (5.2.49) and (5.2.50),

∂22Fn ⩾ 0, ∂22Fn + Cn−
1
2h2

− 3
2 |Z ′| ⩾ 0,

which implies that

ˆ R(1−t)

η

∣∣∂22(Fn + Fn)
∣∣ ⩽ ˆ R(1−t)

η

∣∣∂22Fn∣∣+ ∣∣∂22Fn∣∣
⩽
ˆ R(1−t)

η

(
∂22Fn + ∂22Fn

)
+

ˆ R(1−t)

η
2Cn−

1
2h2

− 3
2 |Z ′|.

Applying integration by parts to the first integral after the second inequality gives that

ˆ R(1−t)

η

∣∣∂22(Fn + Fn)
∣∣

⩽
(∣∣∂2Fn∣∣+ ∣∣∂2Fn∣∣)∣∣∣

h2=R(1−t)
−
(∣∣∂2Fn∣∣+ ∣∣∂2Fn∣∣)∣∣∣

h2=η
+ Cn−

1
2 η−

1
2 |Z ′|

⩽ C(1 + n−
1
2 η−

1
2 |Z ′|)

where the last inequality follows from the estimates of ∂2Fn in (5.2.47) and ∂2Fn in (5.2.48).

Insert estimates (5.2.47) and (5.2.48), and the above display into (5.4.23) to get that

ˆ R(1−t)

η

∣∣∂2(Fn − Fn)
∣∣2 ⩽ C∥Fn − Fn∥L∞

h2
([0,R])

(
1 + n−

1
2 η−

1
2 |Z ′|

)
.
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Take expectations on both sides of this inequality, invoke the Cauchy–Schwarz inequality

and use assumption (4) to conclude (5.4.22).

5.5. Auxiliary results

We collect proofs of Lemma 5.5.1 which verifies (5.1.11), Lemma 5.5.2 which gives the con-

centration of 1
nl

∣∣X(l)
∣∣2, and Lemma 5.5.4 which shows that the concentration condition (4)

in Proposition 5.4.1 always holds.

5.5.1. Convergence of the averaged norm

Recall ρl,n from (5.1.10).

Lemma 5.5.1. Assume (H1)–(H3) for some L ∈ N. For each l ∈ {0, 1, . . . , L}, (5.1.11)

holds for ρl defined iteratively by

ρ0 = E|X1|2

ρl = E
∣∣∣φl (√ρl−1Φ

(l)
11 , A

(l)
1

)∣∣∣2 . (5.5.1)

In (5.5.1), Φ(l)
11 is a standard Gaussian random variable independent of A(l)

1 . Examining the

proof below, we can see that the lemma is still valid (with ρ0 defined as a limit) if we replace

(H1) and (H2) by weaker assumptions that 1
n |X|2 converges in probability together with

(h1), and that φl is Lipschitz for all l.

Proof. It suffices to show that

lim
n→∞

E

∣∣∣∣∣
∣∣X(l)

∣∣2
nl

− ρl

∣∣∣∣∣
2

= 0. (5.5.2)

Since X(0) is assumed to consist of bounded i.i.d. entries and ρ0 = E|Xj |2 for all j =

1, 2, . . . , n, it is immediate that (5.5.2) holds for l = 0. We proceed by induction. Now, we

assume that (5.5.2) holds for l − 1. Let us denote by E(l) the expectation with respect to
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Φ(l) and A(l). We start by writing

E

∣∣∣∣∣
∣∣X(l)

∣∣2
nl

− ρl

∣∣∣∣∣
2

⩽ 2E

∣∣∣∣∣
∣∣X(l)

∣∣2
nl

− E(l)

∣∣X(l)
∣∣2

nl

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣E(l)

∣∣X(l)
∣∣2

nl
− ρl

∣∣∣∣∣
2

. (5.5.3)

We start by estimating the first term on the right. It is clear from (5.1.3) that, conditioned

on X(l−1), (|X(l)
j |2)nl

j=1 is a sequence of i.i.d. random varaibles. Hence, the first term can be

rewritten as

2E
1

n2l

nl∑
j=1

E(l)

∣∣∣∣∣∣∣X(l)
j

∣∣∣2 − E(l)
∣∣∣X(l)

j

∣∣∣2∣∣∣∣2 .
Since X(l)

j is bounded, we can see that the first term is bounded by Cn−1
l . Now, we turn to

the second term. Using (5.1.3), we can compute that

E(l)

∣∣X(l)
∣∣2

nl
= g

(∣∣X(l−1)
∣∣2

nl−1

)

where

g(σ) = E
∣∣∣φl (√σΦ(l)

11 , A
(l)
1

)∣∣∣2 .
Since φl is assumed to have bounded derivatives, we can see that g is 1

2 -Hölder continuous.

Rewriting (5.5.1) as ρl = g(ρl−1), we can bound the second term in (5.5.3) by

2E

∣∣∣∣∣g
(∣∣X(l−1)

∣∣2
nl−1

)
− g(ρl−1)

∣∣∣∣∣
2

⩽ CE

∣∣∣∣∣
∣∣X(l−1)

∣∣2
nl−1

− ρl−1

∣∣∣∣∣
which converges to 0 due to the induction assumption (5.5.2) for l − 1. This finishes the

induction step showing that (5.5.2) holds for l and thus completes the proof.

5.5.2. Concentration of the norm

The goal is to show the following lemma.
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Lemma 5.5.2. Assume (H1)–(H3) for some L ∈ N. There is a constant C > 0 such that,

for every n ∈ N,

Var
[
1

nL

∣∣∣X(L)
∣∣∣2] ⩽ C

n
.

To prove this, we need a classic result on concentration.

Lemma 5.5.3. Let A1, A2, . . . , An be independent random variables with values in some

space X . Suppose that a function f : X n → R satisfies

sup
1⩽i⩽n

sup
a1,...,an,
a′i∈X

|f(a1, . . . , an)− f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an)| ⩽ c

for some c > 0. Then, Var[f(A)] ⩽ 1
4nc

2.

This is a corollary of the Efron–Stein inequality. We refer to [27, Corollary 3.2] for a proof.

Proof of Lemma 5.5.2. Setting

gL(x) =
1

nL
|x|2 , ∀x ∈ RnL ,

we have that

gL

(
X(L)

)
=

1

nL

∣∣∣X(L)
∣∣∣2 . (5.5.4)

For l ∈ {0, 1, . . . , L− 1}, we can iteratively define

gl(x) = E
[
gl+1

(
φl+1

(
1

√
nl
Φ(l+1)x,A(l+1)

))]
, ∀x ∈ Rnl . (5.5.5)

Due to (5.1.3), this implies that

gl

(
X(l)

)
= E

[
gl+1

(
X(l+1)

) ∣∣∣X(l)
]
.
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For convenience, we also set

X(−1) = 0, g−1(0) = E
[
g0

(
X(0)

)]
.

Iterating these yields that

g−1

(
X(−1)

)
= E

[
gL

(
X(L)

)]
= E

[
1

nL

∣∣∣X(L)
∣∣∣2] ,

which along with (5.5.4) gives that

Var
[
1

nL

∣∣∣X(L)
∣∣∣2] = E

[(
gL

(
X(L)

))2
−
(
g−1

(
X(−1)

))2]
=

L∑
l=0

E
[(
gl

(
X(l)

))2
−
(
gl−1

(
X(l−1)

))2]

=
L∑
l=0

E
[(
gl

(
X(l)

)
− E

[
gl

(
X(l)

) ∣∣∣X(l−1)
])2]

.

Then, the desired result follows if we can show that, for all l ∈ {0, 1, . . . , L},

E
[(
gl

(
X(l)

)
− E

[
gl

(
X(l)

) ∣∣∣X(l−1)
])2]

⩽
C

n
. (5.5.6)

For l = L, since X(L) has i.i.d. entries when conditioned on X(L−1) due to (5.1.3), the

left-hand side of (5.5.6) is given by

E

[
E(L)

[(
1

nL

∣∣∣X(L)
∣∣∣2 − E(L) 1

nL

∣∣∣X(L)
∣∣∣2)2

]]

=
1

nL
E

[(∣∣∣X(L)
1

∣∣∣2 − E(L)
∣∣∣X(L)

1

∣∣∣2)2
]
⩽

C

nL

where E(L) is the expectation with respect to Φ(L) and A(L).

Now, let l ⩽ L−1. Due to (5.1.3), X(l) has i.i.d. entries when conditioned on X(l−1). Recall

the notation (5.1.2). Due to (5.1.3), viewing X(L) as a deterministic function of Φ[l+1,m],
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A[l+1,m] and X(l), and using (5.5.5), we can check inductively that

gl

(
X(l)

)
= E

[
1

nL

∣∣∣X(L)
∣∣∣2 ∣∣∣∣X(l)

]
.

Then, using (5.1.3) and the chain rule, we can compute that for il ∈ {1, 2, . . . , nl},

∂gl
(
X(l)

)
∂X

(l)
il

=

2

nL

∑
i

E

φ̇(l+1)
il+1

φ̇
(l+2)
il+2

· · · φ̇(L)
iL

Φ
(l+1)
il+1,il√
nl

Φ
(l+2)
il+2,il+1√
nl+1

· · ·
Φ
(L−1)
iL−1,iL−2√
nL−2

Φ
(L)
iL,iL−1√
nL−1

∣∣∣∣∣X(l)

 ,
(5.5.7)

where the summation is over

i = (il+1, il+2, . . . , iL) ∈
L∏

m=l+1

{1, . . . , nm} (5.5.8)

and

φ̇
(m)
im

= φ′
m

(
1

√
nm−1

(
Φ(m)X(m−1)

)
im
, A

(m)
im

)
, ∀im ∈ {1, . . . , nm}.

The derivative on φm is with respect to its first argument.

To proceed, we want to perform the Gaussian integration by parts one every Φ
(m)
im,im−1

in

every summand on the right-hand side of (5.5.7). The heuristics is that since Φ(m)
im,im−1

always

appears in the form of 1√
nm−1

Φ(m)X(m−1), we expect to obtain an extra factor of order n−
1
2

after performing one instance of integration by parts. However, due to the layered structure

given in (5.1.3) and the chain rule, the differentiation involved in the process of integration

by parts may produce new terms, the number of which grows as n increases. To cancel

this effect, we need to perform more instances of integration by parts on Gaussian variables

introduced by the chain rule.

The above heuristics is made rigorous by Corollary 5.5.7 which follows from a more general
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result Lemma 5.5.6. Applying Corollary 5.5.7, we obtain that each summand in (5.5.7)

has its absolute value bounded by Cn−(L−l) where C is absolute. Due to (5.5.8), the

summation in (5.5.7) is over O(nL−l) many terms. Therefore, we conclude that, for each

il ∈ {1, 2, . . . , nl}, ∣∣∣∣∣∂gl
(
X(l)

)
∂X

(l)
il

∣∣∣∣∣ ⩽ C

n
.

Invoking Lemma 5.5.3, we obtain that there is a constant C such that, for almost every

realization of X(l−1),

E

[(
gl

(
X(l)

)
− E

[
gl

(
X(l)

) ∣∣∣X(l−1)
])2 ∣∣∣∣∣X(l−1)

]
⩽
C

n
,

which then gives (5.5.6) and completes the proof.

5.5.3. Concentration of the free energy

Recall the definitions of Pβ,L,n, Hβ,L,n and Fβ,L,n given in (5.1.6), (5.2.6), and (5.2.8). The

goal is to show the lemma below.

Lemma 5.5.4. Assume (H1)–(H3) for some L ∈ N. For every β ⩾ 0, and M ⩾ 1, there is

a constant C > 0 such that

sup
t∈[0,1], h1∈[0,ρn(1−t)]

E
[∥∥Fβ,L,n − F β,L,n

∥∥2
L∞
h2

([0,M ])
(t, h1)

]
⩽

C√
n
.

The remaining part of this subsection is devoted to the proof of this lemma. In addition to

Lemma 5.5.3, we recall one more classic result on concentration.

Lemma 5.5.5. Let Z = (Z1, Z2, . . . , Zn) be a standard Gaussian vector and f : Rn → R be

a continuously differentiable function. Then Var[f(Z)] ⩽ E|∇f(Z)|2.

This result is often called the Gaussian Poincaré inequality, whose proof we refer to that of

[27, Theorem 3.20].
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Let h2 ∈ [0,M ]. In the following, C > 0 denotes a deterministic constant independent of n,

which may differ from line to line. We also absorb M and β into C. For simplicity, we write

H = Hβ,L,n and F = Fβ,L,n. In addition, we set

Γ
(
s, a(L)

)
= φL

(
S,A(L)

)
− φL

(
s, a(L)

)
, (5.5.9)

where S and s are defined in (5.2.2) and (5.2.3), respectively, and

a(L) ∈ RnL×kL (5.5.10)

is of the same size as A(L). In view of (5.1.6) and (5.2.6), note that H can be rewritten as

H(x,w, a) = log

( ˆ
e−

1
2

∣∣√βΓ(s,a(L))+Z
∣∣2
dPA(L)(a(L))

)
+
√
h2Y

′ · x(L−1) − h2
2

∣∣∣X(L−1)
∣∣∣2 ,

where Y ′ is given in (5.2.5) and a = (a(1), · · · , a(L−1)) appearing in x(L−1) is defined in

(5.1.5). We introduce the Hamiltonian

Ĥ
(
x,w, a, a(L)

)
= −1

2

(
2
√
βZ · Γ

(
s, a(L)

)
+ β

∣∣∣Γ(s, a(L))∣∣∣2)+
√
h2Y

′ · x(L−1) − h2
2

∣∣∣x(L−1)
∣∣∣2 ,

(5.5.11)

and the associated free energy

F̂ =
1

n
log

ˆ
eĤ(x,w,a,a(L))dPX(x)dPW (w)dPA[1,L−1](a)dPA(L)

(
a(L)

)
.

Then, using these and the definition of F in terms in of H in (5.2.8), we can see that

F = F̂ − 1

2n
|Z|2,
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which implies that

Var(F ) ⩽ 2Var(F̂ ) + 2Var
(

1

2n
|Z|2

)
⩽ 2Var(F̂ ) +

C

n
, (5.5.12)

where we used the fact that Z is a standard Gaussian vector in RnL . Therefore, it suffices

to study Var(F̂ ). In the sequel, we denote by ⟨ · ⟩ the Gibbs measure with Hamiltonian Ĥ.

Recall the notation (5.1.2). Note that F̂ is a function of Z,Z ′, V,W,A(L),Φ[1,L], X(L−1),

where the dependence on Z is in (5.5.11); Φ(L), X(L−1), V,W appear in S defined in (5.2.2);

X(L−1), Z ′ appear in Y ′ defined in (5.2.5); A(L) appears in (5.5.9); Φ[1,L−1] appears in x(L−1)

defined in (5.1.5); and finally Φ(L), V, x(L−1) appear in s defined in (5.2.3).

The plan is to prove concentration of F̂ conditioned on subsets of these random variables,

and then combine them together. The order of conditioning matters and we proceed as in

[65]. Lastly, to get concentration uniformly in h2 ∈ [0,M ], we will apply an ε-net argument.

Concentration conditioned on V,W,A(L),Φ[1,L], X(L−1)

Denote by EZ,Z′ the expectation with respect to only Z and Z ′. We want to show that

EZ,Z′

(
F̂ − EZ,Z′F̂

)2
⩽
C

n
, (5.5.13)

for almost every realization of other randomness.

For simplicity, we write Γ = Γ
(
s, a(L)

)
from now on. We fix any realization of other

randomness. Note that Z appears only in (5.5.11) and Z ′ appears only in Y ′ (defined in

(5.2.5)). Then, we can compute that

∣∣∣∣∣ ∂F̂∂Zj
∣∣∣∣∣ = 1

n

∣∣∣〈√βΓj〉∣∣∣ ⩽ C

n
, ∀j ∈ {1, 2, . . . , nL}∣∣∣∣∣ ∂F̂∂Z ′

i

∣∣∣∣∣ = 1

n

∣∣∣√h2 〈x(L−1)
i

〉∣∣∣ ⩽ C

n
, ∀i ∈ {1, 2, . . . , nL−1},

where we used the boundedness of φL, and the boundedness of x(L−1) to get the inequalities.
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Hence, we have that |∇Z,Z′F̂ | ⩽ Cn−
1
2 and thus, by Lemma 5.5.5, obtain (5.5.13).

Concentration conditioned on A(L),Φ[1,L], X(L−1)

Set g = (Z,Z ′, V,W,Φ(L)), and let Eg be the expectation with respect to these Gaussian

random variables. We want to show that, a.s.,

Eg

(
EZ,Z′F̂ − EgF̂

)2
⩽
C

n
. (5.5.14)

Note that V appears in both S (defined in (5.2.2)) and s (defined in (5.2.3)) in Γ and W

appears only in S. Hence, in view of (5.5.9), using the boundedness for the derivatives of

φL, we can verify that

∣∣∣∣∣∂EZ,Z′F̂

∂Vj

∣∣∣∣∣ = 1

n

∣∣∣∣EZ,Z′

〈(√
βZj + βΓj

) ∂Γj
∂Vj

〉∣∣∣∣ ⩽ C

n
, ∀j ∈ {1, 2, . . . , nL},∣∣∣∣∣∂EZ,Z′F̂

∂Wj

∣∣∣∣∣ = 1

n

∣∣∣∣EZ,Z′

〈(√
βZj + βΓj

) ∂Γj
∂Wj

〉∣∣∣∣ ⩽ C

n
, ∀j ∈ {1, 2, . . . , nL}.

On the other hand, Φ(L) only appear in both S and s. Due to the computation that

∂Γj

∂Φ
(L)
jk

=

√
t

nL−1

(
φ′
L

(
S,A(L)

)
X

(L−1)
k − φ′

L

(
s, a(L)

)
x
(L−1)
k

)
,

where φ′
L is the derivative with respect to its first argument, and the boundedness of the

derivatives of φL, we also can show that

∣∣∣∣∣∣∂EZ,Z′F̂

∂Φ
(L)
jk

∣∣∣∣∣∣ = 1

n

∣∣∣∣∣∣EZ,Z′

〈(√
βZj + βΓj

) ∂Γj

∂Φ
(L)
jk

〉∣∣∣∣∣∣ ⩽ C

n
3
2

.

for all j ∈ {1, . . . , nL} and k ∈ {1, . . . , nL−1}. Therefore,

∣∣∣∇V,W,Φ(L)EZ,Z′F̂
∣∣∣2 = nL∑

j=1

∣∣∣∣∣∂EZ,Z′F̂

∂Vj

∣∣∣∣∣
2

+

nL∑
j=1

∣∣∣∣∣∂EZ,Z′F̂

∂Wj

∣∣∣∣∣
2

+

nL∑
j=1

nL−1∑
k=1

∣∣∣∣∣∣∂EZ,Z′F̂

∂Φ
(L)
jk

∣∣∣∣∣∣
2

⩽
C

n
,

which together with Lemma 5.5.5 implies (5.5.14).
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Concentration conditioned on Φ[1,L], X(L−1)

Fixing any realization of other randomness, we express EgF̂ = g(A(L)) as a function of A(L).

Then, we fix a realization of A(L) and let A′(L) be another realization such that A(L)
j = A′(L)

j

for all j except for some j = i. We want to show that there is an absolute constant C such

that

∣∣∣g (A(L)
)
− g

(
A′(L)

)∣∣∣ ⩽ C

n
, (5.5.15)

which by Lemma 5.5.3 implies that, a.s.,

Eg,A(L)

(
EgF̂ − Eg,A(L)F̂

)2
⩽
C

n
. (5.5.16)

We denote by ⟨ · ⟩
Ĥ

the Gibbs measure with A(L) and ⟨ · ⟩
Ĥ′ the Gibbs measure with A′(L).

Using the definition of g, we can verify that

g
(
A(L)

)
− g

(
A′(L)

)
=

1

n
Eg log

〈
eĤ−Ĥ′

〉
Ĥ′
.

By Jensen’s inequality, we have that

g
(
A(L)

)
− g

(
A′(L)

)
⩾

1

n
Eg

〈
Ĥ − Ĥ ′

〉
Ĥ′
.

Symmetrically,

g
(
A′(L)

)
− g

(
A(L)

)
⩾

1

n
Eg

〈
Ĥ ′ − Ĥ

〉
Ĥ
.

Using (5.5.9), (5.5.11) and the definitions of A(L) and A′(L), we have that

Ĥ − Ĥ ′ =
1

2

(
Γ′
i − Γi

) (
2Zi + Γi + Γ′

i

)
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where Γi and Γ′
i correspond to A(L) and A′(L), respectively. Together with the boundedness

of Γ,Γ′, the above three displays yield (5.5.15) and thus imply the desired result (5.5.16).

Iteration

Note that in (5.5.16), we can rewrite that

Eg,A(L)F̂ = E
[
F̂
∣∣∣X(L−1),Φ[1,L]

]
.

To proceed, we claim that

E
(
E
[
F̂
∣∣∣X(l),Φ[1,l]

]
− E

[
F̂
∣∣∣X(l−1),Φ[1,l]

])2
⩽
C

n
, ∀l ∈ {0, 1, . . . , L− 1}, (5.5.17)

E
(
E
[
F̂
∣∣∣X(l−1),Φ[1,l]

]
− E

[
F̂
∣∣∣X(l−1),Φ[1,l−1]

])2
⩽
C

n
, ∀l ∈ {1, . . . , L− 1}, (5.5.18)

where X(−1) and Φ[1,0] are understood to be constantly 0 (or any constant). Given the

above, we can iterate these to see that

E
(
E
[
F̂
∣∣∣X(L−1),Φ[1,L−1]

]
− E

[
F̂
])2

⩽
C

n
. (5.5.19)

Combining (5.5.12), (5.5.13), (5.5.14), (5.5.16) and (5.5.19) yields the pointwise concentra-

tion

E
[(
F − F

)2
(t, h)

]
⩽
C

n
, ∀(t, h) ∈ Ωρn ∩ {|h2| ⩽M}. (5.5.20)

Then, let us prove the assertions (5.5.17) and (5.5.18).

Proof of (5.5.17)

Due to the expression (5.1.3) and the fact that F̂ depends on X(l−1) only through X(l), we

can see that

E
[
F̂
∣∣∣X(l),Φ[1,l]

]
= E

[
F̂
∣∣∣X(l), X(l−1),Φ[1,l]

]
.
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Also, note that X(l) consists of i.i.d. entries when conditioned on X(l−1). Hence, we want

to apply Lemma 5.5.3. Since each entry of X(l) is bounded uniformly in n, to verify the

condition in Lemma 5.5.3, it suffices to obtain bounds for derivatives of ẼF̂ with respect to

X(l), where Ẽ = E
[
· |X(l), X(l−1),Φ[1,l]

]
.

We introduce the following notation:



φ
(L)
∗ = φL

(
S,A(L)

)
,

φ̃
(L)
∗ = φL

(
s, a(L)

)
,

φ̇(m) = φ′
m

(
1√
nm−1

Φ(m)X(m−1), A(m)
)
, ∀m ∈ {1, . . . , L},

˙̃φ
(m)

= φ′
m

(
1√
nm−1

Φ(m)x(m−1), a(m)
)
, ∀m ∈ {1, . . . , L},

φ̇
(L)
∗ = φ′

L

(
S,A(L)

)
,

˙̃φ
(L)

∗ = φ′
L

(
s, a(L)

)
,

(5.5.21)

where φ′
m is the derivative with respect to its first argument. For il ∈ {1, . . . , nl}, we can

compute that

∂ẼF̂
∂X

(l)
il

= − 1

n
Ẽ
〈(√

βZ + βΓ
)
· ∂

X
(l)
il

Γ

〉
+

1

n
Ẽ
〈
h2x

(L−1) · ∂
X

(l)
il

X(L−1)

〉

= −
√
t

n

∑
i

Ẽ

〈√βZiL + β
(
φ
(L)
∗,iL − φ̃

(L)
∗,iL

)〉
φ̇
(l+1)
il+1

· · · φ̇(L−1)
iL−1

φ̇
(L)
∗,iL

Φ
(l+1)
il+1,il√
nl

· · ·
Φ
(L)
iL,iL−1√
nL−1


(5.5.22)

+
h2
n

∑
i′

Ẽ

〈x(L−1)
iL−1

〉
φ̇
(l+1)
il+1

· · · φ̇(L−1)
iL−1

Φ
(l+1)
il+1,il√
nl

Φ
(l+2)
il+2,il+1√
nl+1

· · ·
Φ
(L−1)
iL−1,iL−2√
nL−2

 (5.5.23)

where
∑

i is over (5.5.8) and
∑

i′ is over

i′ = (il+1, il+2, . . . , iL−1) ∈
L−1∏
m=l+1

{1, . . . , nm}, (5.5.24)

respectively. The treatments for (5.5.22) and (5.5.23) are similar to that for (5.5.7), where
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the main tool is the Gaussian integration by parts summarized in Corollary 5.5.7. Recall

that heuristics were given below (5.5.7). Now, applying Corollary 5.5.7 to each summand in

(5.5.22), we obtain that, for every i, the summand in (5.5.22) has its absolute value bounded

by Cn−(L−l). Since
∑

i is over O(nL−l) many terms, we conclude that the part in (5.5.22)

is bounded from both sides by Cn−1. Analogous arguments can be applied to (5.5.23) to

derive a similar bound. Hence,

∣∣∣∣∣ ∂ẼF̂∂X
(l)
il

∣∣∣∣∣ ⩽ C

n
, ∀il ∈ {1, . . . , nl}.

and thus Lemma 5.5.3 yields (5.5.17).

Proof of (5.5.18)

Let us redefine Ẽ = E
[
· |X(l−1),Φ[1,l]

]
. For il ∈ {1, . . . , nl}, il−1 ∈ {1, . . . , nl−1}, we can

compute

∂ẼF̂
∂Φ

(l)
il,il−1

= − 1

n
Ẽ
〈(√

βZ + βΓ
)
· ∂

Φ
(l)
il,il−1

Γ

〉
+

1

n
Ẽ
〈
h2x

(L−1) · ∂
Φ

(l)
il,il−1

X(L−1)

〉

+
1

n
Ẽ
〈(

h2X
(L−1) +

√
h2Z

′ − h2x
(L−1)

)
· ∂

Φ
(l)
il,il−1

x(L−1)

〉
= I1 + I2 + I3.
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Here,

I1 = −
√
t

n

∑
i

Ẽ

[〈√
βZiL + β

(
φ
(L)
∗,iL − φ̃

(L)
∗,iL

)〉 X(l−1)
il−1√
nl−1

φ̇
(l)
il
φ̇
(l+1)
il+1

· · · φ̇(L)
∗,iL

×
Φ
(l+1)
il+1,il√
nl

· · ·
Φ
(L)
iL,iL−1√
nL−1

]

+

√
t

n

∑
i

Ẽ

[〈(√
βZiL + β

(
φ
(L)
∗,iL − φ̃

(L)
∗,iL

)) x(l−1)
il−1√
nl−1

˙̃φ
(l)

il
˙̃φ
(l+1)

il+1
· · · ˙̃φ(L)

∗,iL

〉

×
Φ
(l+1)
il+1,il√
nl

· · ·
Φ
(L)
iL,iL−1√
nL−1

]

I2 =
h2
n

∑
i′

Ẽ

〈x(L−1)
iL−1

〉 X(l−1)
il√
nl−1

φ̇
(l)
il
φ̇
(l+1)
il+1

· · · φ̇(L−1)
iL−1

Φ
(l+1)
il+1,il√
nl

Φ
(l+2)
il+2,il+1√
nl+1

· · ·
Φ
(L−1)
iL−1,iL−2√
nL−2


I3 =

1

n

∑
i′

Ẽ

[〈(
h2X

(L−1)
iL−1

+
√
h2Z

′
iL−1

− h2x
(L−1)
iL−1

) x(l−1)
il√
nl−1

˙̃φ
(l)

il
˙̃φ
(l+1)

il+1
· · · ˙̃φ(L−1)

iL−1

〉

×
Φ
(l+1)
il+1,il√
nl

Φ
(l+2)
il+2,il+1√
nl+1

· · ·
Φ
(L−1)
iL−1,iL−2√
nL−2

]

where i and i′ are given in (5.5.8) and (5.5.24), respectively.

Similar to the the treatments for (5.5.22) and (5.5.23), applying Corollary 5.5.7, we can see

that |I1|, |I2|, |I3| ⩽ Cn−
3
2 , which implies that

∣∣∣∣∣∣ ∂ẼF̂
∂Φ

(l)
il,il−1

∣∣∣∣∣∣ ⩽ C

n
3
2

, ∀il ∈ {1, . . . , nl}, il−1 ∈ {1, . . . , nl−1}.

Now, we can conclude that |∇Φ(l)ẼF̂ | ⩽ Cn−
1
2 and thus (5.5.18) by Lemma 5.5.5.

An ε-net argument

By (5.2.47) and (5.2.48), there is C such that, for all t, h1 and all h2, h′2 ∈ R+ satisfying

|h2 − h′2| ⩽ 1,

∣∣(F − F
)
(t, h1, h2)−

(
F − F

)
(t, h1, h

′
2)
∣∣ ⩽ C

(
1 + n−

1
2

∣∣Z ′∣∣) ∣∣h2 − h′2
∣∣ 12 .
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Setting Eε = [0,M ] ∩ {ε, 2ε, 3ε, . . . } for ε ∈ (0, 1), we have that, for all t, h1,

E
[∥∥F − F

∥∥2
L∞
h2

([0,M ])
(t, h1)

]
⩽ E

[
sup
h2∈Eε

(
F − F

)2
(t, h1)

]
+ E

[
C
(
1 + n−

1
2

∣∣Z ′∣∣)2 ε]
⩽
∑
h2∈Eε

E
[(
F − F

)2
(t, h1)

]
+ Cε ⩽ C

(
ε−1n−1 + ε

)
,

where the last inequality follows from (5.5.20). Optimizing this by taking ε = n−
1
2 completes

the proof of Lemma 5.5.4.

5.5.4. Multiple Gaussian integration by parts

Denote by ⟨ · ⟩ the Gibbs measure with Hamiltonian Ĥ given in (5.5.11). Recall the variables

x,w, a, a(L) in Ĥ, and also the definition of s in (5.2.3). For γ ∈ N ∪ {0}, we enumerate the

replicas, i.e., i.i.d. copies of x,w, a, a(L), s under ⟨ · ⟩, as

x|γ), w|γ), a|γ), a(L|γ), s|γ).

Recall the definition of x(L−1) in (5.1.5), and we want to extend this. Using (5.1.3) iteratively,

for every l ∈ {0, . . . , L}, we can find a deterministic function ζl satisfying

X(l) = ζl

(
X(0), A[1,l],Φ[1,l]

)

where we understand that A[1,0] = 0 and Φ[1,0] = 0. Replacing X(0), A[1,l] above by x and

projections of (a, a(L)), we can define x(l) in a way analogous to (5.1.5):

x(l) = ζl

(
x, π[1,l]

(
a, a(L)

)
,Φ[1,l]

)

where π[1,l] is the projection of the first
∑l

m=1 nmkm coordinates into
∏l
m=1Rnm×km (recall

a = (a(1), . . . , a(L−1)) given in (5.1.5) and a(L) in (5.5.10)). For γ ∈ N ∪ {0}, we denote by

x(l|γ) the γ-th replica of x(l). We also set Ĥ |γ) to be Ĥ with variables replaced by their γ-th
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replicas.

Recall S in (5.2.2). For ν ∈ N ∪ {0}, γ ∈ N ∪ {0}, j ∈ {1, . . . , nm}, we introduce

φ
(m|ν)
j =

∂ν

∂rν
φm

(
r,A

(m)
j

) ∣∣∣
r= 1√

nm−1
(Φ(m)X(m−1))j

, ∀m ∈ {1, . . . , L},

φ
(L|ν)
∗,j =

∂ν

∂rν
φL

(
r,A

(L)
j

) ∣∣∣
r= 1√

nL−1
(Φ(L)S)j

,

φ̃
(m|ν|γ)
j =

∂ν

∂rν
φm

(
r, a

(m)
j

) ∣∣∣
r= 1√

nm−1
(Φ(m)x(m−1|γ))j

, ∀m ∈ {1, . . . , L},

φ̃
(L|ν|γ)
∗,j =

∂ν

∂rν
φL

(
r, a

(L)
j

) ∣∣∣
r= 1√

nL−1
(Φ(L)s|γ))j

.

In particular, φ(m|0)
j = X

(m)
j and φ̃

(m|0|γ)
j = x

(m|γ)
j and note that these two identities can

be extended to m = 0. Recall that Z and Z ′ are standard Gaussian vectors given in (5.1.4)

and (5.2.5), respectively. We introduce the following collections of random variables

Z = {Zj}1⩽j⩽nL ∪ {Z ′
j}1⩽j⩽nL−1 ,

M(l|ν|γ)
j =

⋃
ν̃∈{0,...,ν}

⋃
γ̃∈{0,...,γ}

{
φ
(l|ν̃)
j , φ̃

(l|ν̃|γ̃)
j

}
, ∀l ⩽ L− 1,

M(L|ν|γ)
j =

⋃
ν̃∈{0,...,ν}

⋃
γ̃∈{0,...,γ}

{
φ
(L|ν̃)
j , φ

(L|ν̃)
∗,j , φ̃

(L|ν̃|γ̃)
j , φ̃

(L|ν̃|γ̃)
∗,j

}
,

M =
⋃

l∈{1,...,L}

⋃
ν∈N∪{0}

⋃
γ∈N∪{0}

⋃
il∈{1,...,nl}

M(l|ν|γ)
il

.

For ν1, ν2, . . . , νL, γ ∈ N ∪ {0}, we set

N (ν1,...,νL|γ) = Z ∪

 L⋃
m=1

nm⋃
jm=1

M(m|νm|γ)
jm

 .

For d, r ∈ N, let Pd,r be the collection of polynomials of degree up to d over Rr with real

coefficients. For every P ∈ Pd,r expressed as

P (x) =
∑

ap1,p2,...,prx
p1
1 x

p2
2 · · ·xprr
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where the summation is over

{
(p1, p2, . . . , pr) ∈ (N ∪ {0})r :

r∑
i=1

pi ⩽ d

}
,

we define

∥P∥ =
∑

|ap1,p2,...,pr |.

Slightly abusing the notation, we view any finite subcollection E ⊆ M as an ordered tuple

of random variables. In this notation, for any P ∈ Pd,|E| for some d, we view P (E) as P

evaluated at E . Lastly, for a, b ∈ R, we write a ∨ b = max{a, b}.

Lemma 5.5.6. Let l ∈ {1, · · · , L}, ν1, . . . , νL ∈ N ∪ {0}, γ ∈ N ∪ {0}, β ⩾ 0, M ⩾ 1. In

addition to (h1), assume that Φ(m) consists of i.i.d. standard Gaussian entries and that φm

is bounded and continuously differentiable with bounded derivatives up to ν ′m-th order for

every m ∈ {1, . . . , L}, where

ν ′m = νm + (2m−l+1 − 1) ∨ 0, ∀m ∈ {1, . . . , L}. (5.5.25)

Then, there are constants C, γ′, d′ such that the following holds.

For every k ∈ {l, . . . , L}, every n ∈ N, every (t, h) ∈ ΩρL−1,n ∩ {|h2| ⩽ M}, every im ∈

{1, . . . , nm} with m ∈ {l − 1, . . . , k}, every

E = N (ν1,...,νL|γ)

and every P ∈ Pd,|E|, there is P ′ ∈ Pd′,|E ′| for some

E ′ = N (ν′1,...,ν
′
L|γ

′)
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such that

E[l,k]

[
⟨P (E)⟩

k∏
m=l

Φ
(m)
im,im−1

]
= n−

1
2
(k−l+1)E[l,k]

〈
P ′(E ′)

〉
(5.5.26)

and

∥P ′∥ ⩽ C∥P∥, (5.5.27)

where E[l,k] is the expectation with respect to Φ[l,k].

Recall the notation introduced in (5.5.21). We state an immediate corollary of Lemma 5.5.6.

