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ABSTRACT
ANDERSON-BERNOULLI LOCALIZATION ON 2D AND 3D LATTICE
Linjun Li

Jian Ding

The Anderson model describes the behaviour of electrons inside a piece of metal with
uniform impurity. The Anderson-Bernoulli model is a special case of the Anderson
model where the potential has Bernoulli distribution. We consider Anderson-Bernoulli
localization on Z< for d = 2, 3. For d = 2, we prove that, if the potential has symmetric
Bernoulli distribution and the disorder is large, then localization happens outside a
small neighborhood of finitely many energies. For d = 3, we prove that localization

happens at the bottom of the spectrum.
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Chapter 1

Introduction

The Anderson models are widely used to describe spectral and transport properties
of disordered media, such as moving quantum mechanical particles, or electrons in a
metal with impurities. The mathematical study of their localization phenomena can
be traced back to the 1980s (see e.g. [KS80]), and since then there have been many
results in models on both discrete and continuous spaces. The mathematical definition
for Anderson model (and Anderson localization) on discrete spaces is as follows. Let
d€Zi,6>0andV : Z* = Ry such that {V(a) : a € Z%} is a family of i.i.d.
bounded random variables. Define the Anderson Hamiltonian H = —A+§V where A
is the discrete Laplacian. Given a subset I C R, we say Anderson localization happens
in I if following holds: For any function v : Z% — R and energy A € I, if Hu = A\u
and inf, > sup,cza(1 + |a|)7"|u(a)| < oo, we have inf;~qsup,czq exp(tlal)|u(a)| < oco.

If I is a union of closed intervals, Anderson localization in I implies that H has

pure point spectrum in I (see e.g. [Kir08, Section 7]). Note that this is related to but



different from “dynamical localization” (see e.g. discussions in [AW15, Section 7.1]).

In most early works, some regularity conditions on the distribution of the random
potential are needed. In [FS83], Frohlich and Spencer used a multi-scale analysis
argument to show that if {V(a) : a € Z} are i.i.d. bounded random variables with
bounded probability density, then the resolvent decays exponentially when ¢ is large
enough or energy is sufficiently small. Then in [FMSS85], together with Martinelli
and Scoppola, they proved Anderson localization under the same condition. This
result was strengthened later by [CKMS87], where the same results were proved under
the condition that the distribution of {V'(a) : a € Z%} are i.i.d., bounded, and Hélder
continuous.

It remains an interesting problem to remove these regularity conditions. As de-
scribed at the beginning of [DSS02], when using the Anderson models to study alloy
type materials, it is natural to expect the random potential to take only finitely many
values. A particular case is where the random potential are i.i.d. Bernoulli variables.

For the particular case of d = 1, in the above mentioned paper [CKMS87] the
authors proved that for the discrete model on Z, Anderson localization holds for the
full spectrum when the i.i.d. random potential is non-degenerate and has some finite
moment. This includes the Bernoulli case. In [BDFT19] a new proof is given for the
case where the random potential has bounded support. In [DSS02], the continuous
model on R was studied, and Anderson localization was proved for the full spectrum

when the i.i.d. random potential is non-degenerate and has bounded support.



For higher dimensions, a breakthrough was then made by Bourgain and Kenig.
In [BKO05], they studied the continuous model R?, for d > 2, and proved Anderson-
Bernoulli localization near the bottom of the spectrum. An important ingredient is
the unique continuation principle in R, i.e. [BKO05, Lemma 3.10]. It roughly says
that, if v : R? — R satisfies Au = Vu for some bounded V on R?, and u is also
bounded, then u can not be too small on any ball with positive radius. Using this
unique continuation principle together with the Sperner lemma, they proved a Wegner
estimate, which was used to prove the exponential decay of the resolvent. In doing
this, many aspects of the usual multi-scale analysis framework were adapted; and
in particular, they introduced the idea of “free sites”. See [Bou05] for some more
discussions. Later, Germinet and Klein [GK12] incorporated the new ideas of [BKO05]
and proved localization (in a strong form) near the bottom of the spectrum in the
continuous model, for any non-degenerate potential with bounded support.

The Anderson-Bernoulli localization on lattices in higher dimensions remained
open. There were efforts toward this goal by relaxing the condition that V only
takes two values (see [Imb21]). Recently, the work of Ding and Smart [DS20] proved
Anderson-Bernoulli localization near the edge of the spectrum on the 2D lattice. As
discussed in [BK05, Section 1], the approach there cannot be directly applied to the
lattice model, due to the lack of a discrete version of the unique continuation principle.
A crucial difference between the lattice Z? and R? is that one could construct a

function u : Z¢ — R, such that Au = Vu holds for some bounded V, but u is



supported on a lower dimensional set (see Remark 2.1.6 below for an example on
3D lattice). Hence, a suitable “discrete unique continuation principle” in Z? would
state that, if a function u satisfies —Au + Vu = 0 in a finite (hyper)cube, then u
can not be too small (compared to its value at the origin) on a substantial portion of
the (hyper)cube. In [DS20], a randomized version of the discrete unique continuation
principle on Z? was proved. The proof was inspired by [BLMS17], where unique
continuation principle was proved for harmonic functions (i.e. V = 0) on Z%. An
important observation exploited in [BLMS17] is that the harmonic function has a
polynomial structure.

The rest of the thesis is organized as follows: In Chapter 2, we consider the
Anderson-Bernoulli model on 3D lattice and prove localization near the bottom of
the spectrum. In Chapter 3, we consider the Anderson-Bernoulli model on 2D lattice
and prove localization at large disorder on the whole spectrum except a union of
small intervals. Chapter 2 is based on the article [1.Z22] joint with Lingfu Zhang and
Chapter 3 is based on the article [Li20]. We refer the reader to original articles for

more details.



Chapter 2

3D Anderson-Bernoulli localization

near the edge

2.1 Introduction

2.1.1 Main result and background

In the 3D Anderson-Bernoulli model on the lattice, we study the random Schrédinger
operator H := —A + §V, acting on the space (*(Z3). Here § > 0 is the disorder

strength, A is the discrete Laplacian:

Au(a) = —6u(a) + Z u(b), Yu € (*(Z*),a € 77, (2.1.1)

beZ3,la—b|=1



and V : Z3 — {0, 1} is the Bernoulli random potential; i.e. for each a € Z3, V(a) = 1
with probability % independently. Here and throughout this chapter, |- | denotes the
Euclidean norm.

Our main result is as follows.

Theorem 2.1.1. There exists A\, > 0, depending on 0, such that almost surely the
following holds. For any function v : Z® — R and X € [0,\,], if Hu = Au and

inf,, >0 sup,ezs (1 + |a|) "|u(a)| < oo, we have inf;~sup,czs exp(t|al)|u(a)| < oco.

Our Theorem 2.1.1 settles the Anderson-Bernoulli localization near the edge of the
spectrum on the 3D lattice. Our proof follows the framework of [BK05] and [DS20].
Our main contribution is the proof of a 3D discrete unique continuation principle.
Unlike the 2D case, where some randomness is required (see Chapter 1), in 3D our
discrete unique continuation principle is deterministic, and allows the potential V' to
be an arbitrary bounded function. It is also robust, in the sense that certain “sparse
set” can be removed and the result still holds; and this makes it stand for the multi-
scale analysis framework (see Theorem 2.3.4 below). The most innovative part of our
proof is to explore the geometry of the 3D lattice.

Let us also mention that Anderson localization is not expected through the whole
spectrum in Z3, when the potential is small and it is conjectured that there is a
localization-delocalization transition. To be more precise, it is conjectured that there
exists dp > 0 such that, for any § < §y, —A + dV has purely absolutely continuous

spectrum in some spectrum range (see e.g. [Sim00]). Localization and delocalization



phenomenons are also studied for other models, see e.g. [AW15, Chapter 16] and
[AS19] for regular tree graphs and expander graphs, and see [BYY20, BYYY18, YY21]

and [SS17, SS21] for random band matrices.

2.1.2 An outline of the proof of the 3D discrete unique continuation
principle

In this subsection we explain the most important ideas in the proof of the 3D discrete
unique continuation principle.

The formal statement of the 3D discrete unique continuation principle is Theorem
2.3.4 below. It is stated to fit the framework of [BK05] and [DS20]. To make a clear

outline, we state a simplified version here.

Definition 2.1.2. For any a € Z?, and € Ry, the set a + ([—r,7] N Z)® is called a

cube, or 2r-cube, and we denote it by @Q,(a). Particularly, we also denote @, := @Q,.(0).

Theorem 2.1.3. There exists constant p > % such that the following holds. For each
K > 0, there is C; > 0, such that for any large enough n € Z,, and functions
w,V : Z3 = R with

Au=Vu (2.1.2)

in Qn and ||V | < K, we have that

{a € @, : |u(a)] > exp(—Cin)|u(0)|} > n”. (2.1.3)



Remark 2.1.4. The power of % should not be optimal. We state it this way because

it is precisely what we need (in the proof of Lemma 2.3.5 below).

To prove Theorem 2.1.3, we first prove a version with a loose control on the
magnitude of the function but with a two-dimensional support. It is a simplified

version of Theorem 2.5.1 below.

Theorem 2.1.5. For each K > 0, there is Cy depending only on K, such that for any

n € Z, and functions u,V : Z3 — R with

Au=Vu (2.1.4)

in Qn and ||Vl < K, we have that

{a € Qn: [u(a)] > exp(—Con®)|[u(0)|}| > Csn*(logyn) . (2.1.5)

Here C5 is a universal constant.

Remark 2.1.6. The power of n? can not be improved. Consider the case where V =
0, and u : (z,y,2) — (—1)"exp(sz)l,—,, where s € Ry is the constant satisfying
exp(s) + exp(—s) = 6. One can check that Aug = 0, while [{a € Q,, : up(a) # 0} =

H(ma% )EQn m—y}l (2n+ )

To prove Theorem 2.1.3, we find many disjoint translations of ),,1/s inside @,,, and

use Theorem 2.1.5 on each of these translations. This is made precise by Theorem



2.6.1 in Section 2.6. The foundation of the arguments there is the “cone property”,
given in Section 2.2, which says that from any point in Z3, we can find a chain of
points, where |u| decays at most exponentially. Such property is also used in other
parts of the chapter.

The proof of Theorem 2.1.5 is based on geometric arguments on Z*. We consider

four collections of planes in R3.

Definition 2.1.7. Let e; := (1,0,0), e; := (0,1,0), and e3 := (0,0,1) to be the
standard basis of R3, and denote \; := e; + ey + €3, Ay :== —e| + ey + e3, A3 :=
e — ey +e3 Ay == —e; —ey +e3 Forany k € Z, and 7 € {1,2,3,4}, denote

Prr={a€eR?:a-A =k}

We note that the intersection of Z* with each of these planes is a 2D triangular
lattice. Besides, there is a family of regular tetrahedrons in R?, whose four faces are
orthogonal to A1, A2, Az, Ay, respectively. Using these tetrahedrons, we construct some
polyhedrons P C R3, called pyramid. For each of these pyramid 93, the boundary
O consists of subsets of some of the planes P, (where 7 € {1,2,3,4} and k €
Z). See Figure 2.7 for an illustration. Using these observations, we lower bound
{a € Qu : Ju(a)| > exp(—Con®)[u(0)[} N O]

To be more precise, we define such 2D triangular lattice as follows.

Definition 2.1.8. In R?, denote & := (—1,0) and 7 := (%, \/75) Define the triangular



lattice as A := {s€ +1tn : s,t € Z}. For a € A and n € Z>(, denote

Ton ={a+s&+tn:t,s€Z,—n<t<2nt—n<s<n}. (2.1.6)

Then T, is an equilateral triangle of lattice points with center a, such that on each

side there are 3n + 1 lattice points.
Now we state the bound we need.

Theorem 2.1.9. There exist constants Cy > 5 and €, > 0 such that the following is
true. For anyn € Z, and any function u : To.,, — R, if u(a) +u(a—&) +ula+n)| <

Cy " u(0)| for any a € T(’;L%J , then

[{a € Toy, : [u(a)] > C;"|u(0)]}] > en’. (2.1.7)

This theorem can be seen as a triangular version of [BLMS17, Theorem(A)]. Our
proof is also similar to the arguments there, using the fact that the function u has an

approximate polynomial structure.

Organization of remaining chapter

In Section 2.2, we state and prove the “cone properties”. In Section 2.3, we introduce
our discrete unique continuation (Theorem 2.3.4), and explain how to prove the re-
solvent estimate (Theorem 2.3.1) from it, by adapting the framework from [BKO05]
and [DS20]. The next three sections are devoted to the proof of our discrete unique

10



continuation (Theorem 2.3.4): in Section 2.4 we prove the estimates on triangular
lattice, i.e. Theorem 2.1.9 and its corollaries, using arguments similar to those in
[BLMS17, Section 3]; in Section 2.5, we state and prove Theorem 2.5.1 (a stronger
version of Theorem 2.1.5) by constructing pyramids and using Theorem 2.1.9; finally,
in Section 2.6 we do induction on scales, and deduce Theorem 2.3.4 from Theorem
2.5.1.

We have three subsections with proofs of auxiliary lemmas. In Section 2.7.1 we
state some auxiliary results from [DS20] that are used in the general framework.
Section 2.7.2 is devoted to the base case of the multi-scale analysis in the general
framework. In Section 2.7.3 we give some details on deducing Anderson localiza-
tion (Theorem 2.1.1) from decay of the resolvent (Theorem 2.3.1), following existing

arguments (from [BK05, Bou05, GK12]).

2.2 Cone properties

In this section we state and prove the “cone properties”, which are widely used

throughout the rest of this chapter.

Definition 2.2.1. For each a € Z?, and 7 € {1,2, 3}, denote the cone

Cl=4beZ:|(b—a)-e|> D |(b—a) e . (2.2.1)
7e{1,2,3\{7}

For each k € Z, let CI(k) :=CI N{be Z*: (b—a) - e, = k} be a section of the cone.

11



We also denote C := Cg, for simplicity of notations.
First, we have the “local cone property”.

Lemma 2.2.2. For anyu : Z> — R, a € Z3, and v € {+ey, +e,, tes}, if |[Au(a+v)| <

Klu(a + v)|, we have

max u(b)| > (K + 11) " Hu(a)|. 222
b€a+v+{0’ie1’ie2’i83}\{a}| ( )| — ( ) | ( )l ( )

Proof. Without loss of generality we assume that v = e;. We have

lu(a)] < (6 + K)|u(a+e1)| + |u(a+2e1)| + |u(a + e, — e2)| + |u(a + e + €5)|

tlulatertes)|+lulate —e)| < (K1) - max e O

and our conclusion follows. O

With Lemma 2.2.2, we can inductively construct an oriented “chain” from 0 to

the boundary of a cube, and inside a cone.

Lemma 2.2.3. Let K € Ry, and u,V : Z*> — R, such that |V || < K, and Au=Vu
in Qy for somen € Z,. Foranya € Qn_o, T € {1,2,3}, 1 € {1,—1}, and k € Z>o, if
CI(tk) C Qn, then there ezists w € Z>o, and a sequence of points a = ag, ay, - - , 0y €
CTNQy, such that for any 1 < i < w, we have a; —a;_1 € (1e,+4{0, te;, ey, tez})\

{0}, Ju(a;)| > (K 4+ 11)"Yu(a;_1)|; and (ay — a) - (ve;) € {k —1,k}.

12



Proof. We prove the case where ¢ = 1, and the other case follows the same arguments.
We define the sequence inductively. Let ay := a. Suppose we have a; € C], with

0<(a;—a) e <k—1. Then a; + e, + {0, +e;, +es, +es} C Q,. Let

Qi1 = argmaxb6ai+e7-+{0,:te1,:i:eg,:l:eg}\{ai} |u(b)| (224)

Then we have that a;.1 — a; € e, + {0, te;, ey, tes} \ {0}, 0 < (a;11 —a) - e, <k,
and a;,; € CI. By Lemma 2.2.2, we also have that |u(a;q)] > (K + 11)"Hu(a;)|.
This process will terminate when (a; — a) - e, > k — 1 for some ¢ € Z>(. Then we let
w = i; and from the construction we know that (a; — a) - e, € {k — 1,k}. Thus we

get the desired sequence of lattice points. O

We also have a Dirichlet boundary version, whose proof is similar.

Lemma 2.2.4. Take anyn € Z,, K € Ry, and v,V : Q, = R, such that ||V, < K
and Au = Vu with Dirichlet boundary condition. For any a € Q,, 7 € {1,2,3},
L€ {l,=1}, and k € Zxo, if CL(tk)NQn # 0, then the result of Lemma 2.2.3 still holds.

In particular, we have a,, € (CT(t(k—1))UCT(tk))NQ, and |u(ay)| > (K+11)"*|u(a)|.

Proof. Again we only prove the case where ¢ = 1, and define the sequence inductively.

The only difference is that, given some a; € C7,if 0 < (a; —a)-e, < k—1, now we let

i1 1= ATGMAXpe (g, 1 e, +{0, 11 ten,tes P\ {ai )N WD) (2.2.5)

13



By the Dirichlet boundary condition, we still have that

Qiy1 — Q; € €, + {0, +eq, ey, j:e?)} \ {O} )

0< (a1 —a)- e, <k, a1 €CINQy, and |u(a;y1)] > (K + 11) " Hu(a;)|. O

2.3 General framework

This section is about the framework, based on the arguments in [DS20]. We formally
state the discrete unique continuation principle (Theorem 2.3.4), and explain how to
deduce Theorem 2.1.1 from it. For some results from [DS20] that are used in this
section, we record them in Section 2.7.1 for easy reference purpose.

As in [DS20], these arguments essentially work for any i.i.d. potential V' that
is bounded and nontrivial. For simplicity we only study the %-Bernoulli case with
disorder strength 6 = 1. Borrowing the formalism from [BK05] and [DS20], we allow
V' to take values in the interval [0, 1], for the purpose of controlling the number of
eigenvalues in proving the Wegner estimate (in the proof of Claim 2.3.9 below). In
other words, we study the operator H = —A + V| where V' takes value in the space
[0, 1]23, equipped with the usual Borel sigma-algebra, and the distribution is given by
the product of the 3-Bernoulli measure (which is supported on {0, 137,

We let sp(H) be the spectrum of H, then it is well known that, almost surely

sp(H) = [0,13] (see, e.g. [AW15, Corollary 3.13]). For any cube Q C Z3, let Py :

14



(%(Z*) — (*(Q) be the projection operator onto cube @, i.e. Pgu = ulg. Define
Hg := PoHP), where ng is the adjoint of Py. Then Hg : £2(Q) — (*(Q) is the
restriction of H on ) with Dirichlet boundary condition.

Throughout this section, by “dyadic”, we mean a number being an integer power
of 2.

The following result on decay of the resolvent is a 3D version of Theorem [DS20,

Theorem 1.4], and it directly implies Theorem 2.1.1.

Theorem 2.3.1. There exist kg > 0, 0 < A\, < 1 and L, > 1 such that

P [|(Hg, — A)"'(a,b)| < exp (L' = Aa—1b]), Va,be Q] >1— L™ (2.3.1)

for any X € [0, \s] and dyadic scale L > L.

From Theorem 2.3.1, the arguments in [BK05, Section 7] prove Anderson local-
ization in [0, A,] (Theorem 2.1.1). See Section 2.7.3 for the details.

To prove Theorem 2.3.1, we will prove a 3D analog of [DS20, Theorem 8.3], i.e.
Theorem 2.3.10 below. Except for replacing all 2D objects by 3D objects, the essential

differences are:

1. We need more information on the the frozen sites defined in [DS20], rather than

only knowing they’re “ni-regular” (see [DS20, Definition 3.4]).

2. We need a 3D Wegner estimate, an analog of [DS20, Lemma 5.6].

We now set up some geometric notations.
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Definition 2.3.2. For any sets A, B C R?, let

dist(A, B) := ae}é\l,lEGB la — 0], (2.3.2)
and
diam(A) := sup |a — b|. (2.3.3)
a,beA

IfA={beR?:|a—bl <r}, for some r >0 and a € R?, we call A a (open) ball and

denote its radius as radi(A) :=r.

The following definitions are used to describe the frozen sites, and are stronger

than being “ng-regular” in [DS20].
Definition 2.3.3. Let d € Z>o, N € Z,, and C,e > 0,1 > 1. A set Z C R? is called
(N, 1, e)-scattered if Z = UjeZ+,1§t§N 7Y is a union of open balls such that,

1. for each j € Z, and t € {1,--- , N}, radi(ZU) = ;

2. forany j # j' € Z, and t € {1,2,--- , N}, dist(Z0U1), 20" > [i+e,

A set Z C R? is called C-unitscattered, if we can write Z = | ZU), where

JELy

each ZU) C R? is an open unit ball with center in Z* and

Vj # 5 € Zy, dist(zW, 200 > ¢, (2.3.4)

Let [y,---1; > 1, we say that the vector [ = (l1, 1o, -+ ,1g) is e-geometric if for
each 2 < i < d, we have [[ T2 < ;. Given a vector of positive reals [ = (I1,lg, -+, 1a),
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a set £ C R? is called an (N,Z_;C’, g)-graded set if there exist sets Ey,--- , By C R3,

such that £ = U?:o E; and the following holds:
1. s e-geometric,
2. Ej is a C-unitscattered set,
3. forany 1 <i <d, E; is an (N, [;, €)-scattered set.

For each 1 < i < d, we say that [; is the i-th scale length of E. In particular, [y is
called the first scale length. We also denote [y := 1.

Let A C R3 and F be an (N, I.C, ¢)-graded set and C,Z > 0. Then E is said to
be (C,2)-normal in A, if EgN A # () implies C' < diam(A), and E; N A # () implies

I; < diam(A)'~2 for any i € {1,--- ,d}.

In [DS20], a 2D Wegner estimate [DS20, Lemma 5.6] is proved and used in the
multi-scale analysis. We will prove the 3D Wegner estimate based on our 3D discrete
unique continuation, and we need to accommodate the frozen sites which emerge from

the multi-scale analysis. For this we refine Theorem 2.1.3 as follows.

Theorem 2.3.4. There exists a constant p > %, such that for any N € Z,, K € R4,

and small enough ¢ € Ry, there exist C; x,C. y > 0 to make the following statement
hold.

Take n € Zy with n > C2 y and functions u,V : Z* — R satisfying

Au = Vu, (2.3.5)
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and |V < K in Qn. Let I be a vector of positive reals, and E C Z3 be an
(N,ljs_l,e)-graded set with the first scale length [y > C. y and be (1,¢)-normal in

Q.. Then we have that

Ha € @, \ E :|u(a)| > exp(—C. gn)|u(0)|}] > nP. (2.3.6)

Assuming Theorem 2.3.4, we can prove the 3D Wegner estimate. For simplicity
of notations, for any A C Z3, we denote V4 := V|, the restriction of the potential

function V on A.
Lemma 2.3.5 (3D Wegner estimate). There exists eg > 0 such that, if

1. € >8>0, ¢ is small enough, and X € sp(H) = [0, 13],

2. Ny > 1 is an integer and [is a vector of positive reals,

D=

3. Lo > -+ > Ly > Cegn, with L7 > Lj;, > Ljf * for j =0,1,2,3,4, where

C-s.n, s a (large enough) constant, and Loy, L3 are dyadic,
4. Q CZ3 and Q is an Ly-cube,

5. QL QY- ,Qy, CQ, and Q) is an Ls-cube for each k = 1,2,--- , N1 (we call

them “defects”),
6. G C U, Q. with 0 < |G| < L,

7. E is a (1OOON1,lj5_1,5)-gmded set with the first scale length ly > C.5n, and
Y .ENQ — {0,1},
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8. for any Lz-cube Q' C Q\ UkN:l1 v B is (1,¢)-normal in @,

9. for any V : Z3 — [0,1] with Veng = 7, |A — A| < exp(—Ls) and Hou = \u, we

have
exp(Lollull e, ap < lullew < (1 + Li)ulle. (23.7)
Then
P[||(Hg —X) ' < exp(Ly)| Veng = ¥] > 1— L=, (2.3.8)
where C'is a universal constant, and || - || denotes the operator norm.

The proof is similar to that of [DS20, Lemma 5.6], after changing 2D notations
to corresponding 3D notations. The major difference is in Claim 2.3.7 and 2.3.8
(corresponding to [DS20, Claim 5.9 5.10]), where Theorem 2.3.4 is used. This is also

the reason why we need the constant p > % in Theorem 2.3.4.

Proof of Lemma 2.3.5. Let g < p— % where p > % is the constant in Theorem 2.3.4.
In this proof, we will use ¢, C' to denote small and large universal constants.

We let Ay > Ay > -+ > A(zy41)3 be the eigenvalues of Hg. For each 1 < k <
(Lo + 1)3, choose eigenfunctions uy such that |uglleey = 1 and Houy, = Aug. We
may think of A\; and wuy as deterministic functions of the potential Vg € [0, 1]9.

Let £/ = ( kazll Q;) U(ENQ), then for any event &,

P €| Ving = V] = 271FF > P& Ve =7"]. (2.3.9)
VB —={01}, Y | gro="
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By the simple fact that the average is bounded from above by the maximum, we only

need to prove

P[[|(Hg — N7 > exp(L1)| Vi = #'] < Lg=™™, (2.3.10)

for any 7' : E' — {0,1} with ¥"|gng = 7.
Claim 2.3.6. There is a constant Cy, such that the following is true. Suppose u

satisfies Hou = M for some \ € [0,13]. Then there is o’ € Z3, such that Qs (a') C
2

Q\ U, Qp, and

jua)] > exp(~Cr, L)llule . (2:3.11)

Proof. Without loss of generality, we assume @ = Qr,(0). Take ay € @ such that
2

[u(ag)| = ||ulle=(q). We assume without loss of generality that ag - e, < 0, for each

7 € {1,2,3}. Since each Q) is an Lj-cube, by the Pigeonhole principle, there is

xy € [ag - e + 100N, L, ag - €1 + 200N, L], such that

Ny
{beQ:b-e € [af— 16Ls, 2+ 16Ls]} N | J Q= 0. (2.3.12)

k=1

Now we iteratively apply the cone property Lemma 2.2.4 with K = 13. Recall the

notations of cones from Definition 2.2.1, and note that (K + 11) < exp(5). We find

a1 € (Cy (z( —ag-e1) UC, (z) —ag-e1 +1))NQ (2.3.13)
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with

|u(ay)| > exp(—1000N; Ls)|u(ag)|, (2.3.14)

and ap € (C2 (4L3) UCZ (4L3+ 1)) N Q with

lu(az)| > exp(—(1000N; + 20)Ls)|u(ao)|, (2.3.15)
and ag € (C3 (2L3) UCE (2L3 + 1)) N Q with

lu(az)| > exp(—(1000N; + 30)Ls)|u(ao)|. (2.3.16)

By (2.3.13), we have |a; - e; — zf,| < 1 and —% <a-e, <200N;Lz+ 1 for 7 =2,3.
Then |as - €1 — x| < 4L3 + 2, and —% +4L; < ay - ey < (200N; + 4)L3 + 2, and
—L < gy - e3 < (200N; + 4)L3 + 2. Finally, we have |as - e; — x| < 6L3 + 3, and
—Lo4905—1 < az-e; < (200N;+6)L3+3, and —L2+2L3 < az-e3 < (200N;+6)Ls+3.

This implies Q3 (az) C Q \ Uszll Q. and the claim follows by letting ¢’ = a3 and
2

Cl, = 1000N; + 30. O

Claim 2.3.7. For any X € [0,13], Hou = A\u implies

> (%)p (2.3.17)

Proof. By applying Claim 2.3.6 to u, we can find a cube Q% (a') C Q\U, Q) for some

{oe i@l e (- 2) luloo |\ 2

a' € 72, such that |u(a’)| > exp(—Cl, L3) ||u|(q) > exp(—C’Nng)(Lo—i—l)_%||u||gz(Q).
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By Condition 8, E is (1,e)-normal in Qr;(a’). Applying Theorem 2.3.4 to cube
2

Q%(a’) with graded set E, function u, and K = 13, and letting %C‘f’%’Nl > Cn+Ce

where C;  is the constant in Theorem 2.3.4, the claim follows. O

Claim 2.3.8. Let s; = exp(—L1 + (Lo — Ly + C)i) for each i € Z. For 1 <k < ky <

(Lo+1)® and 0 < ¢ < CLY, we have
s
P [Eky o] Vir = V'] < CLE L3P (2.3.18)
where &, 1, ¢ denotes the event
Mer = Al Ay = Al < sy [Ak—1 = AL [Akpr — A > 541 (2.3.19)

Proof. For i = 0,1, we let &, i, denote the event

L
8

w3

>

Ery ko N {Ha € Q : |ug, (a)] > exp (—%) Via) = z} \ E

} N{Vg ="}

(2.3.20)
Since we are under the event Vg = 77, we can view &, k,.00 and &, x, 01 as subsets
of {0,1}@\F". Observe that &, g0 N {Vir = ¥} C Ey k0 U Eky ke by Claim 2.3.7.