Corollary 5.5.7. Assume (H1)–(H3) for some L ∈ N. For l ∈ {1, . . . , L}, d ∈ N, β ⩾ 0,

M ⩾ 1, there is C such that the following holds. Suppose that P ∈ Pd, 2L−2l+10 is a monomial

with coefficient 1 and independent of n. Then, for every k ∈ {l, . . . , L}, every n ∈ N, every

(t, h) ∈ ΩρL−1,n ∩ {|h2| ⩽M}, every im ∈ {1, . . . , nm} with m ∈ {l − 1, . . . , k}, it holds that

Ẽ

[
⟨P (E)⟩

k∏
m=l

Φ
(m)
im,im−1

]
⩽ Cn−

1
2
(k−l+1)

where

E =

(
ZiL , Z

′
iL−1

, φ
(L)
∗,iL , φ̃

(L)
∗,iL , φ̇

(L)
∗,iL ,

˙̃φ
(L)

∗,iL , X
(L−1)
iL−1

, x
(L−1)
iL−1

,(
φ̇
(m)
im

)L−1

m=l
,
(
˙̃φ
(m)

im

)L−1

m=l
, X

(l−1)
il−1

, x
(l−1)
il−1

)

and Ẽ integrates over ZiL, Z ′
iL−1

and (Φ
(m)
im,im−1

)km=l.

Proof of Corollary 5.5.7. Comparing (5.5.21) with the notation here, we can rewrite

E =

(
ZiL , Z

′
iL−1

, φ
(L|0)
∗,iL , φ̃

(L|0|0)
∗,iL , φ

(L|1)
∗,iL , φ̃

(L|1|0)
∗,iL , φ

(L−1|0)
iL−1

, φ̃
(L−1|0|0)
iL−1

,(
φ
(m|1)
im

)L−1

m=l
,
(
φ̃
(m|1|0)
im

)L−1

m=l
, φ

(l−1|0)
il−1

, φ̃
(l−1|0|0)
il−1

)
.
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Hence, we have that E ⊆ N (1,1,...,1|0). This corollary follows from Lemma 5.5.6 by setting

γ = 0 and νm = 1 for all m and noticing that the differentiability condition (5.5.25) is

fulfilled by assumption (H2).

Proof of Lemma 5.5.6. We use induction on l and start with the base case l = L. The

Gaussian integration by parts yields that

E(L)
〈
P (E)Φ(L)

iL,iL−1

〉
= E(L)

[
∂
Φ

(L)
iL,iL−1

⟨P (E)⟩
]
=
∑
ϕ∈M

E(L)

〈
Pϕ∂Φ(L)

iL,iL−1

ϕ

〉
(5.5.28)

where E(L) = E[L,L], and, by the chain rule, viewing ϕ ∈ M as labels for the arguments in

P and Ĥ(γ̃), we have that

Pϕ = ∂ϕP (E) + P (E)

 γ∑
γ̃=0

∂ϕĤ
|γ̃) − γ∂ϕĤ

|γ+1)

 , (5.5.29)

with

∂ϕĤ
|γ̃) = −

nL∑
j=1

(
1
ϕ=φ

(L|0)
∗,j

− 1
ϕ̃=φ

(L|0|γ̃)
∗,j

)(√
βZj + β

(
φ
(L|0)
∗,j − φ̃

(L|0|γ̃)
∗,j

))
(5.5.30)

+

nL−1∑
j=1

1
ϕ=φ

(L−1|0)
j

h2φ̃
(L−1|0|γ̃)
j

+

nL−1∑
j=1

1
ϕ=φ

(L−1|0|γ̃)
j

(
h2φ

(L−1|0)
j +

√
h2Z

′
j − h2φ̃

(L−1|0|γ̃)
j

)
.

Let us clarify (5.5.30). Due to the definition of Ĥ in (5.5.11), fixing Z,Z ′, we can view

Ĥ |γ̃) as a function of φL
(
S,A(L)

)
, φL

(
s|γ̃), a(L|γ̃)

)
, X(L−1), x(L−1|γ̃), or equivalently, φ(L|0)

∗ ,

φ̃
(L|0|γ̃)
∗ , φ(L−1|0), φ̃(L−1|0|γ̃). Therefore, when viewing these as labels for the variables inside

Ĥ |γ̃), we have (5.5.30) and the left-hand side of it is nonzero only if ϕ is an entry of those

vectors.
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Next, let us show that

Pϕ∂Φ(L)
iL,iL−1

ϕ ̸= 0 only if ϕ ∈ M(L|νL|γ+1)
iL

. (5.5.31)

From (5.5.29) and (5.5.30), we can see that

Pϕ ̸= 0 only if ϕ ∈ E ∪

 nL−1⋃
jL−1=1

M(L−1|0|γ+1)
jL−1

 ∪

 nL⋃
jL=1

M(L|0|γ+1)
jL

 . (5.5.32)

On the other hand, due to (5.1.3), note that

∂
Φ

(L)
iL,iL−1

ϕ ̸= 0 only if ϕ ∈
⋃
ν̃∈N

⋃
γ̃∈N

M(L|ν̃|γ̃)
iL

. (5.5.33)

The intersection of sets in (5.5.32) and (5.5.33) is a subset of the set in (5.5.31). Hence,

(5.5.31) is valid.

Due to (5.5.33), ∂
Φ

(L)
iL,iL−1

ϕ in (5.5.31), whenever nonzero, is of one of the four forms below,

for some ν̃ ⩽ νL and γ̃ ⩽ γ + 1,



∂
Φ

(L)
iL,iL−1

φ
(L|ν̃)
iL

= φ
(L|ν̃+1)
iL

1√
nL−1

X
(L−1)
iL−1

∂
Φ

(L)
iL,iL−1

φ̃
(L|ν̃|γ̃)
iL

= φ
(L|ν̃+1|γ̃)
iL

1√
nL−1

x
(L−1|γ̃)
iL−1

∂
Φ

(L)
iL,iL−1

φ
(L|ν̃)
∗,iL = φ

(L|ν̃+1)
∗,iL

1√
nL−1

SiL−1

∂
Φ

(L)
iL,iL−1

φ̃
(L|ν̃|γ̃)
∗,iL = φ̃

(L|ν̃+1|γ̃)
∗,iL

1√
nL−1

s
|γ̃)
iL−1

(5.5.34)

Using this, (5.5.29) and (5.5.30), we can see that for

E ′ = N (ν1,...,νL−1,νL+1|γ+1)
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there is a polynomial P ′
ϕ ∈ Pd′,|E ′| for some d′ such that

P ′
ϕ(E ′) = n

1
2 Pϕ∂Φ(L)

iL,iL−1

ϕ. (5.5.35)

Here, the scalar n
1
2 is to make n

1
2∂

Φ
(L)
iL,iL−1

ϕ to be of order 1. By (5.5.28) and (5.5.31),

setting

P ′(E ′) =
∑

ϕ∈M(L|νL|γ+1)
iL

P ′
ϕ(E ′)

we have

E(L)
〈
P (E)Φ(L)

iL,iL−1

〉
= n−

1
2E(L)

〈
P ′(E ′)

〉
.

Using (5.5.29), (5.5.30), (5.5.34) and (5.5.35), we can see that

∥P ′∥ ⩽ C∥P∥

for some constant C that depends only on L, ν1, . . . , νL, γ, β,M .

Now, we consider the induction step and assume that the lemma holds for l+1 ⩽ L. In the

following, we denote by C a constant that depends only on l, ν1, . . . , νL, γ, β,M and may

vary from line to line. Setting E(l) = E[l,l] and using the induction assumption for l + 1, we

get that for

F = N (ν′1,...,ν
′
L|γ

′)

with some γ′ > 0 and

ν ′m = νm + (2m−l − 1) ∨ 0, ∀m ∈ {1, . . . , L}, (5.5.36)
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there is Q ∈ Pd′,|F| for some d′ such that

E[l,k]

[
⟨P (E)⟩

k∏
m=l

Φ
(m)
im,im−1

]
= E(l)

[
E[l+1,k]

[
⟨P (E)⟩

k∏
m=l+1

Φ
(m)
im,im−1

]
Φ
(l)
il,il−1

]

= n−
1
2
(k−l)E[l,k]

[
⟨Q(F)⟩Φ(l)

il,il−1

]
(5.5.37)

and

∥Q∥ ⩽ C∥P∥. (5.5.38)

Applying the Gaussian integration by parts to the last expectation in (5.5.37) yields

E[l,k]
[
⟨Q(F)⟩Φ(l)

il,il−1

]
= E[l,k]

[〈
∂
Φ

(l)
il,il−1

Q(F)

〉]
=
∑
ϕ∈M

E[l,k]

〈
Qϕ∂Φ(l)

il,il−1

ϕ

〉
(5.5.39)

where

Qϕ = ∂ϕQ(F) +Q(F)

 γ′∑
γ̃=0

∂ϕĤ
|γ̃) − γ′∂ϕĤ

|γ′+1)

 . (5.5.40)

Next, we show that

Qϕ∂Φ(l)
il,il−1

ϕ ̸= 0 only if ϕ ∈ M(l|ν′l |γ
′+1)

il
∪

 L⋃
m=l+1

nm⋃
jm=1

M(m|ν′m|γ′+1)
jm

 . (5.5.41)

Similar to the derivation of (5.5.32), using (5.5.40) and (5.5.30), we can see that

Qϕ ̸= 0 only if ϕ ∈ F ∪

 nL−1⋃
jL−1=1

M(L−1|0|γ′+1)
jL−1

 ∪

 nL⋃
jL=1

M(L|0|γ′+1)
jL


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Due to (5.1.3), note that

∂
Φ

(l)
il,il−1

ϕ ̸= 0 only if ϕ ∈
⋃
ν̃∈N

⋃
γ̃∈N

M(l|ν̃|γ̃)
il

∪

 L⋃
m=l+1

nm⋃
jm=1

M(m|ν̃|γ̃)
jm

 .

The intersection of the sets in the above two displays is contained in the set in (5.5.41) and

thus (5.5.41) is valid.

Then, we compute the summands in (5.5.39). Due to (5.5.41), we distinguish two cases:

ϕ ∈ M(l|ν′l |γ
′+1)

il
or ϕ ∈

L⋃
m=l+1

nm⋃
jm=1

M(m|ν′m|γ′+1)
jm

. (5.5.42)

Let us consider the first case in (5.5.42). Since l+1 ⩽ L, ∂
Φ

(l)
il,il−1

ϕ has one of the two forms

below, for ν̃ ⩽ ν ′L and γ̃ ⩽ γ′ + 1,

∂
Φ

(l)
il,il−1

φ
(l|ν̃)
il

= φ
(l|ν̃+1)
il

1
√
nl−1

X
(l−1)
il−1

,

∂
Φ

(l)
il,il−1

φ̃
(l|ν̃|γ̃)
il

= φ
(l|ν̃+1|γ̃)
il

1
√
nl−1

x
(l−1|γ̃)
il−1

From this, (5.5.40) and (5.5.30), we can see that, for every ϕ belonging to the first set in

(5.5.42), there is a polynomial Q′
ϕ ∈ Pdϕ,|F ′| for some dϕnd

F ′ = N (ν1,...,νL|γ′+1) (5.5.43)

with

νm =


ν ′m + 1 m ⩾ l

ν ′m m ⩽ l − 1

(5.5.44)
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such that

Q′
ϕ(F ′) = n

1
2 Qϕ∂Φ(l)

il,il−1

ϕ, ∀ϕ ∈ M(l|ν′l |γ
′+1)

il
,

∥Q′
ϕ∥ ⩽ C∥Q∥, ∀ϕ ∈ M(l|ν′l |γ

′+1)
il

. (5.5.45)

Therefore

E[l,k]

〈
Qϕ∂Φ(l)

il,il−1

ϕ

〉
= n−

1
2E
〈
Q′
ϕ(F ′)

〉
, ∀ϕ ∈ M(l|ν′l |γ

′+1)
il

. (5.5.46)

Now, we turn to the second case in (5.5.42). Let us assume that

ϕ ∈ M(m|ν′m|γ′+1)
jm

, m ∈ {l + 1, . . . , L}, jm ∈ {1, . . . , nm}. (5.5.47)

Then, due to (5.1.3) and the chain rule, ∂
Φ

(l)
il,il−1

ϕ is one of the following, for ν̃ ⩽ ν ′m, γ̃ ⩽

γ′ + 1:

∂
Φ

(l)
il,il−1

φ
(m|ν̃)
jm

= φ
(m|ν̃+1)
jm

∑
j

 m∏
m̃=l+1

1
√
nm̃−1

Φ
(m̃)
jm̃,jm̃−1

φ
(m̃−1|1)
jm̃−1

∣∣∣∣
jl=il

1
√
nl−1

X
(l−1)
il−1

,

∂
Φ

(l)
il,il−1

φ̃
(m|ν̃|γ̃)
jm

= φ̃
(m|ν̃+1|γ̃)
jm

∑
j

 m∏
m̃=l+1

1
√
nm̃−1

Φ
(m̃)
jm̃,jm̃−1

φ̃
(m̃−1|1|γ̃)
jm̃−1

∣∣∣∣
jl=il

1
√
nl−1

x
(l−1|γ̃)
il−1

.

where the summation is over

j = (jl+1, jl+2, . . . , jm−2, jm−1) ∈
m−1∏
m̃=l+1

{1, . . . , nm̃}. (5.5.48)

When m = L, there are two more possibilities ∂
Φ

(l)
il,il−1

φ
(L|ν̃)
∗,jL and ∂

Φ
(l)
il,il−1

φ̃
(L|ν̃|γ̃)
∗,jL , which are
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similar to the above and omitted for brevity. These computations allow us to write that

E[l,k]

〈
Qϕ∂Φ(l)

il,il−1

ϕ

〉
= n−

1
2
(m−l+1)

∑
j

E[l,k]

⟨Qϕgϕ, j⟩
m∏

m̃=l+1

Φ
(m̃)
jm̃,jm̃−1

 ∣∣∣∣
jl=il

(5.5.49)

where

gϕ, j =


φ
(m|ν̃+1)
j

(∏m
m̃=l+1

√
n

nm̃−1
φ
(m̃−1|1)
jm̃−1

)√
n

nl−1
X

(l−1)
il−1

, ϕ = φ
(m|ν̃)
jm

,

φ̃
(m|ν̃+1|γ̃)
j

(∏m
m̃=l+1

√
n

nm̃−1
φ̃
(m̃−1|1|γ̃)
jm̃−1

)√
n

nl−1
x
(l−1|γ̃)
il−1

, ϕ = φ̃
(m|ν̃|γ̃)
jm

.

(5.5.50)

By these, (5.5.40) and (5.5.30), there is a polynomial Qϕ, j ∈ Pd′,|F ′| for some larger d′

independent of ϕ, j and for F ′ in (5.5.43) such that

Qϕ, j(F ′) = Qϕgϕ, j (5.5.51)

which, due to (5.5.50), also satisfies that

∥Qϕ, j∥ ⩽ C∥Q∥. (5.5.52)

Recall that we are considering the case (5.5.47). Insert (5.5.51) into the right-hand side of

(5.5.49) and applying the induction assumption for l+1 to every summand there yields that

E[l,k]

〈
Qϕ∂Φ(l)

il,il−1

ϕ

〉
= n−

1
2
(m−l+1)

∑
j

E[l,k]

〈Qϕ, j(F ′)
〉 m∏
m̃=l+1

Φ
(m̃)
jm̃,jm̃−1

 ∣∣∣∣
jl=il

= n−(m−l+ 1
2
)
∑
j

E[l,k]
〈
Q′
ϕ, j(E ′)

〉
, ∀ϕ ∈ M(m|ν′m|γ′+1)

jm
(5.5.53)

for some polynomials Q′
ϕ, j ∈ Pd′,|E ′| for some larger d′, and

E ′ = N (ν′′1 ,...,ν
′′
L|γ

′′) (5.5.54)
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with some larger γ′′ and

ν ′′m = νm + (2m−l − 1) ∨ 0, ∀m ∈ {1, . . . , L}, (5.5.55)

where νm is given in (5.5.44). In addition, each of these polynomials satisfies that

∥Q′
ϕ, j∥ ⩽ C∥Qϕ, j∥. (5.5.56)

Since
∑

j is a summation of O(nm−l−1) many terms due to (5.5.48), setting

P ′
ϕ(E ′) = n−(m−l−1)

∑
j

Q′
ϕ, j(E ′), (5.5.57)

and using (5.5.52) and (5.5.56), we obtain that

∥P ′
ϕ∥ ⩽ C∥Q∥, ∀ϕ ∈ M(m|ν′m|γ′+1)

jm
. (5.5.58)

Inserting (5.5.57) into (5.5.53) gives that

E[l,k]

〈
Qϕ∂Φ(l)

il,il−1

ϕ

〉
= n−

3
2E[l,k]

〈
P ′
ϕ(E ′)

〉
, ∀ϕ ∈ M(m|ν′m|γ′+1)

jm
(5.5.59)

for m ∈ {l + 1, . . . , L}, jm ∈ {1, . . . , nm}.

Now, we are ready to conclude. Due to (5.5.41), the summation in (5.5.39) can to restricted

to be over the set in (5.5.41). Also note that F ′ ⊆ E ′ due to their definitions in (5.5.43) and

(5.5.54). Using these, (5.5.46) and (5.5.59), we can rewrite the left-hand side of (5.5.39) as

E[l,k]
[
⟨Q(F)⟩Φ(l)

il,il−1

]
=

 ∑
ϕ∈M

(l|ν′
l
|γ′+1)

il

+
L∑

m=l+1

nm∑
jm=1

∑
ϕ∈M(m|ν′m|γ′+1)

jm

E[l,k]

〈
Qϕ∂Φ(l)

il,il−1

ϕ

〉

= n−
1
2E[l,k]

〈
P ′(E ′)

〉
(5.5.60)
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where

P ′(E ′) =
∑

ϕ∈M
(l|ν′

l
|γ′+1)

il

Q′
ϕ(F ′) +

L∑
m=l+1

nm∑
jm=1

∑
ϕ∈M(m|ν′m|γ′+1)

jm

n−1P ′
ϕ(E ′). (5.5.61)

Inserting (5.5.60) to (5.5.37) gives the desired result (5.5.26). Then, we verify (5.5.27). Note

that
∑nm

j=1 in (5.5.61) is a summation of O(n) many terms. Using this, (5.5.45), and (5.5.58),

we obtain that

∥P ′∥ ⩽ C∥Q∥,

which along with (5.5.38) implies (5.5.27). Lastly, by (5.5.36), (5.5.44) and (5.5.55), we can

see that ν ′′m in the definition of E ′ in (5.5.54) satisfies

ν ′′m = νm + (2m−l+1 − 1) ∨ 0, ∀m ∈ {1, . . . , L},

completing the proof.
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CHAPTER 6

Hamilton–Jacobi equations from mean-field spin glass models

This chapter is essentially borrowed from [41], joint with Hong-Bin Chen.

Abstract. We establish the well-posedness of Hamilton–Jacobi equations arising from mean-

field spin glass models in the viscosity sense. Originally defined on the set of monotone

probability measures, these equation can be interpreted, via an isometry, to be defined on an

infinite-dimensional closed convex cone with empty interior in a Hilbert space. We prove the

comparison principle, and the convergence of finite-dimensional approximations furnishing

the existence of solutions. Under additional convexity conditions, we show that the solution

can be represented by a version of the Hopf–Lax formula, or the Hopf formula on cones. As

the first step, we show the well-posedness of equations on finite-dimensional cones, which is

self-contained and, we believe, is of independent interest. The key observation making our

program possible is that, due to the monotonicity of the nonlinearity, boundary condition

is not needed.

Previously, two notions of solutions were considered, one defined directly as the Hopf–Lax

formula, and another as limits of finite-dimensional approximations. They have been proven

to describe the limit of free energy in a wide class of mean-field spin glass models. This

work shows that these two kinds of solutions are viscosity solutions.

6.1. Introduction

Recently, J.-C. Mourrat [92, 98, 96, 93] initiated a novel Hamilton–Jacobi equation approach

to studying the limit free energy of mean-field spin glass models. After interpreting the

inverse temperature as the temporal variable, and enriching the model by adding a random

magnetic field with a parameter viewed as the spacial variable, one can compare the enriched

free energy with solutions to a certain Cauchy problem of a Hamilton–Jacobi equation.

Let us give an overview of these equations. The spacial variable, denoted by ϱ, lives in P↗
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the set of monotone probability measures on SD+ , the cone of D ×D positive semi-definite

matrices (see Section 6.4.1 for definitions and properties of monotone probability measures)

for some fixed D ∈ N. Formally, the equation is of the following form:

∂tf −
ˆ
ξ(∂ϱf)dϱ = 0, on R+ × P↗, (6.1.1)

where ξ is a real-valued function on RD×D, and R+ = [0,∞) throughout.

Two notions of solutions have been considered. In [92, 98] where ξ is convex, the solution is

defined by a version of the Hopf–Lax formula, which has been proven there to be equivalent

to the celebrated Parisi’s formula first proposed in [101] and rigorously verified in [72, 111]

(see also [100, 99, 112, 113]). In [96, 93], the solution, defined as limits of finite-dimensional

approximations, was shown to be an upper bound for the limiting free energy in a wide class

of models.

The ad hoc and extrinsic nature of these two notions motivates us to seek an intrinsic

definition of solutions. We want to define solutions in the viscosity sense, and establish the

well-posedness of the equation, by which we mean the validity of a comparison principle

and the existence of solutions. Moreover, we verify that the solution is the limit of finite-

dimensional approximations, and, under certain convexity conditions, the solution admits

a representation by a variational formula. In particular, we want to ensure that solutions

understood in the aforementioned two notions are in fact viscosity solutions. Therefore, the

framework of viscosity solutions is compatible with the existing theory.

The key difficulty is to find a natural definition of solutions in the viscosity sense so that all

goals announced above are achievable. The surprising observation is that it is sufficient to

simply require the solution to satisfy the equation in the viscosity sense everywhere, including

the boundary without prescribing any additional condition (e.g. Neumann or Dirichlet) on

the boundary. Let us expand the discussion below.

We start with some basics. To make sense of the differential ∂ϱf , we restrict P↗ to P↗
2 , the
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set of monotone measures with finite second moments, and equip P↗
2 with the 2-Wasserstein

metric. Heuristically, the derivative ∂ϱf(t, ϱ) describes the asymptotic behavior of f(t, ϑ)−

f(t, ϱ) as ϑ tends to ϱ in the transportational sense, namely, in the Wasserstein metric.

Fortunately, P↗
2 can be isometrically embedded onto a closed convex cone in an L2 space.

This cone has empty interior but generates the L2 space. So, we cannot restrict to a subspace

to ensure that the cone has nonempty interior. Via this isometry, ∂ϱf can be understood in

the sense of the Fréchet derivative.

Therefore, we can interpret (6.1.1) as a special case of the Hamilton–Jacobi equation

∂tf − H(∇f) = 0, on R+ × C, (6.1.2)

where C is a closed convex cone in a separable Hilbert space H, and H is a general nonlinear-

ity. Aside from the lack of local compactness in infinite dimensions, one important issue is

to figure out a suitable boundary condition. The spin glass setting does not provide a direct

hint, except for invalidating the Dirichlet boundary condition. Moreover, as aforementioned,

the solution to (6.1.1) is expected to satisfy the Hopf–Lax formula under some convexity

condition, and to be the limit of finite-dimensional approximations. These can be hard to

verify if the boundary condition is not easy to work with. The fact that the cone in the spin

glass setting has empty interior adds more difficulty.

To bypass these obstacles, we exploit the assumption that H is nondecreasing along the direc-

tion given by the dual cone of C, which holds in the spin glass setting. Under this assumption,

as aforementioned, we do not need to impose any additional condition on the boundary, and

only need the equation to be satisfied in the viscosity sense (see Definition 6.1.5). This

greatly simplifies our analysis and allows passing to the limit in a straightforward way. It

is surprising that well-posedness holds under this simple definition because usually some

boundary condition is needed.

In Section 6.2, we study (6.1.2) on general finite-dimensional cones. Under the monotonic-
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ity assumption on H, we will prove the comparison principle (implying the uniqueness of

solutions), the existence of solutions, and, under extra convexity conditions, the represen-

tation of the solution as either the Hopf–Lax formula, or the Hopf formula. This section is

self-contained, and we believe the results there are of independent interest.

In Section 6.3, we consider (6.1.2) on the infinite-dimensional cone relevant to the spin glass

models. After establishing the comparison principle, we show that the limit of solutions

to finite-dimensional approximations of (6.3) is a viscosity solution of (6.3). Here, the

construction of finite-dimensional approximations has the flavor of projective limits. We

also verify that the Hopf–Lax formula and the Hopf formula are stable when passed to the

limit. In the last subsection, we present a way to make sense of the boundary of the cone

despite the fact that it has empty interior.

In Section 6.4, we start with a brief description of mean-field spin glass models. We will

introduce more definitions, basic results, and constructions, leading to an interpretation of

viscosity solutions of (6.1.1) in Definition 6.4.3. Then, we derive basic properties of the

nonlinear term in the equation, which allows us to combine results from other sections to

prove the main result, Theorem 6.4.8. Below is a formal restatement of our main result.

Theorem 6.1.1. Under certain assumptions on ξ and on the initial condition ψ, which

are admissible in mean-field spin glass models, there is a unique viscosity solution f of the

Cauchy problem of (6.1.1). Moreover,

1. f is the limit of viscosity solutions of finite-dimensional approximations of (6.1.1);

2. f is given by the Hopf–Lax formula (6.4.21) if ξ is convex on SD+ ;

3. f is given by the Hopf formula (6.4.22) if ψ is convex.

Accompanying this, a version of the comparison principle holds. In Remark 6.4.12, we

explain in more detail that solutions considered in [92, 98, 96, 93] are viscosity solutions.

Lastly, in Section 6.5, we prove that on the cones underlying the finite-dimensional equations
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that approximate (6.1.1), a version of the Fenchel–Moreau biconjugation identity holds,

which is needed for the validity of the Hopf formula as a solution. We believe this is also a

new result.

We close this section with a discussion on related works, and a description of the general

setting and definitions related to (6.1.2) that are used throughout the paper.

6.1.1. Related works

First, we briefly review existing works on Hamilton–Jacobi equations in Hilbert spaces and

Wasserstein spaces.

Equations on Banach spaces satisfying the Radon–Nikodym property (in particular, sepa-

rable Hilbert spaces) were initially studied in [43, 44], where the differential is understood

in the Fréchet sense and the definition of viscosity solutions is a straightforward extension

of definitions in finite dimensions. Comparison principles and existence results were es-

tablished. Our interpretation of solutions are close in spirit to them. We will use Stegall’s

variational principle (restated as Theorem 6.3.7) as used in [43] to compensate for the lack of

local compactness, in order to prove the comparison principle (Proposition 6.3.8). Different

from [44], we directly use finite-dimensional approximations to furnish the existence result.

As demonstrated in [44, Section 5], there are examples where, under an ordinary setting,

finite-dimensional approximations converge to a solution of a different equation. Hence, the

class of equations in this work provides an interesting example where the finite-dimensional

approximations work properly. Moreover, since the domain for (6.1.2) is a closed convex

cone with empty interior, simple modifications of methods for existence results in [44] may

not be viable. Works with modified definitions of viscosity solutions for equations in Hilbert

spaces also include [45, 46, 47, 48, 114, 61, 62].

Investigations of Hamilton–Jacobi equations on the Wasserstein space of probability mea-

sures include [33, 32, 34, 66, 7, 67, 68]. There are mainly three notions of differentiability

considered in these works. Let P2(Rd) be the 2-Wasserstein space of probability measures
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on Rd for some d ∈ N. The first way to make sense of differentiability is through defining

the tangent space at each ϱ ∈ P2(Rd) by analogy to differential manifolds. The tangent

space at ϱ is the closure of {∇ϕ : ϕ ∈ C∞
c (Rd)} in L2(Rd, ϱ). We refer to [8] for more

details. The second one, more extrinsic, starts by extending any function g : P2(Rd) → R

through defining G : L2(Ω,P) → R by G[X] = g(Law(X)) for every Rd-valued random

variable X ∈ L2(Ω,P) on some nice probability space (Ω,P). Then, one can make sense of

the differentiability of g via the Fréchet differentiability of G. One issue is that there can be

two different random variables with the same law, which leads to the situation where ϱ, ϑ

can be “lifted” to X,Y , respectively, while X and Y are not optimally coupled, namely, the

L2 norm of X − Y not equal to the metric distance between ϱ and ϑ. Another issue is the

lack of a canonical choice of Ω. For details, we refer to [32, 68]. The third notion is based

on viewing P2(Rd) as a geodesic metric space. Denoting by d2 the 2-Wasserstein metric,

for any g : P2(Rd) → R, one can define the slope of g at ϱ by |∇g| = lim supϑ→ϱ
|g(ϑ)−g(ϱ)|
d2(ϑ,ϱ)

.

Then, one can study equations involving slopes. This notion was considered in [7].

The notion of differentiability adopted in this work is close in spirit to the second one

discussed above. But, ours is more intrinsic in the sense that there is an isometry (see (6.4.3))

between P↗
2 and a closed convex cone in an L2 space. As a result of the monotonicity (see

(6.4.1)) of measures in P↗
2 , the isometry is given by the right-continuous inverse of some

analogue of the probability distribution function, which has already been observed in [93,

Section 2]. Hence, in our case, we can identify [0, 1) equipped with the Borel sigma-algebra

and the Lebesgue measure as the canonical probability space Ω, appearing in the discussion

of the second notion. It is natural and convenient to use the Hilbert space structure of

L2([0, 1)) to define differentiability.

To the best of our knowledge, there are no prior works on well-posedness of Hamilton–Jacobi

equations on a domain with boundary in infinite-dimensions, or on a Wasserstein space over

a set with boundary.

Considerations of using Hamilton–Jacobi equations to study the free energy of mean-field
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disordered models first appeared in physics literature [69, 71, 22, 21]. The approach was

mathematically initiated in [95], and used subsequently in [94, 36, 39, 37, 40] to treat sta-

tistical inference models. There, the equations also take the form (6.1.1) but are defined

on finite-dimensional cones. Similar to the equation in spin glass models, the nonlinearity

is monotonic along the direction of the dual cone (which is the same cone as the cones

in these models are self-dual). In these works, some additional Neumann-type conditions

were imposed on the boundary. We remark that these conditions can be dropped and the

results in [95, 39, 37], where solutions were defined in the viscosity sense, still hold with our

simplified definition of viscosity solutions (Definition 6.1.5). Facts about viscosity solutions

proven and used there can be replaced by those in Section 6.2.

In [95, 39, 37], the viscosity solution can always admit an expression as the Hopf formula.

To prove this, a version of the Fenchel–Moreau biconjugation identity on cones is needed,

which has been proven for a large class of cones in [38]. However, the cones pertinent to

spin glass models do not fall in that class. As aforementioned, we will prove the identity on

these cones in Section 6.5, following similar arguments as in [38].

Using the monotonicity of the nonlinearity, [49, 109] showed that the viscosity solution to

a Hamilton–Jacobi equation on an open set Ω in finite dimensions can be extended to a

viscosity solution on Ω ∪ {z} for any regular point z ∈ ∂Ω. The result is not applicable to

our case. Instead, we study the equation directly on a closed cone.

6.1.2. General setting and definitions

Let H be a separable Hilbert space with inner product ⟨ · , · ⟩H and associated norm | · |H.

Let C ⊆ H be a closed convex cone. In addition, we assume that C generates H, namely,

cl (C − C) = H, (6.1.3)
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where cl is the closure operator. The dual cone of C is defined to be

C∗ = {x ∈ H : ⟨x, y⟩H ⩾ 0, ∀y ∈ C}. (6.1.4)

It is clear that C∗ is a closed and convex cone. We recall the following classical result (c.f.

[23, Corollary 6.33]).

Lemma 6.1.2. If C ⊆ H is a closed convex cone, then (C∗)∗ = C where

(C∗)∗ = {x ∈ H : ⟨x, y⟩H ⩾ 0, ∀y ∈ C∗}.

Definition 6.1.3 (Differentiability and smoothness).

1. A function ϕ : (0,∞)×C → R is said to be differentiable at (t, x) ∈ (0,∞)×C, if there

is an element in R ×H, denoted by (∂tϕ(t, x),∇ϕ(t, x)) and called the differential of

ϕ at (t, x), such that

ϕ(s, y)− ϕ(t, x) = ∂tϕ(t, x)(s− t) + ⟨∇ϕ(t, x), y − x⟩H + o (|s− t|+ |y − x|H) ,

as (s, y) ∈ (0,∞)× C tends to (t, x) in R×H.

2. A function ϕ : (0,∞)× C → R is said to be smooth if

(a) ϕ is differentiable everywhere with differentials satisfying that, for every (t, x) ∈

(0,∞)× C,

ϕ(s, y)− ϕ(t, x) = ∂tϕ(t, x)(s− t) + ⟨∇ϕ(t, x), y − x⟩H

+O
(
|s− t|2 + |y − x|2H

)
,

as (s, y) ∈ (0,∞)× C tends to (t, x) in R×H;

(b) the function (t, x) 7→ (∂tϕ(t, x),∇ϕ(t, x)) is continuous from (0,∞)×C to R×H.
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3. A function g : C → R is said to be differentiable at x ∈ C, if there is an element in H,

denoted by ∇g(x) and called the differential of g at x, such that

g(y)− g(x) = ⟨∇g(x), y − x⟩H + o (|y − x|H) ,

as y ∈ C tends to x in H.

Remark 6.1.4. Note that the differential is defined at every point of the closed cone C, which

is needed to make sense of differentials at boundary points. Also, in infinite dimensions,

C can have empty interior. Let us show that the differential is unique whenever it exists.

Hence, the above is well-defined.

To see this, it suffices to show that, for any fixed (t, x) ∈ (0,∞)×C, if (r, h) ∈ R×H satisfies

r(s− t) + ⟨h, y − x⟩H = o(|s− t|+ |y − x|H) for all (s, y) ∈ (0,∞)× C, then we must have

r = 0 and h = 0. It is easy to see that r = 0. Replacing y by x + εz for ε > 0 and any

fixed z ∈ C, and sending ε → 0, we can deduce that ⟨h, z⟩H = 0 for all z ∈ C, which along

with (6.1.3) implies that h = 0.

For a closed cone K ⊆ H, a function g : E → (−∞,∞] defined on a subset E ⊆ H is said to

be K-nondecreasing (over E) if g satisfies that

g(x) ⩾ g(x′), for all x, x′ ∈ E satisfying x− x′ ∈ K. (6.1.5)

Let H : H → R be a continuous function. The following are conditions often imposed on H:

(A1) H is locally Lipschitz;

(A2) H is C∗-nondecreasing.

Since we will work with equations defined on different cones, in different ambient Hilbert

spaces, and with different nonlinearities, for convenience, we denote (6.1.2) by HJ(H, C,H).

The Cauchy problem of HJ(H, C,H) with initial condition ψ : C → R is denoted by
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HJ(H, C,H;ψ).

Definition 6.1.5 (Viscosity solutions).

1. A continuous function f : R+ × C → R is a viscosity subsolution of HJ(H, C,H) if for

every (t, x) ∈ (0,∞)× C and every smooth ϕ : (0,∞)× C → R such that f − ϕ has a

local maximum at (t, x), we have

(∂tϕ− H(∇ϕ)) (t, x) ⩽ 0.

2. A continuous function f : R+ × C → R is a viscosity supersolution of HJ(H, C,H) if

for every (t, x) ∈ (0,∞)×C and every smooth ϕ : (0,∞)×C → R such that f −ϕ has

a local minimum at (t, x), we have

(∂tϕ− H(∇ϕ)) (t, x) ⩾ 0.

3. A continuous function f : R+ × C → R is a viscosity solution of HJ(H, C,H) if f is

both a viscosity subsolution and supersolution.

Here, a local extremum at (t, x) is understood to be an extremum over a metric ball of some

positive radius centered at (t, x) intersected with (0,∞)× C.

For ψ : C → R, we say f : R+ × C → R is a viscosity solution of HJ(H, C,H;ψ) if f is a

viscosity solution of HJ(H, C,H;ψ) and satisfies f(0, ·) = ψ.

Throughout, Lipschitzness of any real-valued function on a subset of H or R×H is defined

with respect to | · |H or | · |R×H, respectively. A Lipschitz viscosity solution is a viscosity

solution that is Lipschitz.