Fix i € {0,1}. For each w € &, k, .0, We denote

Si(w):={a€eQ\E :w(a) =1—1}, (2.3.21)
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and

Sy(w) = {a €Q\E : w(a) = i, [up, (a)] > exp (—%) } | (2.3.22)

p
By definition of &, k, ¢:, we have |Sy(w)| > %. For each w € &, k04, 0 € Sa(w), we

define w* as
w(a) :=1—-w(a), w*(d) =w(d), Va' € Q\ E',d" # a. (2.3.23)

We claim that w® & &, k0. In the case where ¢ = 0, because of Condition 9 and
a & Uy, Qs we have >0 5o 1) u(a)? < exp(—cLy). Now we apply Lemma
2.72to Hy — A+ sp with 1 = 28p, 79 = 85411, T3 = exp(—%Lg), ry = exp(—cLy) and
75 = exp(—Ls). Then )\, moves out of interval (A — sy, A + s¢) when w(a) is changed
from 0 to 1. Thus we have w® & &, k0. The case where 7 = 1 is similar.

From this, we know that for any two w,w’ € & k04, S1(w) C Si(w’) implies
Sp(w') N Sy(w) = 0. Since |Q \ E'| < (Lo + 1)* — (Lz + 1)* < L}, we can apply
Theorem 2.7.3 with set {S)(w) : w € &k pyei} and p = £ Ly ° LY, and we conclude that

3
P&k, kotil Ver = V'] < CLELS". O

Claim 2.3.9. There is a set K C {1,2,--- ,(Ly + 1)3} depending only on E' and V",

such that |K| < CLY and

{I(Ho =N >expL)}n{Ve=7}C | U Eume (2.3.24)

k1,ka€K 0<¢<CL§
k1<ko
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Proof. Conditioning on Vi = ¥, we view A, and u as functions on [0, 1]9\F". Let
1 <k < < ky < (Lo+ 1)3 be all indices k; such that there is at least one
w € [0, 1]9\F" with |\, (w) — A| < exp(—Lsy). To prove the claim, it suffices to prove
that m < CLS. Indeed, then we can always find an 0 < ¢ < m such that the annulus
[X — SgH,X + S£+1:| \ [X — s@,X + Sg] contains no eigenvalue of Hy,.

Since |, Q, C E', Condition 9 implies that for any w € [0, 1]9\E" with |\, (w) —

Al < exp(—Ls), we have |lug, (w)|m@ey < exp(—Ls). In particular, if there is

A, (W) — A| < exp(—Ly) (2.3.25)

holds for all w € {0,1}2\¥'. Indeed, let w; = (1 —t)wo + tw for ¢ € [0,1]. We compute

t
| Ak (we) = Al <A, (wo) — Al +/ [, (W) 172 (0 1y s
0
t
<exp(—Ls) + / |Q| exp(—2Ly4) + H‘Aki(ws)—X‘ZeXp(—LQd‘S (2.3.26)
0

<exp(—Ly) + 1

maxg<s<t |Ak; (ws)—Al>exp(—Ls)

and conclude by continuity. By (2.3.25) and Condition 9, for all w € {0, 1}@\¥
we have 1 = |luy, (w)|le@@) > lluk(W)|le@ > 1 — CLy°. In particular, we have
|k, (W), wny (W) 2y — Lij] < CLg® < (5/G|)"2. By Lemma 2.7.1 we have that

m < C|G| < CLJ. O
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Finally,

P[”(HQ —X)_IH > QXP(L1)| Ve = 7/,] < Z Z P[E}cl’k%d Vi = 7’] (2.3.27)

k1,ko€K 1<0<CL§

and thus
_ 3
P[|(Hg — N > exp(L1)| Vi = #') < CLg " 157 < L=, (2.3.28)
so our conclusion follows. O

We now prove Theorem 2.3.1 by a multi-scale analysis argument.
In the remaining part of this section, by “dyadic cube”, we mean a cube Qan(a)
for some a € 2""'Z3 and n € Z_.. For each k,m € Z, and each 2k-cube Q, we denote

by m(@) the 2mk-cube with the same center as Q.

Theorem 2.3.10 (Multi-scale Analysis). There ezists k > 0, such that for any e, > 0,

there are
l.e,>e>v>060>0,
2. M,N € Z,,
3. dyadic scales Ly, for k € Z>q, with Uog2 L,f:jr?EJ = log, Ly,
4. decay rates 1 > my > L,;‘S for k € Z>,
such that for any 0 < X < exp(—LS,), we have random sets Oy, C R® for k € Zsq with
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O C Ogy1 (depending on the Bernoulli potential V'), and the following siz statements

hold for any k € Z>y:
1. When k < M, O, NZ3 =[] Z5.
2. When k > M + 1, Oy is an (N,1,(2¢)7%,2¢)-graded random set with | =
(Las Largas o Ly ™).
3. For any Ly-cube Q, the set Oy is (1,2¢)-normal in Q.

4. For any i € Zso and any dyadic 2'Ly-cube Q, the set O N Q is Vo, ,n30-

measurable.

5. For any dyadic Li-cube Q, it is called good (otherwise bad), if for any potential

V' 7P = [0,1] with Vi, oo = Vo,nq, we have

|(He = N7 (@, y)] < exp(Ly° —mule —yl), Yo,y € Q. (2.3.29)

Here Hy, is the restriction of —A+ V' on Q with Dirichlet boundary condition.

Then @ is good with probability at least 1 — L, ".
6. my = my_1 — L;", when k> M + 1.

Proof. Throughout the proof, we use ¢, C' to denote small and large universal con-
stants.

Let x be any number with 0 < k < &g, where gy is from Lemma 2.3.5. Let
small reals ¢, 0, v satisfy Condition 1 and to be determined. Let M € Z, satisfy
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%5 < (1-6e)M < %5; such M must exist as long as € < i. Leave N to be determined,
and let Ly be large enough with Ly > max {Cs., C. 5y}, where Cs. is the constant
in Proposition 2.7.10 and C. sy is the constant in Lemma 2.3.5 (with N; = N). For
k > 0, let L; be dyadic numbers satisfying Condition 3. Fix A € [0, eXp(—L‘]SW)}.

When £ = 0,1,--- , M, let O, = Uade_lmg 0., Where o, is the open unit ball
centered at a. Then Statement 1, 3, 4 hold. Let my := L,;‘;. Proposition 2.7.10
implies Statement 5 for k =1,2,--- , M.

We now prove by induction for £ > M. Assume that Statement 1 to 6 hold for
all &' < k.

For any 0 < K < k, by Lemma 2.7.6, any bad dyadic Ly-cube () must contain
a bad Ly _i-cube. For any 0 < i < k, and a bad Ly_;-cube Q' C Q, we call )/
a hereditary bad Lj_;-subcube of @, if there exists a sequence Q' = Q;, C Q, ; C
.- C Q, C Q, where for each j = 1,--- i, @j is a bad Lj_j-cube. We also call such
sequence {@j}lgg’gi a hereditary bad chain of length . Note that the set of hereditary

bad chains of @) is Vo, ,no-measurable.

Claim 2.3.11. When ¢ is small enough, there exists N' depending on M, k,§, e, such

that, for any dyadic Li-cube @,

P[Q has no more than N’ hereditary bad chain of length M] > 1 — L;;'°. (2.3.30)
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Proof. Writing N’ = (N")M | we have

P[Q has more than N’ hereditary bad chain of length M]

< Z P[Q" contains more than N” bad L;_;-subcubes]. (2.3.31)
Q'CQ
Q' is a dyadic Lj;-cube
k—M<j<k

We can use inductive hypothesis to bound this by

CN//
E ( Lj ) (L—n )cN”
—1
, Lj ’
Q'CQ
Q' is a dyadic Lj-cube

k—M<j<k

s ( % >c (LLj )CN” L (2.3.32)

k—M<j<k N7 j—1

C (Ce—cr)N" C /7 (Ce—ck)N" (Ce—cr)SN"
<CML; , max_ L7 < CML{ (L, + L, ).

s
Here we used that Ly_»s > L} in the last inequality. The claim follows by taking the e
sufficiently small (depending on k) and N” large enough (depending on M, k,d,¢). [

Now we let N := 1000N’. We call a dyadic Li-cube @ ready if () has no more

than N’ hereditary bad chain of length M. The event that @) is ready is Vo, ,no-

measurable.
Suppose @ is an Li-cube and is ready. Let Q.-+, Q%, C Q be a complete list of
all hereditary bad Lj_j/-subcubes of Q. Let Qf,---,Q%, C @ be the corresponding

bad L_1-cubes, such that Q7 C QY for each i = 1,2,--- | N’. These cubes are chosen

in a way such that {QY,---, Q% } contains all the bad L;_;-cubes in Q.
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By Lemma 2.7.4, we can choose a dyadic scale L’ satisfying
Ly <L <L > (2.3.33)

and disjoint L'-cubes @, -+ ,Q, C @ such that, for every @7, there is a @ such
that Q7 C Q) and dist(Q7,Q \ Q) > %. For each i = 1,2,--- ,N', we let Og,; be
the ball in R?, with the same center as @) and with radius L,lc’%. We can choose
Oq.,Q!, QY in a Vo, ,ng-measurable way.

Now we let Oy be the union of O,_; and balls Og 1, - ,Og nv, for each ready

Lj-cube Q); i.e.

N/
Ok = Ok—l U ( U < OQJ')) s (2334)
Q@ is an Lg-cube and is ready \i=1

and let my, = my_; — L;”,. From induction hypothesis we have m; > L,;fl - L. >
L°.
We now verify Statement 2 to 6. First note that Statement 4 and 6 hold for k£ by

the above construction.

Claim 2.3.12. Statement 2 and 3 hold for k.

PT’OOf. From (2334)7 we let @k’ = UQ is an Lj/-cube and is ready Uf\il OQvi for ' > M.

Then we have that O, = O U (UZ,:MH @k/>, and we claim that

1. Oy is (2¢)~'-unitscattered,

29



2. O is an (N, L%, 2¢)-scattered set for each k' > M.

By these two claims, Statement 2 holds by Condition 3.

Now we check these two claims. For the first one, just note that we have Oy, =
Uae(e,lmg 0a, then use Definition 2.3.3. For the second one, when k' > M the set
Oy is the union of N’ balls 00,1,0q2, - ,0¢gn for each ready Ly-cube @), and
each ball Og; has radius L,lg,_%. Denote the collection of dyadic Lj/-cubes by Qs :=
{Q%(a) ca € %23}. We can divide Q- into at most 1000 subsets Q. = golo Q,(f,),

such that any two Ly-cubes in the same subset have distance larger than L, i.e.
dist(Q, Q") > Ly for any t € {1,2,---,1000} and any Q # Q' € Q,(f,). (2.3.35)
For each 1 <¢ <1000 and 1 < j < N/, let
D,(f,’j) = {OQJ 1@ is ready and @) € Q,(f,)} :
Then for any two O # O’ € D,(f,’j), by (2.3.35), we have
dist(0,0") > Ly — 2L % > L1 = (radi(0))'% = (radi(0))"**.  (2.3.36)

From Definition 2.3.3, we have that

O = U (U Dﬁj’”)

1<¢<1000,1<j< N’
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is an (N, L;, %, 2¢)-scattered set since N = 1000N’. Thus the second claim holds.
Finally, since radi(Og,) = L, * < diam(Q)'™¢ for any ready Lj-cube @ and
1 < i < N’, we have that Oy is (1,2¢)-normal in any Lg-cube. Hence Statement 3

holds. OJ

Now it remains to check Statement 5 for k.

Claim 2.3.13. If Q is an Ly-cube and Q is ready, then for any 1 <i < N’, we have

exp(cLiZ) Nl gy oy < lulle@y < 1+ exp(=eL 2y lull o g gimy:
(Q’L\UJfl QJ) (Qz Ujfl QJ)
(2.3.37)

for any A € R with |\ — | < exp(—2L;~%), and any u : Q) — R with Hgu = \u.

Proof. If a € @} \ UJ 1Q’” then there is a j/ = 1,--- , M and a good Lj_;-cube
Q" C Q; with a € Q" and dist(a, Q] \ Q") > £Ly_j. Moreover, if a € Q} \ U;V:ll

then we can take 5/ = 1. By the definition of good and Lemma 2.7.5,
.1 _
lu(a)| < 2exp <L,1€j, - gmk_j/Lk_j/) [uller g < exp(— ka‘;,)Hquz(Q;). (2.3.38)

In particular, we see that

||u”£°°(Q§\U§V:/1 Q;{) < eXp(_CLli:(D HUHZQ(QD (2339)

and

||u||goo n N o gexp(—cL}C:%)Hquz(Q;). (2340)
@\UY, @)
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These together imply the claim. O]

Claim 2.3.14. If Q) is an Ly-cube, and for any 1 < i < N’, £(Q) denotes the event
that

Q is ready and [|(Hg, — A)7H| < exp(Ly%), (2.3.41)

then P[£;(Q)] > 1 — L{**.

Proof. Recall that the event where @) is ready is Vp,_,ng-measurable, and subcubes
Q}’s are also Vo, ,ng-measurable. Assuming ¢ > 56, we apply Lemma 2.3.5 with
2¢ > § >0, Ny = N’, and to the cube @} with scales L' > L,lg_A“E > L,lc_‘r"E > Ly >
L;72 > 20,75 (recall that L' is the scale chosen above satisfying (2.3.33)), defects
[Q @ C@} . C=Usengreg @ md E = Oy, Note that Lf < Li_y <
L,%g. Condition 9 of Lemma 2.3.5 is given by Claim 2.3.13. By Claim 2.3.11 this claim

follows. O]
Claim 2.3.15. If Q is an Ly-cube and &(Q),- - ,En/(Q) hold, then @Q is good.

Proof. We apply Lemma 2.7.6 to the cube () with small parameters ¢ > v > 0, scales
L, > L};E > [ > L,lj?’e > Li’4€ > Lpq > L}c:ﬁ, and defects @}, -+, Q.. We
conclude that

[(Hg — A)(a,b)| < exp(L; ¢ — myla —b]). (2.3.42)

Since @Q); C Oy when @ is ready, the events &(Q) are Vo,no-measurable, thus @ is

good. O]
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By combining Claim 2.3.14, Claim 2.3.15, and letting Ce < ¢y — k, we have that

Statement 5 holds for k. Thus the induction principle proves the theorem. O]

Proof of Theorem 2.3.1. Apply Theorem 2.3.10 with any ¢, < then there are

1067
{Lk}kezz()’ {mk}kezzm g, 0, v, N and M such that the statements of Theorem 2.3.10
hold. Let k, € Z, be large enough with k, > M + 2 and let L, = L;,. Fix
dyadic scale L > L,, and let k£ be the maximal integer such that L. > L;,;. Then

L% < Ly < L < Liyo < LT Denote
Q :={Q : Q is a dyadic Li-cube and Q N Qy # 0} . (2.3.43)

3
Then Q1 C Ugeo @ and [Q] < 1000 (&) < L} < 1,%%. By elementary observa-
tions, for any a € Qp, there is a Q € Q such that a € @ and dist(a, Q1 \ Q) > %Lk.

Fix A € [0,exp(—Lj,)]. For each Q € Q, define Ag to be the following event:
|(Hg — \)"!(a,b)| < exp(L, ¢ — myla — b|) for each a,b € Q. (2.3.44)
By Lemma 2.7.6, erQ Ag implies

(Hg, — A)"'(a,b)| < exp(L'™° — mla —b]),Ya,b € Qy, (2.3.45)
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where m = my, — L,;‘s. Note that for k > k., — 1 > M + 1 we have

m=my,— L >L° ,— L, — =L — L’ >0 (2.3.46)

for some §y > 0 independent of k. Here the inequalities are by Condition 4 and
Statement 6 in Theorem 2.3.10, and the fact that L, increases super-exponentially
and k, is large enough.

By Theorem 2.3.10, for each @) € Q we have

PlAg] > 1— L. " (2.3.47)

Thus

P >1— QL > 1 — L0 (2.3.48)

1 4o

QReQ

Hence our theorem follows by letting ro = “ J:(l)g: and A\, = min {dy, exp(—Lj,), e}

]

2.4 Polynomial arguments on triangular lattice

The goal of this section is to prove Theorem 2.1.9, which is a triangular lattice version
of [BLMS17, Theorem (A)]. Our proof closely follows that in [BLMS17], which em-
ploys the polynomial structure of u and the Remez inequality, and a Vitalli covering

argument.
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2.4.1 Notations and basic bounds

Before starting the proof, recall Definition 2.1.8 for some basic geometric objects.

Here we need more notations for geometric patterns in A.

Definition 2.4.1. We denote v := £ +1n = <—%, \/73) For each b = s§ +tn € A, we

denote £(b) := s and n(b) :=t. For a € A and m € Z>,, we denote the £-edge, n-edge,

and y-edge of T, to be the sets

{a—mn+s§:—2m < s<m}nNA,
{a+m&+tn:—m <t <2m}NA, (2.4.1)

{a—m&+sE+sn:—m<s<2m}NA

respectively, each containing 3m + 1 points. In this section, an edge of T, means
one of its £-edge, n-edge and ~y-edge.

For a € A and m,{ € Z>, denote
Pome={a+sE+tn: —0<t<0,—m+t<s<0}NA,

a trapezoid of lattice points. Especially, when ¢ =0, P, ={a+s£:0<s <m} is
a segment parallel to §. The lower edge of P, is defined to be the set B, _¢ym10,0,

and the upper edge of Py, is defined to be the set P,.,,, 0. The left leg of P, ¢ is the
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a m
/N
n-edge y-edge upper edge
0

a . ¢
° left leg right leg
§-edge lower edge
3m

Figure 2.1: T,.,, is the set of lattice points in the triangle region; P,.,, ¢ is the set of
lattice points in the trapezoid region.

set {a+1tn: —0 <t <0}NA, and the right leg of P, is the set

{a—m&—ty:0<t</{l}NA.

See Figure 2.1 for an illustration of Ty, and P, .

The following lemma can be proved using a straight forward induction.

Lemma 2.4.2. Let R,S € R,, a € A, and m € Z,. Suppose u : A — R satisfies

lu(d) +u(b—&) +ulb+n)| <R (2.4.2)

for any b € Ty with n(b) — &(b) < m, and |u| < S on one of three edges of Tym.

Then |u(b)| < 2°™S + (2°™ — 1)R for each b € T,.,.

Proof. By symmetry, we only need to prove the result when |u| < S on the £-edge of

To.m- Without loss of generality we also assume that a = 0.
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We claim that for each k = 0,1, -+ ,3m, |u(b)| < 2*S+ (2¥ —1)R for any b € To.,
with n(b) = k —m. We prove this claim by induction on k. The base case of k = 0
holds by the assumptions. We suppose that the statement is true for 0,1,--- , k. For
any b € Ty, with n(b) = k —m and £(b) > k — 2m, we have b,b — £ € Ty, and

n(b) =n(b—&) =k —m. By (2.4.2) and the induction hypothesis,

lu(b+n)| < [u®d)| + [u(d—&)|+ R <2(2"S+ (2" = 1)R) + R = 2""'S + (2" — 1)R.
(2.4.3)

Then our claim holds by induction, and the lemma follows from our claim. O]

2.4.2 Key lemmas via polynomial arguments

In this subsection we prove two key results, Lemma 2.4.4 and 2.4.5 below, which are
analogous to [BLMS17, Lemma 3.4] and [BLMS17, Lemma 3.6], respectively. We will
use the Remez inequality [Rem36]. More precisely, we will use the following discrete

version as stated and proved in [BLMS17].

Lemma 2.4.3 ([BLMS17, Corollary 3.2]). Let d,¢ € Z,, and p be a polynomial with
degree no more than d. For M € R, suppose that |p| < M on at least d + ¢ integer

points on a closed interval I, then on I we have

p| < (%')d M. (2.4.4)

Now we prove the following bound of |u| in a trapezoid, given that |u| is small on
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the upper edge and on a substantial fraction of the lower edge of the trapezoid.

Lemma 2.4.4. Let R, K € Ry, {,m € Z, with { < §, and a € A. There is a

universal constant Cs > 1 (independent of a,m, ¢, K, R), such that the following is

true. Suppose u : Py — R is a function satisfying that:

1. (2.4.2) holds for any b € Py -1,

2. lu| < K on the upper edge of Py,

3. Ju| < K for at least half of the points in the lower edge of Py
Then |u| < CE™™ (K + R) in Py

Proof. We assume without loss of generality that a = 0. We first claim that there is

a function v : Fy,n ¢ — R satistying the following four conditions:
l.v=0on{—tn:1<t</(}.
2. v=wuon Pyup.

3. For each point b € P_p.p, -1,

v(b) +v(b—&) +vb+n) =ubd) +ub-~E) +ulb+n). (2.4.5)

4. o]l < 4% (K + R).

We construct the function v by first defining it on {—tn: 0 <t < ¢} and Ppm.0,
then iterating (2.4.5) line by line. More precisely, for —m < s < 0, we let v(s§) =
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u(sf). For each t = —1,—2--- , —¢, we first define v(tn) = 0, then define

v((s = 1)§ +1n)
= —v(s§ +1tn) —v(sE+ (t+ 1)n) + u(s€ + tn) (2.4.6)

+u((s — D&+ 1tn) +u(sé + (t+ 1)n)

for all =m +t+ 1 < s < 0. Then we have defined v(s§ + tn) for —¢ < ¢ < 0 and
—m+t < s < 0. By our construction, v satisfies Condition 1 to 3.

Now we prove v satisfies Condition 4. First, (2.4.5) implies that |v(b) +v(b—&) +
v(b+n)| < Rforany b € P_,.,, 1. Using this and |v| < K on Py, 0, by an induction

similar to that in the construction of v, we can prove that

|o(—s€& —tn)] < 2°V'K + (27" — )R (2.4.7)

for each 0 <t </ and 0 < s < m +t. In particular, |v| < (K + R)4“"™ on any point
in trapezoid Py, ¢, and v satisfies Condition 4.
Let w := u — v, then w = 0 on Py, 0 and w(b) +w(b—n) +w(b—~) = 0 for each

b € Pome—1. Also, |w| < (K + R)4“™ + K < (K + R)5"™ on at least half of points

m

15> we have

in the lower edge of Fo., ¢. Since £ <

m+ £

o< s <m0 fw(—s& —In)| < (K + R)SHmH > > 5¢. (2.4.8)
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We claim that for each 0 <t </, if we denote

gi(s) = (=1)w(—s& —tn), VO < s <m+t,s € Z, (2.4.9)

then g¢; is a polynomial of degree at most . We prove the claim by induction on ¢.
For t = 0, this is true since w = 0 on the upper edge of Fo.,, . Suppose the statement

is true for ¢, then since

gex1(s) = gra(s + 1) = (=1)*w(=s€ — (¢ + 1)) — (=1)""w((—s — 1) — (¢ + 1)n)

= —(=1)*w(=s§ —tn) = —gi(s), (2.4.10)

forall0 < s < m+t,s € Z, we have that g;,; is a polynomial of degree at most ¢+ 1.
Hence our claim holds.
In particular, gy(s) = (—1)*w(—s&—¢n) is a polynomial of degree at most ¢. Hence

by (2.4.8) and Lemma 2.4.3, there exists a constant C' > 0 such that

lw(—s& — fn)] < 5CHK + R) (2.4.11)

for each 0 < s <m + £. Thus on the lower edge of Py, ¢,

Jul < Jw| + [o] < 57CHK + R) +4"™(K + R) < (5C +4)"™(K + R), (24.12)

Finally, by an inductive argument similar to the proof of Lemma 2.4.2, and letting
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Cs = 10C + 8, we get
lu| <2°(5C +4)"™( K+ R)+ (2 = 1)R< Cf™™(K + R) (2.4.13)

in Po;m7g. ]
Our next lemma is obtained by applying Lemma 2.4.4 repeatedly.

Lemma 2.4.5. Let m, ¢ € Z, with { < m < 20, K,R € Ry, and a € A. Let
w: Pypme = R be a function satisfying (2.4.2) for each b € Py_yme—1. If u| < K
on Puyno and [{b € Py : [u(b)| > K}| < smd, then |u| < (K + R)C§ in P, 4]

where Cg > 1 is a universal constant.

Proof. 1f £ < 120, then the result holds trivially since %mﬁ < %62 < 1. From now
on we assume that £ > 120, and let Cs = C2°%° where Cs is the constant in Lemma
2.4.4.

For each k = 0,1,---,29, we choose an [} € {[é—gﬂ , L%EJ + 1, L%EJ — 1}

such that

1
o+ Ju(®)] < K} Pactymomet ol 2 5(m+ ), (2.4.14)
Such [, must exist, since otherwise,

1 1 1
b€ Py |uldb K ——ml>—ml 24.1
{6 € Pame s [u(®)] > K} > 5 - oml > som, (2415

which contradicts with an assumption in the statement of this lemma. In particular,
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we can take [o = 0.

From the definition, we have ;1 — [, < 21—0€ < %m and lpy 1 — lp > %E > Elom'
For each k = 0,1,---,28, let Pr = Pu_jpmti s> then we claim that |u] <
CH(K + R) on P,.

We prove this claim by induction on k. For k = 0, we use Lemma 2.4.4 for Py, ,

to get

lu| < (K + R)CI™ < (K + R)C3*'™ < (K + R)Cg! (2.4.16)

in Py = Pamy,- Suppose the statement holds for k, then |u| < (K + R)CH in
Po iy imsm+1,4,,0 Which is the upper edge of Py 1. We use Lemma 2.4.4 again for Py,
and get |u| < (K + R)CY* in P,,1. Thus the claim follows.

Since lyg > %E —-1> L%EJ + 1 when ¢ > 120, we have Pa;m,LéJ C UiS:o P.. Then

the lemma is implied by this claim. O

2.4.3 Proof of Theorem 2.1.9

In this subsection we finish the proof of Theorem 2.1.9. The key step is a triangular
analogue of [BLMS17, Corollary 3.7] (Lemma 2.4.6 below); then we finish using a

Vitalli covering argument.

Proof of Theorem 2.1.9. Let €, = 10%, and C4y = 6Cs > 6 where Cy is the constant
in Lemma 2.4.5. We note that now Theorem 2.1.9 holds trivially when n < 10°, so

below we assume that n > 10°.
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We argue by contradiction, i.e. we assume that
[{b € Ton : |u(b)| > K}| < e1n?, (2.4.17)

where we take K = C;"|u(0)].
We first define a notion of triangles on which |u| is “suitably bounded”. For this,

we let R = C,"|u(0)| as well, and we define a triangle T,.,, C T,

)

o] as being good if
2
m is even and |u| < (K + R) (%)?m on any point in Ty.p,.

We choose points a; € TO,Lﬂj for 1 <i< {%J, such that each T;, 2 C TO'LQJ’
'L20 )

20
and T, o N1y, 0 = () for any i # j. Denote S := {Taijg 1 <i< L%J } By (2.4.17),

for at least half of the triangles in S, |u| < K on each of them. Hence, there are at

n2

least {57 good triangles in S. Denote

2
Q= {a,- 1<i< L"—OGJ , Tho i good}. (2.4.18)

For any a € @, let [, = max{l € Zy : Ty is good and T,; C T,

)

n } Denote X, =
5]
T4, for each a € Q.

If there exists a € ) with [, > 2+, then this maximal triangle contains 0, and

307

lu(0)] < (%)% (K +R) < (2)" (K + R) < |u(0)|, which is impossible. Hence

n
2

lo < 35 for any a € Q. For any a € @, denote Y, :=T,.4,. Then Y, C TO?L*J'

We need the following result on good triangles.

Lemma 2.4.6. For any m € Z, and a € A the following is true. Let Ty = Ty.om,
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Ty = Tyosm and Ts = Ty, (see Figure 2.2 for an illustration). If Tz C TO,LQJ , and
L2

{b e Ts: |u(b)| > K}| < 25, and Ty is good, then Ty is also good.

06 )
We assume this result for now and continue our proof of Theorem 2.1.9. We have

that
2

107’

{b € Ya : [u(b)

Va € Q, (2.4.19)

since otherwise, by Lemma 2.4.6 with 77 = X, and T3 =Y, there is a good triangle
strictly containing X, and this contradicts with the maximal property of X,.

Finally we will apply Vitalli’s covering theorem to the collection of triangles

{Y,:a€Q}. We can find a subset Q C @ such that ‘UaEQ > %|UaEQ Y|,
and Y, NY, =0 for any a # o’ € Q. Hence
1
HaETo;LH u(a )]>KH LUyl > = U] (2.4.20)
p 10 g 10
a€qQ acq
Since @ C U,eq Ya, we have |U,cq Ya| > Q] > 107,
1 n? n?
Toing: KH — =
{o € Togs): @1 > K| > 15 3 = 1o
This contradicts with our assumption (2.4.17) since €; = 13- O

It remains to prove Lemma 2.4.6.