Remark 6.1.6. Again, we note that C is closed, and allowed to have empty interior in infinite

dimensions. The definition of viscosity solutions does not prescribe any additional boundary
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condition. It is surprising that, under (A1)–(A2), well-posedness can be established.

To talk about variational formulae, we also need definitions of convex conjugates and mono-

tone conjugates. For any function g : H → (−∞,∞], we define its convex conjugate by

g⊛(y) = sup
x∈H

{⟨x, y⟩H − g(x)}, ∀y ∈ H. (6.1.6)

For E ⊃ C and g : E → (−∞,∞], we define the monotone conjugate (over C) of g by

g∗(y) = sup
x∈C

{⟨x, y⟩H − g(x)}, ∀y ∈ H. (6.1.7)

Throughout, for every a, b ∈ R, we write a∨b = max{a, b}, a∧b = min{a, b}, and a+ = a∨0.
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6.2. Equations on finite-dimensional cones

Throughout this section, if not otherwise specified, we assume that H is finite-dimensional.

We consider the setting given in Section 6.1.2 and study the equation HJ(H, C,H). We will

prove the comparison principle and the existence of solutions in Section 6.2.1. Then, we

will show that the solution can be represented by the Hopf-Lax formula, if H is convex, in

Section 6.2.2, or by the Hopf formula, if the initial is convex, in Section 6.2.3.

6.2.1. Comparison principle and existence of solutions

We prove the comparison principle (Proposition 6.2.1) and the existence of solutions (Propo-

sition 6.2.3).

Proposition 6.2.1 (Comparison principle). Under assumption (A1), if u is a viscosity
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subsolution and v is a viscosity supersolution of HJ(H, C,H) satisfying

sup
t∈R+

∥u(t, ·)∥Lip <∞, sup
t∈R+

∥v(t, ·)∥Lip <∞,

then supR+×C(u− v) = sup{0}×C(u− v).

Later, we will need a stronger version of the comparison principle stated below.

Proposition 6.2.2 (Comparison principle in a stronger form). Under assumption (A1), let

u be a viscosity subsolution of HJ(H, C,H) and v be a viscosity supersolution of HJ(H, C′,H),

with either C ⊆ C′ or C′ ⊆ C. Suppose that

L = sup
t∈R+

∥u(t, ·)∥Lip ∨ ∥v(t, ·)∥Lip

is finite. Then, for every R > 0 and every M > 2L, the function

R+ × (C ∩ C′) ∋ (t, x) 7→ u(t, x)− v(t, x)−M(|x|H + V t−R)+ (6.2.1)

achieves its global supremum on {0} × (C ∩ C′), where

V = sup

{
|H(y)− H(y′)|

|y − y′|H
: |y|H, |y′|H ⩽ 2L+ 3M

}
.

Let us first deduce Proposition 6.2.1 from Proposition 6.2.2.

Proof of Proposition 6.2.1. Let us argue by contradiction and assume supR+×C(u − v) >

sup{0}×C(u−v). Let L be given in the statement of Proposition 6.2.2. Fixing some M > 2L

and choosing R > 0 sufficiently large, we can get supR+×C(u− v−χ) > sup{0}×C(u− v−χ)

where χ(t, x) =M(|x|H+V t−R)+ for (t, x) ∈ R+×C. However, this contradicts the result

ensured by Proposition 6.2.2.

The proof below is a modification of the proof of [96, Proposition 3.2].
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Proof of Proposition 6.2.2. For δ ∈ (0, 1) to be chosen, let θ : R → R+ be a nondecreasing

smooth function satisfying

|θ′| ⩽ 1, and (r − δ)+ ⩽ θ(r) ⩽ r+, ∀r ∈ R,

where θ′ is the derivative of θ. We define

Φ(t, x) =Mθ
((
δ + |x|2H

) 1
2 + V t−R

)
, ∀(t, x) ∈ R+ × C.

It is immediate that

sup
(t,x)∈R+×C

|∇Φ(t, x)|H ⩽M, (6.2.2)

∂tΦ ⩾ V |∇Φ|H, (6.2.3)

Φ(t, x) ⩾M(|x|H + V t−R− 1)+, ∀(t, x) ∈ R+ × C. (6.2.4)

We argue by contradiction and assume that the function in (6.2.1) does not achieve its

supremum on {0} × (C ∩ C′). Then, we can fix δ ∈ (0, 1) sufficiently small and T > 0

sufficiently large so that

sup
[0,T )×(C∩C′)

(u− v − Φ) > sup
{0}×(C∩C′)

(u− v − Φ).

For ε > 0 to be determined, we define

χ(t, x) = Φ(t, x) + εt+
ε

T − t
, ∀(t, x) ∈ [0, T )× C.

In view of the previous display, we can choose ε > 0 small and further enlarge T so that

sup
[0,T )×(C∩C′)

(u− v − χ) > sup
{0}×(C∩C′)

(u− v − χ). (6.2.5)
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For each α > 1, we introduce

Ψα(t, x, t
′, x′) = u(t, x)− v(t′, x′)− α

2
(|t− t′|2 + |x− x′|2H)− χ(t, x),

∀(t, x, t′, x′) ∈ [0, T )× C × [0, T ]× C′.

By the definition of L and (6.2.4), setting C1 = supt∈[0,T ](|u(t, 0)|∨|v(t, 0)|), we can see that

Ψα(t, x, t
′, x′) ⩽ C1 + L(2|x|H + |x− x′|H)−

1

2
|x− x′|2 −M(|x|H −R− 1)+.

Hence, due to the requirement M > 2L, Ψα is bounded from above uniformly in α > 1 and

decays as |x|H, |x′|H → ∞. Since H is finite-dimensional, we can see that Ψα achieves its

supremum at some (tα, xα, t
′
α, x

′
α). The above display also implies that there is C such that

|xα|H, |x′α|H ⩽ C, ∀α > 1.

Setting C0 = Ψα(0, 0, 0, 0) which is independent of α, we have

C0 ⩽ Ψ(tα, xα, t
′
α, xα) ⩽ C1 + 2LC − α

2
(|tα − t′α|2 + |xα − x′α|2H).

From this, we can see that α(|tα − t′α|2 + |xα − x′α|2H) is bounded as α → ∞. Hence,

passing to a subsequence if necessary, we may assume tα, t′α → t0 and xα, x′α → x0 for some

(t0, x0) ∈ [0, T ]× (C ∩ C′).

Then, we show t0 ∈ (0, T ). Since

C0 ⩽ Ψ(tα, xα, t
′
α, xα) ⩽ C1 + 2LC − ε

T − tα
,

277



we must have that tα is bounded away from T uniformly in α, which implies t0 < T . Since

u(tα, xα)− v(t′α, x
′
α)− χ(tα, xα) ⩾ Ψα(tα, xα, t

′
α, x

′
α)

⩾ sup
[0,T )×(C∩C′)

(u− v − χ) ⩾ (u− v − χ)(t0, x0),

sending α→ ∞, we deduce that

(u− v − χ)(t0, x0) = sup
[0,T )×(C∩C′)

(u− v − χ).

This along with (6.2.5) implies that t0 > 0. In conclusion, we have t0 ∈ (0, T ), and thus

tα, t
′
α ∈ (0, T ) for sufficiently large α. Henceforth, we fix any such α.

Before proceeding, we want to obtain a bound on |xα − x′α|H. First, we consider the case

C ⊆ C′. Using Ψα(tα, xα, t
′
α, xα)−Ψα(tα, xα, t

′
α, x

′
α) ⩽ 0, the computation that

Ψα(tα, xα, t
′
α, xα)−Ψα(tα, xα, t

′
α, x

′
α) = v(t′α, x

′
α)− v(t′α, xα) +

α

2
|xα − x′α|2H,

and the definition of L, we can get α|xα− x′α|H ⩽ 2L. If C′ ⊆ C, we use Ψα(tα, x
′
α, t

′
α, x

′
α)−

Ψα(tα, xα, t
′
α, x

′
α) ⩽ 0, and

Ψα(tα, x
′
α, t

′
α, x

′
α)−Ψα(tα, xα, t

′
α, x

′
α) = u(tα, x

′
α)− u(tα, xα) +

α

2
|xα − x′α|2H

−Φ(tα, x
′
α) + Φ(tα, xα).

By the definition of L and (6.2.2), we can conclude that, in both cases,

α|xα − x′α|H ⩽ 2(L+M). (6.2.6)

With this, we return to the proof. Since the function

(t, x) 7→ Ψα(t, x, t
′
α, x

′
α)
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achieves its maximum at (tα, xα) ∈ (0, T )× C, by the assumption that u is subsolution, we

have

α(tα − t′α) + ε+ ε(T − tα)
−2 + ∂tΦ(tα, xα)− H

(
α(xα − x′α) +∇Φ(tα, xα)

)
⩽ 0 (6.2.7)

On the other hand, since the function

(t′, x′) 7→ Ψα(tα, xα, t
′, x′)

achieves its minimum at (t′α, x′α) ∈ (0,∞)× C′, by the assumption that v is subsolution, we

have

α(tα − t′α)− H
(
α(xα − x′α)

)
⩾ 0. (6.2.8)

By (6.2.2) and (6.2.6), the arguments inside H in both (6.2.7) and (6.2.8) have norms

bounded by 2L+ 3M . Taking the difference of (6.2.7) and (6.2.8), and using the definition

of V and (6.2.3), we obtain that

ε ⩽ V |∇Φ(tα, xα)| − ∂tΦ(tα, xα) ⩽ 0,

contradicting the fact that ε > 0. Therefore, the desired result must hold.

Proposition 6.2.3 (Existence of solutions). Under assumption (A1)–(A2), for every Lips-

chitz ψ : C → R, there is a viscosity solution f of HJ(H, C,H;ψ). Moreover, f is Lipschitz

and satisfies

sup
t∈R+

∥f(t, ·)∥Lip = ∥ψ∥Lip, (6.2.9)

sup
x∈C

∥f(·, x)∥Lip ⩽ sup
p∈H

|p|H⩽∥ψ∥Lip

|H(p)|. (6.2.10)

Proof. Except for one modification, the existence follows from the Perron’s method as in
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[20, Theorem 7.1] or [42, Theorem 4.1] (see also the proof of [96, Proposition 3.4]). As

commented in [42, Remark 4.5], we only need to make sure that any classical subsolution is

a viscosity subsolution, stated more precisely as follows.

Lemma 6.2.4. Under assumption (A2), suppose that f : R+ × C → R is continuously

differentiable and satisfies ∂tf − H(∇f) ⩽ 0 (respectively, ∂tf − H(∇f) ⩾ 0) everywhere.

Then f is a viscosity subsolution (respectively, supersolution) of HJ(H, C,H).

Proof. We assume that ∂tf−H(∇f) ⩽ 0 everywhere and that f−ϕ achieves a local maximum

at (t, x) ∈ (0,∞) × C for some smooth function ϕ. If x ∈ C \ ∂C, then we clearly have

∂tϕ(t, x) = ∂tf(t, x) and ∇ϕ(t, x) = ∇f(t, x), which along with the assumption on f implies

that ∂tϕ− H(∇ϕ) ⩽ 0 at (t, x).

Now, let us consider the case x ∈ ∂C. By the local maximality of f − ϕ at (t, x), we have

ϕ(t′, x′)− ϕ(t, x) ⩾ f(t′, x′)− f(t, x)

= ∂tf(t, x)(t
′ − t) +

〈
∇f(t, x), x′ − x

〉
H + o(|t′ − t|+ |x′ − x|H),

for (t′, x′) sufficiently close to (t, x). Due to t ∈ (0,∞), replacing x′ by x and varying t′, we

can see that

∂tϕ(t, x) = ∂tf(t, x). (6.2.11)

Then, replacing t′ by t and x′ by (1 − ε)x + εy for ε ∈ [0, 1] and any fixed y ∈ C, we can

obtain by sending ε→ 0 that

⟨∇ϕ(t, x), y − x⟩H ⩾ ⟨∇f(t, x), y − x⟩H , ∀y ∈ C

which implies that ∇ϕ(t, x) − ∇f(t, x) ∈ C∗ by the definition of C∗ in (6.1.4). Since H

is C∗-nondecreasing, we obtain H(∇ϕ(t, x)) ⩾ H(∇f(t, x)). Using this, (6.2.11) and the
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assumption on f , we conclude again ∂tϕ − H(∇ϕ) ⩽ 0 at (t, x). Hence, we conclude that

f is a viscosity subsolution. The verification for supersolutions is similar, with inequalities

above reversed.

It remains to prove (6.2.9) and (6.2.10). The identity (6.2.9) has been proved in [96, Propo-

sition 3.4]. Assuming (6.2.9), let us prove (6.2.10) here. We denote the right-hand side

of (6.2.10) by L. We argue by contradiction and assume that there exist t, t′ ∈ [0, T ), x ∈ C,

and δ > 0 for some sufficiently large T > 0 such that

f(t, x)− f(t′, x) > (L+ δ)|t− t′|. (6.2.12)

For ε > 0 to be chosen, we let θ : R → R+ be a nondecreasing smooth function satisfying

(r − ε) ∨ 0 ⩽ θ(r) ⩽ r ∨ 0 for every r ∈ R. We set

Φ(x) =Mθ
(
(ε+ |x|2H)

1
2 −R

)
(6.2.13)

for M,R > 0 to be chosen. Due to (6.2.12), by choosing R sufficiently large and ε sufficiently

small, we have

sup
t,t′∈[0,T ), x∈C

f(t, x)− f(t′, x)− (L+ δ)|t− t′| − Φ(x)− ε

T − t
− ε

T − t′
⩾ a (6.2.14)

for some a > 0.

For every α > 1, we consider

Ψα(t, x, t
′, x′) = f(t, x)− f(t′, x′)− (L+ δ)|t− t′| − α|x− x′|2H − Φ(x)− ε

T − t
− ε

T − t′

for (t, x, t′, x′) ∈ [0, T ) × C × [0, T ) × C. Using (6.2.9), we can see that f(t, x) − f(t′, x′) is
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bounded from above by

|f(t, 0)|+ |f(t′, 0)|+ ∥ψ∥Lip(|x|H + |x′|H) ⩽ ∥ψ∥Lip(2|x|H + |x− x′|H) + 2 sup
t∈[0,T ]

|f(t, 0)|.

Hence, by choosing M in Ψ sufficient large, we can ensure that Ψα is bounded from above

and decays as x, x′ → ∞. Moreover, Ψα tends to −∞ as t, t′ → T . These imply that

Ψα is maximized at some (tα, xα, t
′
α, x

′
α). Using Ψα(tα, xα, t

′
α, x

′
α) ⩾ Ψα(tα, xα, t

′
α, xα), the

computation

Ψα(tα, xα, t
′
α, xα)−Ψα(tα, xα, t

′
α, x

′
α) = f(t′α, x

′
α)− f(t′α, xα) + α|xα − x′α|2H,

and (6.2.9), we can get |xα − x′α|H = o(α−1) as α→ ∞. Note that we have, by (6.2.14),

Ψα(tα, xα, t
′
α, x

′
α) ⩾ sup

t,t′∈[0,T ), x∈C
Ψα(t, x, t

′, x) ⩾ a,

and, by (6.2.9),

Ψα(tα, xα, tα, x
′
α) ⩽ Ψα(tα, xα, tα, xα) + ∥ψ∥Lip|xα − x′α|H ⩽ ∥ψ∥Lipo

(
α−1

)
.

The above two displays imply that, for α sufficiently large, we have tα ̸= t′α and thus at

least one of them is nonzero. Now, let us fix any such α.

If tα > t′α, since f is a viscosity solution and since (t, x) 7→ Ψα(t, x, t
′
α, x

′
α) achieves a local

maximum at (tα, xα), we can get

∂tϕ(tα, xα)− H (∇ϕ(tα, xα)) ⩽ 0, (6.2.15)

where ϕ is given by rewriting Ψα(t, x, t
′
α, x

′
α) = f(t, x)− ϕ(t, x). Then, we show

|∇ϕ(tα, xα)| ⩽ ∥ψ∥Lip. (6.2.16)
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Since f − ϕ achieves a local maximum at (tα, xα), by (6.2.9), we have

ϕ(tα, x)− ϕ(tα, xα) ⩾ f(tα, x)− f(tα, xα) ⩾ −∥ψ∥Lip|x− xα|H, ∀x ∈ C.

For any y ∈ C, replacing x by xα + ελ(y − xα) for λ ⩾ 0 and ε > 0 sufficiently small in the

above, and sending ε→ 0, we have

⟨λ(y − xα),∇ϕ(tα, xα)⟩H ⩾ −∥ψ∥Lip|λ(y − xα)|H, ∀λ ⩾ 0, y ∈ C.

On the other hand, using the definition of Φ in (6.2.13), we can see that

∇ϕ(tα, xα) = 2α(xα − x′α) + βxα

for some β =Mθ′((ε+ |xα|2)
1
2 −R)(ε+ |xα|2)−

1
2 ⩾ 0. Setting λ = 2α+ β and y = 2α

2α+βx
′
α,

we have λ(y − xα) = −∇ϕ(tα, xα). Inserting this to the previous display, we get (6.2.16).

Since we can compute that

∂tϕ(tα, xα) = L+ δ + ε(T − tα)
−2 ⩾ L+ δ,

we can deduce L+ δ ⩽ L from (6.2.15), (6.2.16) and the definition of L. Hence, we reach a

contradiction.

If t′α > tα, since (t′, x′) 7→ Ψα(tα, xα, t
′, x′) achieves a local maximum at (t′α, x

′
α) and since

f is supersolution, we have

∂tϕ̃(t
′
α, x

′
α)− H

(
∇ϕ̃(t′α, x′α)

)
⩾ 0, (6.2.17)

for ϕ̃ given by rewriting Ψα(tα, xα, t
′, x′) = ϕ̃(t′, x′)− f(t′, x′). Now, since f − ϕ̃ achieves a

local minimum at (t′α, x
′
α), we have

ϕ̃(t′α, x)− ϕ̃(t′α, x
′
α) ⩽ f(t′α, x)− f(t′α, x

′
α) ⩽ ∥ψ∥Lip|x− x′α|H, ∀x ∈ C.
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Similar to the previous case, we can deduce

〈
λ(y − x′α),∇ϕ̃(t′α, x′α)

〉
H
⩽ ∥ψ∥Lip|λ(y − x′α)|H, ∀λ ⩾ 0, y ∈ C.

Here, we simply have ∇ϕ̃(t′α, x′α) = 2α(xα − x′α). Setting λ = 2α and y = xα in the above

display, we obtain |∇ϕ̃(t′α, x′α)|H ⩽ ∥ψ∥Lip. Since ∂tϕ̃(t′α, x′α) = −(L + δ) − ε(T − t′α)
−2 ⩽

−(L+ δ), this along with (6.2.17) and the definition of L yields −(L+ δ) ⩾ −L, reaching a

contradiction.

In conclusion, we must have (6.2.10), completing the proof of (6.2.10) and thus the proof of

Proposition 6.2.3.

6.2.2. Hopf-Lax formula

Recall the definition of g⊛ in (6.1.6).

Lemma 6.2.5. Let H be a possibly infinite-dimensional Hilbert space, and C be a closed con-

vex cone in H. Suppose that g : H → (−∞,∞] is C∗-nondecreasing, lower semicontinuous,

and convex, and satisfies g(0) <∞. Then,

1. g⊛(y) = ∞ for all y ̸∈ C;

2. g(x) = supy∈C{⟨x, y⟩H − g⊛(y)} for every x ∈ H.

Proof. For every y ̸∈ C, by Lemma 6.1.2, there is z ∈ C∗ such that ⟨z, y⟩H < 0. For every

λ > 0, we also have 0 ∈ C∩(−λz+C∗). Since g is C∗-nondecreasing, we have g(−λz) ⩽ g(0),

which implies

g⊛(y) ⩾ λ ⟨−z, y⟩H − g(−λz) ⩾ λ ⟨−z, y⟩H − g(0).

Sending λ→ ∞, we obtain g⊛(y) = ∞, verifying (1). The standard Fenchel-Moreau theorem

(c.f. [23, Theorem 13.32]) gives that g(x) = supy∈H{⟨x, y⟩H − g⊛(y)}, which along with (1)

implies (2).
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We show that when H is convex, the solution can be represented by a version of the Hopf–Lax

formula on cones. For the standard version, we refer to [60, 42].

Proposition 6.2.6 (Hopf–Lax formula). In addition to (A1)–(A2), suppose that H is convex

and bounded below, and that ψ : C → R is Lipschitz and C∗-nondecreasing. Let f be given by

f(t, x) = sup
y∈C

{
ψ(y)− tH⊛

(
y − x

t

)}
, ∀(t, x) ∈ R+ × C. (6.2.18)

Then, f is a Lipschitz viscosity solution of HJ(H, C,H;ψ).

Here, to make sense of (6.2.18) at t = 0, we use (6.1.6) to rewrite the right-hand side

of (6.2.18) as

f(t, x) = sup
y∈C

inf
z∈H

{ψ(y)− ⟨z, y − x⟩H + tH(z)} , ∀(t, x) ∈ R+ × C.

Then, we can see that, when t = 0, the supremum in this display must be achieved at y = x,

implying f(0, x) = ψ(x) for all x ∈ C.

We devote the rest of this subsection to the proof of this proposition.

Semigroup property

We show that for all t > s ⩾ 0,

f(t, x) = sup
y∈C

{
f(s, y)− (t− s)H⊛

(
y − x

t− s

)}
, ∀x ∈ C. (6.2.19)

The convexity of H⊛ implies that

H⊛
(
y − x

t

)
⩽
s

t
H⊛
(
y − z

s

)
+
t− s

t
H⊛
(
z − x

t− s

)
, ∀y, z ∈ H,
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which along with (6.2.18) yields that

f(t, x) ⩾ sup
y,z∈C

{
ψ(y)− sH⊛

(
y − z

s

)
− (t− s)H⊛

(
z − x

t− s

)}
= sup

z∈C

{
f(s, z)− (t− s)H⊛

(
z − x

t− s

)}
.

To show the converse inequality, we claim that for any fixed (t, x) ∈ (0,∞) × C, there is

y ∈ C satisfying.

f(t, x) = ψ(y)− tH⊛
(
y − x

t

)
. (6.2.20)

Assuming this, we set z = s
tx+(1− s

t )y which satisfies z−x
t−s = y−x

t = y−z
s . By this, (6.2.18),

and (6.2.20), we have

f(s, z)− (t− s)H⊛
(
z − x

t− s

)
⩾ ψ(y)− sH⊛

(
y − z

s

)
− (t− s)H⊛

(
z − x

t− s

)
= ψ(y)− tH⊛

(
y − x

t

)
= f(t, x),

which yields the desired inequality.

It remains to verify the existence of y in (6.2.20). Fix any λ > 0 and set x = λ y
|y|H in (6.1.6)

for H⊛ to see that

H⊛(y) ⩾ λ|y|H − sup
|z|H⩽λ

|H(z)|.

Since H is locally Lipschitz, the supremum on the right is finite. Hence, we can deduce that

lim inf
y→∞

H⊛(y)

|y|H
= ∞. (6.2.21)

We set L = ∥ψ∥Lip. Then, the above implies the existence of R > 0 such that H⊛(y−xt ) ⩾
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(L+ 1) |y−x|Ht for all y satisfying |y−x|H
t > R. These imply that

ψ(y)− tH⊛
(
y − x

t

)
⩽ ψ(x) + L|y − x|H − (L+ 1)|y − x|H = ψ(x)− |y − x|H,

for all y satisfying |y − x|H > tR. Therefore, the supremum in (6.2.18) can be taken over

a bounded set. Also note that the function y 7→ ψ(y)− tH⊛(y−xt ) is upper semi-continuous

and locally bounded from above due to H⊛(z) ⩾ −H(0). Since H is finite-dimensional, the

maximizer must exist, which ensures the existence of y in (6.2.20) and thus completes the

proof of (6.2.19).

Lipschitzness

We first show the following claim: for every (t, x) ∈ (0,∞) × C, there is y ∈ C satisfying

y − x ∈ C such that

f(t, x)− f(t, x′) ⩽ ψ(y)− ψ(y − x+ x′), ∀x′ ∈ C. (6.2.22)

Fix any (t, x) ∈ (0,∞) × C. Arguing as before, we can find y ∈ C such that (6.2.20) holds.

Lemma 6.2.5 (1) ensures that y − x ∈ C, and thus y − x + x′ ∈ C for every x′ ∈ C. The

Hopf–Lax formula (6.2.18) gives the lower bound

f(t, x′) ⩾ ψ(y − x+ x′)− tH⊛
(
y − x

t

)
,

which along with (6.2.20) yields (6.2.22).

Now, for any (t, x, x′) ∈ (0,∞)×C ×C, we apply (6.2.22) to both x and x′ to see that there

exist y, y′ ∈ C such that

ψ(y′ − x′ + x)− ψ(y′) ⩽ f(t, x)− f(t, x′) ⩽ ψ(y)− ψ(y − x+ x′),
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which immediately implies that

sup
t>0

∥f(t, ·)∥Lip ⩽ ∥ψ∥Lip. (6.2.23)

Then, we show that

sup
x∈C

∥f(·, x)∥Lip ⩽ max

{∣∣H⊛(0)
∣∣ , sup

|p|H⩽∥ψ∥Lip

|H(p)|

}
. (6.2.24)

Let us fix any x ∈ C and t > s > 0. Then, (6.2.19) immediately yields

f(t, x) ⩾ f(s, x)− (t− s)H⊛(0)

where the last term is finite by the assumption that H is bounded below. Next, using (6.2.23),

we can obtain from (6.2.19) that

f(t, x) ⩽ f(s, x) + sup
y∈C

{
∥ψ∥Lip|x− y|H − (t− s)H⊛

(
y − x

t− s

)}
.

Lemma 6.2.5 (1) ensures that y−x
t−s ∈ C. Replacing y−x

t−s by z, and using ∥ψ∥Lip|z|H =〈
z,

∥ψ∥Lipz
|z|H

〉
H

, we can bound the right-hand side of the above display by

(t− s) sup
z∈C

{
∥ψ∥Lip|z|H − H⊛(z)

}
⩽ (t− s) sup

|p|H⩽∥ψ∥Lip

sup
z∈C

{
⟨z, p⟩H − H⊛(z)

}
= (t− s) sup

|p|H⩽∥ψ∥Lip

H(p),

where the last equality follows from Lemma 6.2.5 (2). The above three displays together

yield (6.2.24).
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Verification of the Hopf–Lax formula as a supersolution

Suppose f − ϕ achieves a local minimum at (t, x) ∈ (0,∞)× C for some smooth function ϕ.

Then,

f(t− s, x+ sy)− ϕ(t− s, x+ sy) ⩾ f(t, x)− ϕ(t, x)

for every y ∈ C and sufficiently small s > 0. On the other hand, (6.2.19) implies that

f(t, x) ⩾ f(t− s, x+ sy)− sH⊛(y).

Combining the above two displays, we obtain that

ϕ(t, x)− ϕ(t− s, x+ sy) + sH⊛(y) ⩾ 0.

Sending s→ 0, we have that

∂tϕ(t, x)− ⟨y,∇ϕ(t, x)⟩H + H⊛(y) ⩾ 0.

Taking infimum over y ∈ C and using Lemma 6.2.5 (2), we obtain

(∂tϕ− H(∇ϕ)) (t, x) ⩾ 0,

verifying that f is supersolution.

Verification of the Hopf–Lax formula as a subsolution

Suppose that f − ϕ achieves a local maximum at (t, x) ∈ (0,∞)×C. We want to show that

(∂tϕ− H(∇ϕ)) (t, x) ⩽ 0. (6.2.25)
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We argue by contradiction and assume that there is δ > 0 such that

(∂tϕ− H(∇ϕ)) (t′, x′) ⩾ δ > 0,

for (t′, x′) sufficiently close to (t, x). The definition of H⊛ (in (6.1.6)) implies that

∂tϕ(t
′, x′)−

〈
q,∇ϕ(t′, x′)

〉
H + H⊛(q) ⩾ δ (6.2.26)

for all such (t′, x′) and all q ∈ H.

To proceed, we show that there is R > 0 such that for every s > 0 sufficiently small there is

xs ∈ C such that

f(t, x) = f(t− s, xs)− sH⊛
(
xs − x

s

)
, (6.2.27)

|x− xs|H ⩽ Rs. (6.2.28)

In view of (6.2.23) and (6.2.24), we set L = ∥f∥Lip <∞. By (6.2.21), we can choose R > 1

to satisfy H⊛(z) ⩾ 2L|z|H for every z ∈ H satisfying |z|H > R. Then, for every y ∈ C

satisfying |y−x|H
s > R, we have

f(t− s, y)− sH⊛
(
y − x

s

)
⩽ f(t, x) + Ls+ L|y − x|H − 2L|y − x|H < f(t, x) + Ls(1−R).

Hence, the supremum in (6.2.19) can be taken over {y ∈ C : |y − x|H ⩽ Rs}. Since

H is finite-dimensional, we can thus conclude the existence of xs ∈ C satisfying (6.2.27)

and (6.2.28).

Returning to the proof, we can compute that, for sufficiently small s > 0,

ϕ(t, x)− ϕ(t− s, xs) =

ˆ 1

0

d

dr
ϕ(t+ (r − 1)s, rx+ (1− r)xs)dr

=

ˆ 1

0
(s∂tϕ− ⟨xs − x,∇ϕ⟩)(t+ (r − 1)s, rx+ (1− r)xs)dr.
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Using (6.2.26) with q replaced by xs−x
s , and (6.2.27), we have

ϕ(t, x)− ϕ(t− s, xs) ⩾ sδ − sH⊛
(
xs − x

s

)
⩾ sδ + f(t, x)− f(t− s, xs).

Rearranging terms, we arrive at that, for all s > 0 sufficiently small,

f(t− s, xs)− ϕ(t− s, xs) ⩾ sδ + f(t, x)− ϕ(t, x),

contradicting the local maximality of f − ϕ at (t, x). Hence, (6.2.25) must hold, and thus f

is a subsolution.

6.2.3. Hopf formula

Recall the definition of monotone conjugate in (6.1.7). Note that, by Lemma 6.1.2, we can

verify that g∗ is always C∗-nondecreasing, which is reason for the prefix “monotone”. The

monotone biconjugate of g is given by g∗∗ = (g∗)∗, which can be expressed as

g∗∗(x) = sup
y∈C

{⟨y, x⟩H − g∗(x)}, ∀x ∈ H. (6.2.29)

It is easy to see that

g∗∗(x) ⩽ g(x), ∀x ∈ C. (6.2.30)

Definition 6.2.7. A closed convex cone C is said to have the Fenchel–Moreau property if

the following holds: for every g : C → (−∞,∞] not identically equal to ∞, we have that

g∗∗ = g on C if and only if g is convex, lower semicontinuous and C∗-nondecreasing.

In Section 6.5, we will show that the cones relevant to the spin glass models have the

Fenchel–Moreau property. The goal of this subsection is to show that a version of the Hopf

formula on cones is a viscosity solution. In [75], Hopf proposed this formula as a solution

given that the initial condition is convex or concave, which was later confirmed rigorously
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in [84].

Proposition 6.2.8 (Hopf formula). In addition to (A1)–(A2), suppose that C has the

Fenchel–Moreau property and that ψ : C → R is convex, Lipschitz and C∗-nondecreasing.

Then, f : R+ × C → R given by

f(t, x) = sup
z∈C

inf
y∈C

{⟨z, x− y⟩H + ψ(y) + tH(z)} , ∀(t, x) ∈ R+ × C, (6.2.31)

is a Lipschitz viscosity solution of HJ(H, C,H;ψ).

We will also need the following equivalent forms of the Hopf formula (6.2.31):

f(t, x) = sup
z∈C

{⟨z, x⟩H − ψ∗(z) + tH(z)} (6.2.32)

= (ψ∗ − tH)∗(x). (6.2.33)

Remark 6.2.9. For concave initial condition ψ, one would expect that the following version

of Hopf formula,

f(t, x) = inf
z∈C

sup
y∈C

{⟨z, x− y⟩H + ψ(y) + tH(z)} , ∀(t, x) ∈ R+ × C, (6.2.34)

is a viscosity solution. However, it is seemingly not valid here. Let us briefly explain this.

In the proof of Proposition 6.2.8, we will need the assumption that H is C∗-nondecreasing

in several places, for instance, in the derivation of (6.2.40). Attempts to verify that for-

mula (6.2.34) is a solution fail at these places, where the monotonicity of H only yields

inequalities in undesired directions.

We check the following in order: initial condition, semigroup property (or dynamic program-

ming principle), Lipschitzness, that the Hopf formula gives a subsolution, and that the Hopf

formula gives a supersolution.
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Verification of the initial condition

Using (6.2.33), we have f(0, ·) = ψ∗∗. Then, the Fenchel–Moreau property of C ensures that

ψ∗∗ = ψ.

Semigroup property

For f given in (6.2.31), we want to show, for all s ⩾ 0,

f(t+ s, x) = sup
z∈C

inf
y∈C

{⟨z, x− y⟩H + f(t, y) + sH(z)} ,

or, in a more compact form,

f(t+ s, ·) = (f∗(t, ·)− sH)∗ . (6.2.35)

In view of the Hopf formula (6.2.33), this is equivalent to

(ψ∗ − (t+ s)H)∗ = ((ψ∗ − tH)∗∗ − sH)∗ . (6.2.36)

Since the Fenchel transform is order-reversing, (6.2.30) implies that

((ψ∗ − tH)∗∗ − sH)∗ ⩾ (ψ∗ − (t+ s)H)∗ . (6.2.37)

To see the other direction, we use (6.2.30) to get

s

t+ s
ψ∗ +

t

t+ s
(ψ∗ − (t+ s)H)∗∗ ⩽ ψ∗ − tH.

For any g, it can be readily checked that g∗ is convex, lower semicontinuous, and C∗-

nondecreasing. Taking the monotone biconjugate in the above display and applying the

Fenchel–Moreau property of C, we have

s

t+ s
ψ∗ +

t

t+ s
(ψ∗ − (t+ s)H)∗∗ ⩽ (ψ∗ − tH)∗∗.
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Then, we rearrange terms and use (6.2.30) to see

(ψ∗ − (t+ s)H)∗∗ − (ψ∗ − tH)∗∗ ⩽
s

t
((ψ∗ − tH)∗∗ − ψ∗) ⩽ −sH,

and thus

(ψ∗ − (t+ s)H)∗∗ ⩽ (ψ∗ − tH)∗∗ − sH.

Taking the monotone conjugate on both sides, using its order-reversing property, and invok-

ing the Fenchel–Moreau property of C, we get

(ψ∗ − (t+ s)H)∗ ⩾ ((ψ∗ − tH)∗∗ − sH)∗ ,

which together with (6.2.37) verifies (6.2.36).

Lipschitzness

Since ψ is Lipschitz, we have ψ∗(z) = ∞ outside the compact set B = {z ∈ C : |z|H ⩽

∥ψ∥Lip}. This together with (6.2.32) implies that for each x ∈ C, there is z ∈ B such that

f(t, x) = ⟨z, x⟩H − ψ∗(z) + tH(z). (6.2.38)

Using this and (6.2.32), we get that

f(t, x)− f(t, x′) ⩽
〈
z, x− x′

〉
H ⩽ ∥ψ∥Lip|x− x′|H, ∀x′ ∈ C.

By symmetry, we conclude that f(t, ·) is Lipschitz, and the Lipschitz coefficient is uniform

in t.
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To show the Lipschitzness in t, we fix any x ∈ C. Then, we have, for some z ∈ B,

f(t, x) = ⟨z, x⟩H − ψ∗(z) + tH(z) ⩽ f(t′, x) + (t− t′)H(z)

⩽ f(t′, x) + |t′ − t|

(
sup

|z|H⩽∥ψ∥Lip

|H(z)|

)
.

Again by symmetry, the Lipschitzness of f(·, x) is obtained, and its coefficient is independent

of x.

Combining these results, we conclude that f is Lipschitz.