Proof of Lemma 2.4.6. We first note that u satisfies (2.4.2) for any b € T i With-
2

out loss of generality, we assume a = 0.
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Figure 2.2: The thick lines indicate edges of T}, T3, and 73. The blue segment
indicates L; and the red segment indicates Ly. The yellow region indicates P| and
the union of yellow region and green region indicates P;.

Define F': A — A to be the counterclockwise rotation around 0 by %’r, ie.

F(Slf + tln) = (tl — 81)§ — 517N (2421)

for any s1,t; € Z.

We first consider the trapezoid P := Pame_omnemem- Lhe upper edge of P is
exactly the &-edge of T} and the lower edge of P; is contained in the &-edge of T.
Denote P := Pape—ompom3m: K1 := (K + R)(2C6)"™ and K, := (K; + R)C§™. Then
lu| < Kj in Ty since T is good. In particular, |u| < K; on the upper edge of P;.
We also have |[{b € Py : [u(b)| > K}| < 25m?, by P; C Ty and the assumption of this

lemma. Thus by Lemma 2.4.5, we deduce that |u| < K3 in P].
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Let P, := F(P,) and P; := F~!(P;). A symmetric argument for P, and P3 implies
that |u|] < K also holds in Pj := F(P]) and P} := F~'(P)).

Consider the three triangles 77 := Tsnetemnom, 15 = Tame—smnom and Tj :=
T 6me—3mn2m (see Figure 2.2). We have T; = F(T]) and T§ = F~1(1}). We claim
that [u| < (Ky+R)2°™ in J,_, , 5 T} By symmetry, we only need to prove the claim in
T]. Denote Ly := {s§ +4mn: —m < s < 2m} and Ly := {s{ + 4mn : 2m < s < bm}.

Note that the -edge of triangle 77 is the set of points

{s&¢+4mn:—m < s<bm} =L ULs. (2.4.22)
Since
FYLy) = {-4m&+ (s—4m)n: —m < s <2m} C P}, (2.4.23)
and
F(Ly) ={(4m +t)§ +tn: —dbm <t < —2m} C P], (2.4.24)

we have Ly C F(P]) = Py and Ly C F~'(P]) = Pj. Hence |u| < Ky on Ly U Ly, i.e.
the ¢-edge of T}. By Lemma 2.4.2, |u] < (K3 + R)2°" in T}, and our claim holds.

Since (U T’> U (Uizm P;) UTy = T, we have |u| < (Ks + R)25™ in Ty.

i=1,2,3 *i

We also have that

2" (Ky + R) = 2P"CPm K + (2P g™ + 2°mC™ + 2R < (?4) (K + R),

(2.4.25)
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so Ty is good. O]

To apply Theorem 2.1.9 to prove Theorem 2.5.1 in the next section, we actually

need the following two corollaries.

Corollary 2.4.7. Let a € A, and m,l € Z>y with m > 2(. Take any nonempty
Lc{a—t&:teZ,<t<m-—1{(}, (2.4.26)
and function u : Py, ¢ — R such that

u(b) + u(b — &) + u(b+n)| < C;* min |u(c)], (2.4.27)

ceLl

for any b with {b,b—&,b+n} C Pyme. Then

ceLl

Hb € Pon - [u(b)] > C% min |u(c)|}‘ > (0 + 1) (2.4.28)
whenever L contains at least one element; and

Hb € Pumye : [u(b)] > C;* min |u(c)|}‘ > ey(m +2)(£ + 1) (2.4.20)

cel

ifm>20+2and L={a—t£:t€Z, L +1<t<m—{—1}. Here ey is a universal

constant.
Proof. If £ < 10° then the conclusion holds trivially by taking e, small enough. From
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now on we assume ¢ > 10°. We denote P := Py e, for simplicity of notations.
Without loss of generality, we assume that min.cy, |u(c)| = 1.

First we prove

€1 (£ + 1)2

3 —2¢
{oe P fule) = ;] = Dt

(2.4.30)

which implies (2.4.28). We take o’ € L. By (2.4.27), for any b € P,_¢.m_20-2 and
0 < ky <, if [u(b)| > C; ", then [u(b—n)| > C;7* L or Ju(b—~)| > C;" . Thus we

can inductively pick a; = d’, aq, - - @) ¢] € P, such that for each i = 1,2, -, \_%J,

¢
lu(a;)| > C7"*, and a; = o’ — s;€ — in with s; — s;_; € {0,1} for each 2 < i < [£].
In particular, we have )u (%ﬂ)‘ >t

Denote T" := T, ‘| o] L] Then 7" C P, and we can apply Theorem 2.1.9 in 7"
with n = 2|5, thus (2.4.30) follows.

For the case where L ={a —t{:t € Z,{+1 <t <m —{— 1}, we prove

(m+2)(+1) ((+ 1)2) (2.4.31)

}{beP:|U(b)|ZC4_%H2€1( 800 "0

When m < 8¢, (2.4.31) is trivial. From now on we assume that m > 8. Denote
= [m=251] — 10 We take by := a — ({ + 1)&. Let b; := by — 4((i — 1)¢ where
t = 2,---,1. For each 1 < ¢ < [, consider the trapezoid P; := P,,.2¢. We note

that these trapezoids are disjoint, and P; C P for each 1 < i < [ (see Figure 2.3

for an illustration). We apply the same arguments in the proof of (2.4.30), with P
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b1 b2 bl

/ P, P P,

\

Figure 2.3: An illustration of P;’s. The thick line indicates L.

substituted by each P;, and we get

€1 (f —+ 1)2

[{be P lu®)] > 6%} =

for each 1 <4 <. By summing over all i we get (2.4.31).

Finally, we can deduce (2.4.29) from (2.4.30) and (2.4.31).

For the next corollary, we set up notations for reversed trapezoids.

Definition 2.4.8. For any a € A, m,{ € Z>, with ¢ < m, we denote

P ={a—t—sn:s<t<m,0<s<FNA,

(2.4.32)

(2.4.33)

which is also a trapezoid, but its orientation is different from that of P,.,, ¢ (see Figure

2.4 for an illustration). We also denote {a —t£ : 0 <t < m} NA to be the upper edge

of P’

a;m,l*

Corollary 2.4.9. Let a € A, and m,{ € Z>o with m > {. Let L be a nonempty subset

of the upper edge of P, ,. Take a function u: Py, , — R such that
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Figure 2.4: An illustration of Corollary 2.4.9: Py, is the set of lattice points in

the region surrounded by black lines. P, F([L]+)e2] ] va.| £ is the blue region, and

P (|L]+2)em—2] £] -4 ¢] is the union of the blue and red regions.

a— 5

[u®) +u(b = &) + u(b+n)| < C;* min fu(c)], (2.4.34)

for any b with {b,b —&,b+n} C P, ,. Then

ceL

Hb € Py ud)] > C; % min \u(c)]H > e3(0+ 1), (2.4.35)

z'fL:{a— L%Jf} OTL:{(I— (%Wf} And

Hb € Pl lu(d)| > C;* min \u(c)]}‘ > e3(m+2)(0 + 1), (2.4.36)

ceL

ifL={a—t&:t€Z,1 <t<m-—1}. Here ez is a universal constant.

Proof. If m < 10°, then the conclusion holds trivially by taking e; small enough.
From now on we assume that m > 10°. If L = {a — [2] &} or L = {a — [2] &}, let
a =a— L%J Eora =a— (%W & respectively. Consider P“'+(L§J+1)§;2L§J+2’L§J C Py

(blue region in Figure 2.4). Using Corollary 2.4.7 for this trapezoid, we get (2.4.35).
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HfL={a—t&:t€Z,1<t<m—1}, consider Pa*(I}JH)E%m*?L%J*‘l:LéJ C P
(union of blue and red regions in Figure 2.4). Using Corollary 2.4.7 for this trapezoid,

we get (2.4.36). O

2.5 Geometric substructure on 3D lattice

In this section we state and prove the following stronger version of Theorem 2.1.5

which incorporates a graded set (which is defined in Definition 2.3.3).

Theorem 2.5.1. For any K € Ry, N € Z,, and small enough ¢ € R, we can find
large Cy € Ry depending only on K and C.n € Ry depending only on €, N, such
that the following statement is true.

Take integer n > C. x and functions u,V : Z* — R, satisfying
Au=Vu (2.5.1)

in Qn and ||V < K. Let [ be a vector of positive reals, and E C 73 be any
(N, l_:a_l,a)—gmded set, with the first scale length Iy > C. . If E is (1,2¢)-normal in

Q,., then we have that
Ha € Qy : |u(a)| > exp(—Con®)|u(0)|} \ E! > C3n?(logy,n) . (2.5.2)
Here C5 is a universal constant.
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The first result we need is based on the “cone property” of the function u, as
discussed in Section 2.2. We remind the reader of the notations e,, for 7 = 1,2, 3;
and A;, Pry, for 7 € {1,2,3,4} and k € Z, from Definition 2.1.7; and the cones from

Definition 2.2.1.

Proposition 2.5.2. Let K € R, n € Zy, and u,V satisfy (2.5.1) in Q,,, with ||V <

K. Then there exists T € {1,2,3,4}, such that for any 0 <i < {5 there is
a; € (’Pﬂi U ,Pf,prl) NnCnN Q%+1 (253)

with |u(a;)| > (K + 11)7"u(0)|.

Proof. We can assume that n > 10 since otherwise this proposition holds obviously.
We argue by contradiction. Denote T := {b € @, : |u(b)| > (K + 11)""|u(0)|}. If the

statement is not true, then for each 7 € {1,2, 3,4}, there is i, € [0, 1%}, such that

(Pri, UPrip)) NCNTNQR 1y =0 (2.5.4)

Define B;,, = ﬂf_zl{aGC:a-AT<iT}, By = ﬂf_zl{aEC:a-)\T <i,+1}\
Bin, Bout := C\ (Bin U Bpg). Then for any a € By, and b € B,,;, we have |ja—b||; > 3.

Since i1, i2, 13,14 < 75, we have that

BdeCﬂ{a€Z3:|a-e1|+]a~e2|+a~e3§%+1}CQ%H. (2.5.5)
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Then the condition (2.5.4) implies that T N By = 0.

We now apply Lemma 2.2.3 to starting point ag = 0, in the e3 direction, and k = n.
Let 0 = ag, aq,- - ,a, € CNZ3 be the chain. Then ag € B;,, and a,,-e3 > n—1, which
implies that a,, € B,y (since otherwise, a,, - e3 = %12;1:1 Ay * A < iZf_zl ir+1<
& +1). Thus a, # ap and w > 1. Since |u(a;)| > (K + 11)"u(a;—1)| for each
t=1,--+,w, we also have that each a; € T. As TN Byg = 0, we can find 1 <1 < w,

such that a;_y € By, and a; € By,. This implies that |la;—1 — a;||; > 3, which

contradicts with the construction of the chain from Lemma 2.2.3. O

Proposition 2.5.3. For any K € Ry, N € Z,, and small enough € > 0, we can find
C7,C.n € Ry, where C7 depends only on K and C. n depends only on €, N, such
that following statement is true.

Take integer n > C. n, and let functions u,V satisfy (2.5.1) in @, and ||V <
K. Let | be a vector of positive reals, and E be an (N, l_;sfl,e)-gmded set with the
first scale length Iy > C.y, and be (1,2¢)-normal in Q,. For any 7 € {1,2,3,4},

keZ,0<Fk<q, and ag € Pry N Qz, there exists h € Z,., such that

> Cghn(logy(n)) ™.

h
{a €Qnn UPT,kH Hu(a)] = eXP(—C7n3)|U(Go)|} \E

(2.5.6)

Here Cy is a universal constant.

In Section 2.5.3, Theorem 2.5.1 is proved by applying Proposition 2.5.3 to each

point a; obtained from Proposition 2.5.2.
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The next two subsections are devoted to the proof of Proposition 2.5.3. We will
work with 7 = 1 only, and the cases where 7 = 2, 3,4 follow the same arguments.
Assuming the result does not hold, we can find many “gaps”, i.e. intervals that do not
intersect the set {|u(a)| : a € Q,\ E,a-A; > k}. These gaps will allow us to construct
geometric objects on Z*. We first find many “pyramids” in {a € Q,, : a - A; > k} (see
Lemma 2.5.5), then we prove Proposition 2.5.3 assuming a lower bound on the number
of desired points in each “pyramid” (Proposition 2.5.11). In Section 2.5.2 we prove
Proposition 2.5.11, by studying “faces” of each “pyramid”, and using corollaries of

Theorem 2.1.9.

2.5.1 Decomposition into pyramids

In this subsection we define pyramids in (),,, and in the next subsection we study the
structure of each of these pyramids.

We need some further geometric objects in R3.

Definition 2.5.4. For simplicity of notations we denote Xy = Ay = —e; +e3+€3, A3 =
A3 = e; —ey+es, and A=-A=e +es—e3. Then A\{- A=A - A3 =X\ Ay = 1,
and Xg- A3 =Xg- Ay = A3+ Ay = —1.

For any a € R3, r € Z,, denote t,.(a) = a + re, + rey + 2res. Then t.(a) - Xy =

a-Xg+2r, t.(a) A3 =a- A3 +2r, and t,(a) - Ay = a - A4. Denote

Tow = {bE Prax 1 b- A < t,.(a) - A, V7 € {2,3,4} }, (2.5.7)



and let 70;7« be the interior of 7, in Pi..,. Respectively, 707” and 7, are the open
and closed equilateral triangles with side length 2v/2r in the plane P1ax, and a is
the midpoint of one side. When a € Z3, there are 2r + 1 lattice points on each side

of T,

)

We also take

Tor ={bER>:b- X >a Ay, b- A < t.(a) - X, VT € {2,3,4}}, (2.5.8)

which is a (closed) regular tetrahedron, with four faces orthogonal to Aj, Ag, Az, Ay
respectively. The point t,(a) is a vertex of T, ., and 7, is the face orthogonal to A;.
(See Figure 2.6 for an illustration)

For any k € Z, denote m(a) to be the orthogonal projection of a onto P k.

The purpose of the following lemma is to find some triangles (7g, ., for a;, r; in
Lemma 2.5.5) in Py U Py xr1, and these triangles will be basements of pyramids to

be constructed in the proof of Proposition 2.5.3.

Lemma 2.5.5. Let N € Z,, and € > 0 and be small enough, then there exists C. xy > 0

such that the following statement is true. Suppose we have

1. a function u : 73 — R,
2. nkeZ,n>Con, ke ZN[0,4), ao € PrspNQx,

3. a vector of positive reals f, and an (N, Z et e)-graded set E with the first scale
length Iy > C. y, and E being (1,2¢)-normal in Q,,
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4. D e Ry, and 0 < g1, ,g100n < |ulao)|, such that g; < g;y1exp(—Dn) for

each 1 <7 <100n — 1.

Then we can find m € Zy, ri,r9--+ , Ty € Z N [O,%),
ai, g, € (Prg UPrigy1) NQn

and sy, 82, 5 Sm € {1,2,--+,100n}, satisfying the following conditions:

13700+ 1) = 155

2. for each 1 < i < m, we have |u(a;)| > exp(Dn)gs,, and |u(b)| < gs, for any

b € (Trap(anirs Y Trpssan)rs) N 27
3. for any point a € Py, we have a € Tr,(a,)r, for at most two 1 < i < m.
4. E is (6’%,5)—n07’m(zl in Tq,r, for each 1 <i<m.

Proof. Denote R := {a € (Py UPyji1) N Qz : |ufa)] > exp(Dn)g; }. For each a €
R, denote

I(a) :=max{i € {1,---,100n} : |u(a)| > exp(Dn)g;}, (2.5.9)

and we let 7(a) be the largest integer, such that 0 <r(a) < 35, and
|u(b)] < g1(a), Vb € (R(a)m(a) U 7?rk+1<a),r(a>> Nz’ (2.5.10)

Suppose [ = (I1,lg, -+ ,1g). We write £ = U?:o E; where E; is a (N, [;, €)-scattered
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E(j’t)

set for 0 < ¢ < d, and Ey is a ¢~ '-unitscattered set. We write F; = JI, Ujez, 7

where each EY" is an open ball, and dist(Ei(j’t),Ei(jl’t)) > [ V) £ j € Zy. We
also write Ey = | ez, 05 where each o; is an open unit ball, such that Vj #j €l
we have dist(o;, 0;/) > 1.

If r(a) > 155 for any a € R, then Condition 1 to 3 hold by letting m = 1, a; = a,
ry = r(a) and s; = I(a). Now we show that Condition 4 also holds (when C. y is

large enough). Since F is (1, 2¢)-normal in Q,,

l; < 4n'~, (2.5.11)

whenever E; N Q, # (. Then since n > C. y, by taking C. y large enough we have

n > 3005’%, and

o

I < 4n'~¢ < r(a)' 2. (2.5.12)

| :
Thus E is (¢72,¢)-normal in T, ,,. From now on, we assume r(a) < 55 for each

a € R. We also assume that n > 100 by letting C, x > 100.
Foreach0<i<d,1<t<N,andj € Z,, denote Bi(j’t) to be the open ball with

2 . iy A
radius liH3E and the same center as EZ-(j’t). Let B9 = BZ-(]’t) M Py, which is either a

2D open ball on the plane Py, or (). For each j € Z, let B; be the open ball with

2
3

radius e~5 and has the same center as o;. Denote B; := B; NPy .
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We define a graph G as follows. The set of vertices of G is

V(G) = {Tr@ur+ : a € R}
u{é}j’” 1<i<d1<t<N,jeZ,, B ;é@}u{éj ;jeZ+,Bﬂé®}.
(2.5.13)
For any vy, vy € V(G), there is an edge connecting vy, vo if and only if vy N vy # (.

Claim 2.5.6. There is ax € R, such that Ty, (ag).r(a)+1 ANE Try(as)r(ac)+1 @€ 0 the

same connected component in G, and (7;—]6((100)77‘(&00)4_1 U 7;%1(%0),“%0)“) NZ3 ¢ Qz.

Proof. We let by := ag. For any @ € Z~, it b; € R, we choose

o o

bis1 € Z° N (ﬂk(bmwnﬂ U Rﬂ(bi),r(bim) \ (%(b»m(bi) U 7?rk+1<bi>,r(bi>) , (2.5.14)

with the largest |u(b;11)| (choose any one if not unique).

As biy1 € Z*n <7O:Tk(bi)vr(bi)+1 U tkﬂ(bi)ﬂ"(bi)—i—l)v we have that
bi+1 . (—e1 —eq + 283) > bl : (—61 —eq + 283) + 1. (2515)

By the definition of r(b;), we have that |u(biz1)| > gre,) = exp(Dn)grep,)-1, thus
I(bir1) > 1(b;) — 1.
The construction terminates when we get some ¢ € Z, such that b, ¢ R. We let

(oo 1= bg—1, and we show that it satisfies all the conditions.
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From the construction, for each i = 0,---,¢ — 1 we have m(bis1) € Ty (b)), (bs)+1
so there is an edge in G connecting Tr, (b,)r(b:)+1 a0d T, (b, 1),r(bir1)+1- Lhis implies
that Tr, (bo),r(bo)+1 a0d Ty (b, 1),r(by_1)+1 are in the same connected component in G.

If (ﬂk(bq_l)7r(bq_1)+1 U 7;rk+1(bq_l)7r(bq_1)+1)ﬂZ3 C Q%, we have b, € Q% By (2.5.15)
we have that b, - (—e; — ey + 2e3) > by - (—e1 — ey + 2e3) + ¢. Since by, b, € Qn, we
have ¢ < 4n. This means that I(b,) > I(by) — ¢ > 100n —4n > 1. Then we have that

b, € R, which contradicts with its construction. This means that a., = b,—; satisfies

all the conditions stated in the claim. O

We define a weight on the graph G, by letting each vertex in {ﬂk(a),,«(a)ﬂ fa € R}
(which are triangles) have weight 2, and each other vertex (which are balls) have
weight 1. The weights are defined this way for the purpose of proving Condition 4.
We then take a path vy, = {v1,v2,- -+ ,v,} such that mx(ag) € vy and 7 (as) € vy,
and has the least total weight (among all such paths). Then all these vertices are
mutually different. For each ¢ = 1,2,--- ,p — 1 there is an edge connecting v; and
vit1, and these are all the edges in the subgraph induced by these vertices. Note that
each v; is either a ball or a triangle in P ;. See Figure 2.5 for an illustration.

Suppose all the triangles in v, are {ﬂi,r(ai)ﬂ 1< < m}. Let r; :=r(a;) and
s; := I(a;). We claim that these a;, r; and s; for 1 < i < m satisfy all the conditions.

Condition 2 follows from the definition of r; = 7(a;). As Ypa, is a least weighted

path, we have that vy N v, = ) whenever |i' — | > 1, thus Condition 3 follows as

well.
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Figure 2.5: The path v,un

We next verify Condition 1. For this, we need to show that in the path, triangles
constitute a substantial fraction. This is incorporated in Claims 2.5.7 and 2.5.8 below.

Denote ¢; := diam(v;), for each 1 < i < p. As r(as) < we have ao & Qu_n;

n_
100°? 27 2

also note that ag € Qz, so we have

p
gtotal = Z& Z diSt(Q%,Z?)\Qﬂ_l) 2

2720
i=1

SIE

(2.5.16)

For each 1 <i<dand 1<t <N, denote V;; := {v € Ypath 1 3J € Ly, v = ij’t)}.

Claim 2.5.7. IfV;; # 0, then Zi/:v-/evit by < Etomll;i, provided that € is small enough

and C; y is large enough.

Proof. Since V;; # 0 and F is (1, 2¢)-normal in Q,,, we have C. y <[; < n'~*.

Case 1: |V, ;| = 1. Suppose {vy} =V;;. Then by (2.5.16), when C; y is large enough
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we have

2, L. _
o < 20T < "5 < lyopatl . (2.5.17)
Case 2: |Vz’,t| > 1. Write Vi,t = {Uh;vigu

]

o

,viq},wherelgil <’LQ<<’Lq < p,

/in+1 °

and ¢ > 2. For each w € {1,2,---,q — 1}, consider the part of 7,4 between v;, and
By letting C x large enough we have

Tw+1

Z 6@'/ Z diSt(Ul'w,’l}iw+1) Z li1+€ 21

1+2¢
2 > 20, + 4 ) (2.5.18)

Summing (2.5.18) through all w € {1,2,--- ,q — 1}, we get

1 ZAw#—l -
ot > 5 > Z o> | Y b |1 (2.5.19)
we{l,2,- ,q—1} V' =iw v €Vt
Then the claim follows as well. n
Let Vp = {vi/ € Ypath : 3] € Ly, vy

5

v;1€Vo gi/

Claim 2.5.8. If V, # (), then >

< giﬁtoml, provided that € is small enough
and C. n s large enough.

This is by the same arguments as the proof of Claim 2.5.7.

From Claim 2.5.7 and Claim 2.5.8, by making € small and C. y large enough, from
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li > C.nand [y > ll-1+26, we have

Z 0y = Z lo + Z Z Uy < 54€total + Nliotal Zl < g{ggl-

i’:v; is a 2D ball v,r €Vo 1<i<d,1<t<N vy €Vi ¢
(2.5.20)
Now we have that
m n
1) > (2v2)T! 2 Crotal > ——, 2.5.21
izl<r ) a ( \/_) i, i§riangle a ( \/_) o 100 ( )

where the last inequality is due to (2.5.16). Then Condition 1 follows.
It remains to check Condition 4. We prove by contradiction. Suppose for some
1 < <m, Eis not (5‘%,5)—n0rmal in T, r,. There are only two cases:

Case 1: There exists 1 <1 < d and EZ-(j’t), such that

BN, ., #0 (2.5.22)

and

o

l; > diam(%,, )" 2. (2.5.23)

. 2, )
Recall that BY" is the ball with radius /; /3° and the same center as £ By (2.5.23)

and letting C x large enough, we have

radi(BY) — I, = 11757 — I, > diam(%,,,.,,) + 3. (2.5.24)

(2
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This implies that T, (a,)r,+1 C B,;(j’t) and Tr,(a,)rp+1 C Bi(j’t). If we substitute
Trw(ay)ry+1 DY Bi(j’t) in the path 7., then the new path has lower weight than ,a¢h.
This contradicts with the fact that v, is a least weight path.
Case 2: yNT,,,, # 0 and £ > diam(%,, ).

Then Tz, (a,)ry+1 C Bj and T, (a,)r+1 C Bj for some j € Z, since radi(B;)—1 =

3

Wi

—1>e2+43> diam(%,,,) + 3. By the same reason as Case 1, we reach a

contradiction. Thus Condition 4 holds and the conclusion follows. O

Now we work on each tetrahedron %, ,,. We will construct a pyramid in each of
them, and show that on the boundary of the pyramid, the number of points b such
that b € E, |u(b)| > exp(—Cyn?), is at least in the order of r? + 1.

We start by defining a family of regular tetrahedrons. Recall that in Definition

2.5.4, we have defined the tetrahedron ¥, , with one face being 7, ,.

Definition 2.5.9. Let a € Z*, r € Z,.. For each b € T,,NZ*, we define a regular tetra-
hedron %, ,; characterized by the following conditions. Its four faces are orthogonal
to A1, Aa, Az, Ay respectively. For 7 € {2, 3,4}, we consider the distances between the
faces of %, , and T, ,; that are orthogonal to X, and they are the same for each 7.

The point b is at the boundary of the face orthogonal to A;. Formally, we denote

Forp:=max{F :b- A, <t.(a) - X, — F, V7 € {2,3,4}} . (2.5.25)

Then F,,;, > 0 since b € T, ,, and Fz/’%’b would be the distance between the faces of
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Figure 2.6: An illustration of the constructions in Definition 2.5.4 and 2.5.9. The
colored triangles are 7,, and 7T, p.

Tor and T, ,p that are orthogonal to X,, for each 7 € {2,3,4}. Define

Torp ={c€ERY1c- Xy 2b- Ay, b X <t(a) Ap — Fipyp, V7 € {2,3,4}},
(2.5.26)
and let ‘olamb be the interior of T, , ;. We denote T, ,p := Torp N P1pa, to be the face

of T, orthogonal to A;, and we denote its three edges as

>

Lovpr={c€Tarpic A =t.(a) A — Fypp}, V7 € {2,3,4}. (2.5.27)
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Then b is on one of these three edges. We denote the three vertices by
Varbr =[] Lawbrr T €{2.3,4}, (2.5.28)

7'e{2,3,4\{7}

or equivalently, v, is the unique point characterized by vy, - A1 = b- A1, and
Varpr A = t.(a)- Ay —F, . for 7 € {2,341\ {7}. Asb-A; and each t,(a)- Ay —Fy,p
are integers and have the same parity, we have v, € Z3. We also denote the interior

of these three edges by

£C’a,r’,b,'r = *Ca,r,b,r \ {Va,r,b,Qa Va,rb3, Va,r,b,4} , T E {27 37 4} . (2529)

We now define the pyramid using these tetrahedrons.

Definition 2.5.10. Take any a € Z*, r € Z,. For any b € %, [ Z? let

arp = {cER 1A >b- A} \ Turps (2.5.30)

which is an open half space minus a regular tetrahedron. Let §),,; be the closure of
Db

Let I' C Z3, such that @ € T and 7Ofm NT = 0. We consider the collection
of sets {Narplyes, ,p- They form a partially ordered set (POSET) by inclusion
of sets. We take all the maximal elements in {ﬁamb}be‘:a,mrv and denote them as

Darbs s Darpn- 10 particular H,,, = H,, is maximal since T,, NI = 0, so we

65



can assume that by = a. (For each 2 < i < m, the choice of each b; € T,, NI may
not be unique, but always gives the same $,,5,.) We note that since each £, ,p, is
maximal, all the numbers b; - A; for 1 <7 < m must be mutually different, so we can
assume that by - Ay < - < b, - A1

The pyramid is defined as

m—1
Parr = Tart U | (Tams, N{c €R® 1 c- Xy by - A1}, (2.5.31)
=1

and we let (i;a,r,r be the interior of P, ,.r. Note that in this definition, B, or := {a}.
Finally, let 0Ba.,r := Parr \ (‘I}amp U 7:”) be the boundary of the pyramid (without

the interior of its basement). See Figure 2.7 for an example of pyramid.

In words, we construct the pyramid B, , r by stacking together some “truncated”
regular tetrahedrons ¥, ,;, for b € I', so that ‘B, r intersects I' only at its boundary.
Indeed, for each b € €, NI" we have b € 4,4, and i?amp N Harp = 0.

Our key step towards proving Proposition 2.5.3 is the following estimate about

points on the boundary of a pyramid.

Proposition 2.5.11. There exists a constant Cy, such that for any K € Ry, N € Z,

and any small enough € € Ry, there are small Cyy € Ry depending only on K and

large C. v € Ry depending only on €, N, such that the following statement holds.
Take any g € Ry, n,r € Zy with 0 < r < g5, and functions u,V satisfying

Au=Vuin @Q, and ||V]w < K. Suppose we have that
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Figure 2.7: Pyramid B, , r, where I' is the collection of red points.

1. Ti={b € Qn: u(b)] > exp(3Ci1on)g}, and a € I NQn;

2. lu(b)| < g for each b € To, NZ3, and either |u(b)| < g for each b € If;fﬁ NZ
3+

or |u(b)| < g for each b € 7C:+,\71T NZ3;
3

3. [ is a vector of positive reals, E is an (N, l_;»s*l,s)—gmded set; in addition, the

first scale length of E is ly > C. n, and E is (5’%, e)-normal in Ty,;

4. for each b € Q,, withb-A; > a- Ay, g < |u(b)| <exp(3Cion)g implies b € E.
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Then

|{b € 0B, rN 73 : ju(b)| > eXp(Clon)g} \E‘ > Cy(r* 4+ 1). (2.5.32)

The proof of Proposition 2.5.11 is left for the next subsection. We now finish the

proof of Proposition 2.5.3 assuming it.

Proof of Proposition 2.5.3. The idea is to first apply Lemma 2.5.5 to find some tri-
angles 7, , in Py U Py k41, and build pyramids using these triangles as basements,
then apply Proposition 2.5.11 to lower bound the number of desired points on the
boundary of each pyramid and finally sum them up.

For the parameters, we take C; = max {6C, log(K + 11)} where Cy is the con-
stant in Proposition 2.5.11. We leave Cs to be determined. We require that ¢ is small
as required by Lemma 2.5.5 and Proposition 2.5.11; and for each such ¢ we let C; v
be large enough as required by Lemma 2.5.5 and Proposition 2.5.11.

Without loss of generality, we assume 7 = 1. We can also assume n > 100, by

letting C, y > 100. Denote

T :={a€Q,:|u(a)] > exp(—Cin’)|u(ag)|,a- X\ >k} \ E. (2.5.33)

If |Y| > n?, the conclusion follows by letting h = 3n and Cy < % Now we assume
that || < n?.

The interval [exp(—C7n3)|u(ag)|, |u(ag)|) is the union of 2n? disjoint intervals,
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which are

[exp (—M) lu(ap)|, exp (— C7m> |u(a0)y) Li=0,---,2n% — 1. (2.5.34)

By the Pigeonhole principle, at least n? of these intervals do not intersect the set
{lu(a)] : a € T}; ie., we can find exp(—C7n3)|u(ag)] < g1, , gnz < |u(ag)|, such

that g; < gi41 exp (—%), for each 1 <i<n?—1, and

{a € Qn: fula) € {gi,gz' exp (%)) a- A > k;} C E. (2.5.35)

=1

We remark that actually we just need g1, - - , g100, to apply Lemma 2.5.5, rather than
n? numbers; but we cannot get a better quantitative lower bound for |u| by optimizing
this, since applying the Pigeonhole principle to 2n? parts or n? 4+ 100n parts does not
make any essential difference.

As we assume that ag € P1,NQz and 0 < k < {5, we can apply Lemma 2.5.5 with
D= % Then we can find some aq, -+ , @y, 71, , 7 and gs,, - - - , gs,, » satisfying the
conditions there. In particular, we have |u(a;)| > g, exp (%) > exp(—Cn?)|u(ag)l,
foreach 1 <i <m.

If m > n, we can just take h = 2, and (2.5.6) holds by taking Cg small. Now

assume that m < n. We argue by contradiction, assuming that (2.5.6) does not hold.

As C7 > 6C4, we can apply Proposition 2.5.11 to a = a;, r = r; and g = g, for
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each 1 =1,2,--- ,m, and get that
TN Tay| = [{b € Ty NZP : |u(b)| > exp(Cron)gs, } \ E| = Co(ri +1). (2.5.36)

As we have assumed that (2.5.6) does not hold, for each h € Z .,

CY9 Z ]lh>4ri (7'12 + 1) < Z ]1h>41“¢ ’T N zULi,Ti

i=1 =1
h
(U PLk_H‘) N T

1=0

<2 < 2Cshn(logyn)™' (2.5.37)

where the second inequality is due to the fact that any point is contained in at most
two tetrahedrons %, ,,, by Conclusion 3 in Lemma 2.5.5.

Take [ := |logyn| — 5. For each 0 < j <1, let
Mj:|{i21§i§m,2j§ri+1<2j+l}"

Then we have that

l m

) 1 n
> M, > 5 d (ri+1) > 500" (2.5.38)

=0 i=1

by Lemma 2.5.5. For each 0 < s <[, by taking h = 2°7 in equation (2.5.37) we get

Co Y 2YM; < Cs2"n(l+5)7". (2.5.39)

Jj=0

70



Multiplying both sides of (2.5.39) by 27° and summing over all s € Zx(, we get

l

l s l
S UM< Y 2 M <Y 24 Cs(Co) Ml 4 5) 7 < 2°Cs(Co) TIn. (2.5.40)
s=0

j=0 s=0 j=0

This contradicts with (2.5.38) whenever Cg < (200 - 24)~1Cy. O

2.5.2 Multi-layer structure of the pyramid and estimates on the
boundary

The purpose of this subsection is to prove Proposition 2.5.11. We first show that,
under slightly different conditions, there are many points in I' on the boundary of a

pyramid without removing the graded set.

Proposition 2.5.12. There exists a constant C§, so that for any K € Ry, there is
Cho > K 4 11, relying only on K, and the following s true.
Take any g € Ry, n,r € Z with 0 < r < 35, and functions u,V satisfying

Au=Vuin @Q, and |V]w < K. Suppose we have
1. Ti={b € Qn: u(b)] > exp(3Ci1on)g}, and a € ' N Qn;

2. lu(b)| < g for each b € T, NZ3, and either |u(b)| < g for each b t_ﬁ NZ?
3 bl

T 3.
or for eachb€7;+%mﬂz,

3. h = max{a - A} U {b-Al b€ Payr N2, | Larpo N L5 > g}, and |u(b)| <

exp(Chon)g for each b € ‘i?amp NZ3 with b- Xy < h.
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Then

{b € OBarr : |u(d)| > exp(Cron)g}| > Co(r?* + 1). (2.5.41)

To prove Proposition 2.5.12, we analyze the structure of the pyramid boundary
OB, r. Specifically, we study faces of it and estimate the number of lattice points b
with |u(b)| > exp(Cion)g on each face. For some of the faces, we can show that the
number of such points is proportional to the area of the face. This is by observing
that the lattice Z3 restricted to the face is a triangular lattice, and then using results

from Section 2.4. Finally we sum up the points on all the faces and get the conclusion.

Proof of Proposition 2.5.12. We can assume that r > 100, since otherwise the state-
ment holds by taking C§ < 1075.
We take a = by, - - - , by, from the definition of By, 1. AS Harprs s HNarp,, are all

the maximal elements in {44 },cc, ~p, We have that

U 'ﬁavr’b - Ufjaﬂ“,bz" (2.5.42)
=1

bET o »NT

We can also characterize ‘i?a,r,p as the half space {b € R® : b- Ay > a - A;} minus

U:il S’Jaﬂ“,bi'
For each s € Z, we take mg € {1,--- ,m} to be the maximum number such that
bms . Al S S.

We first study the faces of OB, that are orthogonal to A;. For 2 <¢ < m, we
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denote

Ri = Sarb s VPibia = 10 € Prpny 10 Ay < t(a) - Xr = Foppy, V7 € {2,3,4} ).

(2.5.43)
Let R; be the closure of 7032-, then R; D 7,5, and it has the same center as 7, ,p,. We
denote the side length of R; to be 6;. Note that the three vertices of R; are in %Zg’,

SO \9/% € 1Z>¢. Further, for each 1 <i < m+1, we denote the side length of Ty ., to

be 9;. Note that the vertices of T, 5, are vq,p -, for 7 € {2,3,4}, and each of them

is in Z3. Thus we have \% = |Lasp2 NZ*| — 1 € Zso. We also obviously have that
2/2r =9 >0y >0y > - >0, >0, >0. For simplicity of notations, we also
denote b1 1= argmaXpeq . b-A1, and 0,11 = V01 = 0.

The following results will be useful in analyzing the face R;, for 1 <1 < my4.

Claim 2.5.13. For any 2 <i < myy1 and b € RZ NZ3, ifb+e —es3, bte,—es € 7O€Z-,

then we have

lu(c)| < exp(Cion)g, Ve € {b—e3,b—e; —e3,b—ey —e;3,b— 2es}. (2.5.44)

Claim 2.5.14. If Cyy > K + 11, then for each 2 < i < my, there exists T; € {2,3,4},

such that by € Lo rp,.r, and [u(b)] > exp(2Cion)g, Vb € Loy, NZ3.

We continue our proof assuming these claims. Fix 2 < ¢ < myyy. For any

be Rl NZ3 withb+e —es,b+e;—e3 € 7D€Z~, since Au(b —e3) = (Vu)(b— e3), and

73



V(b —e3)| < K, by Claim 2.5.13 we have

lu(b) +u(b+e; —e3) + u(b+ ex — e3)|

< (K +6) max lu(c)] < (K +6)exp(Cion)g. (2.5.45)

CE{b—e3 ,b—e1—e3,b—e2 —e3,b—2e3}

We take C1g > 2In(Cy(K + 6)) where Cy is the constant in Theorem 2.1.9. Then if
1 < my, using Claim 2.5.14 and b; € I", we have

lu(b) +u(b+e; —e3) +ulb+e—e3) <Cy>  min lu(c)], (2.5.46)
ce(ﬂa,r,biﬂnZS)u{bi}

where 7; € {2,3,4} is given by Claim 2.5.14. If m;, < my,1 and ¢ = my4q, as b; € T
we have

lu(b) + u(b+ e, —es) +u(b+ ey — e3)] < Cy*"|u(b;)|. (2.5.47)

Without loss of generality, we assume that 7; = 2 in the former case, and b; €

Eaﬂ,,bth,g in the later case. We consider the following trapezoid in R;:

and let W, be the closure of W, See Figure 2.8 for an illustration of W;. Then VCV,ﬂZ3

can be treated as Po- 9,

0,— 0, 0,—0,7 , (see Definition 2.4.1). We apply Corollary
’ﬁ”[ 3v2 W_Q’[ 3v2 W_l

2.4.7 to VCVZ-HZ?', with L = anﬂ»?big NZ? if 9¥; > 2v/2 (thus za7r’bi’2ﬂZ3 is not empty) and

2(0;—1;)? €2(0i+29,)(0: =)
(3v2)?2 = 5:3v/2:3v/2

i < my, and with L = {b;} otherwise. If i < my, we have
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when 9; = v/2 or 0, since 0; — ¥; > \/75 Thus we always have

R _ 200,99
beW,NZ: |ud)| >C, ** min lu(c)]
CE(Z‘/a’T,biygﬁZS)U{bi}
0; + 29,;)(0; — v,
0+ 20)(6:— 9) 5 5 49
5-3v2-3v2
Since 9;);\/7%" <n, and C;*" mince@ambﬁng)u{bi} lu(c)| > exp(Cion)g by Claim 2.5.14,
we have

be W, NZ: [u(b)| > exp(C > el > ,
\ O = e(Cunls | 2 2 2

(2.5.50)
If mp, < mpy1 and © = my41, we have
Hb EWINZE s julh)] = C) W |u(bi)|}’ > % (2.5.51)
Since 9;;\/123@' < n, and C;*"|u(b;)| > exp(Cion)g, we have
Hb EWLNZ3: u(b)] > eXp(Clgn)g}‘ > %. (2.5.52)

For the cases where 7, = 3,4, ¢« < my, and the cases where m; < mp.; = ¢ and
b; € £a7r7bmh+173 or anr,bmhﬂﬁl, we can argue similarly and get (2.5.50) and (2.5.52) as
well.

We then study other faces of P, ,r. Again we fix 2 < ¢ < my, and assume that
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7; = 2, for 7; given by Claim 2.5.14. We define

{b S P27bi'>\2 b XT < tr((l> . XT — Fa,r,biaVT € {3,4}, b; - Al <b- Al < bi—i—l . )\1} .

(2.5.53)

Let SZ = {b € 31 b AN <h+ 1}, and S; be the closure of SZ Then S; C Paxyb;
and is a trapezoid. It is a face of O, r, for 2 < i < my, and for i = m; when
Mmp41 > my; and it is part of a face of OB, ,r for ¢ = my, when my; = my. See

Figure 2.8 for an illustration.

0;—10;

- 3

Figure 2.8: Faces S;, W;, and S;_1, in the pyramid boundary B, ,r. The yellow
triangle is the intersection of ‘B, ,r with the plane b- A; = h + 1, and the blue lines
are Lorp,m and Lo b (7 -
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Claim 2.5.15. For b€ S;NZ3, ifb+e; + ey b+e, +e;3 €S;, then
|U(C)| < eXp(C’lon)g, Ve € {b + ey, b+e — €, b+e — €3, b+ 281} . (2554)

We leave the proof of this claim for later as well. By Claim 2.5.15, and arguing as

for (2.5.46) above, we conclude that Vb € SZ NZ? withb+e; +ey,b+e +esc 60’1-,

[u(b) +u(b+ e +e2) +ulb+e +e3)] < C>" ~ min lu(c)].  (2.5.55)
cE(ﬁa,r,bmmzs)U{bi}

Let’s first assume that &; N Z3 # (. Then we have anmbig NZ% # 0, and ¥; > 2/2.

Vi —0it1

If i < mpyq, then b1 - Ay < h+ 1, so we treat SZ NZ3 as P(’)". 9 2[
D [his

o = (from
'V2

Definition 2.4.8), and L, 5,2 N Z* is its upper edge. If i = my, = my41 > 2, then

0;7%

bit1- A1 > h+1, and we treat §; NZ* as P’ . ) ’Vﬂiﬁ+17bi+1)\17(h+l>“71. We apply
2 2
Corollary 2.4.9 to the trapezoid, with L = éa’r7bi72 N Z3 if it is not empty; similar to

the study of W;, we conclude that

63791'(191 - 9z‘+1)
V2-v2

[{b € SiNZ?: |u(b)] > exp(Cion)g}| > (2.5.56)

if 2 <1 <mpyq, and

) 0. o - 1
|{b € SZ N Zg : ‘u(b)l > eXP(Clon)gH > 63191 <197, 91+1 bz+1 )\1 (h -+ )) ’

vz \ V2o 2

(2.5.57)

if 1 = my = mp1 > 2. In the case where SZ NZ3 = (), we have ¥; < v/2, and these
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inequalities still hold, since b; € S; N Z3 and |u(b;)| > exp(Cion)g.
When 7; = 3,4, we can define §; analogously, and obtain (2.5.56) and (2.5.57) as
well.

In addition, we consider

Sii={b€Puan, 1 b-Ar <to(a) Xo, VT €1{2,3}, a- A <b- A <bo- A},
(2.5.58)
and let Sol = {b € 31 b A< h+ 1}, and &; be the closure of §1. We treat S
differently (from S; for 2 < i < my,) because Claim 2.5.14 cannot be extended to
i = 1. Also note that by taking S; C Pyaa,, S1 is defined as (possibly part of) the
face in OB, ,r that contains a = by.
Using arguments similar to those for §;, 2 < ¢ < my, we treat Sol N Z3 as
P(7)a~19f172,[191*92}1 if mp1 > 1, and as Pr.ﬁizy{ﬁl,%J,ﬂl;(hﬂ)%l if mpy1 = 1. Then

V2 V2 V2 vz
we apply Corollary 2.4.9 to it with L = {a}. We conclude that

€3(91—02)2
5 %7 Mht1 > 17
[{b € SINZ*: Ju(b)| > exp(Cion)g}| >

2
_ bo-A1—(h+1
e (191 9 ba A (+)> My = 1.

V2 2
(2.5.59)
We now put together the bounds we’ve obtained so far, for all §; and W, that are
contained in {b € R*:b- Ay < h+1}.
Case 1: my, = myuy1. In this case we consider S; for 1 < ¢ < my and W, for
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We first show that h # a - A;. For this we argue by contradiction. Assume the
contrary, i.e. h = a- A;. From the definition of h we have that |L,, .0 NZ*| < %, for
any ¢ € ﬁamp NZ3withc- A =h+1=a-X +1. As we assumed that » > 100,
we must have by - A\ = a-A; +1 = h + 1, and this implies my,; = 2. However, by
h = a - Ay we have my = 1. This contradicts with the assumption that m;, = my.

We next show that

Ormp+1 n b1 - A1 — (R +1)
V2 2

< (2.5.60)

N3

By the definition of & and h # a - Ay, we can find ¢ € P,,r N Z3 with ¢ - A, = h
and Ly ,c0 NZ% > 7. Since we assumed that r > 100, using m;, = my4; we have
if&mr N Pips1 NZ? # 0. This implies that by, 11 - A = b,y 41 - A1 > b+ 1 (since
otherwise, by the definiton of my;, we must have m;; = m and b1 - Ay < h + 1,
implying ‘i?amp N P11 = 0). Also note that by, - Ay < h, so we can find b € 73,
and b in the closure of S,,,, such that b- XAy = h+1 or h+2. As Loy NZ3| =

(brmj,+1—b)-A1

Om o
\/hgl + 1 _I_ T? we haVe |£a77‘7b72 m Zg| Z \;gl +

bmh+1-A1—(h+1)
5 .

On the other hand, using |L, .0 NZ3| > 7 and 7 > 100 again, we have ‘i?w,p N
Pipa, NZ? # (. By the maximum property of h, for any V' € ‘i?amr NProx, NZ3, we

have |Lq 2 NZP| < E. Then |Lo,p0 NZP| <% +3 < %, and (2.5.60) follows.
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If mp, = mp1 =1, by (2.5.59) we have that

91— 0y by A — (h+1)\?
\{be%a,r,rﬂZ?’:\u(b)\>eXP(010”>9H>€3( N 2( ))

2
> 6 (2r - g) > egr?, (2.5.61)

where we use (2.5.60) and the fact that 9, = 2v/2r.
If mj, = myy1 > 1, we note that for all 2 < ¢ < my, these W, are mutually
disjoint; and for all 1 < ¢ < my, these S; are mutually disjoint. By equations

(2.5.50),(2.5.56),(2.5.57),(2.5.59) and taking a small enough ¢, > 0, we have that

{6 € Barr NZ*: Ju(b)| > exp(Cron)g}|

(0 —0a)* b1 - A1 — (h+1)
>e4 ( : + ;az(@ 0;) + 0:(0; — 0ip1) — Orm, 7%

R (0 —200) (0, — 9,)? 4 S (9 — 0ia)?
—al gt 7 2

by +1- A1 —(h+1) | 2 b, 41 A1 —(h+1) | 2
(I = s = =GR ) T (B0 + )
2 2

bumy +1- A1 —(h+1) ) 2
b (s )
se, | o A v
4 2

(2.5.62)

Using (2.5.60), we get

2
{6 € Barr NZ%: [u(b)| > exp(Cron)g}| > € (27“2 - TZ) > €41, (2.5.63)
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Case 2: m;, < mypy;. In this case we consider §; for 1 < i < my and W; for
2 <i < myp+1=myqy. Similar to the first case, by (2.5.50),(2.5.52),(2.5.56),(2.5.59)

and taking a small enough €5 > 0, we have

{6 € Bapr NZ%: Ju(b)| > exp(Cron)g}|

(V1 — 62)? |
=65 < 1—6) Z 0:(6 0i(0i = Ois1) + (Omyyy — ﬁmh+1)2>

92 (9 — 26,)2
= S S LA 2.5.64
€5< 4 + 4 ( )
9 — 19 79 - 91+1) (th 1 219mh 1)2 2
+ E + - 9 = - ﬁmh-ﬂ

192
Z€s (Z o 19%%“) .

We now show that 9 < r. Since myy1 > my, we have b AN =h+1 If

Mh+1 Mh+1

9 > r, then |£a%bmh+1v2 NZ3 > \/Li + 1, and we can find b € ‘i?a,r,p NPy 41, such

Mh41

that L, p2 N 73| > \/Li — 2 > 7. This contradicts with the definition of h.

With ¢ < r, and note that 2/2r =9 > 0y, we have

Mhp+1
{6 € Barr NZ%: [u(b)| > exp(Cron)g}| > €5 (2r* — r?) = esr”. (2.5.65)

By taking C{ small enough, we get (2.5.41) by each of (2.5.61), (2.5.63), and (2.5.65).

O
It remains to prove Claim 2.5.13, 2.5.14, and 2.5.15.

Proof of Claim 2.5.13. Take any ¢ € {b—e3,b—e; —e3,b—e; —e3 b—2e3}. As
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Figure 2.9: An illustration of points in Claim 2.5.13. The red point (b — e3) is in
P1pi-a—1 and the blue points are in Pj p,.x,—2. The point ¢ is among the red and blue
points.

Ay <b-Ag,c- A3 < b-A3, and c- Ay < (b+e;—e3)-Ay, and b,b+e; —es € R; C ia,r,

we have that
A <to(a) A= Fopp, <t.(a) X, V7 € {2,3,4}. (2.5.66)

We first consider the case where ¢ & ‘iw. Then we have that a-A; > ¢- XAy >
b-XN—2=10;-A1 —2 > a-A — 1, where the last inequality is due to b; € ‘OIM. If
c-Ai =a-Ai, we have c € 70;71 by (2.5.66); and by the second condition of Proposition
2.5.12 we have that |u(c)| < g. If ¢- Ay =a- A — 1, we have ¢ € t_%m by (2.5.66).
Asb;- A1 >a-A,and b;- Ay =b- A < c¢- A +2, we have that b;- Ay = a- Ay + 1, thus
b, € 7; A, Since [u(b;)] > exp(3Cion)g, by the second condition of Proposition
2.5.12 we have |u(c)| < g.

Now we assume that ¢ € éa,r. For any 7, if 1 < 7 < m, as ¢- A; < b; - A1, we have

that ¢- Ay < b;- Ay, and thus ¢ gﬁw,b‘j. If1<j<i—1,wehaveb; A <bji_i-Aj, s0
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Forp; < Fapp,_, (since otherwise $4,.p,_, is not maximal). By (2.5.66) we have that

¢ A < to(a) - A = Fopp,, V7 € {2,3,4}, (2.5.67)

thus ¢ € $4,p,- Then by the definition of ‘i?amp, we have that ¢ € %W,p. As

coXA <b-AN—-1<b - A1 — 1 < h, we have |u(c)| < exp(Cion)g by the third

Mh+1

condition of Proposition 2.5.12. O]

Claim 2.5.15 can be proved in a similar way.

b+e; +es .
bsey -b
b+ep — e:;‘,"‘-,__

b

Figure 2.10: An illustration of points in Claim 2.5.15. The red point (b + e1) is in
Papi-as—1 and the blue points are in Payp,.n,—2. The point ¢ is among the red and blue
points.

Proof of Claim 2.5.15. We take ¢ € {b+e;,b+e —ey b+ e —e;z, b+ 2e}, then
C'X2<b'X2:bi'X2, aHdC'XTSb'XT+2fOI'T€{3,4}. Since b,b+e1—|—e2,b+
e +e; € ‘SO’Z-, we have that b- A3 +2 = (b+e; +e3)- A3 < t.(a) A3 — Forp,, and

b-A+2=(b+e +e) A <to(a) A+ Fo.p,; then

A < tp(a) A — Fupp, < to(a) - A, V7 € {2,3,4}, (2.5.68)
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We claim that ¢ € 4,5, for any 1 < j <m: for j > i, note that b+ e; +e; € SDZ-, SO
A <b-A+2=(b+e+e) A <biy1-Ap; for j <4, this is implied by (2.5.68).
Thus ¢ € ‘Ioia,,«,p U 70;,«, since we also have ¢c- A1 > b- X >b;- XN\ >a-A. lfce 70;,,«,
by the second condition of Proposition 2.5.12, we have |u(c)| < g < exp(Cyon)g. If
c € ‘ﬁamp, using the fact that b+ e; + ey € S, again, we have ¢- Ay < b- A +2 =
(b+e1+ey)- Ay < h, and this implies that |u(c)| < exp(Cron)g by the third condition

of Proposition 2.5.12. O

Lastly, we prove Claim 2.5.14, using Claim 2.5.13 above and the local cone prop-

erty (from Section 2.2).

Proof of Claim 2.5.14. Throughout this proof, we assume that <UT€{2’374} an,r,bm) N

73 # ). We first show that we can find point b € <U76{2,374} Zﬁa,,,,bi,T) N Z3, such that
lu(b)] > (K + 11)"texp(3C1on)g. (2.5.69)

This is obviously true if b; € |J. . (234} an,'fabiﬂ'; otherwise, by symmetry we assume

that b; = v4,p,4. By Lemma 2.2.2,

max u(c)] > (K 4+ 11) " exp(3Cion)g.
CE{bi_e3,bi_e3+e17bi—e3+62,bi_e3_e17bl‘—e3—62,bi—2e3}’ ( )| - ( ) p< 10 )g
(2.5.70)
As b;,b; —es+e1,b; —es+ ey € 7032-, by Claim 2.5.13, we have
max lu(c)] > (K + 11) "t exp(3Cion)g. (2.5.71)

ce{b;—e3+e1,b;—e3tea}
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Note that b, — e3 + e, b; — e3 + ey € UTG{234} anmbm, so we can choose b €
{b; — e3 + €1,b; — e3 + €3} and the condition is satisfied.

Now by symmetry we assume that there is b € Ea,r,biA N Z3 so that

lu(b)] > (K + 11)"texp(3C1on)g. (2.5.72)

We prove that, for any b € Lq.p, 4 NZ3, we have |u(b')| > exp(2Cion)g. We argue by
contradiction, and assume that there is &/ € an,rvbiAﬂZ?’ so that |u(b')| < exp(2Cion)g.
Without loss of generality, we also assume that b’ -e; < b-e;. Consider the sequence
of points in anmbiA N Z3 between b and b'. We iterate this sequence from b to ¥,
by adding —e; + es at each step. We let ¢ be the first one such that |u(c — e; +
ey)| < (K + 11)7tu(c)|. The existence of such c is ensured by that |u(V¥)| < (K +

11) exp(—Cion) w(b)|, |Lappa N Z3| < 2r < 2

16, and C9 > K + 11. For such ¢ we

also have ¢,c —e; + ey € La,p,4NZ3, and |u(c)| > (K + 11)"1"2 exp(3Cion)g >

exp (50%") g. Since ¢,c —e; +ey,c —e; +e3 € 7021», by Claim 2.5.13 we have

lu(c)| <exp(Cion)g
(2.5.73)

<(K +11)7Yu(e)|, V¢ € {c —e,c — e, —e3,c—e; — ey, c—2e}.

For c —e; +e3, asc—e; +e3 € if?amp and (c —e; +e3) - A = c¢- Ay < h, we have
lu(c—e;+e3)] < exp(Cron)g < (K +11)"Hu(c)| by the third condition of Proposition

2.5.12. Then we get a contradiction with Lemma 2.2.2. O
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The next step is to control the points in a graded set F.

Proposition 2.5.16. For C§ from Proposition 2.5.12, any small enough ¢ > 0, and
any N € Z,, there exists Ce n > 0 such that the following is true.

Letn€Zy, 71 €Z,0<r <. LetT C Qn, a € ' NQx such that To, NT = 0.
Suppose that [ is a vector of positive reals, and E is an (N,lﬁ,sfl,s)—gmded set with

the first scale length l; > Ce n. If E is (6’%,5)-n0rmal in Ty, then

!

C
|ENOBarr NZP| < 79(7“2 +1). (2.5.74)

Proof. Ifr < ﬁ’ since F is (5*%, g)-normal in ¥, ., we have ENT,, = ) when C. x
is large, and our conclusion holds.
1

From now on, we assume that r > TV Denote 7 := 7,5, for the simplicity of

notations. Evidently, for any two by, by € OB,
1

Suppose [ = (L, -+ ,lq), where [;;; > I;7* foreach 1 <i < d—1. Write £ = U?:o E;,

1

where FEj is a ¢~ '-unitscattered set and Fj; is an (IV,[;, €)-scattered set. It suffices to

prove that there exists a universal constant C' such that for each 1 <1 < d,

|E; N OBarr NZP| < ONIr?, (2.5.76)
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and

|Eo N 0By NZP| < C*r?. (2.5.77)

Then with (2.5.76) and (2.5.77) we can take & small enough, such that Ce? < %’; and

take C, y large enough, such that
= —e = —e(142¢e)~1 C{;
;:1 CNl;c < ;:1 CNI, < 1 (2.5.78)

Thus we get (2.5.74).
We first prove (2.5.76). As in Definition 2.3.3, for each 1 < i < d, we write

Ei=Ujez, 1<0<n Ei(j ) where each Ei(j " is a open ball with radius [;, and
dist(EPY, BY™) > 11+

for each j # j'.

Claim 2.5.17. For any 1 <i </d, H(j, t): El-(j7t) NOPu,r # @H < CNI;7?75r%, where

C' is a universal constant.