Verification of the Hopf formula as a subsolution

Let ϕ : (0,∞) × C → R be smooth. Suppose that f − ϕ achieves a local maximum at

(t, x) ∈ (0,∞) × C. Arguing as above, there is z ∈ C such that (6.2.38) holds. By this

and (6.2.32), we have, for s ∈ [0, t] and h ∈ C,

f(t, x) ⩽ f(t− s, x+ h)− ⟨z, h⟩H + sH(z).

By the assumption on ϕ ensures that

f(t− s, x+ h)− ϕ(t− s, x+ h) ⩽ f(t, x)− ϕ(t, x).

for small s ∈ [0, t] and small h ∈ C. Then, we combine the above two inequalities to get

ϕ(t, x)− ϕ(t− s, x+ h) ⩽ −⟨z, h⟩H + sH(z), (6.2.39)

for sufficiently small s ⩾ 0 and h ∈ C. We can set s = 0, substitute εy for h for any y ∈ C

and sufficiently small ε > 0, and then send ε→ 0 to see ⟨y,∇ϕ(t, x)− z⟩H ⩾ 0 for all y ∈ C,

which implies that ∇ϕ(t, x)− z ∈ C∗. Since H is C∗-nondecreasing, this implies

H(∇ϕ(t, x)) ⩾ H(z). (6.2.40)
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Then, we set h = 0 in (6.2.39), take s→ 0 to obtain ∂tϕ(t, x) ⩽ H(z), which along with the

above display gives

∂tϕ(t, x)− H(∇ϕ(t, x)) ⩽ 0.

Hence, we conclude that f is a viscosity subsolution.

Verification of the Hopf formula as a supersolution

The idea of proof in this part can be seen in [84, Proof of Proposition 1]. Let (t, x) ∈

(0,∞) × C be a local minimum point for f − ϕ. Due to (6.2.32), f is convex in both

variables. Since C is also convex, we have, for all (t′, x′) ∈ (0,∞)× C and all λ ∈ (0, 1],

f(t′, x′)− f(t, x) ⩾
1

λ

(
f
(
t+ λ(t′ − t), x+ λ(x′ − x)

)
− f(t, x)

)
.

For any fixed (t′, x′) and sufficiently small λ > 0, the local minimality of f − ϕ at (t, x)

implies that

f
(
t+ λ(t′ − t), x+ λ(x′ − x)

)
− f(t, x) ⩾ ϕ

(
t+ λ(t′ − t), x+ λ(x′ − x)

)
− ϕ(t, x).

Using the above two displays and setting λ→ 0, we obtain

f(t′, x′)− f(t, x) ⩾ r(t′ − t) +
〈
∇ϕ(t, x), x′ − x

〉
H (6.2.41)

where, for convenience, we set

r = ∂tϕ(t, x). (6.2.42)

Before proceeding, we make a digression to convex analysis. For every convex g : H →
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(−∞,∞] and every y ∈ H, the subdifferential of g is defined by

∂g(y) =
{
z ∈ H : g(y′) ⩾ g(y) +

〈
z, y′ − y

〉
H , ∀y

′ ∈ H
}
. (6.2.43)

For any convex set E ⊆ H, the outer normal cone to E at y ∈ H is defined to be

nE(y) =
{
z ∈ H :

〈
z, y′ − y

〉
H ⩽ 0, ∀y′ ∈ E

}
.

Since f(t, ·) is convex, setting t′ = t in (6.2.41), we have

∇ϕ(t, x) ∈ ∂f(t, x). (6.2.44)

Here, ∂f(t, x) stands for the subdifferential of f(t, ·) at x. We need the following lemma

characterizing subdifferentials in finite dimensions (c.f. [105, Theorem 25.6]).

Lemma 6.2.10. Let g : H → (−∞,∞] be lower semicontinuous, and convex. If {g < ∞}

has nonempty interior in H, then

∂g(x) = cl (convA(x)) + n{g<∞}(x), ∀x ∈ {g <∞}

where A(x) is the set of all limits of sequences of the form (∇g(xn))∞n=1 such that

limn→∞ xn = x and g is differentiable at every xn.

Since f(t, ·) : C → R is convex and continuous, extending f(t, ·) by setting f(t, x) = ∞

for x ̸∈ C, we can ensure this extension is lower semicontinuous and convex and thus

Lemma 6.2.10 is applicable to the extended f(t, ·). Moreover, by this extension, we have

{f(t, ·) <∞} = C and thus n{f(t,·)<∞}(x) = nC(x), for every x ∈ C.

Invoking Lemma 6.2.10 to (6.2.44), we can express

∇ϕ(t, x) = a+ b (6.2.45)
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where b ∈ nC(x) and a belongs to the closed convex hull of limit points of the form

limn→∞∇f(t, xn) where limn→∞ xn = x and f(t, ·) is differentiable at each xn.

Since the supremum in (6.2.32) is taken over C, we can see that f(t, ·) is C∗-nondecreasing

on C. Then, by Lemma 6.1.2, we can see that the differential of f whenever exists always

belongs to C, which implies that

a ∈ C. (6.2.46)

By the definition of nC(x) and that of C∗ in (6.1.4), it can seen that −b ∈ C∗. This along

with (6.2.45) implies

a ∈ ∇ϕ(t, x) + C∗. (6.2.47)

By Lemma 6.2.10, the definition of a and an easy observation that 0 ∈ n(x), we can deduce

that a ∈ ∂f(t, x), which due to the definition of subdifferential in (6.2.43) further implies

f(t, x′)− f(t, x) ⩾
〈
a, x′ − x

〉
H , ∀x′ ∈ C.

Then, we set x′ = x in (6.2.41) and use the above display to get

f(t′, x′)− f(t, x) ⩾ r(t′ − t) +
〈
a, x′ − x

〉
H , ∀(t′, x′) ∈ R+ × C. (6.2.48)

Now, we return to the proof. For each s ⩾ 0, we define

ηs(x
′) = f(t, x)− rs+

〈
a, x′ − x

〉
H , ∀x′ ∈ C.

Setting t′ = t− s in (6.2.48), for s ∈ [0, t], we have

f(t− s, x′) ⩾ ηs(x
′), ∀x′ ∈ C.
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Applying the order-reversing property of the monotone conjugate twice, we obtain from the

above display that

(f∗(t− s, ·)− sH)∗ ⩾ (η∗s − sH)∗ .

Due to the semigroup property (6.2.35), this yields

f(t, ·) ⩾ (η∗s − sH)∗ , ∀s ∈ [0, t].

By (6.2.46) and the definition of the monotone conjugate in (6.1.7), the above yields

f(t, x) ⩾ ⟨a, x⟩H − η∗s(a) + sH(a).

On the other hand, using the definition of ηs, we can compute

η∗s(a) = −f(t, x) + rs+ ⟨a, x⟩H .

Combining the above two displays with (6.2.42), we arrive at

(∂tϕ− H(a)) (t, x) ⩾ 0.

Lastly, (6.2.47) and the fact that H is C∗-nondecreasing imply H(a) ⩾ H(∇ϕ(t, x)), which

along with the above display verifies that f is a supersolution.

6.3. Equations on an infinite-dimensional cone

For a fixed positive integer D, let SD be the space of D×D-symmetric matrices, and SD+ be

the cone of D × D-symmetric positive semidefinite matrices. We equip SD with the inner

product a · b = tr(ab), for all a, b ∈ SD. We can view SD+ as a closed convex cone in the

Hilbert space SD. Naturally, SD is endowed with the Borel sigma-algebra generated by the
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norm topology. For a, b ∈ SD, we write

a ⩾ b, if a− b ∈ SD+ , (6.3.1)

which defines a partial order on SD.

We work with the infinite-dimensional Hilbert space

H = L2([0, 1), SD) (6.3.2)

namely, SD-valued squared integrable functions on [0, 1) endowed with the Borel sigma-

algebra B[0,1) and the Lebesgue measure. In addition to the Hilbert space H, we will also

need

Lp = Lp([0, 1), SD+) (6.3.3)

for p ∈ [1,∞], whose norm is denoted by | · |Lp .

We consider the following cone

C =
{
µ : [0, 1) → SD+

∣∣ µ is right-continuous with left limits, and nondecreasing
}
. (6.3.4)

Here, µ is said to be nondecreasing if µ(t)− µ(s) ∈ SD+ whenever t ⩾ s. We view C ⊆ H by

identifying every element in C with its equivalence class in H. Since {1[t,1)}t∈[0,1) ⊆ C, it is

immediate that C spans H. More precisely, (6.1.3) holds.

In this section, we study HJ(H, C,H) for H and C given above. We start by introducing

more notations and basic results in Section 6.3.1. The main results of this section are scat-

tered in subsections afterwards. The comparison principle is given in Proposition 6.3.8.

In Section 6.3.3, we show that any limit of finite-dimensional approximations is a viscosity

solution (Proposition 6.3.9), and provide sufficient conditions for such a convergence (Propo-
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sition 6.3.10). In Section 6.3.4, we show that the Hopf–Lax formula and the Hopf formula

are stable, when passed to the limit (Propositions 6.3.12 and 6.3.13). Lastly, in Section 6.3.5,

we briefly discuss a way to make sense of the boundary of C in a weaker notion. Results

there are not needed elsewhere.

Throughout, we denote elements in C by µ, ν, ρ; generic elements in H by ι, κ; and elements

in finite-dimensional spaces by x, y, z.

6.3.1. Preliminaries

We will introduce definitions and notations related to partitions of [0, 1), by which the finite

approximations of HJ(H, C,H) will be indexed. Projection maps and lifting maps between

finite-dimensional approximations and their infinite-dimensional counterparts will be used

extensively. Their basic properties are recorded in Lemma 6.3.3. We will also need the

projections of C and their dual cones, the properties of which are collected in Lemmas 6.3.4

and 6.3.5. Lastly, in Lemma 6.3.6, we clarify the relation between the differentiability in

finite-dimensional approximations and the one in infinite dimensions.

Partitions

We denote the collection of ordered tuples as partitions of [0, 1) by

J = ∪n∈N {(t1, t2, . . . , tn) ∈ (0, 1]n : 0 < t1 < t2 < · · · < tn−1 < tn = 1} .

For every such tuple j ∈ J, we set t0 = 0, and denote by |j| the cardinality of j.

A natural partial order on J is given by the set inclusion. Under this partial order, a

subcollection J̃ ⊆ J is said to be directed if for every pair j, j′ ∈ J̃, there is j′′ ∈ J̃ such that

j, j′ ⊆ j′′.

For each j ∈ J, we associate a sigma-algebra Fj on [0, 1) generated by {1[tk,tk+1)}tk∈j . A

subcollection J̃ ⊆ J is said to be generating if J̃ is directed, and the collection of sigma-

algebras {Fj}j∈J̃ generates the Borel sigma-algebra on [0, 1).
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Let Junif be the collection of uniform partitions. A subcollection J̃ ⊆ J is said to be good if

J̃ ⊆ Junif and J̃ is generating. Examples of good collections of partitions include Junif itself,

and the collection of dyadic partitions.

In the following, we denote by Jgen a generic generating collection of partitions, and by Jgood

a generic good collection.

Then, we introduce the notions of nets and convergence of a net. For any directed subcol-

lection J̃ ⊆ J, a collection of elements (xj)j∈J̃, indexed by J̃, from some set X is called a

net in X . If X is a topological space, a net (xj)j∈J̃ is said to converge in X to x if for every

neighborhood N of x, there is jN ∈ J such that xj ∈ N for every j ∈ J̃ satisfying j ⊃ jN .

In this case, we write lim
j∈J̃ xj = x in X .

For each j ∈ J and every ι ∈ L1, we define

ι(j)(t) =

|j|∑
k=1

1[tk−1,tk)(t)
1

tk − tk−1

ˆ tk

tk−1

ι(s)ds, ∀t ∈ [0, 1). (6.3.5)

It is easy to see that ι(j) is characterized by the condition expectation of ι on Fj , namely,

ι(j)(U) = E [ι(U)|Fj ] . (6.3.6)

Here, and throughout, U is uniform random variable on [0, 1) defined on the probability space

([0, 1),B[0,1),Leb). By Jensen’s inequality, we have ι(j) ∈ Lp if ι ∈ Lp, for any p ∈ [1,∞),

which also holds obviously for p = ∞. In particular, ι(j) ∈ H if ι ∈ H. It is straightforward

to see that ι(j) ∈ C if ι ∈ C.

Projections and lifts

We introduce finite-dimensional Hilbert spaces indexed by J. For each j ∈ J, we define

Hj = (SD)|j| (6.3.7)

302



equipped with the inner product

⟨x, y⟩Hj =

|j|∑
k=1

(tk − tk−1)xk · yk, ∀x, y ∈ Hj . (6.3.8)

For each j ∈ J, we define the projection map pj : H → Hj by

pjι =

(
1

tk − tk−1

ˆ tk

tk−1

ι(s)ds

)
k∈{1,...,|j|}

, ∀ι ∈ H. (6.3.9)

Correspondingly, we define the associated lift map lj : Hj → H:

ljx =

|j|∑
k=1

xk1[tk−1,tk), ∀x ∈ Hj . (6.3.10)

We define projections and lifts acting on functions.

Definition 6.3.1 (Lifts and projects of functions). Let j ∈ J.

• For any E ⊆ H and any g : E → R, its j-projection gj : pjE → R is given by gj = g ◦ lj .

• For any T × E ⊆ R+ ×H and any f : T × E → R, its j-projection f j : T × pjE → R

is given by f j(t, ·) = f(t, lj(·)) for each t ∈ T .

• For any E ⊆ Hj and any function g : E → R, its lift g↑ : ljE → R, is given by

g↑ = g ◦ pj .

• for any T × E ⊆ R+ ×Hj and any f : T × E → R, its lift f↑ : T × ljE → R, is defined

by f↑(t, ·) = f(t,pj(·)) for each t ∈ T .

Remark 6.3.2. Let us clarify our use of indexes. Objects with superscript j, for instance, Hj ,

Cj (introduced later in (6.3.11)), f j , are always projections of infinite-dimensional objects

either mapped directly by pj or induced by pj . Superscript (j) is reserved for (6.3.5).

Other objects directly associated with j or whose existence depends on j are labeled with
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subscript j. For example, the solution to finite-dimensional approximation corresponding to

the partition j will be denoted as fj .

We record basic properties of projections and lifts in the following lemma.

Lemma 6.3.3. For every j ∈ J, the following hold:

1. pj and lj are adjoint to each other: ⟨pjι, x⟩Hj = ⟨ι, ljx⟩H for every ι ∈ H and x ∈ Hj;

2. lj is isometric: ⟨ljx, ljy⟩H = ⟨x, y⟩Hj for every x, y ∈ Hj;

3. pj lj is the identity map on Hj: pj ljx = x for every x ∈ Hj;

4. ljpjι = ι(j) for every ι ∈ H;

5. pj is a contraction: |pjι|Hj ⩽ |ι|H, or equivalently |ι(j)|H ⩽ |ι|H, for every ι ∈ H;

6. if j′ ∈ J satisfies j ⊆ j′, then pj lj′pj′ι = pjι for every ι ∈ H.

In addition, the following results on convergence hold:

7. for every ι ∈ H, limj∈Jgen ι
(j) = ι in H;

8. for any net (ιj)j∈Jgen in H, if limj∈Jgen ιj = ι in H, then limj∈Jgen ι
(j)
j = ι in H.

Proof. Part (1). We can compute:

⟨pjι, x⟩Hj =

|j|∑
k=1

(tk − tk−1)

(
1

tk − tk−1

ˆ tk

tk−1

ι(s)ds

)
· xk

=

|j|∑
k=1

ˆ tk

tk−1

ι(s) · xkds =
ˆ 1

0
ι(s) ·

 |j|∑
k=1

1[tk−1,tk)(s)xk

 ds = ⟨ι, ljx⟩H .

Part (2). We use (6.3.10) to compute explicitly to get the desired result.

Part (3). Definitions of pj in (6.3.9) and lj in (6.3.10) directly yield (3).
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Part (4). Comparing the definitions of pj , lj and ι(j) in (6.3.5), we can easily deduce (4).

Part (5). We use (6.3.6) and Jensen’s equality to see

∣∣∣ι(j)∣∣∣2
H
= E

∣∣∣ι(j)(U)
∣∣∣2 = E|E[ι(U)|Fj ]|2 ⩽ E|ι(U)|2 = |ι|2H.

The equivalent formulation follows from (2) and (4).

Part (6). We can directly use the definitions of projections and lifts. Heuristically, j is a

coarser partition and j′ is a refinement of j. The map lj′pj′ has the effect of locally averaging

ι with respect to the finer partition j′. On the other hand, pj is defined via local averaging

with respect to the coarser j. The result follows from the fact that local averaging first with

respect to a finer partition and then to a coarser partition is equivalent to local averaging

directly with respect to the coarser one.

Part (7). We argue by contradiction. We assume that there exists ε > 0 such that for

every j ∈ Jgen, there is some j′ ⊃ j satisfying |ι(j′) − ι|H ⩾ ε. Let us construct a sequence

recursively. We start by choosing j1 ∈ Jgen to satisfy |ι(j1) − ι|H ⩾ ε. For m > 1, we choose

jm+1 ⊃ (jm ∪ j′m) such that |ι(jm+1) − ι|H ⩾ ε, where we let j′m ∈ Jgen be any partition

satisfying max1⩽i⩽|j′m|{|ti − ti−1|} < 1
m . Denote this sequence by J′gen, which is clearly

directed and generating.

By (6.3.6), for jm, jn ∈ J′gen such that n ⩾ m, we have

ι(jm)(U) = E [ι(U)|Fjm ] = E [E [ι(U)|Fjn ] |Fjm ] = E
[
ι(jn)(U)|Fjm

]
,

which implies that (ι(jn))n∈N is a martingale with respect to (Fjn)n∈N. By the martingale

convergence theorem, this sequence converges to ι in H as n→ ∞, which is a contradiction

to our construction of the sequence.
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Part (8). By the triangle inequality and (5), we have

∣∣∣ι(j)j − ι
∣∣∣
H
⩽
∣∣∣ι(j)j − ι(j)

∣∣∣
H
+
∣∣∣ι(j) − ι

∣∣∣
H
⩽ |ιj − ι|H +

∣∣∣ι(j) − ι
∣∣∣
H
.

Then, (8) follows from (7).

Cones and dual cones

For each j ∈ J, we introduce

Cj = {x ∈ Hj : 0 ⩽ x1 ⩽ x2 ⩽ · · · ⩽ x|j|}, (6.3.11)

where we used the notation in (6.3.1). It is clear that Cj and Hj satisfy (6.1.3).

Recall the definition of dual cones in (6.1.4).

Lemma 6.3.4 (Characterizations of dual cones).

1. For each j ∈ J, the dual cone of Cj in Hj is

(Cj)∗ =

x ∈ Hj :

|j|∑
i=k

(ti − ti−1)xi ∈ SD+ , ∀k ∈ {1, 2, . . . , |j|}

 .

2. The dual cone of C in H is

C∗ =

{
ι ∈ H :

ˆ 1

t
ι(s)ds ∈ SD+ , ∀t ∈ [0, 1)

}
.

Proof. Part (1). We denote the set on the right-hand side by RHS. We first show that

(Cj)∗ ⊆ RHS. Let x ∈ (Cj)∗. For every k and every a ∈ SD+ , we can choose y ∈ Cj such that

0 = y1 = · · · = yk−1 and yk = · · · = y|j| = a. Then, we have

|j|∑
i=k

(ti − ti−1)xi · a =

|j|∑
i=k

(ti − ti−1)xi · yi ⩾ 0,
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which implies that x ∈ RHS. In the other direction, we assume x ∈ RHS. For every y ∈ Cj ,

by setting y0 = 0, since yk − yk−1 ∈ SD+ for all k, we have

|j|∑
i=1

(ti − ti−1)xi · yi =
|j|∑
k=1

 |j|∑
i=k

(ti − ti−1)xi · (yk − yk−1)

 ⩾ 0,

which gives that x ∈ (Cj)∗. Now we can conclude that (Cj)∗ = RHS as desired.

Part (2). We denote the set on the right-hand side by RHS. Let ι ∈ C∗. For any a ∈ SD+

and t ∈ [0, 1), we set µ = a1[t,1). It is clear that µ ∈ C. Due to ⟨ι, µ⟩H ⩾ 0 by duality, we

deduce that ι ∈ RHS.

Now, let ι ∈ RHS. We argue by contradiction and assume ι ̸∈ C∗. Then, by definition,

there is µ ∈ C such that ⟨ι, µ⟩H < 0. By Lemma 6.3.3 (7), there is a partition j such that〈
ι(j), µ(j)

〉
H < 0. Due to Lemma 6.3.3 (2) and (4), this can be rewritten as ⟨pjι, pjµ⟩Hj < 0.

On the other hand, by the definition of pj in (6.3.9), we can compute that, for every k,

|j|∑
i=k

(ti − ti−1)(pjι)i =

ˆ 1

tk−1

ι(s)ds ∈ SD+

by the assumption that ι ∈ RHS. Hence, by (1), we have ι ∈ (Cj)∗. Since µ is nondecreasing

as µ ∈ C, it is easy to see that pjµ ∈ Cj . The detailed computation can be seen in (6.3.13).

Therefore, we must have ⟨pjι, pjµ⟩Hj ⩾ 0, reaching a contradiction.

Lemma 6.3.5. For every j ∈ J, the following hold:

1. lj(Cj) ⊆ C;

2. lj((Cj)∗) ⊆ C∗;

3. pj(C) = Cj;

4. pj(C∗) = (Cj)∗;
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5. µ ∈ µ(j) + C∗, for every µ ∈ C.

Proof. We first show that

pj(C) ⊆ Cj (6.3.12)

and then verify each claim. For every µ ∈ C, it follows from the definition that pjµ ∈ Hj .

Since µ is nondecreasing, setting (pjµ)0 = 0 by our convention, we get,

(pjµ)k − (pjµ)k−1 =
1

tk − tk−1

ˆ tk

tk−1

µ(s)ds− 1

tk−1 − tk−2

ˆ tk−1

tk−2

µ(s)ds

⩾ µ(tk−1)− µ(tk−1) = 0, (6.3.13)

for k ∈ {2, · · · , |j|}. Clearly when k = 1, (pjµ)1 = 1
t1

´ t1
0 µ(s)ds ∈ SD+ . Hence, we have

pjµ ∈ Cj and thus (6.3.12).

Part (1). For any x ∈ Cj , recall the definition of ljx in (6.3.10). Since xk ⩾ xk−1 for each k,

it is clear that ljx is nondecreasing and thus belongs to C.

Part (2). Let x ∈ (Cj)∗. For every µ ∈ C, recalling the definition of pjµ in (6.3.9), we have

ˆ 1

0

|j|∑
k=1

1[tk−1,tk)(s)xi · µ(s)ds =
|j|∑
k=1

ˆ tk

tk−1

xk · µ(s)ds

=

|j|∑
k=1

(tk − tk−1)xk ·

(
1

tk − tk−1

ˆ tk

tk−1

µ(s)ds

)

=

|j|∑
k=1

(tk − tk−1)xk · (pjµ)k ⩾ 0,

where the last inequality holds due to x ∈ (Cj)∗ and pjµ ∈ Cj by (6.3.12). This implies that

ljx ∈ C∗, and thus lj((Cj)∗) ⊆ C∗.

Part (3). For every x ∈ Cj , by (1), we have ljx ∈ C. Lemma 6.3.3 (3) implies that x = pj ljx.

Hence, we get Cj ⊆ pj(C). Then, (3) follows from this and (6.3.12).
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Part (4). Let ι ∈ C∗. For every x ∈ Cj , we have by Lemma 6.3.3 (1) that ⟨pjι, x⟩Hj =

⟨ι, ljx⟩H ⩾ 0 due to ljx ∈ C ensured by (1). Hence, we have pj(C∗) ⊆ (Cj)∗. For the other

direction, let x ∈ (Cj)∗. Lemma 6.3.3 (3) gives x = pj ljx. Invoking (2), we can deduce that

(Cj)∗ ⊆ pj(C∗), completing the proof of (4).

Part (5). We show that µ − µ(j) ∈ C∗. Let τ ∈ [0, 1) and a ∈ SD+ . We choose tk0 ∈ j such

that τ ∈ [tk0−1, tk0). Using the definition of µ(j) in (6.3.5), we can compute that

ˆ 1

τ

(
µ− µ(j)

)
(s)ds

=

(ˆ tk0

τ
µ(s)ds+

ˆ 1

tk0

µ(s)ds

)
−

(
tk0 − τ

tk0 − tk0−1

ˆ tk0

tk0−1

µ(s)ds+

ˆ 1

tk0

µ(s)ds

)
,

=

ˆ tk0

τ
µ(s)ds− tk0 − τ

tk0 − tk0−1

ˆ tk0

tk0−1

µ(s)ds

= (tk0 − τ)

(
1

tk0 − τ

ˆ tk0

τ
µ(s)ds− 1

tk0 − tk0−1

ˆ tk0

tk0−1

µ(s)ds

)
⩾ 0,

where the last inequality follows from the fact that µ is nondecreasing. By Lemma 6.3.4 (2),

we conclude that µ− µ(j) ∈ C∗ as desired.

Derivatives

Recall Definition 6.1.3 (3) for the differentiability of functions defined on C. We denote by

∇j the differential operator on functions defined on Cj .

Lemma 6.3.6. For every j ∈ J, the following hold.

1. If g : C → R is differentiable at ljx for some x ∈ Cj. Then, gj : Cj → R is differentiable

at x and its differential is given by ∇jg
j(x) = pj(∇g(ljx)).

2. If g : Cj → R is differentiable at x for some x ∈ Cj. Then, g↑ : C → R is differentiable

at every µ ∈ C satisfying pjµ = x and its differential is given by ∇g↑(µ) = lj(∇jg(x)).
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Proof. Part (1) Recall that by definition, gj = g ◦ lj . For every y ∈ Cj , we can see that

gj(y)− gj(x) = g ◦ lj(y)− g ◦ lj(x)

= ⟨∇g(ljx), ljy − ljx⟩H + o (|ljy − ljx|H) ,

= ⟨pj(∇g(ljx)), y − x⟩Hj + o (|y − x|Hj ) ,

where the last equality follows from Lemma 6.3.3 (1) and (2).

Part (2). Recall that by definition, g↑ = g ◦ pj . Let µ ∈ C satisfy pjµ = x. Then for any

ν ∈ C, we get

g↑(ν)− g↑(µ) = g ◦ pj(ν)− g ◦ pj(µ),

= ⟨∇jg(x),pjν − x⟩Hj + o (|pjν − x|Hj ) ,

= ⟨lj(∇jg(x)), ν − µ⟩H + o (|ν − µ|H) ,

where we used Lemma 6.3.3 (1) and (5).

6.3.2. Comparison principle

To compensate for the lack of compactness in infinite dimensions, we need Stegall’s varia-

tional principle [110, Theorem on page 174] (see also [32, Theorem 8.8]).

Theorem 6.3.7 (Stegall’s variational principle). Let E be a convex and weakly compact set

in a separable Hilbert space X and g : E → R be an upper semi-continuous function bounded

from above. Then, for every δ > 0, there is ι ∈ X satisfying |ι|X ⩽ δ such that g + ⟨ι, ·⟩X

achieves maximum on E.

Originally, E is only required to satisfy the Radon-Nikodym property which is weaker than

being convex and weakly compact (see discussion on [110, page 173]).

The goal of this subsection to prove the following.
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Proposition 6.3.8 (Comparison principle). Under assumption (A1), let u be a Lipschitz

viscosity subsolution and v be a Lipschitz viscosity supersolution of HJ(H, C,H). If u(0, ·) ⩽

v(0, ·), then u ⩽ v.

Proof of Proposition 6.3.8. It suffices to show u(t, ·) − v(t, ·) ⩽ 0 for all t ∈ [0, T ) for any

T > 0. Henceforth, we fix any T > 0. We set L = ∥u∥Lip ∨ ∥v∥Lip, M = 2L + 3 and V to

be the Lipschitz coefficient of H restricted to the centered ball with radius 2L+M + 3. We

proceed in steps.

Step 1. Let θ : R → R+ be a nondecreasing smooth function satisfying

|θ′| ⩽ 1 and (r − 1)+ ⩽ θ(r) ⩽ r+, ∀r ∈ R,

where θ′ is the derivative of θ. For R > 1 to be determined, we define

Φ(t, µ) =Mθ
((

1 + |µ|2H
) 1

2 + V t−R
)
, ∀(t, µ) ∈ R+ × C.

It is immediate that

sup
(t,µ)∈R+×C

|∇Φ(t, µ)|H ⩽M, (6.3.14)

∂tΦ ⩾ V |∇Φ|H, (6.3.15)

Φ(t, µ) ⩾M(|µ|H −R− 1)+, ∀(t, µ) ∈ R+ × C. (6.3.16)

For ε, σ ∈ (0, 1) to be determined, we consider

Ψ(t, µ, t′, µ′) = u(t, µ)− v(t′, µ′)− 1

2ε
(|t− t′|2 + |µ− µ′|2H)− Φ(t, µ)− σt− σ

T − t
,

∀(t, µ, t′, µ′) ∈ [0, T )× C × R+ × C.
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Setting C0 = u(0, 0)− v(0, 0), and using (6.3.16) and the definition of L, we have

Ψ(t, µ, t′, µ′) ⩽ C0 + L(2|t|+ 2|µ|H + |t− t′|+ |µ− µ′|H)−
1

2ε
(|t− t′|2 + |µ− µ′|2H)

(6.3.17)

−M(|µ|H −R− 1)+ − σ

T − t
.

Hence, by the definition of M , Ψ is bounded from above and its supremum is achieved over

a bounded set. Invoking Theorem 6.3.7, for δ ∈ (0, 1) to be chosen, there is (s, ι, s′, ι′) ∈

R×H× R×H satisfying

|s|, |ι|H, |s′|, |ι′|H ⩽ δ, (6.3.18)

such that the function

Ψ(t, µ, t′, µ′) = Ψ(t, µ, t′, µ′)− st− ⟨ι, µ⟩H − s′t′ −
〈
ι′, µ′

〉
H ,

for all (t, µ, t′, µ′) ∈ [0, T )× C × R+ × C achieves its maximum at (t, µ, t
′
, µ′).

Step 2. We derive bounds on |µ|H, |µ− µ′|H and |t− t
′|. Using Ψ(0, 0, 0, 0) ⩽ Ψ(t, µ, t

′
, µ′),

(6.3.17) and t ⩽ T , we have

C0 ⩽
ε

T
+Ψ(t, µ, t

′
, µ′) + 2δ|µ|H + 2Tδ + δ|t− t

′|+ δ|µ− µ′|H

⩽
ε

T
+ C0 + 2LT + (2L|µ|H −M(|µ|H −R− 1)+) +

(
L|t− t

′| − 1

2ε
|t− t

′|2
)

+

(
L|µ− µ′|H − 1

2ε
|µ− µ′|2H

)
+ 2δ|µ|H + 2Tδ + δ|t− t

′|+ δ|µ− µ′|H

⩽ (2(L+ δ)|µ|H −M(|µ|H −R− 1)+) +
( ε
T

+ C0 + 2LT + ε(L+ δ)2 + 2Tδ
)
.

By this and the definition of M , there is C1 > 0 such that, for all ε, δ ∈ (0, 1) and all R > 1,

|µ|H ⩽ C1R. (6.3.19)
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Since

0 ⩾ Ψ(t, µ, t
′
, µ)−Ψ(t, µ, t

′
, µ′) = v(t

′
, µ′)− v(t

′
, µ) +

1

2ε
|µ− µ′|2H +

〈
ι′, µ′ − µ

〉
H ,

by the definition of L and (6.3.18), we can get

|µ− µ′|H ⩽ 2(L+ δ)ε. (6.3.20)

Similarly, by

0 ⩾ Ψ(t, µ, t, µ′)−Ψ(t, µ, t
′
, µ′) = v(t

′
, µ′)− v(t, µ′) +

1

2ε
|t− t

′|2 + s′(t
′ − t),

we have

|t− t
′| ⩽ 2(L+ δ)ε. (6.3.21)

Step 3. We show that for every σ, ε ∈ (0, 1), every R > 1, and sufficiently small δ, we have

either t = 0 or t′ = 0 We argue by contradiction and assume that t > 0 and t
′
> 0. Since

the function

(t, µ) 7→ Ψ(t, µ, t
′
, µ′)

achieves its maximum at (t, µ) ∈ (0, T ) × C, by the assumption that u is a subsolution, we

have

1

ε
(t− t

′
) + ∂tΦ(t, µ) + σ + σ(T − t)−2 + s− H

(
1

ε
(µ− µ′) +∇Φ(t, µ) + ι

)
⩽ 0. (6.3.22)

Since the function

(t′, µ′) 7→ Ψ(t, µ, t′, µ′)
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achieves its maximum at (t
′
, µ′) ∈ (0,∞)× C, by the assumption that v is a supersolution,

we have

1

ε
(t− t

′
)− s′ − H

(
1

ε
(µ− µ′)− ι′

)
⩾ 0. (6.3.23)

By (6.3.14), (6.3.18) and (6.3.20), for ε, δ ∈ (0, 1), we have

∣∣∣∣1ε (µ− µ′) +∇Φ(t, µ) + ι

∣∣∣∣
H
,

∣∣∣∣1ε (µ− µ′)− ι′
∣∣∣∣
H
⩽ 2L+M + 3.

Taking the difference of terms in (6.3.22) and (6.3.23), by the definition of L, (6.3.15) and

(6.3.18), we obtain

σ ⩽ −s− s′ + V |∇Φ(t, µ)|H + V (|ι|H + |ι′|H)− ∂tΦ(t, µ) ⩽ 2(1 + V )δ.

By making δ sufficiently small, we reach a contradiction, and thus we must have either t = 0

or t′ = 0.

Step 4. We conclude our proof. Let us consider the case t = 0. Fixing any (t, µ) ∈ [0, T )×C,

by Ψ(t, µ, t, µ) ⩽ Ψ(t, µ, t
′
, µ′), we have

Ψ(t, µ, t, µ) ⩽ Ψ(t, µ, t
′
, µ′) + δ(4T + 2|µ|H + 2C1R+ 2(L+ δ)ε)

where we used t, t < T , (6.3.18), (6.3.19) and (6.3.20). Due to u(0, ·) ⩽ v(0, ·) and t = 0,

using (6.3.20) and (6.3.21), we can see

Ψ(t, µ, t
′
, µ′) ⩽ u(0, µ)− v(t

′
, µ′) ⩽ v(0, µ)− v(t

′
, µ′) ⩽ L|t− t

′|+ L|µ− µ′|H

⩽ 4L(L+ δ)ε.
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Combining the above two displays and recalling the definition of Ψ, we get

u(t, µ)− v(t, µ) ⩽ Φ(t, µ) + σt+
σ

T − t
+ 4L(L+ δ)ε+ δ(4T + 2|µ|H + 2C1R+ 2(L+ δ)ε).

First sending δ → 0, then ε, σ → 0, and finally R → ∞, by the above and the definition of

Φ, we obtain u(t, µ)− v(t, µ) ⩽ 0 as desired. The case t′ = 0 is similar.

6.3.3. Convergence of approximations

Let us denote by HJ(H, C,H) the Hamilton–Jacobi equation (5.2.12) on cone C with nonlin-

earity H, and by HJ(H, C,H;ψ) the equation HJ(H, C,H) with initial condition ψ : C → R.

The following lemma shows that the lift of a finite-dimensional viscosity solution is a viscosity

solution in infinite-dimensions.

Proposition 6.3.9 (Limit of approximations is a solution). Suppose that H is continu-

ous. For each j ∈ Jgen, let fj be a viscosity subsolution (respectively, supersolution) of

HJ(Hj , Cj ,Hj). If f = limj∈Jgen f
↑
j in the local uniform topology, then f is a viscosity subso-

lution (respectively, supersolution) of HJ(H, C,H).

Proof. Suppose that {fj}j∈Jgen is a collection of viscosity subsolutions. Let us assume that

f − ϕ achieves a local maximum at (t, µ) ∈ (0,∞) × C for some smooth function ϕ. We

define

ϕ̃(s, ν) = ϕ(s, ν) + |s− t|2 + |ν − µ|2H, ∀(s, ν) ∈ R+ × C.