Proof. The proof is via a simple packing argument. Assume that E; NT,, # 0 (since

otherwise the claim obviously holds). Denote 71,1 to be the closed equilateral triangle
in P 4.z, such that it has the same center and orientation as 7,,, and its side length
is 100r. For any j,t, let Bz-(j’t) be the open ball with radius li1+§ and with the same

2

center as Ei(j’t). Since E is (¢72,¢)-normal in T,,, we have diam(Bi(j’t)) < 1007,
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Suppose El-(j’t) N OBarr # 0, we then have W(BZ-(j’t)) C Tap In addition, if for some
' # j we have EY"" 0 9Bo,r # 0 as well, by dist(EG), EG"D) > 11+ and (2.5.75),
we have that (when C; y is large enough) W(B(j’t)) N W(Bi(jl’t)) = (). Thus for any t,

i

H j i B9 O 0P, £ @} 125 < Avea(Ts,). (2.5.79)

since Area(m(BY")) > 12*¢ for any j,t. Our claim follows by observing the fact that

Area(T,,) < Cr2. O

Claim 2.5.18. There exists some universal constant C' such that for any j € Z.,

te{1,2,--- N} andic{1,2,--- . d}, |EY" 0 0Bu,.r NZ3| < CL2.

Proof. By (2.5.75), m is a injection from 0%, ., so we only need to show

(B9 n#(Z%)| < CI2. (2.5.80)

We note that 7(Z?) is a triangular lattice on P; 4.x,, with constant lattice length \/?6

and W(El-(j’t)) is a 2D ball with radius at least C, y. Assuming C, y > 10, we have

BV N7 (Z3)| < 10 Area(n(EYY)) (2.5.81)

and our claim follows. O
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Now by Claim 2.5.18,

}Ez N 3‘3@7«,1“ N Zg‘ S Z ‘Ez‘(ji) N agpa,r,l" N Zs‘
" (2.5.82)
<> {60 ESY nomar £ 0} ci
7t

Then by Claim 2.5.17, we get (2.5.76).

As for (2.5.77), since by (2.5.75) 7 is a injection on OB, ,.r, we only need to show

|7 (Eo N 0Barr NZP)| < Ce*r? (2.5.83)

1

for some universal constant C. By (2.5.75) and the fact that Ej is e~ '-unitscattered,

we have

-1

7 (b) — m(¥)] > 51—0 (2.5.84)

for any b # V' € Ey N OP,,.r NZ* (since b and O are centers of different unit balls in

Fy). Thus (2.5.83) follows from Area(m(Ba,.r)) < 10072, O

Proof of Proposition 2.5.11. We assume that » > 1000, since otherwise the statement
holds by taking Cy small enough.

To apply Proposition 2.5.12, we need to check its third condition. We argue by
contradiction, and assume that there exists b € iﬁam,f‘ N Z3* with b-X; < h, and
lu(b)| > exp(Cion)g. Consider the triangle Pypa, N Parr, and write it as {¢ €

Pipa, i cC- A < t.(a)- Ar — F',¥1 = 2,3,4} for some F’ > 0. From the definition of
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Figure 2.11: The three green areas are given by (2.5.85) and do not have common
intersection, so b = ¢y € P1p.a, N Parr is outside one of them, and we can construct

a path in ‘jﬁ?a,r,p from it by using the cone property.

h, the its side length is at least V2 (g — 1). Consider the three sets

{c € Proa i C- A >t(a) - A — F — ILO} (2.5.85)

where 7 € {2,3,4} (see Figure 2.11). The intersection of all three of them is empty,
so by symmetry, we can assume that b is not in the first one, i.e.

r

b‘XgStr<a)'X2—F/— 10

(2.5.86)

Now we apply Lemma 2.2.3, starting from b and in the —e; direction. Since
r < g5 and a € @z, we can find a sequence of points b = cp,c1,- -+, ¢, such

that for any 1 < i < r, we have |u(¢)] > (K + 11)7Yu(e;_1)|, and ¢; — ¢;q €

{—e;,—e; +ey, —e; +e3, —e —ey,—e —e;z, —2e;}. Then we have that ¢; - Ay <
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Cic1-Aa+2,¢ A3 <ci_1-XA3and ¢ - Ay < ¢i_q - Ay. This means that for 1 < ¢ < 3

Ci'XQSb'XQ‘{‘%<tr(a)'X2—F/,

(2.5.87)
Ci A <b- A <t.(a) A — F', V7 € {3,4},
Also, for i < 55, we have
_r ClOn
lu(e;)] > (K +11)730|u(co)| > exp 5 )9 (2.5.88)

when Cj9 > K + 11. Since ¢;_1A1 — 2 < ¢; - A1 < ¢;_1A1, by the second condition

of Proposition 2.5.11, we have that a - Ay < ¢; - Ay < b- Ay foreach 1 < i < 35

With (2.5.87) this implies that ¢; € ‘ﬁa,r,r for each 1 <4 < 5. See Figure 2.11 for an
illustration.

By the definition of the pyramid ‘B, r, for 0 <4 < 55 we have that ¢; ¢ T, thus
¢; € E by (2.5.88) and the fourth condition of Proposition 2.5.11.

Forl € Ry with 1 <1 < (2v/2r)'"2, and any (1,1, €)-scattered set Z, the number of

balls in Z that intersect {CZ}ZLEJ is at most 2 L%J [~'=¢+1. This is because, otherwise,

. . . . . 1+e€
there must exist 1 < i1 < ip < L%J, such that |i; — is| < %, and ¢;, and ¢;, are

contained in different balls. By construction the distance between ¢;, and ¢;, is at

most 2|i; —is|, and this contradicts with the fact that Z is (1,1, ¢)-scattered. For each

ball in Z, it contains at most 2/ points in {cz}}jJ . This is because ¢;-e; < ¢;_;-e;—1
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for 1 <i < L?)LJ and the diameter of each ball is 2{. Thus we have

‘Zﬂ {c:y L)

<9l ( L;OJ 1y 1) <7l 42l (2.5.89)

1

Similarly, for any ¢~ -unitscattered set Z, we have

‘Zm{cz}i )| ey (2.5.90)

For the set E which is (72, ¢)-normal in B, using (2.5.89) and (2.5.90) we have

<re+24 > N7I7¢ + 2N (2.5.91)
1<i<dil; <(2v2r) ' 2

’Eﬂ{cz}L g

We have that

d o o
NTZ l;s < NTZ l;€(1+2€ < NTZ O s(1+2€ < NTZ C;;C;]%[(iil)g

=1
NrC—%

= —— = (25.92)
1-Coy

and when C, y is large enough this is less than f5-

Also, when (2v/2r)172 > Cen > 100, and € < we have

200 )

log(2\/§7~)>

log ( O
S INT, < 2 | N oslen) )

1| N(2v2r)i-3
log(1+20) (2v2r)

1<i<dil;<(2v/2r)' "5

N)\m

410g(10g(2\/_7")) N(2V2r)'=2, (2.5.93)

£

92



s 26223
where the first inequality is due to that there are at most W terms in
the summation, and each is at most 2N (2v/2r)'~2. We further have that (2.5.93) is
less than 155 when C; y is large enough. When (2\/57")1_% < C: n, the left hand side

of (2.5.93) is zero. Thus the left hand side of (2.5.91) is less than % + 2 < & when

L

€ < 100

and C; y is large enough. This contradicts with the fact that ¢; € £ for each
0<i< 5.
Finally, the conclusion follows from Proposition 2.5.12 and 2.5.16, by taking Cy =

%C’é and the same Cy as in Proposition 2.5.12. ]

2.5.3 Proof of Theorem 2.5.1

In this subsection we assemble results in previous subsections together and finish the

proof of Theorem 2.5.1.

Proof of Theorem 2.5.1. By taking C. y large we can assume that n > 100.

We prove the result for C3 = &Cs and Cy = max {207, 2log(K + 11)}, where
Cs, C7 are the constants in Proposition 2.5.3. We let € be small enough, and C; y be
the same as required by Proposition 2.5.3.

By Proposition 2.5.2, there exists 7 € {1, 2, 3,4}, and
a; € (Pri UPriy1) NCN Q241 (2.5.94)

fori=0,1,---, ]3] — 1, such that |u(a;)| > (K + 11)7"|u(0)].
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For eachi=0,1,--- | L%J — 1, we apply Proposition 2.5.3 to a;, and find h; € Z .,

such that
hi
’{Cl S Qn N U 7)7—’@2-.,\1_5_]‘ .
7=0
[u(a)| = exp(—Crn?)lu(a;)] = eXP(—Czn3)IU(0)|} \ E‘
> Cghin(logy(n))~". (2.5.95)
Now for some m € Zs(, we define a sequence of nonnegative integers i; < -+ < iy,

inductively. Let ¢; := 0. Given iy, if a;, - Ar + by +1 < HL—OJ — 1, we let g1 =
a;, - Ar + h;, + 1; otherwise, let m = k and the process terminates.

Obviously, the sets

hi,
a € QnN | Prayanss : [ula)] > exp(=Con®)u(0)] ¢ \ E (2.5.96)
j=0
for k = 1,--- ,m are mutually disjoint. Besides, we have that a; - A, < 1 and

a;, A+ h;, > L%J —1; and for each 1 <k <m, a;,, - A; — a4, - Ay < by +2. This
implies that > 7, (hy, +2) > | &] — 2, thus > iy iy > g5, and

607

[{a € Q, : [u(a)] > exp(—Con®)|u(0)|} \ E| > Cs (Zh) (logy(n)) ™!

k=1

> Csn?(logy(n))™" (2.5.97)
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which is (2.5.2). O

2.6 Recursive construction: proof of discrete unique con-

tinuation

We deduce Theorem 2.3.4 from Theorem 2.5.1 in this section. The key step is the

following result.

Theorem 2.6.1. There exist universal constants 5 and o > % such that for any positive
integers m < n and any positive real K, the following is true. For anyu,V : Z3 — R
such that Au = Vu in Q, and ||V|ew < K, we can find a subset © C Q, with

0] > B (2)", such that
1. Ju(b)| > (K + 11)~12"|u(0)| for each b € ©.
2. Qu(b) N Qu(t) =0 forb, b €0, b#£1V.
3. Qum(b) C Q, for each b € O.

The proof of Theorem 2.6.1 is based on the cone property, i.e. Lemma 2.2.3, and

induction on . We first set up some notations.

Definition 2.6.2. A set B C Z3 is called a cuboid if there are integers ¢, < k., for

T =1,2,3, such that

B={beZ’:t,<b-e, <k, 7=123}. (2.6.1)
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We denote p™(B) := ki, p~(B) := t1, and ¢"(B) := ks, ¢ (B) := ts. A cuboid is

called even if t,, k, are even for each 7 =1, 2, 3.

Proof of Theorem 2.6.1. Without loss of generality we assume that u(0) = 1.

Take o = 1.251 > 2

2, and leave 3 to be determined. We denote f,(z) = (%)

m

for x > 0. Then we have the following two inequalities:

4.47°44.89>1,6-47°> 1. (2.6.2)

This implies that there exists universal Ny > 10® such that, for any positive integers

m,n with n > Nym and any real 8 > 0, we have

Afon (g ~3) +4f (g =2) > fuln+7) (2.6.3)
and
Af, (g —3) +2fn (g —2> > f(n+7). (2.6.4)

We let 8 = (No+7)"%, and fix m € Z,. We need to show that, when n > m, there is
© C Qn, such that |©| > f,,(n), and O satisfies the three conditions in the statement.
For this, we do induction on n. First, it holds trivially when m < n < Nym + 7 by
the choice of 5. For simplicity of notations below, we only work on n that divides
8. At each step, we take some n > Nym > 10%m with % € Z and suppose our
conclusion holds for all smaller n. Then we show that we can find a subset © C @,
with |©] > f,.(n + 7), such that the conditions in the statement are satisfied. Thus
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the conclusion holds for n,n+1,--- . n+ 7.

By Lemma 2.2.3, and using the notations in Definition 2.2.1, we pick a; € C§(%)U
Co(5 +1) and ay € C3(—%) UCa(—% — 1) such that |u(a)|, [u(az)| > (K 4+ 11)"
For simplicity of notations, we denote Q' as the even cuboid such that we have
Qn _o(a1) C Q' C Qz_1(ar); and Q as the even cuboid such that Q= 5(a) C Q* C
Qg—l(@)-

Then we use Lemma 2.2.3 again to pick

(F-1ve(3):
az el (=5 +1)uck (<)

A

(-

aj € C3

»-P|3

(2.6.5)
4 )UC3 (4)’
pryuen (=)

such that |u(a11)], [u(ai2)], [u(az)|, [u(age)| > (K+11)7>". Fori,j € {1,2}, let Q¥ be

a921 E

CLQQEC

an even cuboid such that Q= _3(a;) C QY C @n_y(a;;). Comparing the coordinates
of a;;’s, we see Q¥’s are pairwise disjoint.
By inductive hypothesis, we can find 4f(2 — 3) points in Q"' U Q"™ U Q*' U Q*,

such that for each b among them,

lu(b)] > (K 4+ 11)72" (K + 11)7126G-3 > (K + 11)712 (2.6.6)

and all Q,,(b) are mutually disjoint, and contained in Q' U Q' U Q*' U Q%2
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Figure 2.12: The projection onto the e;e, plane.

Let B be the minimal cuboid containing Q' U Q?, B; be the minimal cuboid
containing Q' U Q'2, and B, be the minimal cuboid containing Q%' U Q?2.

Let g = p*(Qn) — p*(B), ¢V == p~(B) — p~(Qn). 9" = p*(Q") — p*(By),
g = p(B1) = p=(QY), 9 = p*(Q) — p*(B2) and g = p~(B2) — p~(Q?).

Similarly, in the es-direction, let A = ¢*(Q,) — ¢ (B), h'Y := ¢~ (B) — ¢ (Q.),
h =gt (@) = at (By), WY = ¢7(B) — (@Y. by = ¢7(Q*) — ¢*(By) and
hgd) = q (Bz2) — ¢~ (Q?). See Figure 2.12 for an illustration of these definitions.

From the above definitions,

97 + gV +h + 1D =dn — (p*(B) = p~(B)) — (¢"(B) —q (B)).  (2.6.7)
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Observe that
(p*(B)—p~(B))+(q"(B)—q~(B)) < |(a1—az)-e;|+|(a1—az)-es|+4 (g _ 1) . (2.6.8)

As ay € C3(3)UCH(3 + 1), we have |ay - e1]+ a1 - 2] < |ay -es| < % +1; and similarly,
we have |a; - 1| + |ag - €3] < § + 1. Using these and (2.6.8), and triangle inequality,
we have

(p"(B) —p (B)) + (¢"(B) —q (B)) < 3n—2. (2.6.9)

Thus with (2.6.7) we have
g™ +gO 4+ h®™ 4 pD > 42 (2.6.10)

The same argument applying to smaller cubes Q' and Q?, we have

r u n
91" + g’ + Y+ 10 > 42 (2.6.11)
and
r u n
95" +98) + 1 w0 >t (2.6.12)

Summing them together we get

97 +99 4+ + g0 465 46 4@ 4+ n@D 4 p LD LB B > 2n4-6. (2.6.13)
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Figure 2.13: The projection onto the e;e, plane in Case 1.

As these ¢g’s and h’s are exchangeable, we assume without loss of generality that

(r)

T l
9" + 99 + 9" + g

+9" + 67 + g = n+3. (2.6.14)

By symmetry, we assume without loss of generality that a; - e; < ay - e1; conse-
quently p~(Q') < p~(Q?). We discuss two possible cases.
Case 1: p™(By) < pH(Q") or p~(B;) > p~(Q?). By symmetry again, it suffices to
consider the scenario for p™(By) < p™(Q'). See Figure 2.13 for an illustration.
Consider cuboids

U:={beZ:|b-e|b-es <n—1,-n+1<b-e <p (Q')—1},
(2.6.15)

U ={beZ:|b-e[b-es] <n—1p7(Q")+1<b-e; <n—1}.
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Then Uy, U,, By, By are mutually disjoint, since p™(Bs) < pT(Q') and p=(Q') <

p~(Q?). Now we use Lemma 2.2.3 to pick points

1 € Cy (%(p_(Ql) - ")) UCo G(p_(Ql) )+ 1) 7 (2.6.16)

e 6 (507@)+m) ue (67 @) +m+1).

such that |u(cy)l, |u(ca)] > (K +11)~™. Denote [, := p_(Q;Hn — 2,1 := ”7}’;@1) —2.

Then I, I < . We also have

P QY +n)+(n—p (QY)) =2n+p (Q") — p"(Q") > n+2, (2.6.17)
L+1> g _3 (2.6.18)

We use inductive hypothesis on Qy,(¢1) C Uy, if I; > m; and on Q,(cs) C U,, if
I, > m. Note that U, U,, By, By are mutually disjoint. Thus we get f,,(I1)17,5m +

fm(I)1 1,5, points in Z3, such that for each point b among them,
o [u(b)| > (K +11)™(K +11)7122 > (K +11)~12",
e Qn(b) NQy(b) =0 for another ' # b among them,

° Qm(b) C Qn \ (Qll U Q12 U Q21 U QQQ)‘
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We now show that

FulI) s + (D) Lo > 2 (g -2). (2.6.19)

If I, I > m, (2.6.19) follows by convexity and monotonicity of the function f,,, and
(2.6.18). If I; < m, by (2.6.18) and the assumption that n > Nom > 10®m, we
have I, > % —3 —m > 10“m. Then by monotonicity of f,, we have f,,(12)1gsm =
fm(l2) > fm (2 =3—=m) > 2f, (% —2), which implies (2.6.19). The case when
I, < m is symmetric.

Now together with the 4f,, (2 — 3) points we found in Q"' U Q" U Q*' U Q*, we
have a set of at least 4f,, (% — 3) +2fm (% — 2) points in @),,, satisfying all the three

conditions.

Case 2: p*(By) > pT(Q') and p~(B;) < p (Q?). See Figure 2.14 for an illustration.

Denote

Up:={beZ: |b-eof,b-es] <n—1,-n+1<b-e <p (B)—1},
U= {beZ’: b-esl b-es <n—1,p"(By) +1<b-e;<n—1},
Us = {b€Z3Z

(2.6.20)
Wez\Sn—Lléb-egén—l,p*(Bl)Hgb-elsf(@l)—l},

U4::{b€Z3:

b-es)<n—1,—n+1<b-es<—1,p (Q*)+1<b-e Sp_(BQ)—l}.
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Figure 2.14: The projection onto the e;e, plane in Case 2.

We note that Uy, Us, Us, Uy, By and By are mutually disjoint.

We use Lemma 2.2.3 to pick the following points:

v 63 (5 (B0 - ) ) uch (5 (B~ ) 1),

-~ (% (v (B) + n)) uCl (% (" (By) +n) + 1) |

1
cvech, (30 B+ 5 (@) -
(2.6.21)
1
UC;1 <§ (p+ (B1) +p* (Ql)) —aj-e; + 1) 7
1 1 — — 2
1 €Cy, (5 (p~ (Bo)+p (Q%)) —az- e1>
1
i, (307 B4y @) e 1),
such that |u(c;)| > (K + 11)73" for each i = 1,2, 3, 4.
Denote J; := @ — 2, Jy = —”71”;(32) -2, J3 = p—ﬂQl);pﬂBl) — 2, and

103



Jy o= B @)y

For each i = 1,2, 3,4, if J; > m, we use inductive hypothesis on Q j,(¢;) C U; (note
that @, (¢;) is disjoint from Qq, so J; < %”) As the sets By, By, Uy, Us, Us and U,
are mutually disjoint, we can find 3+ fu(Ji) 1,5, points in (J_, U;, such that for

each point b among them,
o [u(B)] = (K +11) (K + 1) 2% = (K + 1),
e Qn(b)NQ,, (V) =0 for another V' # b among them,

° Qm(b) C Qn \ (Qll U Q12 U Q21 U Q22)-

By (2.6.14), we have

(p~(B1) +n)+ (n—p"(By)) + (p"(Q") = p*(B1) + (n (B2) —p (Q%))

= g™ 4 g0 4 g0 4 g0 g0 D> 13 (2.6.22)

thus J; + Js + Js + Jy, > § — 7. Similar to (2.6.19) above, by monotonicity and

convexity of f,,, and n > Nym > 108m, we have

4

> fn(I)Lyom = Afm (% - 2) . (2.6.23)

i=1

This implies that, together with the 4f,, (% — 3) points we found in Q"' UQ?UQ*' U
Q??, we have a set of at least 4f,, (% — 3) +4fmn (% — 2) points in @), satisfying all
the three conditions.
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In conclusion, by (2.6.3) and (2.6.4), in each case, we can always find a © C @,
satisfying the three conditions, with |©| > f,,(n + 7). Thus Theorem 2.6.1 follows

from the principle of induction. n
Now we prove Theorem 2.3.4.

Proof of Theorem 2.3.4. Let p := %a + %, then p > % since o > g. Without loss of
generality, we assume that u(0) = 1.

Suppose [ = (ly,l9,- -+ ,1g). Since E is (N,l_;sfl,s)—graded, we can write E =
U?:o E; where E; is an (N, [;,¢)-scattered set for i > 0 and Ej is a e '-unitscattered

0

set. We also write By = ez, 1<i<n EY | where cach EY" is an open ball with

radius /; and

dist(EVY, BV > (1+e (2.6.24)

whenever j # j'.
We assume without loss of generality that l; < 4n'~%. Otherwise, since E is
(1,e)-normal in @,, we can replace E by Fy U <U1-<4n1*% E2>

Let ng := |lg_x] for k=0,1,--- ,d.

ol

Claim 2.6.3. We can assume there is M € Z. such that ns(-49) 41 <npy <ns.

Proof. Suppose there is no such M € Z,, we then add a level of empty set with
scale length equal n3(1=29) More specifically, let k£ be the largest nonnegative integer
satisfying I, < n3074)_ then ly,, > ns. We let Il =1;and B! = E; for each 0 < i < k.

Let I, = n3072) and Fj | be any (N, 1}, ¢)-scattered set that is disjoint from Q.
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Let I; = l;_y and E! = E;_4 for i > k 4 2. Then for each 1 < i < d + 1, we have

(Ii_)"% < i, and E] is (N, [}, €)-scattered. Also, as n > C2 y we still have I] > C; y.

Evidently, by replacing F with U;.Hol E!, our claim holds with M =k + 1. O

Now we inductively construct subsets ©, C @Q,, for kK =0,1,---, M, such that the

following conditions hold.

%42 [\
2. For any a € Oy, we have |u(a)| > (K + 11)~24k+0n,
3. For any a,d’ € Oy with a # o/, we have Q, (a) N Qn, (a") = 0.

4. For any a € Oy, we have @, (a) C Qn.

5. When k& > 0, for any a € Oy, there exists a’ € ©,_; such that @, (a) C

Q. ().
6. For any a € O and d — k < i < d, we have E; N Q,, (a) = 0.

Let n{, := min { ﬁné*fj ,n}. By using Theorem 2.6.1 for m = ny,, we get a subset
©f C @, such that |0y > S <nﬁ,> and Oy satisfies Condition 1 to 3 in Theorem
0

2.6.1. For each fixed t € {1,2,--- N} and j # j' € Z,, by definition we have

dist(Ec(lj’t), Ec(lj/’t)) > 4ny. This implies

H(J’, t): YV 0 Quyla) # @JH <N, (2.6.25)
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for each a € ©j. For each a € 6, by using Theorem 2.6.1 for Q,; (a) and m = ny, we
get a subset O ¢ @ (a) such that 0] > ﬂ(%)a and O satisfies Condition 1
to 3 in Theorem 2.6.1. For each j,¢ we have ’{b € @(()a) :Qno (D) N Eéj’t) # @}‘ < 100.
This is because for each b € @(()a) with Qp, (b) F‘IEC(lj " £ 0, the cube Qn, (D) is contained
in the closed ball of radius 2\/§n0 +1; < (2\/3 + 1)ng + 1 with the same center as
EPY . As we have Qp, (b) N Qo (V') = 0 for b # b € O, the number of such b € O

is at most (2(2\(/2§n+0—1+)1n)03+2)3 < 100. Thus by (2.6.25), we have

Hb € 0l : Qn(b) N Ey # @}\ < 100N. (2.6.26)

Let O .= 0\ {b € 0L 1 Qu,(b) N Ey # @} for each a € ©, and Oy = {J,cq, oL,
Now we check the conditions. Condition 6 is from the definition, and Condition 5

automatically holds since £ = 0. Condition 2 to 4 hold by the conditions in Theorem

£

2.6.1. For Condition 1, recall that [; > I; > C. n, and I < 4n'~3. By letting C. x

= / la la
large enough we have n; > l;+2, and then %ﬁ(%)a > 1013 © > %ﬁC;NE > 100N.

Thus for each a € ©) we have |0(”| > |0\ | — 100N > %B(Z—g)o‘ This implies that

- (0 () 0())- () () oo

acoj

Suppose we have constructed O, for some 0 < k < M, we proceed to construct
Op+1. Note that as [;777 | < l4_y, we have ny > n, 13" — 1. Let nj, ., = [in,27]. Take

an arbitrary ag € Oy, use Theorem 2.6.1 for @, (ag) with m = nj_ ,, we get a subset
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@kiol) C @Qn,(ap) such that |@k+1\ > 6( )a and @ "y ) satisfies Condition 1 to 3
in Theorem 2.6.1. For each fixed t € {1,2,--- , N} and j # j' € Z,, by definition we

have dist(Eéj_’t,z_l, Eéj_/,:)_l) > 4nj ;. This implies, for each a € @k+1 ,

H( t): EY) N Qu  (a )#@H <N. (2.6.28)

For each a € @k+1 , by using Theorem 2.6.1 for Q. (a) and m = ny11, we get a
subset @,(521 C @, (a) such that |@k+1] >3 ( ’““) and @,(Hl satisfies Condition 1

1

to 3 in Theorem 2.6.1. By (2.6.28),
Hb €0, Qs (B) N By_gy # @H < 100N, (2.6.29)

Let 6{7), = O\ {b € O : Qu,(0) N Bagy # 0}, Then [0f7)] > 0| -
100N > 25 < ’““)a, when C; y is large enough; and for each b € (:),(;21, Qny i (O)NE; #

(0 implies ¢ < d — k — 2. Then

2 @
J 6= 3 16> (§) (”) | (2.6.30)

1(ag) /(ag)
a€®, a€®,

Now let ©p11 = Uyco, U coreo (:),(;21 Then Condition 2 to 6 hold for k + 1
aSOk41
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obviously. As for Condition 1,

‘@ ‘_ Z U é(a) - |@ | é 2 g « - é 2k+4 n «
G ket = PR 9 Ng+1/)  — \ 2 Nky1)

aoe@k ae@;c(i({)

where the second inequality is true since Condition 1 holds for k.

Inductively, we have constructed ©,; such that

1 10y > (§)2M+2 (%)a

2. For any a € Oy, we have |u(a)| > (K + 11)~ 243 +1n,

3. For any a,d’ € Oy with a # a’, we have Q,,,(a) N Q,,,(a") = 0.
4. For any a € O, we have Q,,,(a) C Q.

5. For any a € ©); and d — M < i < d, we have E; N Q,,,(a) = 0.

M o
As 172 <4y for each 0 < k < M, we have ny; < l(SHQE) < n(5%)". Note that

nar > 349 thus (le)M > 1(1 — 4e). From this we have

M < 2¢7 1 (2.6.32)

Since léﬁj_l <lg_pand lg_pr > 13 > C. y we have lg_pr—q < n}\f when C; y is large

enough. Then for each a € ©,;, by Condition 5 we have that E is (1,2¢)-normal in
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Qn,, (a). For any a € ©y, we apply Theorem 2.5.1 to @, (a), then

1{b € Quy(a) : |u(d)] > (K + 11)" 24D oxp(—Cond ) )\ EB| > 03105(14]”)-

(2.6.33)

Let C.x = Cy +961log(K 4 11)e~*. From (2.6.33), (2.6.32) and n3(1~4) < ny, < n3,

we have

2

1{b € Qu,, (a) : |u(b)| > exp(—Cexn)}\ E| > ogb;z—fm (2.6.34)

Since Qn,,(a) N Qn,,(a’) = 0 when a # a’ € Oy, in total we have

2

{b € Qy : Ju(b)| > exp(=C.xn)} \ E| > C3log72]7\l4M) O
B

aM+2 ,
> Cf (—) n§(1_45)+§°‘(log(nM))_1 >nP, (2.6.35)

2

where the last inequality holds by taking € small enough, and then C; x large enough

(recall that we require n > C;“’ N)- ]

2.7 Proofs of auxiliary lemmas

2.7.1 Auxiliary lemmas for the framework

In our general framework several results from [DS20] are used, and some of them are

also used in Section 2.7.3 below as well. For the convenience of readers we record
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them here.
There are a couple of results from linear algebra. The first of them is an estimate

on the number of almost orthonormal vectors, which appears in [Tao| as well as

[DS20].

Lemma 2.7.1 ([Tao|[DS20, Lemma 5.2]). Assume vy, --- , v, € R™ such that |v; - v; —

1| < (5n)~z, then m < 5’2‘/571.

The second one is about the variation of eigenvalues.

Lemma 2.7.2 ([DS20, Lemma 5.1]). Suppose the real symmetric n x n matriz A has

eigenvalues \y > --- > X\, € R with orthonormal eigenbasis vq,--- ,v, € R™. If
1.1<1<j<n,1<k<n
2.0<r <rg<ry3<r<rs<l1
3. ry < emin{rsrs, rors/ry} where ¢ > 0 is a universal constant

4. 0<)\j§)\i<rl<r2<)\i71

2
6' ZT2<)\Z<T‘5 vf,k? S T4

then the i-th largest eigenvalue N, (counting with multiplicity) of A + ekeL is at least

r1, where ey, is the k-th standard basis element and eL 1s its transpose.

We then state the generalized Sperner’s theorem, used in the proof of our 3D
Wegner estimate (Lemma 2.3.5).
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Theorem 2.7.3 ([DS20, Theorem 4.2]). Suppose p € (0,1], and A is a set of subsets
of {1,---,n} satisfying the following. For every A € A, there is a set B(A) C
{1,--- ,n}\ A such that |B(A)| > p(n—|A|), and ANB(A) =0 forany AC A" € A.
Then

Al <22t (2.7.1)

For the next several results, in [DS20] they are stated and proved in the 2D lattice
setting, but the proofs work, essentially verbatim, in the 3D setting.
The following covering lemma is used in the multi-scale analysis. Recall that by

“dyadic” we mean an integer power of 2.

Lemma 2.7.4 ([DS20, Lemma 8.1]). There is a constant C' > 1 such that following
holds. Suppose K > 1 is an integer, o > CX is a dyadic scale, Ly > oL, > L; >
aLy > Ly are dyadic scales, Q C Z3 is an Lg-cube, and QY,--- Q% C Q are Lo-cubes.
Then there is a dyadic scale Ly € [Ly,aLy] and disjoint Ls-cubes @}, -+, Q% C @,

such that for each Q} there is Q' with Q) C Q) and dist(Qy, Q \ Q) > %Lg.

We need the following continuity of resolvent estimate. It is stated in a slightly

different way from [DS20, Lemma 6.4], so we add a proof here.

Lemma 2.7.5 ([DS20, Lemma 6.4]). If for A€ R, a > 3> 0, and a cube Q C Z3, we
have

|(Hg — \)"!(a,b)| < exp(a — Bla—1b|) fora,beQ, (2.7.2)
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then for N with [N — X| < 1|Q|™ exp(—a), we have
|(Hg — N) ™ Ya,b)| < 2exp(a — Bla —b|) for a,b € Q. (2.7.3)

Proof. We first prove (2.7.3) assuming A\’ is not an eigenvalue of Hg. By resolvent

identity we have,
(Ho—XN)"'=(Hg— A"+ (Hg—N)""(N = XN)(Hg — N (2.7.4)

Let v = max, peq exp(Bla — b — «)|(Hg — N')~'(a,b)|. Then for any a,b € Q,

|(Hg = X)"H(a, )]

<[(Hg = N7 (a,0)| + N = A Y |(Hg = X) " (a,¢)||(Hg = A) (¢, b)]
ceQ

<exp(a—fBla—"0b])+ [N = )| Zexp(a — Bla — ¢|) exp(a — Blc — b])y (2.7.5)
ceQ

<expla — Bla— b)) + [N = A|Q|exp(2a — Bla — bl)y

< expla— fla— bl) + 5 expla — la — b))y

This implies v < 1+ 37 and thus v < 2 and (2.7.3) follows.

Now we can deduce that |det(Hg — X')~!| is uniformly bounded for ) that is
not an eigenvalue of Hg and satisfies |\ — A| < 1|Q| ™' exp(—a). By continuity of
the determinant (as a function of X'), we conclude that Hg has no eigenvalue in

(A= 11Q[ " exp(—a), A + 1|Q| " exp(—a)]. Thus our conclusion follows. O
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We also need the following result to deduce exponential decay of the resolvent in

a cube from the decay of the resolvent in subcubes.
Lemma 2.7.6 ([DS20, Lemma 6.2]). Suppose

1. € > 6 >0 are small,

2. K > 1 is an integer and X € [0, 13],

3. Lo > -+ > Lg are large enough (depending on €,0, K ) with L,lf_8 > Lgaq
4. 1>m > 2L5—‘S represents the exponential decay rate,

5. Q C 73 is an Ly-cube,

6. Q- ,Q% CQ are disjoint La-cubes with ||(Hg — X)7'|] < exp(La),

7. for all a € Q), one of the following holds

o there is () with a € Q) and dist(a, Q \ Q}) > %LQ
e there is an Ls-cube Q" C Q such that a € Q", dist(a,Q \ Q") > %LE,, and

|(Hgr — A) (b, V)] < exp(Lg — m|b—b']) for b,V € Q".

Then |(Hg—)\)"Y(a,a’)| < exp(Ly —mla—ad'|) fora,a’ € Q where m =m—L3°.

2.7.2 The principal eigenvalue

This section sets up the base case in the induction proof of Theorem 2.3.10. We follow
[DS20, Section 7], and generalize their result to higher dimensions. We take d € Z,
d > 2, and denote Q,, := {a € Z¢ : |jal|c < n} instead.
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Theorem 2.7.7. Let V : Q, — [0,1] be any potential function, and R > 0 large
enough, such that for any a € Q,, there exists b € Q,, with V(b) =1 and |a —b| < R.
Let H : (*(Q,) — *(Q,), H=—A+V, with Dirichlet boundary condition. Then its
principal eigenvalue is no less than CR™4, where C' is a constant depending only on

d.

Proof. Let A\ denote the principal eigenvalue, then by e.g. [Eval0, Exercise 6.14] we
have
Hu

Ao = Ssup min—. 2.7.6
’ u:Qn—I:R+ Qn U ( )

Hence we lower bound g by constructing a function u. Let G : Z% — R be the lattice
Green’s function; i.e. for any a € Z% G(a) is the expected number of times that a
(discrete time) simple random walk starting at 0 gets to a. Let G := G//2d. Then G
is the only function such that —AG = dp (where 00(0) = 1 and dp(a) = 0 for a # 0),
and 0 < G(a) < G(0) for any a € Z%. In addition, for any a € Z? with a # 0, by e.g.
[LL10, Theorem 4.3.1] we have

Gla)= 1 40 (i) | (2.7.7)

a2 \ald
where Cy is a constant depending only on d. Hence

3Cy
2| ]2

4Ca < G(a) <

—_ 2.7.
5lald—2 — (2.7.8)

when |al is large enough.
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We define u : Z¢ — R, as

u(a) ;== 1+ G(0) — G(a) — e4Ral?, Va € 7%, (2.7.9)

where €4 > 0 is a small enough constant depending on d. Then

—Au = —8g + 2deqR7, (2.7.10)

and for any a € Z?% with |a|] < 3R, we have 0 < u(a) < 1+ G(0).
Assume that R is large enough. For any a with 2R < |a| < 3R, we have u(a) >
1+G(0)— % —9¢4R~%*2; and for any a with |a| < R, u(a) < 1+G(0) — 254, <

—5RIz >

1+G(0)— 2@}% —94R"2 aslong as 4 < %’6 (also note that here we have d > 2).
Thus

i > 2.7.11
onfiltar () = HZE 271

Now we define ug : Qn — Ry, as ug(a) := miny,_y3pv@p-1 ula —b), Va € Qn.
Pick an arbitrary o' € @Q,, by (2.7.11) there is ¢ with |’ — /| < 2R such that
up(a’) = u(a’ —¥) and V(¥') = 1. For any a” € Q, with |a" — a/| = 1, since

la” — V| <2R+1 < 3R, we have

up(a”) = min_ u(a” —b) <u(a” -V). (2.7.12)
o —b|<3R,V (b)=1
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Thus by (2.7.10), and Dirichlet boundary condition,

Hug(a') =2dug(a’) — Z up(a”) + V(a )ug(a)

a’ €Qn,la’—a’|=1
>2du(a’ —b') — Z u(a” = V) +V(d)ula —b)
a"”€Qnp,la’—a"|=1

B (2.7.13)
> — Au(a" =)+ V(d)u(a" =)

= —6o(a' — V) +2deyR™ + V(a)u(a — V)

szédRid.

Since a' is arbitrary and 0 < ug(a’) < 1+ G(0), by (2.7.6) and letting C' = lidT%), we

have \y > CR™¢. O]

Remark 2.7.8. The exponent in R~? is optimal. Consider a potential V such that
V(a) =1 only if a € [R]Z9N Q, and V(a) = 0 otherwise. In this case we have that

Ao < 8dR™% + 4dn~!. To see this, consider the test function ¢(a) = 1 — V(a) for

a € (), and use the variational principle Ay < %
2

Corollary 2.7.9. Let H, C be defined as in Theorem 2.7.7. Let 0 < \ < Clgfd. Then

— _ d
ICH — N7l < 25 and

— - 2R CR™
|(H — \)"'(a,b)] < o exP (—8d+2|a—b\) (2.7.14)

for any a,b € Q,.

Proof. As the principal eigenvalue of H is no less than CR™, we have ||(H — \)7!|| <
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2Rd . Let T :=1-— 4d+1 (H — X). Since any eigenvalue of H is in [CR™% 4d + 1], the
eigenvalues of T are in [0,1 — cc-R™], s0 |T|| < 1— z55 R

8d+2 8d+2

Note that for each i > 0 and a,b € Q,,, T"(a,b) = 0 if |a — b| > i. Then we have

(H = XN a,b)] = (4d+1)"|(I = T)"Ha,b)| < (4d + 1)) " |T"(a, b)|

>0
= (4d+1)"" D [T'a,b)| < (4d+1)7" > T <—exp CR_d|a—b|
8d + 2 ’
i>|a—b] i>la—b|
(2.7.15)
so the corollary follows. O

Finally, we have the following result, which implies the base case in the induction

proof of Theorem 2.3.10.

Proposition 2.7.10. Let d = 3, and V' be the Bernoulli potential, i.e. P(V(a) =0) =

P(V(a)=1) = % for each a € 72 independently. For any 0 < § < % and € > 0, there

_ 30
exists Cs. such that for any n > Cs. and 0 < X\ < C”Z 2 with probability at least
1 —n~! the following is true.

Take any V' : Z* — [0,1] such that V§) 1125 = Vounre-1jzs- Let Hy be the

restriction of —A + V' on Q,, with Dirichlet boundary condition. Then we have

|, — N7 < exp(n®), (2.7.16)
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and

[(Hp, — A) " (a,b)] < n* exp(—n"°la —b|) for any a,b € Q,. (2.7.17)

Proof. Let R := n%, and let A denote the following event:

VYa € Qn,3b € Q,N [ 12 st.la—b <R V(b)=1. (2.7.18)

Then A only depends on Vi, ~ro—17z3.
Using Corollary 2.7.9 with d = 3, we have that (2.7.16) and (2.7.17) hold under
the event A, when n is large enough.

Finally, since there are (2n+1)? points in Q,,, and inside each ball of radius R, there

30

are at least %n%g‘g points in [e71]Z3NQ,,, we have P(A¢) < (2n+1)327s710<" < 1,

when n is large enough. O]

2.7.3 Deducing Anderson localization from the resolvent estimate

The arguments in this section originally come from [BK05, Section 7] (see also [GK12,
Section 6, 7] and [Bou05, Section 6]). These previous works are about the continu-
ous space model. For completeness and for the reader’s convenience, we adapt the
arguments for the lattice model, thus deducing Theorem 2.1.1 from Theorem 2.3.1.
As in Section 2.3, in this section, by “dyadic” we mean an integer power of 2, and

by “dyadic cube”, we mean a cube Qqn(a) for some a € 27173 and n € Z,.
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For any k € Z,, we define
Q= {u: 7 - R: |u(a)| < k(1+a))*, YaeZ? and u(0)=1}. (2.7.19)

Since the law of H is invariant under translation, to prove Theorem 2.1.1, it suffices

to show that for any k € Z,, almost surely

inf sup exp(t|al)|u(a)| < oo, (2.7.20)
t>0 4ez3

for any u € € and A € [0, \,] with Hu = Au.
Denote Z = (0, A\.). We first see that it suffices to prove (2.7.20) for any u € €

and A € Z with Hu = Au, by applying the following lemma to A = 0 and A = \,.

Lemma 2.7.11. Suppose A € [0,\.] and k € Z,. Then almost surely, there is no

u € QO with Hu = \u.

Proof. Let L; = 2¢ for i € Z,. By Theorem 2.3.1 and the Borel-Cantelli lemma,

almost surely, there exists i > 0, such that for any ¢ > ¢/,

(Hg, —N)\(a, b)’ <exp (LI = Ma—b]), Va,b e Q.. (2.7.21)
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Assume there exists u € € with Hu = Au. For each large enough i we have

|u(0)] = Y. (Ho, —N7H0,a)u(d)

a€Qr,a'€Z3\Qu, (2.7.22)

la—a’|=1

A\ L;
<6-(2L; +1)%exp (— 5 ) k(1+V3L)*

which converges to zero as i — oco. Thus u(0) = 0, which contradicts with the fact

that u € Q. ]

Let us fix k € Z, and denote by o, (H) the set of all A € Z, such that Hu = A\u
for some u € €. For each L € Z., denote by o(Hg, ) the set of eigenvalues of Hy, .
The first key step is to prove that for any large enough L, with high probability, the

distance between any A € o;(H) and o(Hg, ) is small, exponentially in L.

Proposition 2.7.12. There exist k', c; > 0 such that for any dyadic L large enough,

we can find a Vg, -measurable event 55530, such that

P [5@) ] >1- L, (2.7.23)

wloc

and under the event 51(,53,8,

we have dist(\,0(Hg,) NZ) < exp(—c1 L) for any
A € op(H) N |exp(—e VL), A, — exp(—e V)| .

The next key step is to strengthen Proposition 2.7.12 so that each A\ € oy (H) is
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not only exponentially close to o(Hg, ), but also exponentially close to a finite subset

S C o(Hg,) with |S| < L% for arbitrarily small &',

Proposition 2.7.13. For any ¢’ > 0, there exist K, co > 0 such that for each dyadic L

large enough (depending on 0'), we can find a Vi, -measurable event 5s(l[(;)c with

P [5;@’6} >1- L (2.7.24)

and under the event SS(ZLO)C,

there exists a finite set S C o(Hg,)NT with |S| < L° such

that dist(\, S) < exp(—coL) for any X € or(H) N [exp(—L2), A, — exp(—L)].

Proposition 2.7.12 and 2.7.13 are discrete versions of [Bou05, Lemma 6.1] and
[Bou05, Lemma 6.4] respectively. See also [GK12, Proposition 6.3, 6.9]. Now we
leave the proofs of these two propositions to the next two subsections, and prove

localization assuming them.

Proof of Theorem 2.1.1. We apply Proposition 2.7.13 with ¢’ < kg where kg is the
constant in Theorem 2.3.1. Take large enough dyadic L, and consider the annulus
Ap = Qsz \ Qar. We cover Ap by 2L-cubes {QV) : 1 < j < 1000} that are disjoint
with @y, such that for each a € A there is 1 < j < 1000 with a € QU) and

dist(a,Z* \ QY) > LL. Apply Theorem 2.3.1 to each of QVU)’s and to each energy

1
8

Ae S Co(Hg,)NZ, we have

Pled)] e)] > 1100007 (2.7.25)
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where &Sﬁ% denotes the event:

|(HQ(J') -\ Y(a, b)‘ < exp (LI*)‘* — Ada — b‘)

(2.7.26)
V1 < j <1000, Ya,b € QY, and VA € S.
Then by Proposition 2.7.13 we have
i [gag; N 55“,0} > (1— L™")(1 — 1000L5 ") > 1 — L~ (2.7.27)

n

for some constant £ > 0 and large enough L.

Under the event &151)1 n &L

sloc7

we take any v € € with Hu = Au and A €
lexp(—L%), \x — exp(—L?)], and X € S with |A — X| < exp(—ce2L). Thus using

Lemma 2.7.5, we have

_ 1
il < 2esp (27 = 0L )l

(2.7.28)
1
< 2exp (LH* — gA*L) k(6V3L +1)*(12L +1)* < exp(—¢'L)
for some constant ¢/ < 2= = and large enough L.
Now we consider the event
glOC - U m ann gilgolc (2729)

i/ >011>4
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We have P[€,.] = 1 by (2.7.27). Note that for any A € Z, we have
A € [exp(—L?), A — exp(—L?)]

for large enough L. We also have that (J,5, Ay = Z° \ Qs for any i € Z,.
By (2.7.28) we have that (2.7.20) holds under the event &,.. Then localization is

proved. O

2.7.4 The first spectral reduction

For simplicity of notations, for any A € R, dyadic scale L, and a € Z3, we say Qr(a)

is A-good if
|(Hgp @) — A) 710, 0)| <exp (L' = Ao —V]), Vb, b € Qp(a). (2.7.30)

Otherwise, we call it A-bad. By Theorem 2.3.1, for any large enough dyadic scale L
and A € [0, \,], we have

P[Qr(a) is A-bad] < L™"°. (2.7.31)

Proof of Proposition 2.7.12. Throughout the proof, we use C' to denote large universal
constants. For a dyadic scale L, we construct a graph GG whose vertices are all the
dyadic 2L-cubes. The edges are given as follows: for any a # a’ € %Z?’, there is an
edge connecting Qr,(a) and Qp(a') if and only if Qr(a) N QL(a’) # 0.

Fix large dyadic scale L. Take the dyadic scale Ly € {\/E, V 2L}. For any A € Z,
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denote by £} the event that there is a path of A-bad 2Ly-cubes Q,,--- ,Q

per m GLO

m

such that

QiNQr #0and Q,, NQL = 0. (2.7.32)

Under the event £, suppose that Ty = (Q,,--- ,@,,) is such a path with the shortest

per?

length. Since dist(Q% 23\ Q) > %, we have m > - \/%LO' By definition of dyadic

cubes and that I'g has the shortest length, there are at least 555 disjoint A-bad cubes

in I'y. Hence,

m k0 _ L ,
PE,,] < ) CL*1000™(Ly"™)m < 2C'L*(1000L,, 00) Wity < [k (2.7.33)

perl —

>_L
M= 1731,

for some ¢ > 0. Here the first inequality is by (2.7.31), and counting the total number
of G, paths with length m and one end intersecting () L.

Ax
2

Claim 2.7.14. Under the event (E).,)¢, any N € ox(H) with |N — A| < exp(—L(l)_

per

)

satisfies dist(N',0(Hg, ) < exp(—€'Lo) for a universal constant € > 0.
2

Proof. Denote the set of all the \-bad Lg-cubes contained in Q% ; by S. We consider Z?
as a graph with edges between nearest neighbors. Consider the set Sy := (|JS)UQ L C
Q s Let S7 be the maximal connected component of Sy which contains @) L. Then

(&2,)¢ implies S; C Qpyar,. Denote

per

0 S ={a€eS :|la—ad|=1forsomead €7\ S}, (2.7.34)
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and

OtS  ={acZ\S, :|a—d|=1for somed €5} (2.7.35)

Assume )\ satisfies the hypothesis in the claim, then there is u € £, such that
Hu = Nu. For any ¢’ € 95, U9"S], there is a dyadic Lo-cube @' such that o' € Q'

and dist(a’,Z* \ Q') > +L,. By maximality of S;, we have Q" is A-good. Thus by

1
8

Lemma 2.7.5,

1
u(a')] <2exp(Ly ™ — g Lollluller@pany)
1
<2exp(Li™ — gALo)(2L +8Lo + 12 k(V3L +4V3Lo +1)F  (2.7.36)

1
< —— AL
< exp( 10 0)
for large enough Lg. Let u, : Q%L — R be defined by u, = v on S} and u, = 0 on

Q%L \ Sl. Then

0 ifa e Q%L\(8751U8+51)a

(Hoy, = N)us(@) = 50 L vepes, uld)  ifa€d Sy,

\ - Z|a’—a|:1,a’€8—51 U(CLI> ifa e 8+51.

(2.7.37)

By (2.7.36), we have

e

1
I(Hay, — Nudle@y,) < 6(3L +1)2 exp(=35ALo) < exp(—€'Lo)|[u«lleqy )

(2.7.38)
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for large enough L. Here, we used [|u.|e(q,,) > 1 since 0 € S and u(0) = 1. By
2
expanding w, into a linear combination of eigenvectors of Hg, , (2.7.38) guarantees
2
that there is an eigenvalue Ao of Hg, such that [\ — Ag| < exp(—¢€'Lg). Our claim
2

follows. O

Denote A?) = hexp(—Lg) for h € Z, and let

Enap= [ (Exn). (2.7.39)
A e
Then by (2.7.33),
Pl€p,) > 1 — Aexp(Lo)Ly ™ > 1 L7 (2.7.40)

for large L.

Claim 2.7.15. Under the event E°

trap’

any X € [0,\] Nox(H) satisfies
dist(A, 0(Hg,,)) < exp(—€Ly). (2.7.41)

Proof. For any A € [0, )\,], there exists an h € Z, such that A\) € Z and |A\ — A?)| <

Ax

exp(—Lé_7). Our claim follows from Claim 2.7.14. O

Let ¢ be the smallest positive integer such that 2 — 1 < )‘7 and let 7 = 27 — 1.
Define L, = L)' and Ly, = L7 for i =1,2,--- ,¢— 1. Then L < L, = L2 < 2L.

Let L; be the (unique) dyadic scale such that L; € [L;,2L;) for each i = 1,--- ,q.
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Let M; = %L + C”lejgi L; foreachi=1,---,q and My = %L. Here (' is a large

constant to be determined. Then
3 /. 3 ,
M,; < §L +4C%L < 5 +4C"q | L (2.7.42)

for each 0 < ¢ < ¢. In addition, we denote M,y; = 2L where w is the smallest
integer with 2% > 3 4+ 8C"q, and let L, 11 = L,.

For any A € Z and any j € {1,---,q + 1}, denote by EM the following event:

per

there exists a path of A-bad 2L;-cubes in G, say Q. -+ ,Q,., such that

Qi CQu; \Qng,_ys Vie{l,--- ,m},
@1 N QMJ-_1+10L]- # 0, (2.7.43)

QN Quty—10z, # 0.

Under the event £, suppose that Ty = (Qy,--- ,@Q,,) in G 1, is such a path with the

per)

shortest length. Since dist(Qar,_,+10,, Z* \ @nr;—101,) > (C'—20)L;, we have m > %/

when €’ is large enough. By definition of dyadic cubes and that 'y has the shortest

_m

length, there are at least 555

disjoint A-bad cubes in I'y. Hence,

PlE]] < Z C’(C"L)ﬁOOO"”‘(L;“)% < 2C(C'L)3(1OOOLJ%)%’ < 10,

C/
m>r

(2.7.44)

Here the first inequality is by (2.7.31) and counting the number of paths in Gz, with
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length m and one end intersecting Qys,_, 110z,, and the last inequality is by taking C"
large enough.

By adapting the proof of Claim 2.7.14 we can get the following result.
A

Claim 2.7.16. Under the event (EX)¢, any N € o (H) with |N — \| < exp(—le-f

per

)

satisfies dist(N, O'(HQMJ_>) < exp(—€"L;) for a universal constant €’ > 0.

per

Note that, given A € Z, the event £x7 is Vi, \0,. -measurable. Hence, the event
J J—

C
J Aj i
Eirap = (Uz\eo—(HQM, l)ﬂIgper) satisfies
i

P& aplVau, =1 (M +1)° L7 > 1 - L7° (2.7.45)

by (2.7.42) and (2.7.44) for large enough L. For each 0 < j < ¢+ 1, &)

rap

is VQM]»_
measurable, thus the event Eap := (o< jcyi Sg;ap is VQ,,,-measurable. By (2.7.40)

and (2.7.45), we have
PlEiap) > 1—(q+2)L°>1—L7° (2.7.46)

Claim 2.7.17. Under the event Eiap, any A € [exp(—€”"Lo/2), \x — exp(—€”Ly/2)] N
or(H) satisfies

dlSt()\, 0<HQAIq+1 )) S eXp<_€///L) (2747)

for some €” > 0.

Proof. Let ¢” = min{€’,¢"}. Let A\ € [exp(—€"Ly/2), \« — exp(—€""Ly/2)] N o(H).
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We inductively prove that, dist()\,U(HQLj)) < exp(—€"L;) for any 0 < j < ¢+ 1.

Thus, in particular, we have
dist(A, 0(Hq,,,,)) < exp(—€"Lgs1) < exp(—€"L), (2.7.48)

and the claim follows.
For the case j = 0, by Claim 2.7.15, dist(\, 0(Hg,,)) < exp(—€Lg). Assume
the conclusion holds for some j < ¢ + 1, then |A — X\g| < exp(—€”L;) for some

Ao € O'(HQMJ_>. As X\ € [exp(—€"Ly/2), A\ — exp(—€" Lo/2)], we must have Ay € Z.

Ax

A _
Since T < 2z, for L large enough we have ¢”L; > L;Hz and |\ — N\g| < exp(—L;H2 ).

Thus Claim 2.7.16 implies dist(A, 0(Hg,,, ) < exp(—€"Lj1). O

Finally, since My, = 2% L and w is a constant, the proposition follows from Claim

2.7.17 and (2.7.46). [l

2.7.5 The second spectral reduction

For any positive integers L” > L', we denote the annulus Ap» ;= Qv \ Qr. Take
any 0 > 0. For A € Z and L" > 2L/, let 59,) 1 denote the following event: there exists
a subset G(LA//)’L/ C Aprp with \G(L)),)7L,| < (L)% such that, for any a € Aprap \ G(LAN)yL/,
there is a A-good cube Qpw(b) C Apy s such that dist(a, Qp \ Qrw~ (b)) > £L”, and

(L/)% < L™ < L'. Note that, gl(,)’\’),L’ s VAL,,ﬂL,-measurable.

Lemma 2.7.18. Let ,0 > 0 be small enough. Suppose L', L" are dyadic, satisfying
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(L')22 < 1" < (L)%, and L' is large enough (depending on £,8). Then for any

A € T we have P[SS{L/] >1— (L),

Proof. Let L = L/, L0+ = (L®)'=¢ and L® be the (unique) dyadic scale with
LO € [LO 200, for i € Zso. Let M’ € Z such that 0 < (1 — )M < 15. For any
dyadic 2™ )-cube Q C A .1, we call it hereditary bad if there are A\-bad dyadic
cubes Q... Q™M) = @ such that, QY c QW C A for each 0 <i < M’ — 1
and QW is a dyadic 2L"-cube. By (2.7.31), and the same arguments in the proof
of Claim 2.3.11, the following is true. For small enough ¢, there exists N € Z,

depending on ¢, §, such that with probability at least 1 — (L/)~'0,
{Q C Apvp - Q is a hereditary bad 2L*)-cube}| < N. (2.7.49)

Let G(L’\,27L, = U{Q C Aprp : Qis a hereditary bad 2L )-cube}. Then (2.7.49)
implies |G(L))/)’L/| < N@RLW™M) + 1) < (L’)g for large enough L’. For each a €
Aprap \ G(L’\,,)’L,, there is 0 < ' < M’ and a A-good cube @, (b) C Apr s such

that dist(a, Qv \ Q) (b)) > LL). Since ()16 < L) < I/, our claim follows. [

For any large enough dyadic scales L/, L” with (L')*2° < L < (L/)™*¢, we de-
note £7,'7, = ﬂ,\GJ(HQy)mI Eé/,\,),L,. Then by Lemma 2.7.18, as each 89,)7” is Vi, -
measurable, we have

PELFL] > 1= (L')° (2.7.50)

Proof of Proposition 2.7.13. In this proof we let £ > 0 be a small universal constant,
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and & > 0 be a number depending on ¢’. Both of them are to be determined.

Now we fix dyadic scale L large enough (depending on ¢, ¢ and thus depending on
8. Let Loy =L, L1 = i;_%a, and L; be the (unique) dyadic scale with L; € [L;, 2L;),
for i € Z>y. Pick M € Z, such that %05 < (1- %E)M < %5. Write L; = %ﬁLi for

0 <i< M and let

e = £ (2.7.51)
0<i<M—1
Then by (2.7.50),
su L\~ s
Plew] > 1= M (75 ) >1-L7 (2.7.52)

as L is large enough. For 0 < ¢ < M, denote by O; the set of eigenvalues \ € O'(HQLi)

such that,
ANE[(M—i+1)exp(—L#), A\, — (M —i+ 1) exp(—L)], (2.7.53)
and
dist()\,J(HQTj)),dist()\,a(HQLj)) <2exp(—cL;) Vje{ii+1,---,M}. (2.7.54)

Here the constant ¢’ = & where ¢, is the constant from Proposition 2.7.12.