Then, there is some R > 0 such that

f(s, ν)− ϕ̃(s, v) = f(t, µ)− ϕ̃(t, µ)− |(s, ν)− (t, µ)|2R×H, ∀(s, ν) ∈ B (6.3.24)
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where

B = {(s, ν) ∈ (0,∞)× C : |(s, ν)− (t, µ)|R×H ⩽ 2R}.

Note that f − ϕ̃ achieves a local maximum at (t, µ) and that the derivatives of ϕ̃ coincide

with those of ϕ at (t, µ). For lighter notation, we replace ϕ by ϕ̃ henceforth. It is also clear

from Definition 6.1.3 (2) that ϕ is locally Lipschitz. Hence, there is L > 0 such that

|ϕ(s, ν)− ϕ(s′, ν ′)| ⩽ L|(s, ν)− (s′, ν ′)|R×H, ∀(s, ν), (s′, ν ′) ∈ B. (6.3.25)

For each j ∈ Jgen, we set

Bj = {(s, y) ∈ (0,∞)× Cj : |(s, y)− (t,pjµ)|R×Hj ⩽ R}.

By making 2R < |t| sufficiently small, we can ensure that both B and Bj are closed. Let

(tj , xj) ∈ Bj be the point at which fj − ϕj achieves the maximum over Bj . Here, ϕj is the

j-projection of ϕ given in Definition 6.3.1.

For any δ ∈ (0, 1), we choose j′ ∈ Jgen such that, for all j ∈ Jgen satisfying j ⊃ j′,

sup
B

∣∣∣f↑j − f
∣∣∣ < δ2

4
, (6.3.26)∣∣∣µ− µ(j)

∣∣∣
H
< R ∧ δ2

4L
. (6.3.27)

We claim that, for all j ∈ Jgen satisfying j ⊃ j′,

|(tj , ljxj)− (t, µ)|R×H < δ. (6.3.28)

We argue by contradiction and suppose that there is j ⊃ j′ such that

|(tj , ljxj)− (t, µ)|R×H ⩾ δ. (6.3.29)
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Before proceeding, we note that

|(tj , ljxj)− (t, µ)|R×H ⩽
∣∣∣(tj , ljxj)− (t, µ(j))∣∣∣

R×H
+
∣∣∣µ− µ(j)

∣∣∣
H
⩽ 2R (6.3.30)

where in the last inequality we used (6.3.27), and the fact that (tj , xj) ∈ Bj together with

Lemma 6.3.3 (2) and (4). Then, we have

fj(tj , xj)− ϕj(tj , xj) = f↑j (tj , ljxj)− ϕ(tj , ljxj)

⩽ f(tj , ljxj)− ϕ(tj , ljxj) +
δ2

4

⩽ f(t, µ)− ϕ(t, µ)− 3δ2

4

⩽ f↑j (t, µ)− ϕ(t, µ)− δ2

2

⩽ f↑j

(
t, µ(j)

)
− ϕ

(
t, µ(j)

)
− δ2

4

= fj (t,pjµ)− ϕj (t,pjµ)−
δ2

4

where the first and the last equalities follow from the definitions of lifts and projections

of functions in Definition 6.3.1 together with Lemma 6.3.3 (3) and (4); the first and third

inequalities follow from (6.3.26) and the fact that (tj , ljxj) ∈ B due to (6.3.30); the second

inequality follows from (6.3.29) and (6.3.24); the fourth inequality follows from the observa-

tion that f↑j (t, µ) = f↑j (t, µ
(j)) due to the definition of lifts of functions and Lemma 6.3.3 (4),

and (6.3.25) along with (6.3.27). The relation in the above display contradicts the fact the

maximality of fj − ϕj over Bj at (tj , xj). Hence, by contradiction, we must have (6.3.28)

and thus

lim
j∈Jgen

(tj , ljxj) = (t, µ) in (0,∞)× C. (6.3.31)

Using (6.3.31) and Lemma 6.3.3 (3) and (5), we also have that

limj∈Jgen |(tj , xj) − (t,pjµ)|R×Hj = 0. Hence, we deduce that, for sufficiently fine j ∈ Jgen,

(tj , xj) lies in the interior of Bj relative to (0,∞) × Cj . Since fj is a viscosity subsolution,
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we get that

(
∂tϕ

j − Hj
(
∇jϕ

j
))

(tj , xj) ⩽ 0. (6.3.32)

Using the definition of projections of functions, Lemma 6.3.6 (1), and Lemma 6.3.3 (4), we

have that

∂tϕ
j(t, xj) = ∂tϕ(t, ljxj), ∇jϕ

j(tj , xj) = pj (∇ϕ(tj , ljxj)) ,

Hj
(
∇jϕ

j(tj , xj)
)
= H

(
(∇ϕ(tj , ljxj))(j)

)
.

Then, using (6.3.31), the continuity of differentials (see Definition 6.1.3 (2)), and Lemma

6.3.3 (8), we can pass (6.3.32) to the limit to obtain that

(∂tϕ− H (∇ϕ)) (t, µ) ⩽ 0.

Hence, we have verified that f is a viscosity subsolution. The same argument also works for

viscosity supersolutions.

Recall that Junif is the collection of uniform partitions of [0, 1), which is generating in the

sense given in Section 6.3.1.

Proposition 6.3.10 (Convergence of approximations). In addition to (A1)–(A2), suppose

that ψ : C → R satisfies

|ψ(µ)− ψ(ν)| ⩽ C|µ− ν|Lp , (6.3.33)

for some C > 0 and p ∈ [1, 2). For every j ∈ Jgood, let fj be a viscosity solution of

HJ(Hj , Cj ,Hj ;ψj). Then, (f↑j )j∈Jgood converges in the local uniform topology to a Lipschitz
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function f : R+ × C → R satisfying f(0, ·) = ψ,

sup
t∈R+

∥f(t, ·)∥Lip ⩽ ∥ψ∥Lip, (6.3.34)

sup
µ∈C

∥f(·, µ)∥Lip ⩽ sup
ι∈H

|ι|⩽∥ψ∥Lip

|H(ι)|. (6.3.35)

To prove this result, we follow closely the proof of [96, Proposition 3.7]. We need the

following lemma.

Lemma 6.3.11. Under assumption (A2), let j, j′ ∈ J satisfy j ⊆ j′. If fj is a viscosity

subsolution (respectively, supersolution) of HJ(Hj , Cj ,Hj), then the function defined by

fj→j′(t, x) = fj(t,pj lj′x), ∀(t, x) ∈ R+ × (pj lj′)
−1(Cj) (6.3.36)

is a viscosity subsolution (respectively, supersolution) of HJ(Hj′ , (pj lj′)
−1(Cj),Hj′).

Proof. Setting C̃ = (pj lj′)
−1(Cj) for convenience, we suppose that fj→j′ − ϕ has a local

maximum at (t, x) ∈ (0,∞)× C̃ for some smooth function ϕ. We define

ϕj(s, y) = ϕ(s, x+ pj′ ljy − pj′ ljpj lj′x), ∀(s, y) ∈ R+ × Cj .

Using Lemma 6.3.3 (6) and (3), we can show

pj lj′
(
x+ pj′ ljy − pj′ ljpj lj′x

)
= pj ljy = y ∈ Cj (6.3.37)

for every y ∈ Cj , which implies that x + pj′ ljy − pj′ ljpj lj′x ∈ C̃ for every y ∈ Cj . Setting

y = pj lj′x, we want to show that fj−ϕj achieves a local maximum at (t, y). Let us fix some

r > 0 sufficiently small such that

sup
Bj′

(fj→j′ − ϕ) = fj→j′(t, x)− ϕ(t, x) (6.3.38)
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where

Bj′ =
{
(s, z) ∈ (0,∞)× C̃ : |s− t|+ |z − x|Hj′ ⩽ r

}
.

Then, we set Bj = {(s, y) ∈ (0,∞) × Cj : |s − t| + |y − y|Hj ⩽ r}. Using Lemma 6.3.3 (2)

and (5), we have that

∣∣pj′ ljy − pj′ ljy
∣∣
Hj′ ⩽ |y − y|Hj , ∀y ∈ Cj ,

which along with (6.3.37) implies that

(
s, x+ pj′ ljy − pj′ ljy

)
∈ Bj′ , ∀(s, y) ∈ Bj .

Using (6.3.37), the definition of fj→j′ in (6.3.36), and the definition of ϕj , we also have that

for all (s, y) ∈ R+ × Cj ,

fj(s, y)− ϕj(s, y) = fj→j′(s, x+ pj′ ljy − pj′ ljy)− ϕ(s, x+ pj′ ljy − pj′ ljy).

Using this, the previous display, and (6.3.38), we obtain that

sup
Bj

(fj − ϕj) ⩽ sup
Bj′

(fj→j′ − ϕ) = fj→j′(t, x)− ϕ(t, x) = fj(t, y)− ϕj(t, y),

which implies that fj − ϕj achieves a local maximum at (t, y).

Since fj is a viscosity subsolution, we have

(
∂tϕj − Hj(∇jϕj)

)
(t, y) ⩽ 0.
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Using the definition of ϕj , we can compute that, for any h ∈ Hj sufficiently small,

⟨h,∇jϕj(s, y)⟩Hj + o (|h|Hj ) = ϕj(s, y + h)− ϕj(s, y)

=
〈
pj′ ljh, ∇j′ϕ(· · · )

〉
Hj′ + o

(
|pj′ ljh|Hj′

)
=
〈
h, pj lj′∇j′ϕ(· · · )

〉
Hj + o (|h|Hj ) , ∀(s, y) ∈ Cj ,

where in (· · · ) we omitted (s, x + pj′ ljy − pj′ ljpj lj′x), and, in the last equality, we used

Lemma 6.3.3 (1) and (6) to get the term in the bracket and Lemma 6.3.3 (2) and (5) for

the error term. The above display implies that ∇jϕj(t, y) = pj lj′∇j′ϕ(t, x). It is easy to see

∂tϕj(t, y) = ∂tϕ(t, x). These along with the previous display and the definition of Hj yield

(
∂tϕ− H(ljpj lj′∇j′ϕ)

)
(t, x) ⩽ 0.

We claim that

lj′∇j′ϕ(t, x)− ljpj lj′∇j′ϕ(t, x) ∈ C∗. (6.3.39)

Since H is C∗-nondecreasing, recalling that Hj
′
= H(lj′(·)), we deduce from (6.3.39) and the

previous display that

(
∂tϕ− Hj

′
(∇j′ϕ)

)
(t, x) ⩽ 0,

verifying that fj→j′ is a viscosity subsolution of HJ(Hj′ , C̃,Hj′).

To prove (6.3.39), by the duality of cones, it suffices to show that

〈
ι, lj′∇j′ϕ(t, x)− ljpj lj′∇j′ϕ(t, x)

〉
H ⩾ 0, ∀ι ∈ C.
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By Lemma 6.3.3 (1), the above is equivalent to

〈
pj′ι− pj′ ljpjι, ∇j′ϕ(t, x)

〉
Hj′ ⩾ 0, ∀ι ∈ C. (6.3.40)

Fix any ι ∈ C. Lemma 6.3.3 (6) yields

pj lj′
(
pj′ι− pj′ ljpjι

)
= pjι− pj ljpjι = 0. (6.3.41)

Hence, setting z = pj′ι− pj′ ljpjι, we have z ∈ C̃, and thus εz + x ∈ C̃ for any ε > 0. Since

fj→j′ − ϕ has a local maximum at (t, x), we can see that, for ε > 0 sufficiently small,

〈
εz,∇j′ϕ(t, x)

〉
j′
+ o(ε) = ϕ(t, x+ εz)− ϕ(t, x) ⩾ fj→j′(t, x+ εz)− fj→j′(t, x)

= fj(t,pj lj′x+ εpj lj′z)− fj(t,pj lj′x) = 0

where the last equality follows from (6.3.41) and the definition of z. Sending ε→ 0, we can

verify (6.3.40) and complete the proof for subsolutions. The argument for supersolutions is

the same with inequalities reversed.

Proof of Proposition 6.3.10. Throughout this proof, we denote by C an absolute constant,

which may vary from instance to instance. Let j, j′ ⊆ Jgood satisfy j ⊆ j′, and fj , fj′ be

viscosity solutions to HJ(Hj , Cj ,Hj ;ψj), HJ(Hj′ , Cj′ ,Hj′ ;ψj′), respectively. We define fj→j′

by (6.3.36). By Lemma 6.3.11, fj→j′ is a viscosity solution of

HJ(Hj′ , (pj lj′)
−1(Cj), Hj′ ; ψj(pj lj′(·))). By Lemma 6.3.5 (3) and (1), we have

Cj′ ⊆ (pj lj′)
−1(Cj). (6.3.42)

We claim that there is C > 0 such that

|fj→j′(t, x)− fj′(t, x)| ⩽ C|j|−
2−p
2p
(
t+ |x|Hj′

)
, ∀(t, x) ∈ R+ × Cj′ . (6.3.43)
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Let us use this to derive the desired results. For µ ∈ C, we set x = pj′µ. Lemma 6.3.3 (6)

implies that pj lj′x = pjµ. Hence, by definitions, we have

f↑j (t, µ) = fj(t,pjµ) = fj→j′(t, x)

and f↑j′(t, µ) = fj′(t, x). Now using (6.3.43) and Lemma 6.3.3 (5), we have

∣∣∣f↑j (t, µ)− f↑j′(t, µ)
∣∣∣ ⩽ C|j|−

2−p
2p (t+ |µ|H) .

We could now conclude the existence of a limit f(t, µ) by arguing that the above together

with the triangle inequality yields that (f↑j (t, µ))j∈Jgood is a Cauchy net in R (see [89, Defini-

tion 2.1.41] and [89, Proposition 2.1.49]). Denoting the pointwise limit by f , and passing j′

to limit in the above display to see that f↑j converges in the local uniform topology to some

f : R+ × C. By Lemma 6.3.3 (7), it is straightforward to see f(0, ·) = ψ.

Then, we show (6.3.34) and (6.3.35). By (6.3.33) and Hölder’s inequality, we have ∥ψ∥Lip <

C. Proposition 6.2.3 implies that, for every j,

sup
t∈R+

∥fj(t, ·)∥Lip = ∥ψj∥Lip, sup
x∈Cj

∥fj(·, x)∥Lip ⩽ sup
p∈Hj

|p|Hj⩽∥ψj∥Lip

|Hj(p)|. (6.3.44)

By the definition of ψj and Lemma 6.3.3 (2), we can see that, for every x, y ∈ Cj ,

|ψj(x)− ψj(y)| = |ψ(ljx)− ψ(ljy)| ⩽ ∥ψ∥Lip|ljx− ljy|H = ∥ψ∥Lip|x− y|Hj ,

which implies that

∥ψj∥Lip ⩽ ∥ψ∥Lip, ∀j ∈ J. (6.3.45)

Using this, the first result in (6.3.44) and Lemma 6.3.3 (5), we have, for every t ∈ R+ and
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every µ, ν ∈ C,

|f↑j (t, µ)− f↑j (t, ν)| = |fj(t,pjµ)− fj(t,pjν)| ⩽ ∥ψj∥Lip|pjµ− pjν|Hj ⩽ ∥ψ∥Lip|µ− ν|H,

yielding (6.3.34) after passing j to the limit. To see (6.3.35), for every p satisfying the

condition under supremum in the second result in (6.3.44), we have, by Lemma 6.3.3 (2),

that

|ljp|H = |p|Hj ⩽ ∥ψj∥Lip ⩽ ∥ψ∥Lip.

Since Hj(p) = H(ljp) by definition, the right-hand side of the second result in (6.3.44) is thus

bounded by the right-hand side of (6.3.35). Passing j to the limit, we can verify (6.3.35).

It remains to prove (6.3.43). Due to (6.3.45), Proposition 6.2.3 yields

sup
t∈R+

∥fj(t, ·)∥Lip, sup
t∈R+

∥fj′(t, ·)∥Lip ⩽ ∥ψ∥Lip. (6.3.46)

The definition of fj→j′ in (6.3.36) implies

|fj→j′(t, x)− fj→j′(t, y)| = |fj(t,pj lj′x)− fj(t,pj lj′y)|

⩽ ∥ψ∥Lip
∣∣pj lj′x− pj lj′y

∣∣
Hj ⩽ ∥ψ∥Lip|x− y|Hj′ , ∀t ⩾ 0, ∀x, y ∈ (pj lj′)

−1(Cj),

where we used Lemma 6.3.3 (2) and (5) to derive the last inequality. Hence, we have

sup
R+

∥fj→j′(t, ·)∥Lip ⩽ ∥ψ∥Lip. (6.3.47)

Using (6.3.42) and Proposition 6.2.2 with M replaced by 2∥ψ∥Lip + 1 and R > 1 to be
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determined, we have that

sup
(t,x)∈R+×Cj′

fj→j′(t, x)− fj′(t, x)−M(|x|Hj′ + V t−R)+

= sup
x∈Cj′

fj→j′(0, x)− fj′(0, x)−M(|x|Hj′ −R)+. (6.3.48)

The term inside the supremum on right-hand side of (6.3.48) can be rewritten as

ψ
(
(lj′x)

(j)
)
− ψ(lj′x)−M(|x|Hj′ −R)+,

where we used the definition of fj→j′ in (6.3.36) and Lemma 6.3.3 (4). By (6.3.33) and

Hölder’s inequality, we have

∣∣∣ψ ((lj′x)(j))− ψ(lj′x)
∣∣∣ ⩽ C

∣∣∣(lj′x)(j) − lj′x
∣∣∣ 2−p

p

L1

∣∣∣(lj′x)(j) − lj′x
∣∣∣ 2p−2

p

H

⩽ C
∣∣∣(lj′x)(j) − lj′x

∣∣∣ 2−p
p

L1
|x|

2p−2
p

Hj′ (6.3.49)

where we also used Lemma 6.3.3 (2) and (5) in the last inequality. Setting J = |j| and

J ′ = |j′|, due to j′ ⊃ j and j, j′ ∈ Jgood ⊆ Junif , we know that there is N ∈ N such that

J ′ = JN . Before estimating the L1 norm, we remark that it suffices to assume D = 1,

namely, lj′x(s) ∈ R+ for each s ∈ [0, 1). Indeed, if D > 1, we can use reduce the problem to

the real-valued case by considering

s 7→ ID · lj′x(s)

where ID is the D × D identity matrix. This reduction is valid due to C−1
K ID · a ⩽ |a| ⩽

CDID · a for every a ∈ SD+ and some constant CD > 0. With this simplification clarified, we

assume D = 1. Writing j′ = (t1, t2, . . . , tJ ′) with tk = k
J ′ and j = (s1, . . . , sJ) with sm = m

J ,
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we can compute that

∣∣∣lj′x− (lj′x)
(j)
∣∣∣
L1

=

J∑
m=1

∑
k:sm−1<tk⩽sm

(tk − tk−1)· (6.3.50)

∣∣∣∣∣∣xk − 1

sm − sm−1

∑
k′:sm−1<tk′⩽sm

(tk′ − tk′−1)xk′

∣∣∣∣∣∣
=

J∑
m=1

Nm∑
k=N(m−1)+1

1

JN

∣∣∣∣∣∣xk − 1

N

Nm∑
k′=N(m−1)+1

xk′

∣∣∣∣∣∣
⩽

1

JN2

J∑
m=1

Nm∑
k=N(m−1)+1

Nm∑
k′=N(m−1)+1

|xk − xk′ |

=
2

JN2

J∑
m=1

∑
k,k′:N(m−1)<k′<k⩽Nm

|xk − xk′ |. (6.3.51)

Let B > 0 be chosen later. Since xk ⩾ xk′ ⩾ 0 for k > k′ due to x ∈ Cj′ , we have

2

JN2

J∑
m=1

∑
k,k′:N(m−1)<k′<k⩽Nm

|xk − xk′ |1|xk|⩾B ⩽
2

JN2

J∑
m=1

∑
k,k′:N(m−1)<k′<k⩽Nm

|xk|1|xk|⩾B

⩽
2

JN

J∑
m=1

Nm∑
k=N(m−1)+1

|xk|2

B
=

2

B

J ′∑
k=1

1

J ′ |xk|
2 =

2

B
|x|2Hj′ .

(6.3.52)

One the other hand, switching summations, we have

2

JN2

J∑
m=1

∑
k,k′:N(m−1)<k′<k⩽Nm

|xk − xk′ |1|xk|⩽B

=
2

JN2

∑
r,r′:0<r′<r⩽N

J∑
m=1

|xN(m−1)+r − xN(m−1)+r′ |1|xN(m−1)+r|⩽B

Again using xk ⩾ xk′ ⩾ 0 for k > k′ and setting m∗ = max{m ∈ {1, . . . , J} : xN(m−1)+r ⩽
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B}, we can see that

J∑
m=1

|xN(m−1)+r − xN(m−1)+r′ |1|xN(m−1)+r|⩽B =
m∗∑
m=1

(xN(m−1)+r − xN(m−1)+r′)1xN(m−1)+r⩽B

⩽ xN(m∗−1)+r1xN(m∗−1)+r⩽B ⩽ B.

Here in the penultimate inequality, we also used the fact that −xN(m−1)+r′ +xN(m−2)+r ⩽ 0

because N(m− 1) + r′ > N(m− 2) + r due to |r − r′| < N . Therefore,

2

JN2

J∑
m=1

∑
k,k′:N(m−1)<k′<k⩽Nm

|xk − xk′ |1|xk|⩽B ⩽
B

J
.

Inserting into (6.3.51) the above estimate combined with (6.3.52), and choosing

B =
√
J |x|Hj′ , we conclude that

∣∣∣(lj′x)(j) − lj′x
∣∣∣
L1

⩽ 3J− 1
2 |x|Hj′ .

Plugging this into (6.3.49) yields

fj→j′(0, x)− fj′(0, x)−M(|x|Hj′ −R)+ ⩽ CJ
− 2−p

2p |x|Hj′ , ∀x ∈ Cj′ .

Due to fj→j′(0, 0) = fj′(0, 0) = ψ(0), (6.3.46), and (6.3.47), the choice of M = ∥ψ∥Lip + 1

ensures that

fj→j′(0, x)− fj′(0, x)−M(|x|Hj′ −R)+ ⩽ 2∥ψ∥Lip|x|Hj′ −M |x|Hj′ +MR

=MR− |x|Hj′ , ∀x ∈ Cj′ .

These two estimates implies that the left-hand side of them is bounded by CJ
− 2−p

2p MR.

Absorbing M into C and using (6.3.48), we arrive at

sup
(t,x)∈R+×Cj′

fj→j′(t, x)− fj′(t, x)−M(|x|Hj′ + V t−R)+ ⩽ CJ
− 2−p

2p R.
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Replacing R by |x|Hj′ + V t for each (t, x) ∈ R+ × Cj′ , we obtain one bound for (6.3.43).

For the opposite bound, we again use (6.3.42) and Proposition 6.2.2 to get a result as in

(6.3.48) with fj→j′ and fj′ swapped. Then, the same arguments as above give the other

bound to complete the proof of (6.3.43).

6.3.4. Variational formulae

Recall the definition of convex conjugates in (6.1.6). For j ∈ J, (Hj)⊛ is defined with respect

to Hj as the Hilbert space; H⊛ is defined with respect to H.

The proposition below shows that the limit of finite-dimensional Hopf-Lax formulae is the

infinite-dimensional Hopf-Lax formula. Then we will prove the counterpart for the Hopf

formula.

Proposition 6.3.12 (Hopf-Lax formula in the limit). In addition to (A2), suppose

• ψ : C → R is C∗-nondecreasing and continuous;

• H : H → R is lower semicontinuous, convex, and satisfies H(ι(j)) ⩽ H(ι) for every

ι ∈ H and every j ∈ Jgen;

• for each j ∈ Jgen, fj : R+ × Cj → (−∞,∞] is given by

fj(t, x) = sup
y∈Cj

{
ψj(y)− t(Hj)⊛

(
y − x

t

)}
, ∀(t, x) ∈ R+ × Cj . (6.3.53)

If limj∈Jgen f
↑
j (t, µ) exists in R at some (t, µ) ∈ R+ × C, then the limit is given by

f(t, µ) = sup
ν∈C

{
ψ(ν)− tH⊛

(
ν − µ

t

)}
.

Proof. The assumption on H allows us apply Lemma 6.2.5 (1) to Hj to see that
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(Hj)⊛(
y−pjµ
t ) = ∞ if y − pjµ ̸∈ Cj . Therefore, we have

f↑j (t, µ) = sup
y∈pjµ+Cj

{
ψj(y)− t(Hj)⊛

(
y − pjµ

t

)}
= sup

y∈pjµ+Cj

inf
z∈Hj

{
ψj(y) + ⟨z, pjµ− y⟩Hj + tHj(z)

}
= sup

y∈pjµ+Cj

inf
ι∈H

{
ψ(ljy) + ⟨pjι,pjµ− y⟩Hj + tHj(pjι)

}
(6.3.54)

= sup
y∈pjµ+Cj

inf
ι∈H

{
ψ(ljy) +

〈
ι, µ(j) − ljy

〉
Hj

+ tH
(
ι(j)
)}

,

where in the penultimate equality, we used the easy fact that pjH = Hj ; in the last equality,

we used and Lemma 6.3.3 (2) and (4). Using the assumption that H(ι(j)) ⩽ H(ι) for all ι ∈ H,

we have

f↑j (t, µ) ⩽ sup
y∈pjµ+Cj

{
ψ(ljy)− tH⊛

(
ljy − µ(j)

t

)}

For y ∈ pjµ + Cj , we have ljy − µ(j) ∈ C by Lemma 6.3.5 (1) and Lemma 6.3.3 (4).

Meanwhile, Lemma 6.3.5 (5) yields µ− µ(j) ∈ C∗. Since ψ is C∗-nondecreasing, we obtain

ψ(ljy) ⩽ ψ
(
ljy − µ(j) + µ

)
, ∀y ∈ pjµ+ Cj .

Using this, the previous display, we have

f↑j (t, µ) ⩽ sup
y∈pjµ+Cj

{
ψ(ljy − µ(j) + µ)− tH⊛

(
(lj − µ(j) + µ)− µ

t

)}
⩽ f(t, µ).

Passing j to the limit, we conclude that limj∈Jgen f
↑
j (t, µ) ⩽ f(t, µ).

For the other direction, fixing any ε > 0, we can find ν to satisfy

f(t, µ) ⩽ ε+ ψ(ν)− tH⊛
(
ν − µ

t

)
= ε+ ψ(ν) + inf

ι∈H
{⟨ι, µ− ν⟩+ tH(ι)} .

Since ψ is continuous, by Lemma 6.3.3 (7), we can find j′ ∈ Jgen such that ψ(ν) ⩽ ψ(ν(j))+ε
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for all j ⊃ j′. Then, we have

f(t, µ) ⩽ 2ε+ ψ
(
ν(j)
)
+ inf
ι∈H

{⟨ι, µ− ν⟩H + tH (ι)}

⩽ 2ε+ ψ
(
ν(j)
)
+ inf
ι∈H

{〈
ι(j), µ− ν

〉
H
+ tH

(
ι(j)
)}

= 2ε+ ψ(lj(pjν)) + inf
ι∈H

{
⟨pjι, pjµ− pjν⟩Hj + tHj (pjι)

}
⩽ 2ε+ f↑j (t, µ), ∀j ⊃ j′

where the second inequality follows from {ι(j) : ι ∈ H} ⊆ H; on the third line we used

Lemma 6.3.3 (2) and (4); the last line follows from (6.3.54). Passing j to the limit and then

sending ε→ 0, we obtain the converse bound, which completes the proof.

Proposition 6.3.13 (Hopf formula in the limit). Suppose

• ψ : C → R is C∗-nondecreasing;

• H : H → R is continuous;

• for each j ∈ Jgen, fj : R+ × Cj → (−∞,∞] is given by

fj(t, x) = sup
z∈Cj

inf
y∈Cj

{
⟨z, x− y⟩Hj + ψj(y) + tHj(z)

}
, ∀(t, x) ∈ R+ × Cj . (6.3.55)

If limj∈Jgen f
↑
j (t, µ) exists in R at some (t, µ) ∈ R+ × C, then the limit is given by

f(t, µ) = sup
ν∈C

inf
ρ∈C

{⟨ν, µ− ρ⟩+ ψ(ρ) + tH(ν)} .

Proof. We start by finding a formula for f↑j (t, µ). Using (6.3.55), the definitions of lifts and

projections of functions, and Lemma 6.3.5 (3), we can get

f↑j (t, µ) = sup
ν∈C

inf
ρ∈C

{
⟨pjν, pjµ− pjρ⟩Hj + ψ(ljpjρ) + tH(ljpjν)

}
.
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Then, by Lemma 6.3.3 (2) and (4), the above becomes

f↑j (t, µ) = sup
ν∈C

inf
ρ∈C

{〈
ν(j), µ(j) − ρ(j)

〉
H
+ ψ

(
ρ(j)
)
+ tH

(
ν(j)
)}

.

Fix any (t, µ). For ε > 0, we choose ν such that

f(t, µ) ⩽ ε+ inf
ρ∈C

{⟨ν, µ− ρ⟩H + ψ(ρ) + tH(ν)}

⩽ ε+ inf
ρ∈C

{〈
ν, µ− ρ(j)

〉
H
+ ψ(ρ(j)) + tH(ν)

}

for all j ∈ J, where the last inequality follows from the fact that {ρ(j) : ρ ∈ C} ⊆ C. Allowed

by the continuity of H and Lemma 6.3.3 (7), we can find j′ ∈ J such that for all j ⊃ j′,

⟨ν, µ⟩H + tH(ν) ⩽ ε+
〈
ν(j), µ

〉
H
+ tH

(
ν(j)
)
.

By Lemma 6.3.3 (1), (2) and (4), we can see that
〈
ι, κ(j)

〉
H =

〈
ι(j), κ(j)

〉
H for all ι, κ ∈ H,

which along with the above two displays implies that

f(t, µ) ⩽ 2ε+ inf
ρ∈Cj

{〈
ν(j), µ(j) − ρ(j)

〉
H
+ ψ

(
ρ(j)
)
+ tH

(
ν(j)
)}

⩽ 2ε+ f↑j (t, µ), ∀j ⊃ j′.

Passing j to the limit and sending ε→ 0, we obtain f(t, µ) ⩽ limj∈Jgen f
↑
j (t, µ).

To see the converse inequality, fixing any ε > 0, we choose νj , for each j ∈ J, to satisfy

f↑j (t, µ) ⩽ ε+ inf
ρ∈C

{〈
ν
(j)
j , µ(j) − ρ(j)

〉
H
+ ψ

(
ρ(j)
)
+ tH

(
ν
(j)
j

)}
, ∀j ∈ J.

On the other hand, it is clear from the definition of f(t, µ) that

f(t, µ) ⩾ inf
ρ∈C

{〈
ν
(j)
j , µ− ρ

〉
H
+ ψ(ρ) + tH

(
ν
(j)
j

)}
, ∀j ∈ J.

By Lemma 6.3.5 (5), we have ρ− ρ(j) ∈ C∗. Since ψ is C∗-nondecreasing, we obtain ψ(ρ) ⩾
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ψ(ρ(j)). This along with the fact that
〈
ν
(j)
j , µ− ρ

〉
H
=
〈
ν
(j)
j , µ(j) − ρ(j)

〉
H

yields

f(t, µ) ⩾ inf
ρ∈C

{〈
ν
(j)
j , µ(j) − ρ(j)

〉
H
+ ψ

(
ρ(j)
)
+ tH

(
ν
(j)
j

)}
⩾ f↑j (t, µ)− ε, ∀j ∈ J.

Passing j to the limit along Jgen and sending ε → 0, we get f(t, µ) ⩾ limj∈Jgen f
↑
j (t, µ),

completing the proof.

6.3.5. Weak boundary

It can be checked that C has empty interior in H. Therefore, the boundary of C is equal

to C. On the other hand, for each j ∈ J, the interior of Cj is not empty. We denote its

boundary by ∂Cj .

Lemma 6.3.14 (Characterizations of ∂Cj). Let j ∈ J and x ∈ Cj. Then, the following are

equivalent:

1. x ∈ ∂Cj;

2. there is y ∈ (Cj)∗ \ {0} such that ⟨x, y⟩Hj = 0;

3. there is k ∈ {1, 2, . . . , |j|} such that xk = xk−1.

For (3), recall our convention that x0 = 0.

Proof. First, we show that (3) implies (2). Let ID be theD×D identity and matrix. If k > 1,

we set yk = 1
tk−tk−1

ID, yk−1 = − 1
tk−1−tk−2

ID and yi = 0 for all i ∈ {1, 2, . . . , |j|} \ {k−1, k}.

If k = 1, we set y1 = ID and yi = 0 otherwise. By Lemma 6.3.4 (1), we have y ∈ (Cj)∗. It

is also clear that y ̸= 0 and ⟨x, y⟩Hj = 0, verifying (2).

Next, we show that (2) implies (1). Assuming (2), we suppose that x is in the interior. Then,

there is ε > 0 sufficiently small such that x − εy ∈ Cj , which implies that ⟨x− εy, y⟩Hj ⩾

0. However, by assumption (2), we must have −ε|y|2Hj ⩾ 0 and thus y = 0, reaching a

contradiction.
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Finally, we show that (1) implies (3). Assuming (1), we suppose that (3) is not true. Since

the coordinates of x are increasing, we can find δ > 0 such that xk ⩾ δID + xk−1 for all k.

By the finite-dimensionality, there is a constant C > 0 such that

yk − CεID ⩽ xk ⩽ yk + CεID

for every y ∈ Hj satisfying |y − x|Hj ⩽ ε, for every ε > 0 and every k ∈ {1, , 2, . . . , |j|}.

Choosing ε sufficiently small, we can see that, for such y, we have yk ⩾ yk−1 for all k, namely

y ∈ Cj , which contradicts (1).

The equivalence between (1) and (2) actually holds for more general cones in finite dimen-

sions. It is thus natural to define a weak notion of boundary for C.

Definition 6.3.15. The weak boundary of C denoted by ∂wC is defined by

∂wC = {µ ∈ C : ∃ι ∈ C∗ \ {0}, ⟨µ, ι⟩H = 0} .

When D = 1, for every µ ∈ C, since µ is nondecreasing, we have that µ is differentiable

a.e. and we denote its derivative by µ̇. If D > 1, we can choose a basis for SD consisting of

elements in SD+ . For each a from the basis, the derivative of s 7→ a · µ(s) exists a.e. We can

use these to define µ̇. We define the essential support of an SD-valued function on [0, 1) as

the smallest closed set relative to [0, 1), outside which the function is zero a.e.

Lemma 6.3.16 (Characterization of ∂wC). For µ ∈ C, it holds that µ ∈ ∂wC if and only if

the essential support of µ̇ is not [0, 1).

Proof. Let µ ∈ C. By adding a constant, we may assume µ(0) = 0. For any fixed ι ∈

C∗, we set κ : [0, 1) → R by κ(t) =
´ 1
t ι(s)ds. Then, κ is continuous, nonnegative (by

Lemma 6.3.4 (2)), and differentiable with its derivative is given by −ι. Since µ(0) = 0 and
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limt→1 κ(t) = 0, by integration by parts, we have that

⟨µ, ι⟩H =

ˆ 1

0
κ(s)µ̇(s)ds.

First, suppose that the essential support of µ̇ is [0, 1). Note that for any nonzero ι, we must

have κ is not identically zero. Then the integral above is positive, and thus µ ̸∈ ∂wC. For

the other direction, suppose that the essential support of µ̇ is a strict subset of [0, 1). This

implies the existence of a nonempty open set O ⊆ [0, 1) on which µ̇ vanishes. We then

choose a nonnegative and smooth κ such that κ > 0 only on a subset of O. Setting ι = −κ̇,

we clearly have ι ∈ C∗ \ {0}. In this case, the integral in the above display is zero, implying

µ ∈ ∂wC.

It is thus attempting to use ∂wC as a more suitable notion of boundary in this case, and

to impose some boundary condition on ∂wC. However, the argument could still be more

involved than the one we presented in this section, due to the following result as an immediate

consequence of Lemma 6.3.16.

Lemma 6.3.17. For j ∈ J, then ljx ∈ ∂wC for every x ∈ Cj; and µ(j) ∈ ∂wC for every

µ ∈ C.

In other words, any point from Cj is lifted to the boundary of C, no matter it is in the

interior of Cj or not. The following lemma could potentially be a remedy.

Lemma 6.3.18. If x ∈ Cj \ ∂Cj, then there is µ ∈ C \ ∂wC such that pjµ = x.

Proof. By the equivalence between (1) and (3) in Lemma 6.3.14, we can find δ > 0 such

that xk − xk−1 ⩾ δID for all k, where ID is the D × D identity matrix. Then, we define

µ : [0, 1) → SD by

µ(s) = εID

(
s− tk + tk−1

2

)
+ xk, if s ∈ [tk−1, tk),
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for ε > 0. It is straightforward to check that pjµ = x. By choosing ε > 0 sufficiently

small, we can ensure that µ is strictly increasing on [0, 1). Hence, Lemma 6.3.16 implies

that µ ∈ C \ ∂wC.

6.4. Application to the spin glass setting

6.4.1. Setting and definitions

We first introduce the definition of monotone probability measures. After explaining the

setting of mean-field spin glass models in detail, we give the definition of viscosity solutions

of (6.1.1).

Monotone probability measures

We have already mentioned the set P↗ of monotone probability measures on SD+ in Sec-

tion 6.1. Its definition is as follows. A probability measure µ on SD+ is said to be monotone,

if

P
{
a ·X < a ·X ′ and b ·X > b ·X ′} = 0, ∀a, b ∈ SD+ , (6.4.1)

where X and X ′ are two independent SD+ -valued random variable with the same law µ.

For p ∈ [1,∞), denote by P↗
p the restriction of P↗ to those probability measures with finite

p-th moments. We equip P↗
p with the p-Wasserstein metric dp. Let us recall the definition

of Wasserstein metrics. For probability measures ϱ, ϑ on some measure space X with finite

p-th moments, the p-Wasserstein distance between ϱ, ϑ is given by

dp(ϱ, ϑ) = inf
π∈Π(ϱ,ϑ)

(ˆ
|x− y|pπ(dx,dy)

) 1
p

, (6.4.2)

where Π(ϱ, ϑ) is collection of all couplings of ϱ, ϑ, and a probability measure π on X ×X is

said to be a coupling of ϱ, ϑ if the first marginal of π is ϱ and its second marginal is ϑ.

We want to embed P↗
2 isometrically onto the cone C given in (6.3.4) with the ambient

Hilbert space H in (6.3.2). Throughout this section, let U be the random variable distributed
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uniformly over [0, 1). Guaranteed by [93, Propositions 2.4 and 2.5], we have that

Ξ :


C → P↗

2

µ 7→ Law(µ(U))

(6.4.3)

is an isometric bijection between C and P↗
2 . In fact, [93, Propositions 2.4 and 2.5] ensures

a stronger result:

dp(ϱ, ϑ) = |Ξ−1(ϱ)− Ξ−1(ϑ)|H = E|Ξ−1(ϱ)(U)− Ξ−1(ϑ)(U)|2, ∀ϱ, ϑ ∈ P↗
2 , ∀p ∈ [1, 2].

(6.4.4)

For g : P↗
2 → R and f : R+ × P↗

2 → R, the actions of Ξ on them are given by

Ξg :


C → R

µ 7→ g(Ξ(µ))

, Ξf :


R+ × C → R

(t, µ) 7→ f(t,Ξ(µ))

. (6.4.5)

Mean-field spin glass models

We following the setting in [93]. We consider a wide class of mean-field fully connected

vector spin models. Recall that D is any positive integer. Let ξ : RD×D → R be locally

Lipschitz. For each N ∈ N, let HN be a finite-dimensional Hilbert space, and (HN (σ))σ∈HD
N

be a centered Gaussian random field with covariance structure given by

E[HN (σ)HN (τ)] = Nξ

(
στ⊺

N

)
, ∀σ, τ ∈ HD

N , (6.4.6)

where the D ×D real-valued matrix στ⊺ is given by

στ⊺ =
(
⟨σd, τd′⟩HN

)
1⩽d,d′⩽D

.
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Here, HN (σ) is the Hamiltonian of the configuration σ. For each N ∈ N, let PN be a

probability measure on HD
N and we assume that PN is supported on the centered ball in HD

N

with radius
√
N , where the inner product on HD

N is the standard one induced by Cartesian

products, namely,

⟨σ, τ⟩HD
N
=

D∑
d=1

⟨σd, τd⟩HN
, ∀σ, τ ∈ HD

N .

Each σ is viewed as a configuration of spins in a system, and HN (σ) is the random Hamil-

tonian at σ. Spin configurations are distributed according to PN .

As an example, the Sherrington–Kirkpatrick Model corresponds to D = 1, HN = RN ,

ξ(r) = r2 and PN is a uniform measure on {−1,+1}N . For each N ∈ N, under PN , we can

view σ as sampled uniformly from configurations of Ising spins, namely, combinations of N

spins each at state −1 or +1. The Hamiltonian can be expressed as

HSK
N (σ) =

1√
N

N∑
i,j=1

gijσiσj , ∀σ ∈ {−1,+1}N ,

where {gij}1⩽i,j⩽N is a collection of independent standard Gaussian random variables.

Back to the general setting, we are interested in the asymptotics, as N → ∞, of the free

energy

1

N
E log

ˆ
exp (HN (σ)) dPN (σ).

For t ⩾ 0, we also set

FN (t) = − 1

N
log

ˆ
exp

(√
2tHN (σ)−Ntξ

(
σσ⊺

N

))
dPN (σ).

Comparing with the previous display, the additional normalizing term Ntξ(σσ⊺/N) is to

ensure the exponential term has expectation equal to one. This additional term can be
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removed as explained in [98].

In a more involved way (see [93, Section 3]), we can enrich the spin glass model by introducing

an additional magnetic field parametrized by ϱ ∈ P↗ with finite support. Similarly, there

is a quantity FN (t, ϱ) associated with enriched model satisfying FN (t, δ0) = FN (t) for all

t ∈ R, where δ0 is the Dirac measure at the zero matrix.

Interpretation of (6.1.1)

By the isometry between P↗
2 and C, we can make sense of ∂µ as the Fréchet derivative in H

discussed in Section 6.1.2. In particular, whenever exists, ∇Ξf(t, µ) is an L2 function over

[0, 1). From another angle, note that, for every measurable g : SD+ → RD×D, we have

ˆ
ξ(g)dϱ = E

[
ξ
(
g ◦
(
Ξ−1(ϱ)

)
(U)
)]

=

ˆ 1

0
ξ
(
g ◦
(
Ξ−1(ϱ)

)
(s)
)
ds.

Hence, the equation (6.1.1) can be viewed as

∂tf −
ˆ 1

0
ξ (∇f) ds = 0, on R+ × C, (6.4.7)

where ds denotes the Lebesgue measure.

For technical reasons, we want to consider a regularized version of ξ. Let us describe the

regularization. Recall the definition of being nondecreasing along a cone in (6.1.5). A

function g : SD+ → R is said to be proper if g is nondecreasing over SD+ , and for every b ∈ SD+ ,

the function a 7→ g(a+ b)− g(a) is nondecreasing over SD+ .

Definition 6.4.1. A function ξ : SD+ → R is said to be a regularization of ξ : RD×D → R in

(6.4.6) if

1. ξ coincides with ξ on a subset of SD+ consisting matrices with every entry in [−1, 1];

2. ξ is Lipschitz and proper;

3. ξ is bounded below;
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4. ξ is convex, if, in addition, ξ is convex.

Let us justify the condition (1). For simplicity, we write FN (t, ϱ) = EFN (t, ϱ) for every

N, t, ϱ. It is expected that (t, ϱ) 7→ FN (t, ϱ) converges as N → ∞ to a solution f of (6.4.7).

Due to our assumption on the support of PN , it has been shown in [93, Proposition 3.1] that

∣∣FN (t, ϱ)− FN (t, ϑ)
∣∣ ⩽ d1(ϱ, ϑ) =

∣∣Ξ−1(ϱ)− Ξ−1(ϑ)
∣∣
L1 , ∀t ⩾ 0, ∀ϱ, ϑ ∈ P↗

2 , ∀N ∈ N.

(6.4.8)

The above bound is first established for ϱ, ϑ with finite supports. Then FN (t, ·) can be

extended by density, and the above bound can be extended accordingly. The above bound

implies that |∇(ΞFN )(t, µ)|L∞ ⩽ 1 for every N, t, µ. Passing to the limit, then same bound

is expected to hold for Ξf , which means that only values of ξ on matrices with entries in

[−1, 1] matter. In addition, by [93, Proposition 3.8], for every N and t,

ΞFN (t, ·) is C∗-nondecreasing (6.4.9)

which by the duality of cones implies that ∇(ΞFN )(t, µ) ∈ C for every µ ∈ C. In particular,

∇(ΞFN )(t, µ(s)) ∈ SD+ for a.e. s ∈ [0, 1). Passing to the limit, we expect ∇(Ξf)(t, µ(s)) ∈ SD+

for a.e. s ∈ [0, 1) and every µ ∈ C. Hence, in view of (6.4.7), ξ can be further restricted to

SD+ . Therefore, condition (1) can be justified.

Since ξ is the covariance function for Gaussian fields, there are many structures to exploit.

Under the assumption that ξ admits a convergent power series expansion, [93, Proposi-

tions 6.4 and 6.6] yield that ξ is when restricted to SD+ . The following lemma guarantees the

existence of ξ.

Lemma 6.4.2. If ξ : RD×D → R restricted to SD+ is locally Lipschitz and proper, then ξ

admits a regularization.

Proof. We follow the construction in [93, Proposition 6.8]. There, the definition of regular-
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izations only requires (1) and (2). Here, we will verify that ξ constructed is convex if ξ is

so. For r > 0, we set Btr(r) = {a ∈ SD+ : tr(a) ⩽ r}. Then, all a ∈ SK+ with entries in [−1, 1]

belong to Btr(D). For every a ∈ SD+ , we denote by |a|∞ the largest eigenvalue of a. Setting

L = ∥|∇ξ|∞∥L∞(Btr(2D)), we define, for every a ∈ SD+ ,

ξ(a) =


ξ(a) ∨ (ξ(0) + 2L(tr(a)−D)), if a ∈ Btr(2D),

ξ(0) + 2L(tr(a)−D), if a ̸∈ Btr(2D).

Since ξ is proper, we have ξ(a) ⩾ ξ(0) ⩾ ξ(0) + 2L(tr(a)−D) for all a ∈ Btr(D). Hence, ξ

coincides with ξ on matrices with entries in [−1, 1], verifying (1). Note that ξ is continuous

on {a ∈ SD+ : tr(a) = 2D}. Then, it is easy to check that ξ is Lipschitz. Due to the choice

of L, we can also see that the gradient of ξ is nondecreasing and thus ξ is proper, verifying

(2). It is clear from the construction that (3) holds.

Now, assuming that ξ is convex, we show that ξ is also convex. If a, b ∈ Btr(2D) or

a, b ̸∈ Btr(2D), it is easy to check that

ξ(λa+ (1− λ)b) ⩽ λξ(a) + (1− λ)ξ(b), ∀λ ∈ [0, 1]. (6.4.10)

Then, we consider a ∈ Btr(2D) and b ̸∈ Btr(2D). If λ satisfies λa+(1−λ)b ̸∈ Btr(2D), then

(6.4.10) holds. Now, let λ be such that λa+(1−λ)b ∈ Btr(2D). There is γ ∈ [0, λ] such that

c = γa+(1−γ)b satisfies tr(c) = 2D. Then, for α = λ−γ
1−γ , we have αa+(1−α)c = λa+(1−λ)b.

Since ξ is convex on Btr(2D), the left-hand side of (6.4.10) is bounded from above by

αξ(a)+(1−α)ξ(c). Since ξ(c) = ξ(0)+2L(tr(c)−D) is due to tr(c) = 2D, by the definition

of ξ, we have ξ(c) ⩽ γξ(a) + (1 − γ)ξ(b). Combining these and using the choice of α, we

recover (6.4.10), verifying (4).

Henceforth, we fix a regularization ξ. We set

H+ = {ι ∈ H : ι(s) ∈ SD+ , a.e. s ∈ [0, 1]}
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and define Hξ : H+ → R by

Hξ(ι) =

ˆ 1

0
ξ(ι(s))ds, ∀ι ∈ H+.

The equation (6.4.7) with regularized nonlinearity can be expressed as

∂tf − Hξ(∇f) = 0, on R+ × C.

Note that Hξ is not defined on the entirety of H, which is needed to apply results from

previous sections. Hence, we introduce the following extension,

H(ι) = inf
{
Hξ(µ) : µ ∈ C ∩ (ι+ C∗)

}
, ∀ι ∈ H. (6.4.11)

We will study properties of H in the next subsection. Now, we can conclude the subsection

with the definition of solutions to (6.1.1).

Definition 6.4.3. Under the assumption that ξ : RD×D → R admits a regularization

ξ : SD+ → R, a function f : R+ ×P↗
2 → R is said to be a viscosity subsolution (respectively,

supersolution) of (6.1.1) (with regularization ξ), if Ξf : R+×C → R is a viscosity subsolution

(respectively, supersolution) of HJ(H, C,H) for H, C, H given in (6.3.2), (6.3.4), (6.4.11),

respectively. The function f is said to be a viscosity solution of (6.1.1) if f is both a

subsolution and a supersolution.

6.4.2. Properties of the nonlinearity

In this section, we verify a few useful properties of H. Most of them are recorded in

Lemma 6.4.4 below. We will also show an alternative expression of the Hopf–Lax formula

in terms of ξ in Proposition 6.4.7.

Basic properties

Lemma 6.4.4. Let H be given in (6.4.11). Then, the following hold:
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1. H(µ) = Hξ(µ) for every µ ∈ C;

2. H is C∗-nondecreasing;

3. H is Lipschitz;

4. H is bounded below;

5. if ξ is convex, then H is convex and satisfies H(ι(j)) ⩽ H(ι) for every j ∈ J and every

ι ∈ H.

Proof. Part (1). We first show that Hξ is C∗-nondecreasing on C. We argue that it suffices

to show Hj
ξ

is (Cj)∗-nondecreasing on Cj , where Hj
ξ

is the j-projection of Hξ. Indeed, for

µ, ν ∈ C satisfying µ − ν ∈ C∗, we have Hξ(µ
(j)) − Hξ(ν

(j)) = Hj
ξ
(pjµ) − Hj

ξ
(pjν). Due to

Lemma 6.3.5 (4), we have pjµ−pjν ∈ (Cj)∗. Hence, Hξ(µ
(j))−Hξ(ν

(j)) ⩾ 0 for every j ∈ J.

Passing to the limit along some Jgen, and using Lemma 6.3.3 (7) and the continuity of Hξ

to conclude that Hξ(µ)− Hξ(ν) ⩾ 0.

With this explained, we compute the gradient of Hj
ξ
. Since for every x ∈ Cj , Hj

ξ
(x) =∑|j|

k=1(tk − tk−1)ξ(xk) and ξ is locally Lipschitz, we have (recall that the inner product in

Hj is given in (6.3.8))

∇jH
j

ξ
(x) = (∇ξ(xk))k=1,2,...,|j|, ∀x ∈ Cj ,

which holds almost a.e. on Cj endowed with the Lebesgue measure. Here ∇j denotes the

gradient of functions defined on subsets of Hj and ∇ on SD+ . Since ξ is proper, the above

display implies that ∇jH
j

ξ
(x) ∈ Cj a.e. We can find a full measure set in Cj × Cj such that

Hj
ξ

is differentiable a.e. on the line segment between any two points from this set. For any

x, y from this set satisfying x− y ∈ (Cj)∗, we have

Hj
ξ
(x)− Hj

ξ
(y) =

ˆ 1

0

〈
∇jH

j

ξ
(sx+ (1− s)y), x− y

〉
Hj

ds ⩾ 0,
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where we used the definition of dual cones to deduce that the integrand is nonnegative a.e.

Using the density of such pairs, we can conclude that Hj
ξ

is (Cj)∗-nondecreasing.

Having shown that Hξ is C∗-nondecreasing, we return to the proof. Let µ ∈ C. By the

definition of H, we clearly have H(µ) ⩽ Hξ(µ). On the other hand, for every ν ∈ C∩(µ+C∗),

the monotonicity of Hξ implies that Hξ(µ) ⩽ Hξ(ν). Taking infimum in ν, we obtain Hξ(µ) ⩽

H(µ) verifying (1).

Part (2). Let ι, κ ∈ H satisfy ι − κ ∈ C∗. For every µ ∈ C ∩ (ι + C∗), it is immediate

that µ ∈ C ∩ (κ + C∗), implying Hξ(µ) ⩾ H(κ). Taking infimum over µ ∈ C ∩ (κ + C∗), we

obtain (2).

Part (3). Fix any ι, ι′ ∈ H. Let ν be the projection of ι − ι′ to C. Since C is closed and

convex, we have

〈
ι− ι′ − ν, ρ− ν

〉
H ⩽ 0, ∀ρ ∈ C. (6.4.12)

Since sν ∈ C for all s ⩾ 0, (6.4.12) yields

〈
ι− ι′ − ν, ν

〉
H = 0. (6.4.13)

Inserting this back to (6.4.12), we have ⟨ι− ι′ − ν, ρ⟩H ⩽ 0 for all ρ ∈ C, which implies

ι′ − ι+ ν ∈ C∗,

For all µ ∈ C ∩ (ι′ + C∗), the above display implies that µ + ν ∈ C ∩ (ι + C∗). Since H is

C∗-nondecreasing by (2), we have

Hξ(µ+ ν) ⩾ H(ι), ∀µ ∈ C ∩ (ι′ + C∗).
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By (1), we get

|Hξ(µ+ ν)− Hξ(µ)| ⩽ E|ξ(µ(U) + ν(U))− ξ(µ(U))| ⩽ ∥ξ∥Lip|ν|H.

The above two displays imply

H(ι)− Hξ(µ) ⩽ ∥ξ∥Lip|ν|H, ∀µ ∈ C ∩ (ι′ + C∗).

Due to (6.4.13), we can see that

|ι− ι′|2H = |ι− ι′ − ν|2H + |ν|2H ⩾ |ν|2H.

Using this and taking supremum over µ ∈ C ∩ (ι′ + C∗), we obtain

H(ι)− H(ι′) ⩽ ∥ξ∥Lip|ι− ι′|H.

By symmetry, we conclude that H is Lipschitz.

Part (4). This is clear from Definition 6.4.1 (3) and (6.4.11).

Part (5). By Definition 6.4.1 (6.4.10), we have that ξ is convex. From (1), we can see

that H is convex on C. For every ι, κ ∈ H and every s ∈ [0, 1], we have sµ + (1 − s)ν ∈

C ∩ (sι + (1 − s)κ + C∗) if µ ∈ C ∩ (ι + C∗) and ν ∈ C ∩ (κ + C∗). In view of this, the

convexity of H on H follows from its convexity on C and (6.4.11). To see the second claim,

using Jensen’s inequality, we have that, for every µ ∈ C and every j ∈ J,

H
(
µ(j)

)
=

|j|∑
k=0

(tk+1 − tk)ξ

(
1

tk − tk−1

ˆ tk

tk−1

µ(s)ds

)
⩽
ˆ 1

0
ξ(µ(s))ds = H(µ).

Fix any ι ∈ H. By Lemma 6.3.3 (4) and Lemma 6.3.5, we have µ(j) ∈ C∩(ι(j)+C∗) for every

j ∈ J, and every µ ∈ C ∩ (ι+ C∗). Therefore, the above display along with the definition of
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H implies that

H
(
ι(j)
)
⩽ H(µ), ∀µ ∈ C ∩ (ι+ C∗).

Taking infimum over µ ∈ C ∩ (ι+ C∗), we conclude that H(ι(j)) ⩽ H(ι).

Alternative expression of the Hopf–Lax formula

The goal is to prove Proposition 6.4.7. We need several lemmas in preparation for the proof.

We introduce the notation for the nondecreasing rearrangement. For every j ∈ Junif and

x ∈ Hj , we set x♯ = (xσ(k))k=1,2,...,|j| where σ is a permutation of (1, 2, . . . , |j|) satisfying

xσ(k) − xσ(k−1) ∈ SD+ for every k ⩾ 2. Using this notation, for every j ∈ Junif and every

ι ∈ H, we set ι(j)♯ = lj((pjι)♯).

Lemma 6.4.5. For every j ∈ Junif ,

1. ι(j)♯ ∈ ι(j) + C∗ for every ι ∈ H;

2. ι(j)♯ ∈ C for every ι ∈ H+;

3. Eh(ι(j)(U)) = Eh(ι(j)♯ (U)) for every real-valued function h and every ι ∈ H.

Proof. Part (1). For every x ∈ Hj , by the rearrangement inequality, we have

⟨x♯, y⟩Hj =
1

|j|

|j|∑
k=1

xσ(k)yk ⩾
1

|j|

|j|∑
k=1

xkyk = ⟨x, y⟩Hj , ∀y ∈ Cj ,

where σ is the permutation in the definition of x♯. This implies that x♯ − x ∈ (Cj)∗.

By the definition of ι(j)♯ and Lemma 6.3.3 (3), we have pj(ι
(j)
♯ ) = (pjι)♯. Hence, we get

pj(ι
(j)
♯ ) − pjι ∈ (Cj)∗, which along with Lemma 6.3.5 (2) implies that (ι

(j)
♯ )(j) − ι(j) ∈ C∗.

By Lemma 6.3.3 (3) and (4), we have

(ι
(j)
♯ )(j) = ljpj lj((pjι)♯) = lj((pjι)♯) = ι

(j)
♯ .
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Then, (1) follows.

Part (2). Let ι ∈ H+. It is clear from the definition that (pjι)♯ ∈ Cj . Then, by

Lemma 6.3.5 (1), we get ι(j)♯ ∈ C.

Part (3). We can compute that

Eh
(
ι(j)(U)

)
=

1

|j|

|j|∑
k=1

h

(
|j|

ˆ k
|j|

k−1
|j|

ι(s)ds

)
=

1

|j|

|j|∑
k=1

h

(
|j|

ˆ σ(k)
|j|

σ(k)−1
|j|

ι(s)ds

)
= Eh

(
ι
(j)
♯ (U)

)

where the permutation σ is the one corresponding to the nondecreasing rearrangement of

pjι. This completes the proof.

Recall the definitions of conjugates in (6.1.6) and (6.1.7). The monotone conjugate ξ∗ is

defined with respect to the cone SD+ in the space SD, namely,

ξ
∗
(a) = sup

a′∈SD+

{
a′ · a− ξ(a′)

}
, ∀a ∈ SD. (6.4.14)

Next, we show the following.

Lemma 6.4.6. For every µ ∈ C, it holds that H⊛(µ) = Eξ∗(µ(U)).

Proof. We proceed in three steps.

Step 1. Setting

H∗
ξ
(ι) = sup

ν∈C
{⟨ν, ι⟩H − Hξ(ν)}, ∀ι ∈ H,

we first show that

H⊛(µ) = H∗
ξ
(µ), ∀µ ∈ C. (6.4.15)

Since the supremum in H⊛ is taken over H and since H coincides with Hξ on C (by
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Lemma 6.4.4 (1)), it is immediate that H⊛(µ) ⩾ H∗
ξ
(µ). Fix any ε > 0. For every ι ∈ H, by

the definition of H in (6.4.11), there is ν ∈ C ∩ (ι+ C∗) such that H(ι) ⩾ Hξ(ν)− ε. Due to

ν − ι ∈ C∗ and µ ∈ C, we have ⟨ι, µ⟩H ⩽ ⟨ν, µ⟩H. Hence, we obtain

⟨ι, µ⟩H − H(ι) ⩽ ⟨ν, µ⟩H − Hξ(ν) + ε.

Since the right-hand side of the above is bounded by H∗
ξ
(µ)+ε, taking supremum over ι ∈ H

yields H⊛(µ) ⩽ H∗
ξ
(µ) + ε. Sending ε→ 0, we obtain (6.4.15).

Step 2. We show

H∗
ξ
(µ) = H⊕

ξ
(µ), ∀µ ∈ C, (6.4.16)

where H⊕
ξ

is defined by

H⊕
ξ
(ι) = sup

κ∈H+

{⟨κ, ι⟩H − Hξ(κ)}, ∀ι ∈ H.

Due to C ⊆ H+, it is easy to see that H∗
ξ
(µ) ⩽ H⊕

ξ
(µ) for µ ∈ C. For any fixed ε > 0, by the

definition of H⊕
ξ
, there is κ ∈ H+ such that

H⊕
ξ
(µ) ⩽ ⟨κ, µ⟩H − Hξ(κ) + ε.

Using Lemma 6.3.3 (7) and the continuity of Hξ, we can find j ∈ Junif such that

H⊕
ξ
(µ) ⩽

〈
κ(j), µ

〉
H
− Hξ

(
κ(j)
)
+ 2ε.

Lemma 6.4.5 implies that
〈
κ(j), µ

〉
H ⩽ ⟨κ(j)♯ , µ⟩H (due to µ ∈ C), Hξ(κ

(j)) = Hξ(κ
(j)
♯ ), and

κj♯ ∈ C. These together with the above display yields H⊕
ξ
(µ) ⩽ H∗

ξ
(µ) + 2ε. Since ε is

arbitrary, we obtain (6.4.16).
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Step 3. We show

H⊕
ξ
(ι) = Eξ∗(ι(U)), ∀ι ∈ H+. (6.4.17)

For every ι ∈ H, κ ∈ H+, by the definition of ξ∗, we have

ξ
∗
(ι(s)) ⩾ ι(s) · κ(s)− ξ(κ(s)), ∀s ∈ [0, 1).

Integrating in s, we get

Eξ∗(ι(U)) ⩾ ⟨ι, κ⟩H − Hξ(κ).

Taking supremum over κ ∈ H+, we obtain Eξ∗(ι(U)) ⩾ H⊕
ξ
(ι) for every ι ∈ H.

For the converse inequality, note that ξ∗ is lower-semicontinuous and ξ
∗
(ι) ⩾ ξ(0) by the

definition of ξ∗. Using Lemma 6.3.3 (7), we can extract from Junif a sequence (jn)
∞
n=1

satisfying limn→∞ ι(jn) = ι a.e. on [0, 1). Since ξ∗(ι) ⩾ ξ(0), invoking Fatou’s lemma, we get

Eξ∗(ι(U)) ⩽ E lim inf
n→∞

ξ
∗
(
ι(jn)(U)

)
⩽ lim inf

n→∞
Eξ∗

(
ι(jn)(U)

)
.

Recall the definitions of ι(j) in (6.3.5), and pjι in (6.3.9). We can compute that

Eξ∗
(
ι(j)(U)

)
=

|j|∑
k=1

(tk − tk−1)ξ
∗
((pjι)k) =

|j|∑
k=1

(tk − tk−1) sup
xk∈SD+

{
xk · (pjι)k − ξ(xk)

}
= sup

x∈Hj
+

{⟨x,pjι⟩Hj − Eξ(ljx(U))} = sup
x∈Hj

+

{⟨ljx, ι⟩H − Hξ(ljx)} ⩽ H⊕
ξ
(ι),

where Hj
+ stands for pj(H+) = {x ∈ Hj : xk ∈ SD+ , ∀k}, and, in the last equality, we used

Lemma 6.3.3 (2). The above two displays together yield Eξ∗(ι(U)) ⩽ H⊛(ι) for every ι ∈ H,

verifying (6.4.17). The desired result follows from (6.4.15), (6.4.16) and (6.4.17).

Now, we are ready to prove the following.
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Proposition 6.4.7 (Hopf-Lax formula in the spin glass setting). If ψ is C∗-nondecreasing

and continuous, then

sup
ν∈C

{
ψ(ν)− tH⊛

(
ν − µ

t

)}
= sup

ν∈µ+C

{
ψ(ν)− tEξ∗

(
(ν − µ)(U)

t

)}
, ∀µ ∈ C. (6.4.18)

If D = 1, then the right-hand side of the above is equal to

sup
ν∈C

{
ψ(ν)− tEξ∗

(
(ν − µ)(U)

t

)}
, ∀µ ∈ C. (6.4.19)

Proof. Let us denote the right-hand side in (6.4.18) by RHS. For simplicity, we omit U and

write Eξ∗(ι) = Eξ∗(ι(U)) for all ι ∈ H. By Lemma 6.2.5 (1) which still holds in infinite

dimensions, we have H⊛(ι) = ∞ if ι ̸∈ C. Using this and Lemma 6.4.6, we can get the the

left-hand side of (6.4.18) is equal to

sup
ν∈µ+C

{
ψ(ν)− tH⊛

(
ν − µ

t

)}
= RHS, ∀µ ∈ C,

verifying (6.4.18).

Now, we assume D = 1. Denoting the term in (6.4.19) by I, to show (6.4.19), we only need

to show I ⩽ RHS. Now, note that ξ∗(r) = sups⩾0{sr − ξ(s)}. Since ξ is SD+ -nondecreasing

(see Definition 6.4.1 (2)), we have ξ∗(r) = ξ
∗
(0) for all r < 0. For every κ ∈ H, we define

κ+ by κ+(s) = (κ(s)) ∨ 0 for all s ∈ [0, 1). Then, we have

I = sup
ν∈C

{
ψ(ν)− tEξ∗

(
(ν − µ)+

t

)}
.

For every ε > 0, we can find ν ∈ C such that

I ⩽ ψ(ν)− tEξ∗ (ι) + ε,

where we set ι = 1
t (ν − µ)+ ∈ H+. We choose a sufficiently fine j ∈ Junif satisfying

ψ(ν) ⩽ ψ(ν(j)) + ε. Since ξ∗ is convex, we have Eξ∗(ι(j)) ⩽ Eξ∗(ι) by Jensen’s inequality.
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Hence, the above becomes

I ⩽ ψ
(
ν(j)
)
− tEξ∗

(
ι(j)
)
+ 2ε.

Setting ρ = µ+ tι
(j)
♯ , we have

ρ− ν(j) = (µ− µ(j)) + t(ι
(j)
♯ − ι(j)) +

(
tι(j) − (ν − µ)(j)

)
∈ C∗

where the terms inside the first two pairs of parentheses on the right belong to C∗ due to

Lemma 6.3.5 (5) and Lemma 6.4.5 (1), respectively; and it is easy to see that the term in

the last pair of parentheses belongs to H+ ⊆ C∗. Due to ι ∈ H+, Lemma 6.4.5 (2) implies

ρ ∈ C and ρ− µ ∈ C. Since ψ is C∗-nondecreasing, we get ψ(ν(j)) ⩽ ψ(ρ). Lemma 6.4.5 (3)

also gives Eξ∗(ρ−µt ) = Eξ∗(ι(j)♯ ) = Eξ∗(ι(j)). These along with Lemma 6.4.6 yield

I ⩽ ψ(ρ)− tEξ∗
(
ρ− µ

t

)
+ 2ε = ψ(ρ)− tH⊛

(
ρ− µ

t

)
+ 2ε ⩽ RHS+ 2ε.

Sending ε→ 0, we obtain the desired result.

6.4.3. Proof of the main result

We state the rigorous version of Theorem 6.1.1. Recall the isometry Ξ given in (6.4.3); the

action of Ξ on functions in (6.4.5); the 1-Wasserstein metric d1 in (6.4.2); the definition

of solutions in Definition 6.4.3; Hilbert spaces H and Hj , j ∈ J, in (6.3.2) and (6.3.7),

respectively; cones C and Cj , j ∈ J, in (6.3.4) and (6.3.11), respectively; the definition of

C∗-nondecreasingness in (6.1.5); ξ∗ in (6.4.14); the definition of good collections of partitions

at the beginning of Section 6.3.1; lifts and projections of functions in Definition 6.3.1.

Theorem 6.4.8. Suppose

• ξ : RD×D → R is locally Lipschitz and its restriction to SD+ is proper;
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• ψ : P↗
2 → R satisfies that Ξψ : C → R is C∗-nondecreasing, and

|ψ(ϱ)− ψ(ϑ)| ⩽ d1(ϱ, ϑ), ∀ϱ, ϑ ∈ P↗
2 . (6.4.20)

Then, regularizations of ξ exist, and, for any regularization ξ, there is a unique Lipschitz

viscosity solution f to (6.1.1) (with regularization ξ) satisfying f(0, ·) = ψ. Moreover,

1. Ξf = limj∈Jgood f
↑
j in the local uniform topology, for any good collection of partitions

Jgood, where fj is the unique Lipschitz viscosity solution to HJ(Hj , Cj ,Hj ; (Ξψ)j) for

every j ∈ Jgood and for H given in (6.4.11);

2. if ξ is convex, then f is given by the Hopf–Lax formula

Ξf(t, µ) = sup
ν∈µ+C

{
Ξψ(ν)− tEξ∗

(
(ν − µ)(U)

t

)}
, ∀(t, µ) ∈ R+ × C; (6.4.21)

3. if Ξψ is convex, then f is given by the Hopf formula

Ξf(t, µ) = sup
ν∈C

inf
ρ∈C

{
⟨ν, µ− ρ⟩H + Ξψ(ρ) + tEξ(ν(U))

}
, ∀(t, µ) ∈ R+ × C. (6.4.22)

Remark 6.4.9. In view of Definition 6.4.3 and Lemma 6.4.4, Proposition 6.3.8 supplies a

comparison principle for (6.1.1).

Remark 6.4.10. We briefly comment on the assumptions on ξ and ψ. As mentioned pre-

viously, in most of interesting models, ξ given in (6.4.6) admits a convergent power series

and is proper on SD+ (see [93, Propositions 6.4 and 6.6]). In practice, ψ will be the limit

of FN (0, ·) as N → ∞. Due to (6.4.8) and (6.4.9), the assumptions on ψ are natural. In

general, the initial condition ψ as the limit of FN (0, ·) is neither concave or convex, which

renders the Hopf formula less useful. A discussion on existence of variational formulae for

free energy limits is in [96, Section 6].
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Remark 6.4.11. If D = 1, using Proposition 6.4.7, we can slightly simplify (6.4.21) into

Ξf(t, µ) = sup
ν∈C

{
Ξψ(ν)− tEξ∗

(
(ν − µ)(U)

t

)}
, ∀(t, µ) ∈ R+ × C. (6.4.23)

The supremum in (6.4.21) is taken over µ+ C, and now the supremum is simply over C. We

do not know if this simplification holds for D > 1.

Remark 6.4.12. Let us discuss how solutions considered in [92, 98, 96, 93] can be recast

as viscosity solutions. In [92, 98] where D = 1, the solution to (6.1.1) was defined as

(6.4.23) with ξ replaced by the original ξ. Since it is only the values of ξ over matrices

in SD+ with entries in [−1, 1] that matters (see the discussion below Definition 6.4.1), one

can work directly with the regularization ξ. Then, due to Theorem 6.4.8 (2), the Hopf–Lax

solution in [92, 98] is the unique viscosity solution. In [96, 93], the solution was defined

as the limit of solutions of HJ(Hj , Cj ,Hj ; (Ξψ)j) indexed by j ∈ Junif . Although solutions

of finite-dimensional equations in [96, 93] were required to satisfy the Neumann boundary

condition, the theory developed there is compatible with the definition of solutions in this

work. All results related to viscosity solutions in finite dimensions there can be replaced

by their counterparts in this work. Moreover, some arguments can be simplified due to

the simplification of the boundary condition. Therefore, with this modification, in view of

Theorem 6.4.8 (1), the solution considered in [96, 93] is the unique viscosity solution.

Proof of Theorem 6.4.8. Lemma 6.4.2 guarantees the existence of regularizations. We fix

any regularization ξ. The properties of H are listed in Lemma 6.4.4. In particular, H

satisfies (A1)–(A2). Using (6.4.4), we can rewrite (6.4.20) as

|Ξψ(µ)− Ξψ(ν)| ⩽ C|µ− ν|L1 , ∀µ, ν ∈ C,

where L1 is given in (6.3.3). The existence of a viscosity solution f and (1) follow from

Propositions 6.3.9 and Proposition 6.3.10. The latter proposition also ensures that Ξf is

Lipschitz. By Proposition 6.3.8, Ξf (and thus f) is the unique viscosity solution that is
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Lipschitz.