Claim 2.7.19. Under the event E5'PP, for any 1 < i < M and X\ € ©;, there exists
GU=Y C Qp, , with 10 < |GEY] < L3% such that the following holds. For any

N €o(Hg, )anduc *(Qr, ) with |\—=XN| <2 exp(—c'L;) and Hg, u= \u,
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we have ||[ul|zge-ny > (1 - |G(i71)|72)||U||€2(QL1-,1)'

Proof. Since A € ©;, there are \U) € o(Hg,_) such that |\ — A9)| < 2% exp(—c'L;) for

each 1 < 7 < M. Let

= |J o™ (2.7.55)

Then |G,(f—1)| < MLS. Suppose X and wu satisfy the hypothesis. Then

IN =A< IV =M+ A=A | < 27 exp(—c' L) 4+ 2  exp(—c'L;) < 2M+ L exp(—c'L;)
(2.7.56)
for each i < j < M. Denote L;- = %Lj foreachti < j< M —1and L, |, = L; ;.

Pick an arbitrary a € Qr, , \ Qr,,, there exists j/ € {i — 1,--- , M — 1} such that

a €Ay s ad GU™Y by definition of G , there exists a AU'*D-good cube
12k

Lj/,Lj/+1
[ 5 2
QL”’(b> such that Lj/+1 Z L 2 Lj’+1 10 Z L%, and diSt(aa QLj/ \QL”’(b)) Z %L”/'

Then since a € QL;,, we have dist(a, Qz,_, \ Qr»(b)) > £L"”. We also have that
N = AT < 2MH oxp (¢ Ly q) < 2MH exp(—16¢L"). (2.7.57)
Then by Claim 2.7.5 we have,
@] < 2exp (71 = A L")l ) < T00dlecey, e (2759

Hence, by letting G0~ = GY"Y U Q,,,, we have 10 < |G-V < |GV Y| +1Q,,,| <
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ML% +100L3 < L3%, and

1 o
[ullega-ny = (1= (2Lioy + 1PL7) 2 lulle,, ) > (1= 1G D) |ulleq,, ,)-
(2.7.59)

Thus our claim follows. O]

Claim 2.7.20. Under the event EPP, for any 1 < i < M and X € ©;, we have
N € o(Hg,, ):IA=XN| <27 exp(—c'Ly)}| < 2L5°. (2.7.60)

Proof. Let A1, , A, € 0(Hg,, ) be all the eigenvalues (counting with multiplicity)
in the interval

(A =27 exp(—c'Ly), A + 2" L exp(—c'Ly)). (2.7.61)

Let uy,--- ,u, be the corresponding (mutually orthogonal) eigenvectors with prop-
erties that Ho, us = Asus and ||uglleq, ) =1 for 1 < s < p. By Claim 2.7.19,

[us]l2(gi-ny > 1 — |G=D|=2 for 1 < s < p. Thus we have
’<u51au52>€2(G(i*1)) - ]151252’ S Q‘G(iil)rQ (2762)

for 1 < 81,80 < p. By Lemma 2.7.1, we have p < 2]G(i_1)] < 2L39. O
Claim 2.7.21. We have |©o| < LM° under the event EUPP.

Proof. Suppose £5PP holds. For each 1 < i < M and A € ©,_;, there are A\ ¢
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O'(HQLj) and \0) e U(HQ?j) with |JA=AD|, ]A=A0)| < 2V exp(—¢L;), fori < j < M.
In particular, |\ — A?| < 2i7texp(—c/L;). Thus [A® — 0| < 2iY(exp(—c'L;) +
exp(—¢'L;)) < 2t exp(—c'L;) and similarly [\ — AD)| < 2 exp(—c'L;) for i < j < M.,
Moreover, A € ©,_; implies that A € [(M —i+2) exp(—L%), Ae— (M —i+2) eXp(—L%)]

and thus
AD € [(M =i+ 1) exp(—L), A\, — (M — i + 1) exp(—L)]. (2.7.63)
These imply A® € ©,. Hence, we have
0,1 C{A € a(Hg,, ):dist(X,0;) <2 exp(—'Ly)}. (2.7.64)

Together with Claim 2.7.20, we have |©; ;| < 2L§5|@i| for 1 < ¢ < M. Since

Ouml| < |o(H, < 1013, < 100L3, we have |©p| < 100L3 - 2M [5M0 < [Ms ]
QL M

wloc wloc*

Now we denote ES(ILO)C = &P N Nocicu g\l gL By Proposition 2.7.12 and
(2.7.52),

PEW)>1— L% —2(M+ 1)L 2% >1— [ (2.7.65)

sloc

for some small ¥” > 0 depending on §, M. Take ¢, = min{%, c'}. Under the event

g(L)

o) fOT any

A € op(H) N [exp(—L?), A\, — exp(—L*2)], (2.7.66)
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we claim that

dist(X, ©g) < exp(—coL). (2.7.67)

To see this, by definition of €% and gL (2.7.66) implies dist(\,0(Hg, )) <

wloc wloc?
exp(—c1L;) and dist()\, 0(Hg)) < exp(—{tLs) for each 0 < i < M. In particu-

lar, there is \g € o(Hg,) such that [A — Ag| < exp(—ciL). Since ¢ = gL, we have

Ao € [(M +1)exp(—L3), A\, — (M + 1) exp(—Lz%)] by (2.7.66), and also

dist(Ao, 0(Hg,, ) <[A — Ao| + dist(A, 0 (Hg,,))
<exp(—ci1L) + exp(—c1L;)

< eXp(_C/Li)) (2 - 68)

diSt(Ao, U(HQT» Sl)\ — /\0| + diSt()\, U(HQT»

<exp(—ciL) + exp(—%Li)

<exp(—c'L;),

for 0 <i < M. Hence \g € Oy and (2.7.67) follows.

log(ﬂlj6)

Finally, observe that |©g| < LM? < Ls0-19" < L% by taking J small enough

(depending on ¢’), the proposition follows by letting S = . O
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Chapter 3

2D Anderson-Bernoulli localization

with large disorder

3.1 Introduction

3.1.1 Main result

Let p € (0,1) and V > 0. Let V : Z4 — {0,V} be a random function such that
{V(a) : a € Z} is a family of independent Bernoulli random variables with P(V (a) =

0) =pand P(V(a) = V) =1 —p for each a € Z%. Let A denote the Laplacian

Au(a) = —2du(a) + Z u(b), Vu: Z* — R,a € Z°. (3.1.1)

beZd la—b|=1
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Here and throughout the chapter, |a| = |[a]| for a € Z?. We study the spectra

property of the (random) Anderson Hamiltonian
H=-A+V (3.1.2)

when V is large enough.

It is known that (see e.g. [Pas80]), almost surely, the spectrum of H = —A+V is
o(H)=1[0,4d]U [V,V + 4d] (3.1.3)

which is a union of two disjoint intervals when V' > 4d. Here and throughout the
chapter, we denote by o(A) the spectrum of a self-adjoint operator A. Our main

theorem is the following

Theorem 3.1.1 (Main theorem). Let d =2, p = % There exist positive integer n and

energies XV, \?) ... A" € [0, 8] such that the following holds.

For each V large enough, suppose A =7 +8 =MD fori=1,--- ,n. Let

and

—~

Yo = [@ e V*i] .

@
Il
—_

Let H be defined as in (3.1.2). Then almost surely, for any Ao € o(H)\ (Vi UYy)
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and v : Z* = R, if Hu = \ou and

inf sup(ja] +1) " |u(a)| < oo, (3.1.4)
m>0 ;72
then
inf sup exp(cla|)|u(a)| < oco. (3.1.5)
>0 4ez72

Remark 3.1.2. The energies A\()’s are defined in Definition 3.2.12 below and they do
not depend on V. In fact, A®’s are Dirichlet eigenvalues of —A restricted on finite

subsets of Z? and A®’s are simply images of A)’s under the mapping = — V +8 — .

Remark 3.1.3. Our proof and conclusions in Theorem 3.1.1 extend to 1 —p. < p < p.
where p, > % is the site percolation threshold on Z? (see Section 3.2.1). p € (1—pe, pe)
is an essential assumption for our method to prove Theorem 3.1.1 (see Section 3.1.2
below). Thus it is an interesting question that whether a similar result can be proved
for p € (0,1 — p.] U [pe, 1).

For simplicity, throughout this chapter, we restrict ourselves to the case p = %

The result in Theorem 3.1.1 means Anderson localization happens in o(H) \ (Yy U

Y7). In his seminal paper [And58], Anderson said,

The theorem 1is that at sufficiently low densities, transport does not take

place; the exact wave functions are localized in a small region of space.

Here, the density refers to the density of states measure (DOS measure). Intuitively,
DOS measure in interval [Ej, Ey] gives the “number of states per unit volume” with
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energy in [Ey, Ey]. More precisely, we restrict the operator H to the square centered
at origin with edge length 2L, and denote the (random) empirical distribution of
the restricted operator’s eigenvalues by py. It is known that, almost surely, when L
goes to infinity, p1, converges weakly to some probability measure which is called the
DOS measure (see e.g. [AW15, Chapter 3] by Aizenman and Warzel). The smallness
of DOS measure was mathematically verified for several cases, in particular for the

following two cases,

1. For any nontrivial distribution of V', the DOS measure is extremely small near
the bottom of the spectrum. This is also called the “Lifshitz tail phenomenon”.

See e.g. [AW15, Chapter 4.4] and also [Kir08, Section 6.2].

2. Suppose V = §V where Vj has uniformly Holder continuous distribution (see
[AW15, Definition 4.5]). The DOS measure of any finite interval with given
length becomes uniformly small when the disorder strength ¢ increases to infin-

ity. See e.g. [AW15, Theorem 4.6].

In both cases, according to [And58|, one expects Anderson localization to happen
in the corresponding spectrum range, namely, near the bottom in the first case and
throughout the whole spectrum in the second case. In fact, both cases have been
studied extensively and Anderson localization was proved for several distributions of
V.

For V' with Hélder continuous distribution, Anderson localization was proved in
both cases in any dimension, namely, near the bottom of the spectrum or throughout
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the spectrum when the disorder strength is large enough. As written in Chapter
1, this was first proved for distributions with bounded density in [FS83],[FMSS85]
by Frohlich, Martinelli, Scoppola and Spencer. Later on, the multi-scale method
in [FS83],[FMSS85] was strengthened to prove the same result for general Holder
continuous distribution in [CKM87] by Carmona, Klein and Martinelli.

As for Bernoulli potential, Anderson-Bernoulli localization near the bottom of
spectrum was verified in the continuous model R%(d > 2) by Bourgain and Kenig in
[BKO05], and later in the discrete model Z? by Ding and Smart in [DS20] for d = 2
and by Zhang and the author in [LZ22] (which is the arxiv version of Chapter 2) for
d=3.

For Bernoulli potential with large disorder (i.e. operator (3.1.2) with large V'), the
total length of spectrum is always 8d by equation (3.1.3). When V increases, the DOS
measure behaves completely different from the case when V' has Hélder continuous
distribution. When d = 2 and p = %, the DOS measure always has a constant lower
bound in the sets Yy and 17‘-; defined in Theorem 3.1.1 for sufficiently large V. On the
other hand, the DOS measure is constantly small outside Yy U ?}; Hence, Theorem
3.1.1 is again under the umbrella of prediction in [And58].

Let us also mention that, although smallness of DOS implies localization in many
cases, the converse is not true. In fact, much stronger result for Anderson localization
is expected in dimension one and two. For one dimension, it is proved that Anderson

localization happens throughout the whole spectrum for any nontrivial distribution of
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V with finite moment (see e.g. [CKMS87]). Tt is a general belief among physicists that
(see e.g. [Sim00] by Simon), in dimension two, Anderson localization also happens
throughout the whole spectrum for any finite nontrivial distribution of V. Thus it is
reasonable to conjecture that, in our model, localization also happens inside Yy U %
and it is more of a technical limitation that we have to exclude Yy U 17‘7

In order to prove Theorem 3.1.1, we only need to consider the spectrum of H

contained in [0, 8] and prove the exponential decaying property of resolvent as follows.

Theorem 3.1.4. Letd =2, p = % There exist positive integer n, constants k, o, > 0
and energies XV A?) ... X" € [0,8] such that the following holds.

For any V > 0, denote Yy = Ui, O — V‘i, AD 4 V=1|. Let H be defined as
in (3.1.2). Then for each V, L > a, each Ay € [0,8]\ Yy and each box Q C Z* of side

length L,
P [|(HQ —Xo) Ha,b)| < VE et por g b e Q > 1 — L7 (3.1.6)

Here Hg : (*(Q) — (*(Q) is the restriction of Hamiltonian H to the box @ with

the Dirichlet boundary condition.

Proof of Theorem 3.1.1 assuming Theorem 3.1.4. Probability estimate (3.1.6) with
the arguments in [BKO05, Section 7] implies that Anderson localization happens in
[0,8] \ Yy. See also [GK12, Section 6,7] by Germinet and Klein, and Section 2.7.3 in

Chapter 2.

142



Now we use symmetry to prove the Anderson localization for the spectrum range

where A@ = 7 + 8 — \®. Define V : Z2 — {0,V} by V(a) =V — V(a)(a € Z?) and
let H=—-A+V. Let A=V +8— )\ for every A € R. For each u : Z? — R, define
@ : Z* = R by a(z,y) = (—1)*Yu(x,y) for z,y € Z. This gives a bijection u — @
from functions on Z? to themselves. The properties (3.1.4) and (3.1.5) in Theorem

3.1.1 are preserved under this bijection. Moreover, by direct calculations, we have
Hu = M if and only if Hi = M. (3.1.7)

Since H has the same distribution as H, Anderson localization happens in {5\ A E

0,8\ Yy} = [V, V + 8]\ U~ [E‘) e O V—i]. Theorem 3.1.1 follows. [

3.1.2 Outline

In order to prove localization, [DS20] and [BKO05] used a multi-scale analysis to prove
an estimate similar to (3.1.6) (see also Section 2.3 in Chapter 2). These two previous
works considered the edge of spectrum where the Lifshitz tail phenomenon happens
and used this phenomenon to prove the initial step of the induction in the multi-
scale analysis. Then they used an eigenvalue variation argument to prove the Wegner

estimate which is crucial to the inductive steps. The key to the eigenvalue variation
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argument is the unique continuation principle (see [DS20, Theorem 1.6] and [BKO05,
Lemma 3.10]).

Our method follows the multi-scale analysis framework in [DS20] and [BK05], and
studies the spectrum range beyond the edge by taking advantage of site percolation.
Informally, the condition p = % implies that the sites with the same potential rarely
form large connected components (see Section 3.2.1 and [Gri99, Chapter 1.6] for the
former definition of site percolation). By this fact, the initial scale case (Proposition
3.2.21) for the multi-scale analysis is proved for energies away from A)’s which are
eigenvalues of the minus Laplacian restricted on small finite subsets of Z?* (thus away
from A@’s the DOS measure is small).

The most important and difficult part for the induction of multi-scale analysis is to
prove the Wegner estimate (Proposition 3.3.18) which indicates log-Holder continuity
of the DOS measure (see e.g. [Bou05, Section 6]). Our Wegner estimate states that,
for an interval of length less than O(‘_/*Llfa), the probability that it contains an
eigenvalue of Hg, is less than O(L™"") for some #’,&" > 0.

In order to prove the Wegner estimate, we prove an upper bound and a lower
bound on how far an eigenvalue of Hg, will move after perturbing the potential
function V. Here, “perturb” means changing the value of V' at some vertices from 0
to V or from V to 0.

The upper bound estimate requires to show that if the j-th smallest eigenvalue

is close to a given real number )g, then one can perturb the potential V' on a (1 —
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¢) portion of @ such that the j-th smallest eigenvalue will not move too far (less
than O(V‘Ll_s//) with €” > €’). Here and throughout this section, when we say j-
th smallest eigenvalue, we always count with multiplicity. While this upper bound
estimate was proved for Ag near the bottom of the spectrum in [DS20], it is simply not
true for Ay away from the bottom. For example, suppose Hg, has k > 0 eigenvalues
(with multiplicities) in [0,8]. Pick an arbitrary a € @ with V(a) = 0 and let the
perturbed operator Hy, ~be obtained by changing the potential V' from 0 to V only
at vertex a. It can be shown that, the k-th smallest eigenvalue of Hy, isin [V,V +§]
and thus is far from the k-th smallest eigenvalue of Hg, which is in [0, 8]. Hence we
can not expect the upper bound estimate to hold in its original version.

It turns out that a different version of upper bound estimate still holds. In that
version, we will not compare the j-th smallest eigenvalue of an operator with the
j-th smallest eigenvalue of its perturbation. We will make another correspondence
between eigenvalues of an operator and eigenvalues of its perturbation. To clarify,
in the previous example, the k-th eigenvalue of Hg, will actually correspond to the
(k — 1)-th eigenvalue of Hy and the distance between these two eigenvalues will
be shown to be small, provided one of them is close to A\g. To rigorously find the
correspondence between eigenvalues of an operator and eigenvalues of its perturbation,
we will introduce the “cutting procedure”which continuously “transforms” the operator
Hg, (and Hg, ) to a direct sum operator P, Ha, (and P, H,) respectively. Here,

|U; Ai = Qr is a disjoint union. The j-th eigenvalue of the operator Hg, corresponds
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to j’-th eigenvalue of Hy, only if the j-th eigenfunction of €, Ha, equals the j’-th
eigenfunction of @, H} . Under this correspondence of eigenvalues, the upper bound
estimate is stated as Claim 3.3.21. The formal definition of cutting procedure is given
in Definition 3.2.9 and 3.2.16 by using percolation clusters.

The lower bound estimate requires to show that there are an enough portion of
points in @), such that, when the potential increases on any of these points, a given
eigenvalue will move a decent distance (at least Q(V‘LI_E,)). Based on the heuristic
that increasing the potential at vertices where an eigenfunction v has large absolute
values will increase the associated eigenvalue fast, one only needs to show that the
eigenfunction u has a decent lower bound on an enough portion of points in (Jr. This
is guaranteed by a discrete version of unique continuation principle Theorem 3.1.5
which is analogue of [DS20, Theorem 1.6]. However, under the new correspondence
of eigenvalues, the j-th eigenvalue of Hg, may correspond to either the j-th eigenvalue
or the (j —1)-th eigenvalue of the perturbation Hy, (here H, is obtained from Hg,
by changing the potential V' from 0 to V' only at one vertex). If it corresponds to the
J-th eigenvalue of Hy, , then by monotonicity, the eigenvalue will increase. Otherwise
if it corresponds to the (j — 1)-th eigenvalue of Hy, , then by Cauchy interlacing
theorem, the eigenvalue will decrease. Either way the lower bound estimate can be
proved for rank one perturbation, provided we can have a quantitative estimate on
the difference. This is considered in Lemma 3.3.8 and Lemma 3.3.9.

In order to have a polynomial bound on the probability (i.e. the right hand side of
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(3.1.6)), we need to consider the perturbation on a large set of vertices rather than only
one vertex. For this purpose, the previous works [DS20] and [BK05] used the Sperner
lemma which deals with monotone functions. However, as seen in the argument above,
under the new correspondence, the eigenvalue is no longer a monotone function of
the potential. Thus the original Sperner lemma ([DS20, Theorem 4.2]) can not be
applied to our case. Instead, we generalize Sperner lemma to deal with directed graph
products and prove Lemma 3.3.16 which is another new ingredient. The original
Sperner lemma ([DS20, Theorem 4.2]) can be seen as a special case of Lemma 3.3.16
when each directed graph consists of two vertices and one directed edge. The details

are given in Section 3.3.2.

3.1.3 Discrete unique continuation principle

We state the discrete unique continuation principle here which roughly says that,
with high probability, any solution of Hu = Au in a box ) with side length L satisfies

lu| > (VL)~L on Q(L?) many points in Q.

Theorem 3.1.5. For every small € > 0, there exists o > 1 such that the following
holds. If Ao € [0,8] is an energy, V > 2 and Q C Z* is a box of side length L > «,

then P[] > 1 — exp(—eL3), where € denotes the event that
Ha €Q: [ula)| = (VL)*QLHUHM%)}‘ > 312 (3.1.8)

holds whenever A € R, u : Z2 — R, |\ — Xo| < (VL)™*F and Hu = \u in Q.
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In fact, the multi-scale analysis framework requires us to prove a slightly stronger
version Lemma 3.3.5 which accommodates a sparse “frozen set”. An important feature
of Theorem 3.1.5 and Lemma 3.3.5 is that the probability estimate does not depend on
V. This feature is one of the major reasons why the set of energies A(?’s in Theorem
3.1.1 does not grow when V increases.

Theorem 3.1.5 generalizes [DS20, Theorem 1.6] to deal with large V' and proves
a Q(L?) lower bound on the cardinality of the support of w. This improves the
previous Q(L2 (log L)~2) lower bound in [DS20, Theorem 1.6]. The price we pay is
that the energy window needs to be O((V L)=*L) (while it was O(exp(—a(Llog L)z))
in [DS20]).

We refer the reader to the beginning of Section 3.5 for a proof outline and a
comparison between proofs of [DS20, Theorem 1.6] and Theorem 3.1.5. Here, we only
mention the main new ingredient Lemma 3.1.6 which is proved in Section 3.5.1. In

fact, a weaker form of Lemma 3.1.6 will suffice for the proof of Theorem 3.1.5.

Lemma 3.1.6. Given positive integers k < n, denote the n dimensional Boolean cube
by B" = {(x1,29, -+ ,x,) € R": x; € {0,1} for each 1 <i<n}. Then for any k

dimensional affine space I' C R",
1
#{a € B" : minlla ||, < Zn—%(n —k)z) < 2R (3.1.9)

Lemma 3.1.6 can be seen as a quantitative version of Odlyzko Lemma (see e.g.
[Od188]). To prove it, we will find a subset S C {1,--- ,n} with |S| =n—k—1
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such that, the projection operator onto the orthogonal complement of I' is “well
invertible” when it is restricted on R®. The existence of S is a direct consequence of
the following “Restricted Invertibility Theorem” for matrices with isotropic columns

which was previously proved in [MSS14] by Marcus, Spielman and Srivastava.

Lemma 3.1.7 (Theorem 3.1 in [MSS14]). Suppose vy, vy, -+ ,u, € C™ are vectors with

Zézl viv;r = I,, where vj is the dual vector of v; and I, is the identity matriz.

Then for every m' < m there is a subset S C {1,2,--- ,m} of size m’' such that
2
the m'-th largest eigenvalue of ). ¢ vivg 15 at least (1 — %) o

For general restricted invertibility principles and their history, we refer to [NY17]

by Naor and Youssef.

3.1.4 Notations

We set up some notations in this subsection. Throughout the chapter, we regard Z>
as a graph with vertices {(z,y) : z,y € Z} and there is an edge connecting a,b € Z>
if and only if |a — b] = 1 (in this case, we also write a ~ b). We let

Qia) = {a/ €7 |la—d| < Z_Tl} (3.1.10)

for real number [ > 1 and a € Z%, and denote its side length ¢(Q;(a)) = 2|5*]. For
simplicity, we denote Q; = Q;(0). Given real number k£ > 0, we write kQ;(a) = Qi (a).

Given any subset S C Z? and function f : Z? — R, define the restriction f|g :
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S — R by fls(a) = f(a) for a € S. We denote Ps : (*(Z*) — (*(S) to be the
projection operator defined by Psf = f|g for each f € (*(Z*). For simplicity, we
write || fllezgs) = |Psfllecs). For an operator A on £2(Z?), we denote Ag = PsAP
where Pbt is the adjoint operator of Ps.

Given a € Z?, define 1,(a) = 1 and 1,(a’) = 0 if @’ # a. Given S C Z?, an operator
Aon (?(S) and a,b € S, write A(a,b) = (14, Alp) 25y Where (-, -) 2 ) denotes the inner
product in £(S). We also denote by || A]| the Euclidean norm of the operator A.

Throughout the rest of the chapter, H always denotes the operator defined in
(3.1.2). Given A € C\ o(Hg), we write Gg(a,b;\) = (Hsg — \)"'(a,b) for S C Z?* and
a,beS.

For any real function u defined on a domain D and any real number ¢, we use

{u > ¢} as shorthand for the set {a € D : u(a) > c}.

Organization of remaining chapter

In Section 3.2, we define the cutting procedure. Along this way, we prove the in-
duction base case (Proposition 3.2.21) for multi-scale analysis. The sharpness of site
percolation (Proposition 3.2.2) plays a key role there.

In Section 3.3, we prove the Wegner estimate Proposition 3.3.18. We will first
collect all needed lemmas in Section 3.3.1 and prove a generalized Sperner lemma in
Section 3.3.2. The proof of Wegner estimate is given in Section 3.3.3.

In Section 3.4, we perform the multi-scale analysis by using Wegner estimate and
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prove Theorem 3.1.4.
In Section 3.5, we prove the unique continuation theorem 3.1.5 and Lemma 3.3.5.
Among these four sections, Section 3.4 follows closely the existing framework in

[DS20] and [BKO05] while other sections contain the new ingredients as follows:

A “cutting procedure” which allows us to match eigenvalues under different

potential functions (Section 3.2).

The use of sharpness of site percolation in the proof of initial case of multi-scale

analysis (Section 3.2).

A generalized Sperner lemma for directed graph products (Section 3.3).

A 2D unique continuation theorem with an improved lower bound (see (3.1.8))

and a smaller energy window (Section 3.5).

3.2 Initial scale

In this section, we use site percolation (Section 3.2.1) to define the cutting procedure
described in the introduction. We will first define r-bits which are boxes centered in
a sublattice with certain edge length (Definition 3.2.4). We then define the cutting
procedure for Hamiltonian restricted on r-bits by using percolation clusters (Defini-
tion 3.2.9). These r-bits will also be used as “basic units” for eigenvalue variation
arguments in the proof of Wegner estimate Proposition 3.3.18 in Section 3.3. Then

we will extend the cutting procedure to boxes with larger length scale (Definition
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3.2.16). Finally, we will prove the induction base case for the multi-scale analysis

(Proposition 3.2.21).

3.2.1 Site percolation

Consider the Bernoulli site percolation on Z?. Let p € (0,1), suppose each vertex in
72 is independently occupied with probability p. It is well known that there exists
a critical probability p. € (0,1) such that, for p > p., almost surely, there exists an
infinite connected subset of Z? whose vertices are occupied; for p < p., almost surely,
there does not exist an infinite connected subset of Z? whose vertices are occupied.

It is known that p. > 1, see e.g. [GS98] by Grimmett and Stacey.

Definition 3.2.1. For any S C Z?, denote

0TS ={aecZ*\S:a~bforsomebec S}

to be the outer boundary of S; and

0°S={a€S:a~bforsomebcZ®\ S}

to be the inner boundary of S. Denote

95 ={{a,b} :a € 9"S, b€ d S and a ~ b}
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to be the set of edges connecting elements in 9~S and 91S.

The following sharpness proposition follows directly from p. > % and [ABS87,

Theorem 7.3] by Aizenman and Barsky:

Proposition 3.2.2. Suppose V : Z* — {0,V} is a random function such that {V(a) :
a € Z*} is a family of i.i.d. random variables such that P[V(a) =0] = % and
P [V(a) = V} = 5. There s a numerical constant cy > 0 such that, for each | > 10
and b € 72,

P [£..(b)] < exp(—col). (3.2.1)

per

Here, Szlm(b) denotes the event that there is a path in Z* joining b to some vertex in

0~ Q(b) such that V' equals 0 on all vertices in this path.

3.2.2 r-bit

Let £g > 0 be a fixed small constant such that

g9 < €7° (3.2.2)

where £ is the numerical constant appeared in Lemma 3.3.5 below.
The inequality (3.2.2) will only be used in the proof of Proposition 3.3.18. At this

moment, the reader can think of ¢y as a small numerical constant.
Definition 3.2.3. For any large odd number 7, denote 7 = [(1—2)(r —1)]. For
any vertex a € 7Z* where 7Z* = {(rz,ry) : x,y € Z}, let Q,.(a) = Qu-20)r(a),
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Qr(a) = Q(l—%eo)'r(a) and F.(a) = Q.(a) \ Q-(a).

Definition 3.2.4. Given a large odd number r, a vertex a € 7Z? and a potential
function V' : F,.(a) — {0,V}, we call (Q.(a),V’) an r-bit. We say (Q,(a),V’) is

admissible if the following two items hold:

e For each z € 97Q,(a) and y € F,(a) with [z — y| > $57, there is no path in

F,(a) joining x to y such that V' equals 0 on all vertices in the path.

e There is no path in F,(a) joining some vertex in 07,(a) to some vertex in

0~ Q(a) such that V' equals 0 on all vertices in the path.

With a little abuse of notations, we also call Q,(a) an r-bit if a € 7Z* When
V' F,(a) — {0,V} is obviously given, we also say Q,(a) is admissible if (Q,(a), V")
is admissible.

Given an r-bit Q,(a), we say it is inside some S C Z* if Q,(a) C S. We say it

does not affect S if Q,.(a) NS = 0.