Given that ξ is convex, it is easy to see from Lemma 6.4.4 (4) and (5) that Hj is convex and

bounded below for every j ∈ J. In addition, it is also clear that (Ξψ)j : Cj → R is Lipschitz

and (Cj)∗-nondecreasing. Therefore, Proposition 6.2.6 ensures that the viscosity solution fj

of HJ(Hj , Cj ,Hj ; (Ξψ)j) admits a representation given in (6.3.53) with ψ there replaced by

Ξψ. Hence, Proposition 6.3.12 along with Lemma 6.4.4 (5) and Proposition 6.4.7 yields (2).

Proposition 6.5.1 stated and proved later ensures that Cj has the Fenchel–Moreau property

as defined in Definition 6.2.7, for each j ∈ J. Under the assumption that Ξψ is convex, it

is straightforward to see that (Ξψ)j : Cj → R is also convex. Invoking Proposition 6.2.8, we

have that the viscosity solution fj of HJ(Hj , Cj ,Hj ; (Ξψ)j) is given by (6.3.55) with ψ there

replaced by Ξψ. Then, (3) follows from Proposition 6.3.13 along with Lemma 6.4.4 (1).

6.5. Fenchel–Moreau identity on cones

Recall Definition 6.2.7 of the Fenchel–Moreau property. To apply Proposition 6.2.8 to equa-

tions on R+ × Cj , j ∈ J, we need to show that Cj given in (6.3.11) has the Fenchel–Moreau

property. Adapting the definition of monotone conjugate in (6.1.7) to Cj with ambient

Hilbert space Hj given in (6.3.7), in this section, for any g : Cj → (−∞,∞], we set

g∗(y) = sup
x∈Cj

{⟨x, y⟩Hj − g(x)}, ∀y ∈ Hj , (6.5.1)

and g∗∗ = (g∗)∗, where g∗ is understood to be its restriction to Cj .

Proposition 6.5.1. For every j ∈ J, the closed convex cone Cj possesses the Fenchel–

Moreau property: for g : Cj → (−∞,∞] not identically equal to ∞, we have g∗∗ = g if and

only if g is convex, lower semicontinuous and (Cj)∗-nondecreasing.

The proof largely follows the steps in [38]. We first recall basic results of convex analysis.

Then, we show Lemma 6.5.7 which treats the case where the effective domain of g has

nonempty interior. Finally, in the last subsection, we extend the result to the general case.
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6.5.1. Basic results of convex analysis

For a ∈ Hj and ν ∈ R, we define the affine function La,ν with slope a and translation ν by

La,ν(x) = ⟨a, x⟩Hj + ν, ∀x ∈ Hj .

For a function g : E → (−∞,∞] defined on a subset E ⊆ Hj , we can extend it in the

standard way to g : Hj → (−∞,∞] by setting g(x) = ∞ for x ̸∈ E . For g : Hj → (−∞,∞],

we define its effect domain by

dom g =
{
x ∈ Hj : g(x) <∞

}
.

Henceforth, we shall not distinguish functions defined on Cj from their standard extensions

to Hj . We denote by Γ0(E) the collection of convex and lower semicontinuous functions

from E ⊆ Hj to (−∞,∞] with nonempty effect domain.

For g : Hj → (−∞,∞] and each x ∈ Hj , recall that the subdifferential of g at x is given by

∂g(x) =
{
z ∈ Hj : g(y) ⩾ g(x) + ⟨z, y − x⟩Hj , ∀y ∈ Hj

}
.

The effective domain of ∂g is defined to be

dom ∂g =
{
x ∈ Hj : ∂g(x) ̸= ∅

}
.

We now list some lemmas needed in our proofs.

Lemma 6.5.2. For a convex set E ⊆ Hj, if y ∈ cl E and y′ ∈ int E, then λy+(1−λ)y′ ∈ int E

for all λ ∈ [0, 1).

Lemma 6.5.3. For g ∈ Γ0(Hj), it holds that int dom g ⊆ dom ∂g ⊆ dom g.

Lemma 6.5.4. Let g ∈ Γ0(Hj), x ∈ Hj and y ∈ dom g. For every α ∈ (0, 1), set xα =
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(1− α)x+ αy. Then limα→0 g(xα) = g(x).

Lemma 6.5.5. Let g ∈ Γ0(Cj), x ∈ Cj and y ∈ Cj. If y ∈ ∂g(x), then g∗(y) = ⟨x, y⟩Hj −

g(x).

Lemma 6.5.6. For g ∈ Γ0(Cj) and x ∈ Cj, we have

g∗∗(x) = supLa,ν(x)

where the supremum is taken over

{(a, ν) ∈ Cj × R : La,ν ⩽ g on Cj}. (6.5.2)

For, Lemmas 6.5.2, 6.5.3, and 6.5.4, we refer to [23, Propositions 3.35, 16.21, and 9.14].

Here, let us prove Lemma 6.5.5 and Lemma 6.5.6.

Proof of Lemma 6.5.5. By the standard extension, we have g ∈ Γ0(Hj). Since y ∈ ∂g(x), it

is classically known (c.f. [23, Theorem 16.23]) that

sup
z∈Hj

{⟨z, y⟩Hj − g(z)} = ⟨x, y⟩Hj − g(x).

By assumption, we know x ∈ dom ∂g. Hence, Lemma 6.5.3 implies x ∈ dom g and thus both

sides above are finite. On the other hand, by the extension, we have g(z) = ∞ if z ̸∈ Cj ,

which yields

sup
z∈Hj

{⟨z, y⟩Hj − g(z)} = sup
z∈Cj

{⟨z, y⟩Hj − g(z)} = g∗(y).

The desired result follows from the above two displays.
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Proof of Lemma 6.5.6. For each y ∈ Cj ,

Ly,−g∗(y)(x) = ⟨y, x⟩Hj − g∗(y), ∀x ∈ C.

is an affine function with slope y ∈ Cj . By (6.1.7), we can see that Ly,−g∗(y) ⩽ g on Cj . In

view of the definition of g∗∗ in (6.2.29), we have g∗∗(x) ⩽ supLa,ν(x) for all x ∈ Cj where

the sup is taken over the collection in (6.5.2).

For the other direction, if (α, ν) belongs to the set in (6.5.2), we have

⟨a, x⟩Hj + ν ⩽ g(x), ∀x ∈ Cj .

Rearranging and taking supremum in x ∈ Cj , we get g∗(a) ⩽ −ν. This yields

La,ν(x) ⩽ ⟨a, x⟩Hj − g∗(a) ⩽ g∗∗(x),

which implies supLa,ν(x) ⩽ g∗∗(x).

The proof of Proposition 6.5.1 consists of two parts. The first part, summarized in the

lemma below, concerns the case where dom g has non-empty interior.

Lemma 6.5.7. If int dom g ̸= ∅, then g∗∗ = g if and only if g is convex, lower semicontinuous

and (Cj)∗-nondecreasing.

The next subsection is devoted to its proof. The second part deals with the case where

dom g has empty interior. For this, we need more careful analysis of the structure of the

boundary of Cj . This is done in the second subsection.

6.5.2. Proof of Lemma 6.5.7

Let satisfy int dom g ̸= ∅. It is clear from (6.2.29) that g∗∗ is convex, lower semicontinuous,

and (Cj)∗-nondecreasing.
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Henceforth, assuming that g is convex, lower semicontinuous, and (Cj)∗-nondecreasing, we

want to prove the converse. For convenience, we write Ω = dom g. The plan is to prove the

identity g = g∗∗ first on intΩ, then on clΩ, and finally on the entire C.

Analysis on intΩ

Let x ∈ intΩ. By Lemma 6.5.3, we know ∂g(x) is not empty. For each v ∈ (Cj)∗, there is

ε > 0 small so that x− εv ∈ Ω. For each y ∈ ∂g(x), by the definition of subdifferentials and

the monotonicity of g, we have

⟨v, y⟩Hj ⩾
1

ε
(g(x)− g(x− εv)) ⩾ 0,

which implies ∅ ≠ ∂g(x) ⊆ Cj . Invoking Lemma 6.5.5, we can deduce

g(x) ⩽ sup
y∈Cj

{⟨y, x⟩Hj − g∗(y)} = g∗∗(x).

On the other hand, from (6.2.29), it is easy to see that

g(x) ⩾ g∗∗(x), ∀x ∈ Cj . (6.5.3)

Hence, we obtain

g(x) = g∗∗(x), ∀x ∈ intΩ.

Analysis on clΩ

Let x ∈ clΩ and choose y ∈ intΩ. Setting xα = (1 − α)x + αy, by Lemma 6.5.2, we have

xα ∈ intΩ for every α ∈ (0, 1]. By the result on intΩ, we have

g(xα) = g∗∗(xα).
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Then, xα belongs to dom g and dom g∗∗. Applying Lemma 6.5.4 and sending α→ 0, we get

g(x) = g∗∗(x), ∀x ∈ clΩ. (6.5.4)

Analysis on Cj

Due to (6.5.4), we only need to consider points outside clΩ. Fixing any x ∈ Cj \ clΩ, we

have g(x) = ∞. Since f is not identically equal to ∞ and (Cj)∗-nondecreasing, we must

have 0 ∈ Ω. By this, x /∈ clΩ and the convexity of clΩ, we must have

λ = sup{λ ∈ R+ : λx ∈ clΩ} < 1. (6.5.5)

We set

x = λx. (6.5.6)

Then, we have that x ∈ bdΩ and λx /∈ clΩ for all λ > 1.

We need to discuss two cases: x ∈ Ω or not.

In the second case where x /∈ Ω, we have g(x) = ∞. Due to x ∈ clΩ and (6.5.4), we have

g∗∗(x) = ∞. On the other hand, by (6.5.4) and the fact that 0 ∈ Ω, we have g∗∗(0) = g(0)

and thus 0 ∈ dom g∗∗. The convexity of g∗∗ implies that

∞ = g∗∗(x) ⩽ λg∗∗(x) + (1− λ)g∗∗(0).

Hence, we must have g∗∗(x) = ∞ and thus g(x) = g∗∗(x) for such x.

We now consider the case where x ∈ Ω. For every y ∈ Hj , the outer normal cone to Ω at y

is defined by

nΩ(y) = {z ∈ Hj :
〈
z, y′ − y

〉
Hj ⩽ 0, ∀y′ ∈ Ω}. (6.5.7)
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We need the following result.

Lemma 6.5.8. Assume intΩ ̸= ∅. For every y ∈ Ω\ intΩ satisfying λy /∈ clΩ for all λ > 1,

there is z ∈ nΩ(y) ∩ Cj such that ⟨z, y⟩Hj > 0.

By Lemma 6.5.8 applied to x ∈ Ω, there is z ∈ Cj such that

⟨z, w − x⟩Hj ⩽ 0, ∀w ∈ Ω, (6.5.8)

⟨z, x⟩Hj > 0. (6.5.9)

The monotonicity of g ensures that g(x) ⩾ g(0) for all x ∈ Cj . For each ρ ⩾ 0, define

Lρ = Lρz, g(0)−ρ⟨z,x⟩Hj
.

Due to (6.5.8), we can see that

Lρ(w) = ρ ⟨z, w − x⟩Hj + g(0) ⩽ g(w), ∀w ∈ Ω.

Since we know f
∣∣
Cj\Ω = ∞, the inequality above gives

Lρ ⩽ g, ∀ρ ⩾ 0. (6.5.10)

Evaluating Lρ at x and using (6.5.6), we have

Lρ(x) = ρ ⟨z, x− x⟩Hj + g(0) = ρ
(
λ
−1 − 1

)
⟨z, x⟩Hj + g(0).

By (6.5.5) and (6.5.9), we obtain

lim
ρ→∞

Lρ(x) = ∞.
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This along with (6.5.10), Lemma 6.5.6 and (6.5.3) implies

g(x) = g∗∗(x) ∀x ∈ Cj \ clΩ.

In view of this and (6.5.4), we have completed the proof of Lemma 6.5.7. It remains to prove

Lemma 6.5.8.

Proof of Lemma 6.5.8. Fix y satisfying the condition. Since it is possible that y ̸∈ int Cj ,

we want to approximate y by points in bdΩ ∩ int Cj . For every open ball B ⊆ Hj centered

at y, there is some λ > 1 such that y′ = λy ∈ Cj ∩ (B \ clΩ). Due to intΩ ̸= ∅ and y ∈ Ω,

by Lemma 6.5.2, there is some y′′ ∈ B ∩ intΩ ⊆ int C. For ρ ∈ [0, 1], we set

yρ = ρy′ + (1− ρ)y′′ ∈ B.

Then, we take

ρ0 = sup{ρ ∈ [0, 1] : yρ ∈ intΩ}.

Since y′ /∈ clΩ, we must have ρ0 < 1. It can be seen that yρ0 ∈ clΩ \ intΩ and thus

yρ0 ∈ B ∩ bdΩ. Due to y′ ∈ Cj , y′′ ∈ int Cj and Lemma 6.5.2, we have yρ0 ∈ int Cj . In

summary, we obtain yρ0 ∈ B ∩ bdΩ ∩ int Cj .

By this construction and varying the size of the open balls centered at y, we can find a

sequence (yn)
∞
n=1 such that

yn ∈ int Cj , (6.5.11)

yn ∈ bdΩ, (6.5.12)

lim
n→∞

yn = y. (6.5.13)
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Fix any n. By (6.5.11), there is δ > 0 such that

yn +B(0, 2δ) ⊆ Cj . (6.5.14)

Here, for a ∈ Hj , r > 0, we write B(a, r) = {z ∈ Hj : |z − a| < r}. For each ε ∈ (0, δ), due

to (6.5.12), we can also find yn,ε such that

yn,ε ∈ Ω, (6.5.15)

|yn,ε − yn| < ε. (6.5.16)

This and (6.5.14) imply that

yn,ε − a ∈ Cj , ∀ε ∈ (0, δ), a ∈ B(0, δ).

Since g is (Cj)∗-nondecreasing, this along with (6.5.15) implies that

yn,ε − a ∈ Ω, ∀ε ∈ (0, δ), a ∈ (Cj)∗ ∩B(0, δ).

Due to (6.5.12) and intΩ ̸= ∅, we have that nΩ(yn) contains some nonzero vector zn (see

[23, Proposition 6.45] together with [23, Proposition 6.23 (iii)]). The definition of the outer

normal cone in (6.5.7) yields

⟨zn, yn,ε − a− yn⟩Hj ⩽ 0,

which along with (6.5.16) implies

⟨zn, a⟩Hj ⩾ −|zn|ε.
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Sending ε→ 0 and varying a ∈ (Cj)∗ ∩B(0, δ), we conclude that

zn ∈ nΩ(yn) ∩ Cj , ∀n. (6.5.17)

Now for each n, we rescale zn to get |zn| = 1. By passing to a subsequence, we can assume

that there is z ∈ Cj such that zn converges to z. By zn ∈ nΩ(yn), we get

⟨zn, w − yn⟩Hj ⩽ 0, ∀w ∈ Ω.

The convergence of (zn)∞n=1 along with (6.5.13) implies

lim
n→∞

⟨zn, w − yn⟩Hj = ⟨z, w − y⟩Hj , ∀w ∈ Ω.

The above two displays yield z ∈ nΩ(y) ∩ Cj .

Then, we show ⟨z, y⟩Hj > 0. Fix some x0 ∈ intΩ and some ε > 0 such that B(x0, 2ε) ⊆ Ω.

Let yn and zn be given as in the above. Due to |zn| = 1, we have

x0 − εzn ∈ Ω ⊆ Cj .

Since it is easy to see that Cj ⊆ (Cj)∗, by (6.5.17), we have zn ∈ (Cj)∗, which along with the

above display implies that

⟨x0 − εzn, zn⟩Hj ⩾ 0

and thus ⟨x0, zn⟩Hj ⩾ ε. Using zn ∈ nΩ(yn), we obtain

⟨yn, zn⟩Hj ⩾ ⟨x0, zn⟩Hj ⩾ ε.

Passing to the limit, we conclude that ⟨z, y⟩Hj > 0, completing the proof.
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6.5.3. Proof of Proposition 6.5.1

Similar to the arguments in the beginning of the proof of Lemma 6.5.7, we only need to show

the direction that g∗∗ = g if g is convex, lower semicontinuous and (Cj)∗-nondecreasing. By

Lemma 6.5.7, we only need to consider the case where Ω has empty interior. Recall that we

have set Ω = dom g. Throughout this subsection, we assume that Ω has empty interior. We

proceed in steps.

Step 1. Setting

N = max
{
rank

(
x|j|
)
: x ∈ Ω

}
, (6.5.18)

we want to show N < D. We need the following lemma.

Lemma 6.5.9. If there is x ∈ Cj such that x|j| is of full rank, then int (Cj ∩(x−(Cj)∗)) ̸= ∅.

Proof. Recall the partial order induced by SD+ in (6.3.1). Let x satisfy the assumption.

Then, there is some constant a > 0 such that x|j| ⩾ aID where ID is the D × D identity

matrix. Let us define yk = kδID, k = 1, 2, . . . , |j|, for some δ > 0 to be chosen later. Then,

it is clear that y ∈ Cj . We consider B = {z ∈ Hj : |zk − yk| ⩽ r, ∀k} for some r > 0 to be

chosen later. Then, due to finite dimensionality, there is some c > 0 such that, for every

z ∈ B,

−crID ⩽ zk − yk ⩽ crID, ∀k = 1, 2, . . . , |j|.

Using this, we can show that, for every z ∈ B,

zk − zk−1 ⩾ yk − yk−1 − 2crID = (δ − 2cr)ID, ∀k = 1, 2, . . . , |j|,

where we set z0 = y0 = 0. By choosing r sufficiently small, the above is in SD+ , and we have
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B ⊆ Cj . On the other hand, we also have, for i = 1, 2, . . . , |j|,

|j|∑
k=i

(xk − zk) =

|j|∑
k=i

(xk − yk + yk − zk) ⩾

x|j| − |j|∑
k=1

yk

+

|j|∑
k=i

(yk − zk)

⩾

aID −
|j|∑
k=1

yk

− |j|crID =

(
a− 1

2
(1 + |j|)|j|δ − |j|cr

)
ID,

which is in SD+ if δ and r are chosen sufficiently small. Hence, we have x− z ∈ (Cj)∗ for all

z ∈ B, which is equivalent to B ⊆ x − (Cj)∗. Since B has nonempty interior, the proof is

complete.

Since g is (Cj)∗-nondecreasing, we have

Cj ∩ (x− (Cj)∗) ⊆ Ω, ∀x ∈ Ω.

Hence, Lemma 6.5.9 implies that if there is x ∈ Ω with rank(x|j|) = D, then intΩ ̸= ∅.

Therefore, under our assumption intΩ = ∅, we must have that x|j| is of rank less than D for

every x ∈ Ω. So, for N defined in (6.5.18), we must have N < D.

Step 2. We fix x̃ ∈ Ω with rank N . By changing basis, we may assume x̃ = diag(a, 0D−N )

where a is a N ×N diagonal matrix with positive entries and 0D−N is (D −N)× (D −N)

zero matrix. We set

S̃N+ = {diag(a, 0D−N ) : a ∈ SN+} ⊆ SD+ ,

C̃j = {x ∈ Cj : xk ∈ S̃N+ , ∀k}.

We want to show that

Ω ⊆ C̃j . (6.5.19)

We argue by contradiction and assume that there is y ∈ Ω such that yk′ ̸∈ S̃N+ for some
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k′. Let us define ỹ by ỹk = yk for all k ⩽ k′ and ỹk = yk′ for all k > k′. We clearly

have ỹ ∈ Cj ∩ (y − (Cj)∗) which implies that ỹ ∈ Ω (because g is (Cj)∗-nondecreasing). By

convexity of Ω, we must have z = 1
2 x̃+ 1

2 ỹ ∈ Ω.

We argue that z|j| has rank at least N +1. Since yk′ is positive semi-definite, we must have

(yk′)ii > 0 (6.5.20)

for some i > N . By reordering coordinates, we may assume i = N + 1 in (6.5.20) and thus

(yk′)N+1,N+1 > 0. Setting ẑ|j| = ((z|j|)m,n)1⩽m,n⩽|j|, it suffices to verify v⊺z|j|v > 0 for all

v ∈ RN+1 \ {0}. We define x̂|j| and ŷ|j| analogously. If vn ̸= 0 for all n = 1, 2, . . . , N , we

have

v⊺ẑ|j|v ⩾
1

2
v⊺x̂|j|v > 0

due to the fact that x̂|j| = a is a diagonal matrix with positive entries. If vn = 0 for all

n = 1, 2, . . . , N , then we must have vN+1 ̸= 0 and thus

v⊺ẑ|j|v ⩾
1

2
v⊺ŷ|j|v =

1

2
v2N+1(y|j|)N+1,N+1 > 0.

We conclude that z|j| has rank at least N + 1 contradicting the definition of N . Therefore,

we must have (6.5.19).

Step 3. We conclude by applying Lemma 6.5.7 to g restricted to C̃j , and treating g on Cj \C̃j

using Lemma 6.5.6.

In view of (6.5.18) and (6.5.19), applying Lemma 6.5.9 to C̃j , we have that Ω has nonempty

interior relative to C̃j . Let g̃ be the restriction of g to C̃j . Define

g̃∗̃(y) = sup
x∈C̃j

{⟨x, y⟩Hj − g̃(x)}, ∀y ∈ H̃j
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where H̃j = {x ∈ Hj : xk ∈ S̃N , ∀k} with S̃N = {diag(a, 0K−N ) : a ∈ SN}. Since g(x) = ∞

for x ̸∈ C̃j and g = g̃ on C̃j , we can see from the definition of g∗ in (6.5.1) that

g∗(y) = sup
x∈C̃j

{⟨x, y⟩Hj − g(x)} = g∗̃(y), ∀y ∈ H̃j ,

which implies g∗∗(x) ⩾ g̃∗̃∗̃(x) for all x ∈ C̃j . Since Lemma 6.5.7 implies that g̃(x) = g̃∗̃∗̃(x)

for x ∈ C̃j , we can thus conclude that g∗∗(x) ⩾ g̃(x) = g(x) for all x ∈ C̃j . This along

with (6.5.3) yields

g∗∗(x) = g(x), ∀x ∈ C̃j . (6.5.21)

For x ∈ Cj \ C̃j , arguing as above (the paragraph studying the rank of z|j|), we can see that

there is some k and some i > N such that (xk)ii > 0. Now, setting yk = diag(0N , IK−N )

for every k, we have y ∈ Cj , ⟨y, x⟩Hj > 0 and ⟨y, z⟩Hj = 0 for all z ∈ C̃j . We define

Lρ = ρ ⟨y, ·⟩Hj +g(0) for each ρ > 0. Since g(z) ⩾ g(0) for all z ∈ Cj due to the monotonicity

of g, and since Lρ(z) = g(0) for all z ∈ C̃j , we have g(z) ⩾ Lρ(z) for all z ∈ C̃j . Due to

g = ∞ on Cj \ C̃j , we thus get

g(z) ⩾ Lρ(z), ∀z ∈ Cj .

Due to ⟨y, x⟩Hj > 0, we also have limρ→∞ Lρ(x) = ∞ = g(x). In view of Lemma 6.5.6, this

along with the above display implies that g∗∗(x) = g(x) for all x ∈ Cj \ C̃j , which together

with (6.5.21) completes the proof of Proposition 6.5.1.
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CHAPTER 7

Fenchel–Moreau identities on cones

This chapter is essentially borrowed from [38], joint with Hong-Bin Chen.

Abstract. A pointed convex cone naturally induces a partial order, and further a notion

of nondecreasingness for functions. We consider extended real-valued functions defined on

the cone. Monotone conjugates for these functions can be defined in an analogous way to

the standard convex conjugate. The only difference is that the supremum is taken over the

cone instead of the entire space. We give sufficient conditions for the cone under which

the corresponding Fenchel–Moreau biconjugation identity holds for proper, convex, lower

semicontinuous and nondecreasing functions defined on the cone. In addition, we show that

these conditions are satisfied by a class of cones known as perfect cones.

7.1. Introduction

The classical Fenchel–Moreau identity can be stated as f = f∗∗ for convex f : H → (−∞,∞]

satisfying a few additional regularity conditions. Here H is a Hilbert space with inner product

⟨·, ·⟩ and the convex conjugate is given by

f∗(x) = sup
y∈H

{⟨y, x⟩ − f(y)}, ∀x ∈ H.

Note that the supremum is taken over the entire space H.

On the other hand, it is well-known (c.f. [105, Theorem 12.4]) that if f : [0,∞)d → (−∞,∞]

is convex with extra usual assumptions and, in addition, is nondecreasing in the sense that

f(x) ⩾ f(y), if x− y ∈ [0,∞)d,
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then we also have f = f∗∗. Here ∗ stands for the monotone conjugate defined by

f∗(x) = sup
y∈[0,∞)d

{⟨y, x⟩ − f(y)}, ∀x ∈ [0,∞)d.

The inner product appearing above is the standard one in Rd. The nonnegative orthant

[0,∞)d is a cone in Rd and the nondecreasingness can be formulated with respect to the

partial order induced by this cone. Compared with the convex conjugate, the supremum

above is taken over the cone.

Recently, in [36], to study a certain Hamilton–Jacobi equation with spatial variables in the

set of n × n (symmetric) positive semidefinite (p.s.d.) matrices denoted by Sn+, a version

of the Fenchel–Moreau identity on Sn+ is needed to verify that the unique solution admits

a variational formula. The derivation of such formulae for Hamilton–Jacobi equations on

entire Euclidean spaces are known and can be seen, for instance, in [15, 84]. On Sn+, [36,

Proposition B.1] proves that f = f∗∗ holds if f : Sn+ → (−∞,∞] is convex with some usual

regularity assumptions and is nondecreasing in the sense that

f(x) ⩾ f(y), if x− y ∈ Sn+.

Accordingly, here ∗ stands for the monotone conjugate with respect to Sn+ given by

f∗(x) = sup
y∈Sn+

{⟨y, x⟩ − f(y)}, ∀x ∈ Sn+.

The inner product is the Frobenius inner product for matrices. Again, in this case, Sn+ can

be viewed as a cone in Sn, the space of n× n real symmetric matrices.

In view of these two examples, it is natural to pursue a generalization to an arbitrary

(convex) cone C in a Hilbert space H. More precisely, we want to show f = f∗∗ for proper,

lower semicontinuous and convex f : C → (−∞,∞] which is also nondecreasing in the sense
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that

f(x) ⩾ f(y), if x− y ∈ C,

where

f∗(y) = sup
z∈C

{⟨z, y⟩ − f(z)}, ∀y ∈ C∨, (7.1.1)

f∗∗(x) = sup
y∈C∨

{⟨y, x⟩ − f∗(y)}, ∀x ∈ C, (7.1.2)

where C∨ is the dual cone of C.

In Theorem 7.2.2, we give sufficient conditions on C for f = f∗∗ to hold for all f satisfying

the aforementioned properties. In particular, these conditions hold for a class of cones called

perfect cones first introduced in [17] in the setting of Euclidean spaces. In short, a perfect

cone is a self-dual cone satisfying that every face F of C is self-dual in the linear space

spanned by F .

The nonnegative orthant [0,∞)d and the set of p.s.d. matrices Sn+ are both perfect cones. The

former is easy to see using Definition 7.2.1 and the latter will be proved in Lemma 7.5.1. An

example of an infinite-dimensional perfect cone is given in Lemma 7.5.3. Classical references

for properties of cones and self-dual cones in Euclidean spaces or Hilbert spaces include

[16, 18, 19, 24, 102]. The generality pursued in this work is also motivated by the study of

Hamilton–Jacobi equations arising in mean-field disordered systems [95, 94, 92, 96, 93, 36],

where the solution is defined on a set that can be identified with a cone in possibly infinite

dimensions, and expected to be nondecreasing with respect to the cone.

Let us briefly comment on the connection to the theory of abstract convexity and related

works. Let A be the collection of affine functions with slopes in C∨. In view of (7.1.1)

and (7.1.2), we can declare a function f on C to be A -convex if f is equal to the upper

envelope of all functions in A lying below f (see (7.3.4) and the right-hand side of (7.3.3)).
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Then, by the Fenchel–Moreau theorem for abstract convexity (c.f. [73, Theorem 7.1]), the

desired Fenchel–Moreau identity here is equivalent to the statement that the A -convexity

coincides with the usual notion of convexity for nondecreasing functions defined on C. We

refer to [91, 108, 73] for more details on abstract convexity. Studies of increasing functions

on cones from the perspective of abstract convexity include [57, 58, 59]. The rest of the paper

is organized as follows. We introduce definitions and state the main results in Section 7.2.

These results will be proved in Section 7.3 and Section 7.4. Lastly, examples of perfect cones

in finite dimensions and infinite dimensions are given in Section 7.5.
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7.2. Definitions and main results

Let H be a real Hilbert space equipped with inner product ⟨·, ·⟩ and the associated norm

| · |. We refer to an element in H sometimes as a vector, though H can be possibly infinite-

dimensional. We denote the interior, the closure and the boundary relative to H by int, cl,

and bd, respectively.

7.2.1. Definitions related to cones

Let C be a cone in H. In this work, for simplicity, we require all cones to be convex and

contain the origin. Hence, C is a cone if and only if it satisfies

αx+ βy ∈ C, ∀x, y ∈ C, ∀α, β ⩾ 0.

Naturally, C induces a preorder ⪯ on H given by

x ⪯ y if and only if y − x ∈ C.

We also write x ⪰ y if y ⪯ x. When C is pointed, namely C ∩ (−C) = {0}, this preorder
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becomes a partial order. We denote by span and span the operations of taking the linear

span and the closed linear span, respectively. The dual of C with respect to span C is given

by

C∨ = {x ∈ span C : ⟨x, y⟩ ⩾ 0, ∀y ∈ C}. (7.2.1)

The cone C is said to be self-dual (with respect to span C) provided C = C∨. It is clear that

a self-dual cone is closed and pointed.

A subset F of a closed and pointed cone C is a face of C if F is a cone and satisfies that

if 0 ⪯ x ⪯ y and y ∈ F , then x ∈ F . (7.2.2)

Denote by F∨ the dual cone of F in the space spanF . The following definition is a gener-

alization of [17, Definition 4] from Euclidean spaces to Hilbert spaces.

Definition 7.2.1. A cone C is said to be perfect if it is self-dual and every face F of C

satisfies

1. F∨ = F ;

2. F has nonempty interior with respect to spanF .

In other words, F∨ = F means F is self-dual in its own closed span. Since C is itself a face, a

perfect cone satisfying span C = H must have nonempty interior. In finite-dimensions, a self-

dual cone always has nonempty interior in its own span (c.f. [23, Exercise 6.15]). Hence, if H

is finite-dimensional, then (2) automatically follows from (1). Compared with [17, Definition

3] where only (1) is imposed, condition (2) is added to ensure this non-degeneracy in infinite

dimensions. In Section 7.5, we give two examples of perfect cones, a finite-dimensional one

and an infinite-dimensional one.
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7.2.2. Definitions related to functions

The domain of a function f : C → (−∞,∞] is defined as

dom f =
{
x ∈ C : f(x) <∞

}
. (7.2.3)

A function f : C → (−∞,∞] is said to be C-nondecreasing provided

f(x) ⩾ f(y), ∀x ⪰ y ⪰ 0.

For any f : C → (−∞,∞], we define the monotone conjugate of f by (7.1.1) and the

monotone biconjugate of f by (7.1.2). Lastly, f is said to be proper if f is not identically

equal to ∞. We denote by Γ↗(C) the collection of functions on C with values in (−∞,∞]

that are proper, convex, lower semicontinuous (l.s.c.), and C-nondecreasing.

7.2.3. Main results

For any closed subspace H′ ⊆ H, we denote by PH′ the orthogonal projection onto H′.

Theorem 7.2.2. Assume that

(H1) C ⊆ H is a closed and pointed cone satisfying span C = H;

(H2) every face F of C is closed and has nonempty interior with respect to spanF ;

(H3) for every face F of C, the dual cone F∨ of F in the space spanF is contained in

PspanF (C∨).

Let f : C → (−∞,∞] be proper. Then, f = f∗∗ if and only if f ∈ Γ↗(C).

If f = f∗∗, then it is easy to see f ∈ Γ↗(C) necessarily. The nontrivial part is the sufficient

condition for f = f∗∗. As a special case, the following holds.

Corollary 7.2.3. Suppose that C is a perfect cone satisfying span C = H. Let f : C →

(−∞,∞] be proper. Then, f = f∗∗ if and only if f ∈ Γ↗(C).
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Let us briefly comment on hypotheses (H1)–(H3). The first two hypotheses are natural. Note

that since C is itself a face, (H2) ensures that C has nonempty interior. In finite dimensions,

given that C is closed, every face F is automatically closed (see [105, Corollary 18.1.1]), and

the second half of (H2) also holds. Hence, (H1) implies (H2) in finite dimensions. Lastly,

the proposition below shows that (H3) is nearly sharp when H is finite-dimensional.

Proposition 7.2.4. Assume (H1) and that H is finite-dimensional. If f = f∗∗ for all

f ∈ Γ↗(C), then every face F of C satisfies F∨ ⊆ cl (PspanF (C∨)).

We believe that our results can be extended to more general scenarios. Here, we stick to the

current setting for simplicity of presentation.

7.3. Preliminaries

In the first part of this section, we state some basic results that are needed throughout this

work. In the second part, we prove Proposition 7.2.4. In the last part, we prove the following

result.

Proposition 7.3.1. Suppose that C is closed and pointed. Let f : C → (−∞,∞] satisfy

int dom f ̸= ∅. Then f = f∗∗ if and only if f ∈ Γ↗(C).

7.3.1. Basic results of convex analysis

For a ∈ H and ν ∈ R, we define the affine function La,ν with slope a and translation ν by

La,ν(x) = ⟨a, x⟩+ ν, ∀x ∈ H. (7.3.1)

For a function f : E → (−∞,∞] defined on a subset E ⊆ H, we can extend it in the standard

way to f : H → (−∞,∞] by setting f(x) = ∞ for x ̸∈ E. For f : H → (−∞,∞], we define

its domain by

dom f =
{
x ∈ H : f(x) <∞

}
.
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Note that by the standard extension, the above definition is equivalent to (7.2.3) where only

functions defined on C are considered. Henceforth, we shall not distinguish functions defined

on C from their standard extensions to H. Denote by Γ0(E) the collection of proper, convex

and l.s.c. functions from E ⊆ H to (−∞,∞]. In particular, when C is closed, the collection

Γ↗(C) ⊆ Γ0(C) can be viewed as a subcollection of Γ0(H).

For f : H → (−∞,∞] and each x ∈ H, we define the subdifferential of f at x by

∂f(x) =
{
u ∈ H : f(y) ⩾ f(x) + ⟨y − x, u⟩ , ∀y ∈ H

}
. (7.3.2)

The effective domain of ∂f is defined to be

dom ∂f =
{
x ∈ H : ∂f(x) ̸= ∅

}
.

We now list some lemmas needed in our proofs.

Lemma 7.3.2. For a convex set A ⊆ H, if y ∈ clA and y′ ∈ intA, then λy+(1−λ)y′ ∈ intA

for all λ ∈ [0, 1).

Lemma 7.3.3. For f ∈ Γ0(H), it holds that int dom f ⊆ dom ∂f ⊆ dom f .

Lemma 7.3.4. Let f ∈ Γ0(H), x ∈ H and y ∈ dom f . For every α ∈ (0, 1), set xα =

(1− α)x+ αy. Then limα→0 f(xα) = f(x).

Lemma 7.3.5. Suppose that C is closed. Let f ∈ Γ0(C), x ∈ C and u ∈ C∨. If u ∈ ∂f(x),

then f∗(u) = ⟨x, u⟩ − f(x).

Lemma 7.3.6. For f ∈ Γ0(C) and x ∈ C, we have

f∗∗(x) = supLa,ν(x) (7.3.3)
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where the supremum is taken over

{(a, ν) ∈ C∨ × R : La,ν ⩽ f on C}. (7.3.4)

Lemmas 7.3.2, 7.3.3, and 7.3.4 can be found in [23] as Propositions 3.35, 16.21, and 9.14,

respectively. For completeness, let us quickly prove Lemma 7.3.5 and Lemma 7.3.6.

Proof of Lemma 7.3.5. By the standard extension, we have f ∈ Γ0(H). Invoking [23, Theo-

rem 16.23], it is classically known that

sup
z∈H

{
⟨z, u⟩ − f(z)

}
= ⟨x, u⟩ − f(x).

By assumption, we know x ∈ dom ∂f . Hence, Lemma 7.3.3 implies x ∈ dom f and thus the

right hand side of the above equation is finite. Then, the supremum on the left must also

be finite. On the other hand, by the extension, we have f(z) = ∞ if z ̸∈ C, which yields

sup
z∈H

{
⟨z, u⟩ − f(z)

}
= sup

z∈C

{
⟨z, u⟩ − f(z)

}
= f∗(u).

Proof of Lemma 7.3.6. For each y ∈ C∨,

Ly,−f∗(y)(x) = ⟨y, x⟩ − f∗(y), ∀x ∈ C.

is an affine function with slope y ∈ C∨. By (7.1.1), we can see that Ly,−f∗(y) ⩽ f on C. In

view of the definition of f∗∗ in (7.1.2), we have f∗∗(x) ⩽ supLa,ν(x) for all x ∈ C where the

sup is taken over the collection in (7.3.4).
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For the other direction, for La,ν satisfying a ∈ C∨ and La,ν ⩽ f , we have

⟨a, x⟩+ ν ⩽ f(x), ∀x ∈ C.

Rearranging and taking supremum in x ∈ C, we get f∗(a) ⩽ −ν. This yields

La,ν(x) ⩽ ⟨a, x⟩ − f∗(a) ⩽ f∗∗(x),

which implies supLa,ν(x) ⩽ f∗∗(x).

7.3.2. Proof of Proposition 7.2.4

We first prove the following lemma.

Lemma 7.3.7. For w ∈ F∨, the function f : C → R ∪ {∞} given by

f(x) =


⟨w, x⟩ if x ∈ F ,

∞ if x ̸∈ F .

belongs to Γ↗(C). Moreover, if f = f∗∗, then

⟨w, x⟩ = sup ⟨v, x⟩ , ∀x ∈ F (7.3.5)

where the supremum is taken over

{v ∈ cl (PspanF (C∨)) : w − v ∈ F∨}. (7.3.6)

Proof. It is clear that f is convex, proper, and l.s.c. To show f is C-nondecreasing, let

0 ⪯ x ⪯ y. Note that this implies 0 ⪯ y − x ⪯ y. If y ∈ F , by (7.2.2) in the definition of

faces, we have x ∈ F and y− x ∈ F . This along with w ∈ F∨ yields f(x) ⩽ f(y). If y ̸∈ F ,

then f(x) ⩽ ∞ = f(y). This verifies f ∈ Γ↗(C).
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Now, we want to show (7.3.5). By Lemma 7.3.6,

f(x) = sup{⟨a, x⟩+ ν}, ∀x ∈ F (7.3.7)

where the supremum is taken over all (a, ν) ∈ C∨ × R satisfying

⟨w, y⟩ ⩾ ⟨a, y⟩+ ν, ∀y ∈ F ,

which is equivalent to

⟨w − a, λy⟩ ⩾ ν, ∀λ ⩾ 0, y ∈ F .

Setting λ = 0 and λ→ ∞ yield, respectively,

ν ⩽ 0, and ⟨w − a, y⟩ ⩾ 0, ∀y ∈ F .

For every such (a, ν), setting v = PspanF (a) (which gives ⟨v, y⟩ = ⟨a, y⟩ for all y ∈ F), we

thus obtain

⟨w, y⟩ ⩾ ⟨v, y⟩ ⩾ ⟨a, y⟩+ ν, ∀y ∈ F .

In particular, this implies that v belongs to the set in (7.3.6). Hence, in view of (7.3.7), we

conclude

f(x) ⩽ sup ⟨v, x⟩ , ∀x ∈ F

where the supremum is over the set in (7.3.6). On the other hand, for every v in the set in

(7.3.6), we have f(x) = ⟨w, x⟩ ⩾ ⟨v, x⟩ for all x ∈ F . This completes the proof of (7.3.5).

Now, we are ready to prove Proposition 7.2.4. Since H is finite-dimensional, we have spanF =

spanF . We argue by contradiction and assume that there is w ∈ F∨\cl (PspanF (C∨)). Then,
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by separation theorems, there are ε > 0 and z ∈ spanF such that

⟨w, z⟩ ⩾ ⟨u, z⟩+ ε, ∀u ∈ PspanF (C∨). (7.3.8)

By [23, Proposition 6.4 (i)] and the fact that F is a cone, we have spanF = F −F . Hence,

there are x, y ∈ F such that z = x − y. By Lemma 7.3.7, we can find v from the set in

(7.3.6) such that

⟨w, x⟩ < ⟨v, x⟩+ ε.

On the other hand, since ⟨w, y⟩ ⩾ ⟨v, y⟩ due to (7.3.6), we obtain from (7.3.8) that

⟨w, x⟩ ⩾ ⟨v, x⟩+ ε,

contradicting the previous display.

7.3.3. Proof of Proposition 7.3.1

Let f : C → (−∞,∞] be proper and satisfy int dom f ̸= ∅. It is clear from (7.1.2) that f∗∗ is

convex, l.s.c., and C-nondecreasing. Therefore, assuming f = f∗∗ and that f is proper, we

have f ∈ Γ↗(C).

From now on, we assume f ∈ Γ↗(C) and prove the converse. For convenience, we write

Ω = dom f . The plan is to prove the identity f = f∗∗ first on intΩ, then on clΩ, and finally

on the entire C.

Analysis on intΩ

Let x ∈ intΩ. By Lemma 7.3.3, we know ∂f(x) is not empty. For each v ∈ C, there is

ε > 0 small so that x− εv ∈ Ω. For each u ∈ ∂f(x), by the definition of subdifferentials and

nondecreasingness, we have

⟨v, u⟩ ⩾ 1

ε

(
f(x)− f(x− εv)

)
⩾ 0,
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which implies

∅ ≠ ∂f(x) ⊆ C∨, ∀x ∈ intΩ. (7.3.9)

Invoking Lemma 7.3.5, from (7.3.9) we can deduce

f(x) ⩽ sup
y∈C∨

{⟨y, x⟩ − f∗(y)} = f∗∗(x).

On the other hand, from (7.1.2), it is easy to see that

f(x) ⩾ f∗∗(x), ∀x ∈ C. (7.3.10)

Hence, we obtain

f(x) = f∗∗(x), ∀x ∈ intΩ.

Analysis on clΩ

Let x ∈ clΩ and choose y ∈ intΩ. Then, xα = (1 − α)x + αy belongs to intΩ for every

α ∈ (0, 1] due to Lemma 7.3.2. By the result on intΩ, we have

f(xα) = f∗∗(xα).

Then, xα belongs to dom f and dom f∗∗. Applying Lemma 7.3.4 and sending α → 0, we

conclude that

f(x) = f∗∗(x), ∀x ∈ clΩ. (7.3.11)
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Analysis on C

Due to (7.3.11), we only need to consider vectors outside clΩ. Let x ∈ C \ clΩ, and we have

f(x) = ∞. Since f is proper and C-nondecreasing, we must have 0 ∈ Ω. By this, x /∈ clΩ

and the convexity of clΩ, we must have

λ′ = sup{λ ∈ [0,∞) : λx ∈ clΩ} < 1. (7.3.12)

We set

x′ = λ′x. (7.3.13)

Then, we have that x′ ∈ bdΩ and λx′ /∈ clΩ for all λ > 1.

We need to discuss two cases: x′ ∈ Ω or not.

In the second case where x′ /∈ Ω, we have f(x′) = ∞. Due to x′ ∈ clΩ and (7.3.11), we have

f∗∗(x′) = ∞. On the other hand, by (7.3.11) and the fact that 0 ∈ Ω, we have f∗∗(0) = f(0)

and thus 0 ∈ dom f∗∗. The convexity of f∗∗ implies that

∞ = f∗∗(x′) ⩽ λ′f∗∗(x) + (1− λ′)f∗∗(0).

Hence, we must have f∗∗(x) = ∞ and thus f(x) = f∗∗(x) for such x.

We now consider the case where x′ ∈ Ω. For every y ∈ H, the outer normal cone to Ω at y

is defined by

n(y) = {z ∈ H :
〈
z, y′ − y

〉
⩽ 0, ∀y′ ∈ Ω}. (7.3.14)

We need the following result.

Lemma 7.3.8. Assume intΩ ̸= ∅. For every y ∈ Ω\ intΩ satisfying λy /∈ clΩ for all λ > 1,

there is z ∈ n(y) ∩ C∨ such that ⟨z, y⟩ > 0.
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Ω

y

y′′

y′

yρ0

Figure 7.1: Construction of yρ0 .

Proof. Fix y satisfying the condition. It can happen that y ̸∈ int C, and we want to approxi-

mate y by a point in bdΩ∩ int C. The following construction is illustrated in Figure 7.1. For

every open ball B ⊆ H centered at y, there is some λ > 1 such that y′ = λy ∈ C ∩ (B \ clΩ).

Due to intΩ ̸= ∅ and y ∈ Ω, by Lemma 7.3.2, there is some y′′ ∈ B ∩ intΩ ⊆ int C. For

ρ ∈ [0, 1], we set

yρ = ρy′ + (1− ρ)y′′ ∈ B.

Then, we take

ρ0 = sup{ρ ∈ [0, 1] : yρ ∈ intΩ}.

Since y′ /∈ clΩ, we must have ρ0 < 1. It can be seen that yρ0 ∈ clΩ \ intΩ and thus

yρ0 ∈ B ∩ bdΩ. Due to y′ ∈ C, y′′ ∈ int C and Lemma 7.3.2, we have yρ0 ∈ int C. In

summary, we obtain yρ0 ∈ B ∩ bdΩ ∩ int C.

By this construction and varying the size of the open balls centered at y, we can find a
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sequence {yn}∞n=1 such that

yn ∈ int C, (7.3.15)

yn ∈ bdΩ, (7.3.16)

lim
n→∞

yn = y. (7.3.17)

Fix any n. By (7.3.15), there is δ > 0 such that

yn +B(0, 2δ) ⊆ C. (7.3.18)

Here, for a ∈ H, r > 0, we write B(a, r) = {z ∈ H : |z − a| < r}. For each ε ∈ (0, δ), due to

(7.3.16), we can also find yn,ε such that

yn,ε ∈ Ω, (7.3.19)

|yn,ε − yn| < ε. (7.3.20)

This and (7.3.18) imply that

yn,ε − a ∈ C, ∀ε ∈ (0, δ), a ∈ B(0, δ). (7.3.21)

By C-nondecreasingness, (7.3.19) and (7.3.21), we can see

yn,ε − a ∈ Ω, ∀ε ∈ (0, δ), a ∈ C ∩B(0, δ).

Due to (7.3.16) and intΩ ̸= ∅, we have that n(yn) contains some nonzero vector zn (see

[23, Proposition 6.45] together with [23, Proposition 6.23 (iii)]). The definition of the outer
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normal cone in (7.3.14) yields

⟨zn, yn,ε − a− yn⟩ ⩽ 0,

which along with (7.3.20) implies

⟨zn, a⟩ ⩾ −|zn|ε.

Sending ε→ 0 and varying a ∈ C ∩B(0, δ), we conclude that

zn ∈ n(yn) ∩ C∨, ∀n.

Now for each n, we rescale zn to get |zn| = 1. Since C∨ ∩ clB(0, 1) is convex, closed,

and bounded, invoking the Banach–Alaoglu–Bourbaki theorem and the Eberlein–Šmulian

theorem, by passing to a subsequence, we can assume that there is z ∈ C∨ such that zn

converges weakly to z. By zn ∈ n(yn), we get

⟨zn, w − yn⟩ ⩽ 0, ∀w ∈ Ω. (7.3.22)

The weak convergence of {zn}∞n=1 along with the strong convergence in (7.3.17) implies

lim
n→∞

⟨zn, w − yn⟩ = ⟨z, w − y⟩ , ∀w ∈ Ω.

The above two displays yield z ∈ n(y) ∩ C∨.

Then, we show ⟨z, y⟩ > 0. Fix some x0 ∈ intΩ and some ε > 0 such that B(x0, 2ε) ⊆ Ω.

Let yn and zn be given as in the above. Due to |zn| = 1, we have

x0 − εzn ∈ Ω ⊆ C,
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which along with the fact that zn ∈ C∨ implies that

⟨x0 − εzn, zn⟩ ⩾ 0

and thus ⟨x0, zn⟩ ⩾ ε. Using zn ∈ n(yn), we obtain

⟨yn, zn⟩ ⩾ ⟨x0, zn⟩ ⩾ ε.

Passing to the limit, we conclude that ⟨z, y⟩ > 0 completing the proof.

We now go back to our main proof and apply Lemma 7.3.8 to x′ ∈ Ω. Hence, there is z ∈ C∨

such that

〈
z, w − x′

〉
⩽ 0, ∀w ∈ Ω, (7.3.23)〈

z, x′
〉
> 0. (7.3.24)

By (7.3.11) and Lemma 7.3.6 (or the simple fact that f ⩾ f(0)), there is an affine function

La,ν with a ∈ C∨ and ν ∈ R such that f ⩾ La,ν . For each ρ ⩾ 0, define

Lρ = La+ρz, ν−ρ⟨z,x′⟩.

Due to (7.3.23), we can see that

Lρ(w) = La,ν(w) + ρ
〈
z, w − x′

〉
⩽ La,ν(w) ⩽ f(w), ∀w ∈ Ω.

Since we know f
∣∣
C\Ω = ∞, the inequality above gives us

Lρ ⩽ f, ∀ρ ⩾ 0. (7.3.25)
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Evaluating Lρ at x and using (7.3.13), we have

Lρ(x) = La,ν(x) + ρ
〈
z, x− x′

〉
= La,ν(x) + ρ(λ′−1 − 1)

〈
z, x′

〉
.

By (7.3.12) and (7.3.24), we obtain

lim
ρ→∞

Lρ(x) = ∞.

This along with (7.3.25), Lemma 7.3.6 and (7.3.10) implies

f(x) = f∗∗(x) ∀x ∈ C \ clΩ.

In view of this and (7.3.11), we have completed the proof of Proposition 7.3.1.

7.4. Proof of Theorem 7.2.2

We devote this section to the proof of Theorem 7.2.2. As commented in the beginning of

the proof of Proposition 7.3.1 in Section 7.3.3, assuming f = f∗∗, we have f ∈ Γ↗(C).

Now, assuming (H1)–(H3) and f ∈ Γ↗(C), we want to prove f = f∗∗. Again, we write

Ω = dom f which is a nonempty subset of C. Let us introduce

FΩ =
{
λy : λ ⩾ 0, y ∈ Ω

}
.

We will first show that f = f∗∗ holds on FΩ and then on C.

7.4.1. Identity on FΩ

We prove f = f∗∗ on FΩ. The idea is to show Ω has nonempty interior relative to FΩ and

apply Proposition 7.3.1 to f restricted to FΩ. Some properties of FΩ are needed and they

are stated and proved in the two lemmas below.

Lemma 7.4.1. The set FΩ is a face of C.
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Proof. Recall the definition of a face above Definition 7.2.1. Since in this work, we require

cones to be convex, to show FΩ is a face, we start by checking it is convex. Note that for

any x1, x2 ∈ FΩ, there are λ1, λ2 ⩾ 0 and y1, y2 ∈ Ω such that xi = λiyi for i = 1, 2. We can

choose µ > 0 large enough so that λi
µ yi ⪯ yi for both i. Hence, by the C-nondecreasingness

of f , we have λi
µ yi ∈ Ω for both i. Then, for each α ∈ [0, 1], it holds that

αx1 + (1− α)x2 = µ

(
α
λ1
µ
y1 + (1− α)

λ2
µ
y2

)
.

By the convexity of Ω, we have αλ1µ y1 + (1 − α)λ2µ y2 ∈ Ω. Hence, we conclude that αx1 +

(1− α)x2 ∈ FΩ, which implies that FΩ is convex. Then, it is easy to see FΩ is a cone.

Now let 0 ⪯ x ⪯ y and y ∈ FΩ. By definition, there is µ > 0 such that µy ∈ Ω. We

can deduce that 0 ⪯ µx ⪯ µy. Again, the C-nondecreasingness implies µx ∈ Ω and thus

x ∈ FΩ.

Lemma 7.4.2. Assume (H1) and (H2). The subset Ω has nonempty interior with respect

to the space spanFΩ.

Proof. For positive integers m,n ∈ N+, we set Em,n = {mx ∈ H : f(x) ⩽ n} which is the

level set {f ⩽ n} scaled by m. We want to show

FΩ =
⋃

m,n∈N+

Em,n. (7.4.1)

For each x ∈ FΩ, there is µ > 0 such that y = µx ∈ Ω. Then, there is n ∈ N+ such

that y ∈ {f ⩽ n}. Choose m ∈ N to satisfy mµ ⩾ 1. Since f is C-nondecreasing and

0 ⪯ 1
mµy ⪯ y, it yields that 1

mµy ∈ {f ⩽ n}, which implies that x ∈ Em,n. The other

direction is easy by the definition of FΩ. Therefore, we have verified (7.4.1).

Since f is l.s.c., we know that every Em,n is closed. As a closed subspace of H, the space

spanFΩ is complete. On the other hand, by (H1) and (H2), the face FΩ also has nonempty
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interior in spanFΩ. Hence, invoking the Baire category theorem (see [106, Section 10.2])

and taking (7.4.1) into account, we can deduce that there is a pair m,n such that Em,n has

nonempty interior in spanFΩ. This implies that the interior of {f ⩽ n} ⊆ Ω relative to

spanFΩ is nonempty. Hence, we conclude that Ω has nonempty interior.

Let us set C′ = FΩ, H′ = spanFΩ and f ′ be the restriction of f to C′. Since Ω ⊆ FΩ, it is

immediate that dom f ′ = Ω ⊆ C′. Also, due to f ∈ Γ↗(C), we have f ′ ∈ Γ↗(C′). By (H1),

(H2) and Lemma 7.4.1, C′ is closed and pointed in H′. Lemma 7.4.2 guarantees that dom f ′

has nonempty interior in H′. Therefore, invoking Proposition 7.3.1, we obtain

f ′(x) = f ′
∗′∗′

(x), ∀x ∈ C′. (7.4.2)

Here,

f ′
∗′
(y) = sup

z∈C′
{⟨z, y⟩ − f ′(z)}, ∀y ∈ C′∨,

f ′
∗′∗′

(x) = sup
y∈C′∨

{⟨y, x⟩ − f ′
∗′
(y)}, ∀x ∈ C′,

where C′∨ is the dual cone of C′ in H′. Due to Ω ⊆ C′,

f(z) = ∞, ∀z ̸∈ C′. (7.4.3)

By this and (7.1.1), we have

f∗(y) = f ′
∗′
(y), ∀y ∈ C′∨.

Using (H3), the definition of f ′ and (7.4.3), we can see that

{La,ν : a ∈ C′∨, ν ∈ R such that La,ν ⩽ f ′ on C′}

⊆ {La,ν : a ∈ C∨, ν ∈ R such that La,ν ⩽ f on C},
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which together with Lemma 7.3.6 implies that

f∗∗(x) ⩾ f ′
∗′∗′

(x), ∀x ∈ C′.

This along with (7.4.2) and f = f ′ on C′ yields f∗∗ ⩾ f on C′. Lastly, from (7.3.10), we

conclude that

f(x) = f∗∗(x), ∀x ∈ FΩ. (7.4.4)

7.4.2. Identity on C

Due to (7.4.4), we only need to show f(x) = f∗∗(x) for x ∈ C \ FΩ. To start, we record

useful properties of faces in the ensuing two lemmas. Note that from the discussion below

Definition 7.2.1 we have int C ̸= ∅ if C is perfect.

Lemma 7.4.3. Let F be a face of a cone C ⊆ H. If F ̸= C, then F ∩ int C = ∅ and thus

F ⊆ bd C.

Proof. Let us argue by contradiction and suppose that there is x ∈ F ∩ int C. Then for every

y ∈ C, we can find ε > 0 small so that x− εy ∈ C and thus 0 ⪯ εy ⪯ x. Then, the definition

of faces implies that εy ∈ F . Since F is a cone and ε > 0, we obtain y ∈ F which implies

C ⊆ F and thus C = F , contradicting the assumption that F ̸= C. Therefore, the desired

result holds.

Lemma 7.4.4. Assume (H1)–(H3). Let F be a face of C. For every x ∈ C \ F , there is

v ∈ C∨ such that ⟨v, x⟩ > 0 and

⟨v, y⟩ = 0, ∀y ∈ F .

Proof. We take F ′ to be the intersection of all faces of C containing both F and x. It can

be checked that F ′ is again a face of C. Hence, F ′ is the minimal face containing both F
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and x. Let us write

H′ = spanF ′ (7.4.5)

and denote by F̊ ′ the interior of F ′ with respect to H′. By (H2), we have F̊ ′ ̸= ∅ and that F ′

is closed. Since F is clearly a face of F ′, Lemma 7.4.3 applied to F ⊆ F ′ yields F ∩ F̊ ′ = ∅.

By the Hahn–Banach separation theorem (c.f. [28, Theorem 1.6]), there are α ∈ R and a

nonzero vector w ∈ H′ such that

⟨w, y⟩ ⩽ α, ∀y ∈ F , (7.4.6)

⟨w, z⟩ ⩾ α, ∀z ∈ F̊ ′. (7.4.7)

Since F ′ is closed and convex, and F̊ ′ ̸= ∅, by [23, Proposition 3.36 (iii)], we have that the

closure of F̊ ′ is F ′. Hence, (7.4.7) becomes

⟨w, z⟩ ⩾ α, ∀z ∈ F ′. (7.4.8)

By (7.2.2), we have 0 ∈ F . Due to this and F ⊆ F ′, using (7.4.6) and (7.4.8), we must have

α = 0 and

⟨w, y⟩ = 0, ∀y ∈ F . (7.4.9)

Then, (7.4.8) is turned into ⟨w, z⟩ ⩾ 0 for all z ∈ F ′ which implies that

w ∈ F ′∨ (7.4.10)

where F ′∨ is the dual cone of F ′ in H′. Due to (H3), there is v ∈ C∨ such that

⟨v, z⟩ = ⟨w, z⟩ , ∀z ∈ H′. (7.4.11)
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Now, we consider the null space of the linear map y 7→ ⟨v, y⟩ given by

E = {y ∈ H : ⟨v, y⟩ = 0}. (7.4.12)

We want to show E ∩F ′ is a face of C. It is clear that E ∩F ′ is a cone. For y ∈ E ∩F ′ and

z ∈ C satisfying 0 ⪯ z ⪯ y, by v ∈ C∨, we obtain

⟨v, y − z⟩ ⩾ 0,

⟨v, z⟩ ⩾ 0.

Due to y ∈ E, the above two displays yield ⟨v, z⟩ = 0 which implies that z ∈ E. Since F ′ is

a face, by 0 ⪯ z ⪯ y and y ∈ F ′, we also have z ∈ F ′. Hence, we have z ∈ E ∩ F ′ and thus

verified that E ∩ F ′ is a face of C.

We claim that

E ∩ F ′ ̸= F ′. (7.4.13)

Otherwise, we have F ′ ⊆ E, which due to (7.4.5) implies that H′ ⊆ E. However, this along

with (7.4.11) means that ⟨w,w⟩ = 0 contradicting the fact that w ̸= 0. Hence, (7.4.13) is

valid.

To conclude, we argue that

x ̸∈ E. (7.4.14)

Otherwise, since F ′ contains x by the definition of F ′, we have x ∈ E ∩ F ′. From (7.4.9),

(7.4.11) and (7.4.12), we can deduce that F ⊆ E and thus F ⊆ E ∩ F ′. Therefore, E ∩ F ′

is a face containing both x and F . However, this together with (7.4.13) contradicts the fact

that F ′ is chosen to be the minimal face containing x and F .
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Therefore, by contradiction, we conclude that (7.4.14) must hold. Then, by x ∈ F ′ and

(7.4.10), we must have ⟨v, x⟩ > 0. In view of this, (7.4.9) and (7.4.11), the vector v satisfies

all the desired properties.

With these results, we resume the proof of f = f∗∗ on C \FΩ. Fix any x ∈ C \FΩ. For each

ρ > 0, we set

Lρ = Lρv, f(0),

with v ∈ C∨ given in Lemma 7.4.4 corresponding to this x and F = FΩ. This lemma implies

that v is perpendicular to FΩ and thus

Lρ(y) = ρ ⟨v, y⟩+ f(0) = f(0), ∀y ∈ FΩ.

Then, the C-nondecreasingness of f implies that

f(y) ⩾ Lρ(y), ∀y ∈ FΩ.

Since we know f = ∞ on C \ FΩ, we obtain

f ⩾ Lρ, ∀ρ > 0.

On the other hand, due to ⟨v, x⟩ > 0 in Lemma 7.4.4, we have

lim
ρ→∞

Lρ(x) = ∞ = f(x).

Hence, by the above two displays, (7.3.10) and Lemma 7.3.6, we conclude that f(x) = f∗∗(x)

for x ∈ C \ FΩ. This together with (7.4.4) completes the proof of Theorem 7.2.2.
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7.4.3. Proof of Corollary 7.2.3

Recall the notion of perfect cones in Definition 7.2.1. We verify that any perfect cone C

with span C = H satisfies (H1)–(H3). Since the self-duality of C implies that C is both closed

and pointed, property (H1) holds for C. For any face F of C, by Definition 7.2.1 (1), F is

self-dual in spanF and thus closed. Hence, (H2) follows from this and Definition 7.2.1 (2).

Lastly, due to F ⊆ C, F∨ = F and C∨ = C, it is immediate that F∨ ⊆ PspanF (C∨) and thus

(H3) holds. Therefore, Theorem 7.2.2 yields Corollary 7.2.3.

7.5. Examples of perfect cones

We show that the set of positive semidefinite matrices is a perfect cone, and that an infinite-

dimensional circular cone is perfect.

7.5.1. Positive semidefinite matrices

Let n ∈ N \ {0} and denote by Sn the set of all n × n symmetric matrices, by Sn+ the set

of all n× n positive semidefinite matrices, and by Sn++ the set of all n× n positive definite

matrices. On Sn, we define the inner product by

⟨x, y⟩ = tr(xy), ∀x, y ∈ Sn,

where tr is the trace of a matrix and x⊺ is the transpose of x. Hence, Sn is a Hilbert space

with dimension n(n+ 1)/2. The goal is the following.

Lemma 7.5.1. For each positive integer n, the set Sn+ is a perfect cone in Sn.

To start, it is well-know that Sn+ is self-dual, which is attributed often to Fejér (see, e.g. [76,

Theorem 7.5.4]). For completeness of presentation, we prove it below.

Lemma 7.5.2. Let x ∈ Sn. Then, x ∈ Sn+ if and only if ⟨x, y⟩ ⩾ 0 for every y ∈ Sn+.

Proof. If x ∈ Sn+, then for any y ∈ Sn+ we have ⟨x, y⟩ = tr(
√
x
√
y
√
y
√
x) ⩾ 0. For the other

direction, by choosing an orthonormal basis, we may assume that x is diagonal. Testing by
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y ∈ Sn+, we can show that all diagonal entries in x are nonnegative and thus x ∈ Sn+.

Proof of Lemma 7.5.1. Given the above lemma, we only need to verify the conditions on

the faces of Sn+ stated in Definition 7.2.1. Let F be a face of Sn+.

The cases F = {0} and F = Sn+ are trivial, so we assume {0} ⊊ F ⊊ Sn+. Lemma 7.4.3

implies F ⊆ bdSn+ = Sn+ \ Sn++. Set

m = max
{
rank(z) : z ∈ F

}
, (7.5.1)

where rank(z) is the rank of the matrix z. By our assumption on F , we must have 1 ⩽ m < n.

For each k ∈ N \ {0}, we denote by 0k the k× k zero matrix. Due to (7.5.1), there is x ∈ F

with rank(x) = m. By fixing a suitable orthonormal basis, we may assume

x = diag(λ1, λ2, · · · , λm,0n−m), (7.5.2)

where λj > 0 for all 1 ⩽ j ⩽ m.

Let us consider the following set

E =
{
diag(y◦,0n−m) : y◦ ∈ Sm+

}
⊆ Sn+. (7.5.3)

We now show E = F . First, we want to prove F ⊆ E. In other words, we claim that for

every y ∈ F , there is y◦ ∈ Sm+ such that

y = diag(y◦,0n−m). (7.5.4)

Let us argue by contradiction. Suppose that (7.5.4) does not hold for all y ∈ F , then we

can find y ∈ F with yjk ̸= 0 for some j > m or k > m. Assuming the former without loss

of generality, we compute v⊺yv for v = tej + ek and vary t ∈ R where ej and ek belong to

the standard basis for Rn. Then, due to y ∈ Sn+, we must have yjj > 0. By reordering the
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basis, we may assume j = m+ 1, and thus

ym+1,m+1 > 0. (7.5.5)

Let ŷ = (yij)1⩽i, j⩽m+1 ∈ Sm+1
+ , and we define x̂ similarly. Then, we want to show rank(x̂+

ŷ) = m+ 1. Let v ∈ Rm+1 \ {0}. If vj ̸= 0 for some 1 ⩽ j ⩽ m, then we have

v⊺(x̂+ ŷ)v ⩾ v⊺x̂v > 0.

The last inequality follows from (7.5.2). If vj = 0 for all 1 ⩽ j ⩽ m, then due to v ̸= 0, we

must have vm+1 ̸= 0, and by (7.5.5), we get

v⊺(x̂+ ŷ)v ⩾ v⊺ŷv = ym+1,m+1v
2
m+1 > 0.

In conclusion, we obtain v⊺(x̂+ ŷ)v > 0, which implies that x̂+ ŷ ∈ Sm+1
++ and thus rank(x+

y) ⩾ rank(x̂ + ŷ) = m + 1. Since F is a cone, we have x + y ∈ F . But this contradicts

the maximality of m as in (7.5.1). Hence, every y ∈ F satisfies (7.5.4), and thus we verified

F ⊆ E.

Now, we turn to the proof of E ⊆ F . For every y of the form (7.5.4), due to (7.5.2), there

exists a small ε > 0 such that x ⪰ εy ⪰ 0 where the partial order ⪰ is induced by the

cone Sn+. Indeed, such ε exists because, viewing x, y as matrices in Sm+ , we can choose ε

sufficiently small so that the absolute values of eigenvalues of y is bounded by min1⩽j⩽m λj .

Recall the definition of faces above Definition 7.2.1. Since F is a face, we must have εy ∈ F

and thus y ∈ F . Hence, we conclude E ⊆ F .

Now, we have F = E. In view of (7.5.3), we can identify F with Sm+ and spanF with Sm.

We know that Sm+ is self-dual in Sm by Lemma 7.5.2, whose interior is given by Sm++ and

thus not empty. Therefore, all conditions on F in Definition 7.2.1 are verified.
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7.5.2. An infinite-dimensional circular cone

We consider a generalization of the finite dimensional circular cone {x ∈ Rd+1 : (x21 + · · ·+

x2d)
1
2 ⩽ x0}. Let H = l2(N) where the elements in l2(N) are precisely x = (x0, x1, x2, . . . )

with
∑∞

i=0 x
2
i <∞. The inner product on H is given by

⟨x, y⟩ =
∞∑
i=0

xiyi, ∀x, y ∈ H.

We denote by | · | the associated norm. For each x ∈ H, we write x⩾1 = (0, x1, x2, . . . ) ∈ H.

We consider the following cone

C = {x ∈ H : |x⩾1| ⩽ x0}. (7.5.6)

The desired result is stated below.

Lemma 7.5.3. The cone C defined in (7.5.6) is perfect in H.

To prove this lemma, we start with the following result.

Lemma 7.5.4. The interior of C is nonempty, and given by

int C = {x ∈ H : x0 > 0, |x⩾1| < x0}. (7.5.7)

Proof. Let y belong to the set on the right hand side of (7.5.7). Choose ε > 0 such that

y0 − |y⩾1| > 2ε. Then, we want to show that, for all x ∈ H satisfying |x − y| < ε, we have

x ∈ C. We can see that

(x0 − y0)
2 + |x⩾1 − y⩾1|2 = |x− y|2 < ε2.

This yields |x0 − y0| < ε and |x⩾1 − y⩾1| < ε. Now, using these, the property of ε and the
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triangle inequality, we get

|x⩾1| ⩽ |y⩾1|+ ε < (y0 − 2ε) + ε = y0 − ε ⩽ x0.

Hence, we have x ∈ C and can deduce that the right side of (7.5.7) is contained in int C. For

the other direction, let y ∈ C with |y⩾1| = y0. It is easy to see that every neighborhood of

y contains a point not in C. Therefore, we conclude that (7.5.7) holds.

In order to prove the perfectness of C, we need information about its faces. The next lemma

classifies all faces of C. The definition of faces are given above Definition 7.2.1.

Lemma 7.5.5. Under the above setting, if F is a face of C, then either F = C or there is

x ∈ bd C such that F = {λx : λ ⩾ 0}.

Proof. It is clear that C is a face of itself. Now we consider the case F ̸= C. If F = {0}, then

there is nothing to prove. Hence, let us further assume that there is a nonzero x ∈ F ⊆ C. In

particular, due to (7.5.6), we have x0 > 0. Lemma 7.4.3 implies F ⊆ bd C. By Lemma 7.5.4

and the definition of C, the vector x satisfies

|x⩾1| = x0 > 0. (7.5.8)

By definition of faces, F is a cone. Due to this and x ∈ F , we have

F ⊃ {λx : λ ⩾ 0}.

Now, we show that the above is in fact an equality. Let y ∈ F \ {0}. By similar arguments

as above, we have y0 > 0. Rescaling if needed, we may assume y0 = x0. Recall that in

this work, convexity is built into the definition of cones. Set z = 1
2(x + y). Using Jensen’s
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inequality, by (7.5.8) and an analogous one for y, we obtain

x20 = |z⩾1|2 =
∞∑
i=1

(xi + yi
2

)2
⩽

∞∑
i=1

x2i + y2i
2

= x20.

The equality holds only if xi = yi for all i, so y = x and the proof is complete.

Proof of Lemma 7.5.3. We first show that C is self-dual. Recall that the dual cone is defined

in (7.2.1) and denoted by C∨. Let y ∈ C∨ and we have

⟨x, y⟩ ⩾ 0, ∀x ∈ C. (7.5.9)

Since (1, 0, 0, . . . ) ∈ C, we get y0 ⩾ 0. We consider two cases depending on whether y0 = 0

or not. Suppose y0 = 0, for any fixed i ⩾ 1, we construct x′ in the following way. Set

x′0 = 1, set x′i = −1 if yi ⩾ 0 and x′i = 1 if yi < 0, and lastly set all other entries of x′ to

be zero. Inserting this x′ into (7.5.9) and varying i, we can see y = 0 and thus y ∈ C. Now

we consider the case where y0 > 0. If |y⩾1| = 0, then this immediately implies y ∈ C. If

|y⩾1| ≠ 0, then we set γ = |y⩾1|−1 > 0 and consider x′ given by

x′0 = y0; x′i = −γyiy0.

Plugging x′ into (7.5.9) and using y0 > 0, we obtain y0 ⩾ |y⩾1| and thus y ∈ C, which implies

C∨ ⊆ C. Since it is clear that C ⊆ C∨, we conclude that C is self-dual.

To show C is perfect, it remains to check the conditions on the faces of C stated in Defini-

tion 7.2.1. Recall that Lemma 7.5.4 ensures int C ≠ ∅. Hence, if F = C, then F is self-dual

and has nonempty interior with respect to spanF . Now if F ̸= C, then Lemma 7.5.5 implies

F = {λx : λ ⩾ 0}, which is one-dimensional. We can identify spanF with R and F with

[0,∞) in an isometric way. Now, it is easy to see that F is self-dual and has nonempty

interior with respect to spanF . By Definition 7.2.1, we conclude that C given in (7.5.6) is

perfect.
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