Remark 3.2.5. We give here three remarks on r-bits, the first two are from Definition
3.2.3 and the third one is obvious by Definition 3.2.4. See also Figure 3.1 for an

illustration.

1. For two different r-bits @, (a;) and Q,(as), we have

,(a1) N (97 Qr(az) U Qr(az)) = 0.
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° ° UQr(az)) =71

ay ag

as a4

Figure 3.1: The black squares represent r-bits (), (a;)(i = 1,2, 3,4) with overlaps, the
blue squares represent €2,.(a;)(i = 1,2, 3,4) and the green squares represent 2,.(a;)(i =
1,2,3,4).

Note that, Qr(al) is a scaling image of r-bit @,.(a;) with the scaling constant
slightly smaller than 1. Thus the equation above means Q,(a,) is disjoint from

other r-bits and their outer boundaries.
2. For any a € Z?, there exists an r-bit Q,.(b) with a € Q1-220)r()-

3. Suppose r-bits (Q,(a), V') and (Q,(a’), V") satisty V'(b) = V"(b—a+a’) for each

b€ F.(a), then (Q,.(a),V’) is admissible if and only if (@Q,(a’), V") is admissible.

The following Proposition 3.2.6 is the place where we use the sharpness of site

percolation (Proposition 3.2.2).

Proposition 3.2.6. Suppose odd number r is large enough. Let V : Z? — {0,V} be

the i.i.d. Bernoulli random potential with P(V(a) = 0) = P(V(a) = V) = L for each
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a € Z*. Then for each a € 7%, we have
P [(Qr(a), Ve () is admissible} > 1 — exp(—8¢r) (3.2.3)

where ¢; 1s a numerical constant.

Proof. Let Epqa(a) be the event that (Q,(a),V|p () is not admissible. Then by

Definition 3.2.4,

5fo’l‘
Enaala) C U ED(b). (3.2.4)
bed—Q(a)Ud~ Qr(a)

Here, the notation Eée,,(b) is defined in Proposition 3.2.2. Assume 7 is large enough,

by Proposition 3.2.2,

P [Enaa(a)] < 8r exp(—%r) < exp(—8¢1r), (3.2.5)

where ¢; < % is a numerical constant. O

Definition 3.2.7. For any r-bit (Q,(a), V|F,()), we denote by S,(a) the maximal con-

nected subset of Q,.(a) U {b € F,.(a): V(b) = 0} that contains €2, (a).

Lemma 3.2.8. Given V; : Q,(a) = {0,V}, suppose (Q,(a), Vo|r.(a)) is an admissible

r-bit. Then we have the following properties:
1. Q.(a) € S.(a) C Q.(a) \ 0-Q.(a).

2. Sp(a) is Vo|F,(a)-measurable.
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3. Vo(b) =V for each b € 9+5S,(a).

Proof. The first property is due to the second item in Definition 3.2.4. The second
property follows directly from Definition 3.2.7. The third property follows from the

maximality of S,(a). O

We now define the “cutting procedure” on an admissible r-bit @, (a). Intuitively,
the cutting procedure on @, (a) continuously modifies the edge weight of 95, (a) and

finally splits S,(a) and @Q,(a) \ S.(a).

Definition 3.2.9. Given V : Q,(a) — {0, V'}, suppose (Q,(a), V|, () is an admissible
r-bit. For t € [0,1], define operator Hf, ) : €*(Q.(a)) — (*(Q.(a)) as follows:
Hp ((bc) =t = 1if {b,c} € S.(a); H, (,)(b:¢) = Hg,(a)(b, ¢) otherwise. Denote

Go, @) (b A) = (H, () — N) 7, ¢) for any b,c € Q(a).

a

Remark 3.2.10. From Definition 3.2.9, Hér(a) is self-adjoint for each ¢t. We have
HY, (0 = Ho, () and Hy () = Hs, @) @ Ho, (a)\s,(a)-

Lemma 3.2.11. Given V : Q.(a) — {0,V}, suppose (Q,(a), V|r, () is an admissible

r-bit. Then for each t € [0,1] and each connected subset S C Q,(a), we have

o (HG, ) C 10,8 U [V, V 48], (3.2.6)

and

<

o(Hg) C[0,8]U[V,V +38]. (3.2.7)
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Proof. We first prove (3.2.6). Suppose A € o <H éT(a)>, let u be an eigenfunction with

Ht

Ot = Au. Pick b € Q,(a) with [u(b)| = |u(V)] for each b € @,(a). Then we have

(V(b) +4 — Nu — Y Hb (b0 )u(b). (3.2.8)

b'~b
bleQr (a)

Since |Hp, () (b, )] < 1 for each b # V', (3.2.8) implies
[(V(0) +4 = Nu(b)] < 4|u(b)],

and thus |(V(b) +4 — \)| < 4. The conclusion follows from V (b) € {0, V}.
Finally, to prove (3.2.7), substitute H, gr(a) by Hg and repeat the above argument.

]

3.2.3 Resolvent estimate on r-bits

Now we define the exceptional energies A*’s in Theorem 3.1.1 and Theorem 3.1.4.
They are exactly the eigenvalues of the minus Laplacian restricted on connected sub-
sets of Q,. A small neighbourhood of them (the set JV in Definition 3.2.12) is excluded

so that the resolvent is bounded on admissible 7-bits (Proposition 3.2.13).

Definition 3.2.12. Given an odd number r and a real number U > 1, let

Eig, = U a((—=A)s)

SCQr
S is connected
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and

7= [x—U*%,erU*%].

€ Eig,
Proposition 3.2.13. Given r a large odd number, a € ¥Z* and V' : F.(a) — {0,V},
we assume V > exp(r?). Suppose r-bit (Q,(a), V') is admissible and X € [0,8] \ JV.
Then for each V : Q.(a) — {0,V} with V|p@ = V', each t € [0,1] and each

connected subset S C Q,(a), we have the following:
o [I(HY, @ = 20) 7'l < 2V,
o [|(Hs — )7} <2V,
o |Gl (b0 X0)| < V7 for cachb € 9-Q,(a), V' € Q,(a) such that [p—b| > 7.

Proof. We first prove the first item. The strategy here is to prove that for any
eigenvalue \ of H ér(a), there is some W’ C @, (a) such that X is close to an eigenvalue
of HW"

If there is no eigenvalue of Hy, ,

) in [0,8], then by Lemma 3.2.11, [[(Hg, () —
Xo) Y| < (V —8)~t < 2V and the first item holds.
Now assume there is an eigenvalue A of Hér(a) in [0,8] and we need to prove

A — Xo| > %V‘i. Let v be an ¢?(Q,(a)) normalised eigenfunction of HE, (o with

eigenvalue \. Write T = {a’' € Q,(a) : V(a') = V}. For each @’ € T, we have

— Y Hb ol D)) = (V+4—No(d). (3.2.9)

b'eQr(a)
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Since [|v||e2@.@a) = 1 and [H ,y(0,0")] < 1 for any V' # ", we have [v(a)] <

4/(V —4) for o’ € T. This implies ]2 < 4r/(V —4) < 3 since V > exp(r?).

Consider all maximal connected subsets W C @, (a) \ T". The number of them is less

than r?, thus there exists one of these subsets W' C Q,(a) with

1
N> —. 3.2.10
||U||Z2(W) =5 ( )

Since V' =0 on W', by Lemma 3.2.8, 975, (a) "W’ = 0 and (Hy, ) )w’ = Hwr. Thus

for each b € W,

(Hyr — A)(vlw)(b) = (Hg, ) — Nv(b) — Z Hp, ()b, 0)o(b). (3.2.11)
b’ea+l€;{/ﬁQT(a)

By maximality of W', for each o/ € 9TW' N Q,(a), a’ € T and thus

o(a’)] < 4/(V —4).

Since (H;

Or) — AV =0and [Hg ,(b,V)] <1 when b# 1V, (3.2.11) implies

|(Hywr = X)(vlw) ()] < 16/(V — 4)

for each b € W’. Thus

[(Hwr — ) (vlwo)|lezqwry < 16r/(V —4) <3202 /(V = 4)||v]l 2w (3.2.12)
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by (3.2.10). Writing v|y as a linear combination of eigenfunctions of Hy, (3.2.12)
provides an eigenvalue X' of Hy» such that |\ — X| < 32r2/(V — 4). Since N € Fig,

and Ao & JV, by Definition 3.2.12,

<
|

Mo—Al > Ao=N| =[N =X >V"5 —32°2/(V —4) >

N

Here, we used V' > exp(r?). The first item follows.
The proof of the second item is similar to the proof of the first item. Assume there

is an eigenvalue A, of Hg in [0, 8]. Let v, be an ¢?(S) normalised eigenfunction of Hg

with eigenvalue \., we need to prove |\, — Ao| > %V‘i. For each o’ € T NS, we have
= Hg(d, Vv, (V) = (V44— A)v.(d). (3.2.13)
s

Since |Hg(V,b")| < 1 for any b # b”, we have |v.(a')| < 4/(V —4) for a’ € TN S.

This implies [|v.]jey < 4r/(V —4) < 1. Consider all maximal connected subsets

5.
W C S\ T. The number of them is less than r?, thus there exists one of these subsets

W c S with ||v.]|emwn > 5. For each b€ W”,

(Hwr — M) (vlwn)(b) = (Hs — M)ou(b) = > Hg(b,V)o. (V). (3.2.14)

b/

~b
Yedtw’ns
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By maximality of W”, for each @’ € 9tW" NS, o' € T and thus

[oi(a’)] < 4/(V —4).

Since (Hg — A)v. = 0 and |Hg(b,0')| < 1 when b # V', (3.2.14) implies

|(Hywr = A (vilwn) (b)] < 16/(V — 4)

for each b € W”. Thus

| (Hywr — N (v wo) [z oy < 167/(V — 4) < 3202 /(V — D)ol (3.2.15)

Writing v,|w~ as a linear combination of eigenfunctions of Hy», (3.2.15) provides
an eigenvalue \. of Hy» such that |\, — \,| < 32r2/(V —4). Since X, € Eig, and

Ao & Jr‘_/ , by the same argument for the first item, we have

Mo — A > =V3

N | —

and the second item follows.

Now we prove the third item and the strategy here is to exploit the resolvent
identity. Pick 0,0 € Q,(a) with b € 07Q,(a) and |b — V| > %*. We claim that,

there exists connected Sy C @Q,(a) N Q%(b) with b € Sy such that, for any ¢ € Sy

and ¢ € Q,(a) \ Sy with ¢ ~ ¢, we have ¢ € T. To see this, if V(b) = V, then
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simply let Sy = {b}; otherwise, let S; be the maximal connected subset of @Q,(a) \ T'

that contains b. Since @,(a) is admissible, the first item in Definition 3.2.4 implies

51 C Qr(a) N Qzr . Let S = 51U (0751 NQr(a)) and our claim follows from the

maximality of 5.

By Lemma 3.2.8, S.(a) C Q,(a) and thus S,.(a) N (Sy U dTSy) = 0. By resolvent

identity,

G, () (0,15 M) = Z G (D, ¢ M) Gy, oy (€15 Mo).
c€Sp,c~c!
d€Qr(a)\So

By definition of resolvent,

(V(e) = X+ D)Gsy(bcido) =+ Y Gsy(b,c"s No)

' ~e,c" €Sy

where 0., = 1 if ¢ = b and d., = 0 otherwise. Hence

|Gy (b, ¢ Ao)| < (1+4](Hs, = Xo) ).

1
[V(e) = Ao + 4]

(3.2.16)

(3.2.17)

(3.2.18)

The second item of this proposition implies |[(Hg, — Ag) || < 2Vi. Assume ¢ ~ ¢

for some ¢ € Sy and ¢ € @Q,(a) \ Sy, then the property of Sy and inequality (3.2.18)

together imply V(c) = V and

G, (b, ¢; Ao)| < 2073,
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Finally, in (3.2.16), by the first item in this proposition and inequality (3.2.19),

Gl @) (0,05 20) SI(HG ) = 2) ' D0 [Gso(bys Mo
c€Sp,c~c!
CIEQT(Q)\SO

<2VE Y G, (be o)
c€Sp,c~c!
CIEQT(Q)\SO

<320r2V "2

=

<V~1,

3.2.4 Initial scale analysis

In this subsection, we extend the cutting procedure to larger boxes and prove the

induction base case for multi-scale analysis (Proposition 3.2.21).

Definition 3.2.14. Suppose r is an odd number, a € Z% and L € Z,. We say Q(a) is
r-dyadic if there exists k € Z, such that a € 257Z? and L = 281y + . In this case,

L is called an r-dyadic scale.

Lemma 3.2.15. Suppose Qr(a) is an r-dyadic box. Then we have

Q@)= |J @WO.

berZ2NQ 1 (a)

If r-bit Q. (V) ¢ Qr(a), then Q.(V) N Qp(a) = 0.
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Proof. We assume without loss of generality that a = 0. Write L = 2¥1% + r with

k € Z.. By (3.1.10),
2 Lor—1 k
QL(0) ={(z,y) € Z*: 2r—T<xy<2r+T}. (3.2.20)
By Definition 3.2.3, 7 > (1 — 2)(r — 1) > % and thus
772 N QL(0) = {(rz,7y) : |z, ly| < 2F, 2,y € Z}. (3.2.21)

Hence by (3.2.20) and 7 < r — 1,

Qo) = J {b’eZQ:]b—b’_rgl— U aeo.

berZ2NQ L (0) bE?"Z2ﬁQL(

Assume 7-bit Q,.(0') ¢ Qr(0), then b’ & 7Z*> N Qr(0). Write v = (ra’,7y’) with

7',y € Z. By (3.2.21), without loss of generality, we assume |z'| > 2F + 1. By

(3.2.20),
. .or—1 €0 r—1 (1—=2g)r—1
f f oy >y > 1- 22 —1) — 2 )
e
By Definition 3.2.3, Q,.(0') N QL(0) = 0. O

We now extend the “cutting procedure” to r-dyadic boxes. It will be used in the

proof of Proposition 3.3.18.
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Definition 3.2.16. Given an r-dyadic box Qp(a) and V : Qr(a) — {0,V}, let R
be a subset of admissible r-bits inside Qr(a). For each ¢ € [0,1], define ng(a) :

(Qr(a)) — 2(Qr(a)) as follows:

Hp, oy (bc) =t =1 if {b,c} € Ug, (ayer 95-(@);

Hgf(a)(ba ¢) =Hg,()(b,c) otherwise.

Denote Gy (b, ¢ A) = (Hy () = A)7H(b,¢) for b,c € Qu(a).
Definition 3.2.17. For any large odd number r, denote ©" = U,¢;z2F;.(a). For sim-

plicity, we also denote ©" by O, if r is already given in context.

The reason to define ©" is that, one only needs to know the value of V' on ©"
to decide whether each r-bit is admissible or not. The sub-index of “©;” is for the

consistency of notations in later multi-scale analysis Theorem 3.4.7.

Definition 3.2.18. Given an odd number r, an r-dyadic box @ (a) and a potential
function V' : ©; N Qp(a) — {0,V}, we say Qp(a) is perfect if for any r-bit Q,(b) C

Qr(a), (Q-(b), V') is admissible.

Proposition 3.2.19. Suppose odd number r is large enough and ¢y is the constant
in Proposition 3.2.6. Given r-dyadic box Qr(a) with L < exp(cir), the event that

Qr(a) is perfect only depends on V]e,ng, () and

P[Q.(a) is perfect] > 1 — L. (3.2.22)
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Proof. Since for each r-bit Q,.(b) C Qr(a), the event that it is admissible only depends
on V|, thus the event that Qr(a) is perfect only depends on Vle,ng, (a)-

By Proposition 3.2.6, we have

P[Q.(a) is perfect] > 1 — L*exp(—8¢;r) > 1 — L7° (3.2.23)

since L < exp(cir). O

Definition 3.2.20. Given S;, Sy, C Z2, denote

dist(S1,52) = inf  |a —b|.

a€S1,beSy

We now prove the exponential decaying property of resolvent for perfect r-dyadic

boxes. It will serve as the induction base case for the multi-scale analysis in Section

3.4.

Proposition 3.2.21. Suppose odd number r is large enough and V > exp(r?). If
V' ©1NQrla) — {0,V} such that Qp(a) is a perfect r-dyadic box, then for any
V:Qr(a) = {0,V} with V]e,ng,a) = V', any X € 0,8]\ JY, any subset R of r-bits

inside Qr(a), any t € [0,1], and each b,c € Qr(a), we have

[b—c]|

G (b M) < V75 T (3.2.24)

Proof. For simplicity of notations, we assume a = 0.
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lb—c]
s and assume that for some b,/ € Qp,

Let ¢ = maxyccq, |Ggf(b, c; M) |V

[o—b']

ngj(b,b’;Ao)yV s = g.

Note that Q1 = Uyeizeng, @r(a’) by Lemma 3.2.15. By definition, we have
7= ((1 — %0) (r— 1)} By elementary geometry, there is an r-bit @,.(c) C @ such

that b' € Q,(c) and dist(V',Qr \ Q-(c)) > =¢°. By resolvent identity,

Go(b, b5 Mo)

= Y G0 M)GE! (", 20) + Leq,Ga, (b, 0 Ao). (3.2.25)
b"€Q, (0)

//Nb”/

b"'eQr\Qr(c)

Here, we have G, (o (1,1 \o) = G, (1,7 Ao) I Q. () € R and Gy, (o) (V, 13 Ag) =
G, (U, V"5 Xg) otherwise. Note that, if " ~ 0" for some 0" € Q.(c) and V" €

Qr \ Qr(c), then [V —b"| > == — 1 > = In this case, by Proposition 3.2.13,

—_— _ _ ‘ Il . .
|G, (', 0" Xo)| < Vi < V5 since |/ —b"| < r . Thus, we can estimate the

first term in the right hand side of (3.2.25) by

ST Gao W B ) GRAB b o) (3.2.26)

b'€Qr(c)
N
V"€Qr\Qr(c)

< Y gv (3.2.27)
bIEQn(e)

//Nb///

b"eQr\Qr(c)

lo—b'|

Vs g (3.2.28)

<

DN | —
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The second inequality is because, by triangle inequality with |0 — | = 1 and |b' —

b//’ 2 %

Y

e N _ p—b| €0

s < Vs teeal (3.2.29)
<ex (lr — @7"2)\7_“7%/‘ (3.2.30)
= “PRT T 6 -

1 _ 3!
< Er—lv—"’sf' (3.2.31)

for large enough r, where (3.2.30) is due to V > exp(r?). Since

[b—b'|

GO (0,03 0)| =V 5 g,

by (3.2.25) and (3.2.28),
Jo=b|

1
9< 59+ V 5 Lieg, 01Gono (b, M), (3.2.32)

If b € Q.(c), then we have g = 0. Otherwise, |b — V| < r. By the first item in

Proposition 3.2.13, \GQ ) (0,65 Ao)] < 2V1 and thus
0 < 2V 5 G o (0,0 M) < 4VE < 7, (3.2.33)

which is equivalent to (3.2.24). O
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3.3 Wegner Estimate

In this section we prove the Wegner estimate (Proposition 3.3.18) which will be used
in multi-scale analysis Theorem 3.4.7. In Section 3.3.1, we collect several lemmas on
unique continuation (Lemma 3.3.5), eigenvalue variation (Lemma 3.3.8 and Lemma
3.3.9) and almost orthonormal vectors (Lemma 3.3.10). In Section 3.3.2, a generalized
Sperner lemma (Lemma 3.3.16) for directed graph products is proved. All these

lemmas will be used in Section 3.3.3 to prove the Wegner estimate Proposition 3.3.18.

3.3.1 Auxiliary lemmas

We first need some geometry notations from [DS20]. The following Definition 3.3.1

to 3.3.4 are the same as Definition 3.1 to 3.4 in [DS20].

Definition 3.3.1. Given two subsets I, J C Z, denote

Rij={(z,y)€Z*:z2+yelandz—yec J} (3.3.1)

We call R; ; a tilted rectangle if I, J are intervals. A tilted square Q is a tilted rectangle

Ry ; with |I| = |J|. With a little abuse of notations, we denote ¢(Q) = |I| for a tilted

square Q = Ry .

Definition 3.3.2. Given k € Z, define the diagonals

Dif = {(v,y) €Z*: 2 +y = k}. (3.3.2)
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Definition 3.3.3. Suppose © C Z?, n > 0 a density, and R a tilted rectangle. Say that

© is (n, £)-sparse in R if

|Di- N O N R| < n|D;if N R| for all diagonals D;. (3.3.3)

We say that © is n-sparse in R if it is both (7, +)-sparse and (7, —)-sparse in R.

Definition 3.3.4. A subset © C Z? is called n-regular in a set £ C Z? if we have

>+ |1Qk] < n|E| whenever O is not n-sparse in each of the disjoint tilted squares

Q1,Q2,--,Qn CE.

The following Lemma 3.3.5 and 3.3.6 are used to find an enough portion of the
box where an eigenfunction has a decent lower bound. In particular, Lemma 3.3.5 is

analogue of [DS20, Theorem 3.5] and its proof is given in Section 3.5.

Lemma 3.3.5. There exists numerical constant 0 < e; < ﬁ such that the following

holds. For every € < g1, there is a large o > 1 depending on € such that, if
1. Q CZ* a box with £(Q) > «
2. © C Q is e-reqular in Q
3.V >2and )\ €10,8]

4. V':0—{0,V}

171



5. E5%(Q,0) denotes the event that

A= ol < (UQ)V) @

Hu=Mu i @ (3.3.4)

lu| <1in al—¢ fraction of Q\ ©
\

implies |u| < (£(Q)V)*Q) in ﬁ ’
then PIES2(Q,0)|[V]e = V'] > 1 — exp(—<l(Q)5).

The following lemma is a rewrite of [DS20, Lemma 5.3] and its proof is the same

as the proof of [DS20, Lemma 5.3].

Lemma 3.3.6. For every integer K > 1, there exists C'x > 0 depending on K such

that the following holds. If

1. V>2and ) €0,8]

2. L>Cgl > L' >Ck

3. box Q C Z* with £(Q) = L

4. bozes Q) C Q with ((Q,) =L fork=1,2,--- | K
5. Hou = Mu,

then,

[ulles i@y = V7O ul =) (3.3.5)

holds for some 2Q" C Q \ U@}, with ((Q") = L.
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Definition 3.3.7. Given a self-adjoint matrix A and A € R, denote

n(A; \) = trace oo\ (A).

i.e. n(A; ) is the number of A’s eigenvalues (with multiplicities) which are less than

A

The following Lemma 3.3.8 and 3.3.9 will provide a lower bound of the eigenvalue
variation under a rank one perturbation of an operator. Lemma 3.3.8 was proved in

[DS20, Lemma 5.1].

Lemma 3.3.8. Suppose real symmetric nxn matriz A has eigenvalues A\ < Ay < -++ <
An € R with orthonormal eigenbasis vy, v, - -+ ,v, € R". Let integersk € {1,2,--- ,n}
and 1 <j<i<n-—1.1If

1.0< r<rg<rs<ry<ry<l1

2. ry < Cmin{rsrs, rors/re}

3. O<)\j§)\i<7al<r2<)\i+l

4. v3(k) >3

J

5' ZT’Q<>\[<T‘5 ,UlQ(k:) S r4

then n(A;r1) > n(A + tPy;ry) fort > 1, where Py is the projection operator defined

by (Pyu)(i) =0 if i # k and (Pyu)(k) = u(k) for any u € R".
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Proof. [DS20, Lemma 5.1] implies the conclusion for the case when ¢ = 1. The

conclusion still holds for ¢ > 1 by monotonicity. O]

Lemma 3.3.9. Let k € {1,2,--- 'n} and Py be the projection operator defined by
(Peu)(i) = 0 if © # k and (Pyu)(k) = u(k) for any u € R™. Suppose self-adjoint

operator A : R™ — R™ has eigenvalues A\ < Ay < -+ < A\, € R with orthonormal

eigenbasis vy, vg, - -+ , v, € R™.
If X & o(A) and Y, )\ > 0(< 0), then X & o(A+tP;) for each t > 0(< 0),
respectively.

”Ui(k)2
Ai—A

Proof. We only consider the case when > > 0, the other case follows the
same argument.

For each ¢t € R, let v}, vl .-+ v’ be the orthonormal eigenbasis of A + ¢ P}, with
eigenvalues A\{, \5--- /AL Then the resolvent of A + ¢tF, at k with energy \g ¢

Gk, ks Xo) = (1g, (A + Py — No)~ Z At A (3.3.6)
0

Let i denote the imaginary unit. By resolvent identity, for each ¢,n > 0,

1

k,k;:\+1in) =
Gulk, ks A+ i) t+ Go(k, k; N\ +1in)~1

(3.3.7)

Since Go(k, k; A) = >0 | 5 k) > 0, (3.3.7) implies lim, o G¢(k, k; A +in) > 0 for any

i=1 \;—
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t > 0. Since Gy(k, k; X +1in) = > " v (k)2

i=1 X—\—in’

n t k 2

GO, (3.3.8)
Assume \ € o(A +tP;), then there exists ig with A}, = A. Equation (3.3.8) implies
vj (k) = 0. Since (A + tPy)vj, = A} vj, we have Avj = Avj . This contradicts with

A a(A). 0

We also need the following bound on the number of almost orthonormal vectors
which was proved in [DS20]. A similar version of the following lemma was also proved

in [Tao].

Lemma 3.3.10 (Lemma 5.2 in [DS20]). If vy, -+, v, € R™ satisfy [(vi,v;) — 6] <

(5n)~z, then m < (5 — v/5)n/2.

3.3.2 Sperner Lemma

We prove a generalization of [DS20, Theorem 4.2] which will be used in an eigenvalue

variation argument in the proof of Proposition 3.3.18.

Definition 3.3.11. Suppose p € (0, 1]. A set A of subsets of {1,2,--- ,n} is p-Sperner
if, for every A € A, there is a set B(A) C {1,2,---,n} \ A such that |B(A)| >

p(n—|A]) and A C A" € Aimplies A’ N B(A) = 0.

The following lemma is proved in [DS20, Theorem 4.2].
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Lemma 3.3.12 (Theorem 4.2 in [DS20)). If p € (0,1] and A is a p-Sperner set of
subsets of {1,2,--- ,n}, then

|A| < 2"n zp

Definition 3.3.13. Suppose A = (T, E) is a simple directed graph (without multi-
edges or self-loops) with vertex set 7" and edge set E. For each e € F, we denote
by e~ (e™) the starting (ending) vertex of e respectively. i.e. e = (e7,e™). For two
e1,e0 € E, we say e; and ey have no intersection if eli, egt are four different vertices;

otherwise, we say e; and ey have intersection.

Definition 3.3.14. Given k € Z, and a simple directed graph A = (T, E), A is called
k-colourable if E can be written as a disjoint union £ = U;?:l E; such that for each

jeA{l,--- k} and e; # ey € Ej, €1 and ey have no intersection.

Lemma 3.3.15. Suppose A = (T, E) is a simple directed graph and m € Z,.. Assume
for each x €T,

Hee E:e"=x}U{ece EF:e” =z} <m. (3.3.9)

Then A is 2m — 1-colourable.

Proof. By (3.3.9), each e € E has intersection with at most 2m — 2 other edges. Thus
we can color the edges of A by at most 2m — 1 colors such that any two edges with

the same color have no intersection. O

The following lemma is a generalization of [DS20, Theorem 4.2] in the sense that
[DS20, Theorem 4.2] is the special case when each graph A; (see below) has two
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vertices and one directed edge.

Lemma 3.3.16. Given N, k, Ky € Z, suppose A; = (T}, E;) are simple directed graphs
for1 <i < N. Assume A; is k-colourable for each 1 <i < N.

Suppose B C Ty x Ty x --- X Ty satisfies the following:

1. Each ¥ = (x1,x9, -+ ,xn) € B is associated with Ky indices 1 < I(T) <
L(7) < -+ < Ig(Z) < N and Ky edges e;(¥) € Ep@ (j = 1,--+, Ko) such

that e;(Z)” = v (J=1,--+, Ko).
2. |B| > Kg RN |TV||Ty| -+ | T,
then there exist X,y € B such that the following properties hold:
(a) for eachi=1,2,--- N, either x; =y; or (z;,y;) € E;,
(b) there exists j € {1,2,---, Ko} such that (xr,), Y1) = €;(T).

Proof. Let us first consider an easier case when each A; consists of two vertices and
one directed edge (thus we can assume k = 1). Let e; denote the single directed edge
in A; for 1 < i < N. Then there is a bijection between T} x T X - -+ x Ty and the

power set of {1,--- , N}:

Fr—Yz={i:1<i< N,z =¢}. (3.3.10)

We prove the lemma by contradiction. We assume there are no two elements in B
satisfying both (a) and (b). Note that in our case, for any &,y € B, condition (a) is
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equivalent to Yz C Yy and condition (b) is equivalent to Y;N{;(Z) : 1 < j < Ky} # 0.
Hence, for any @,y € B, Yz C Yz implies YzN{;(Z) : 1 < j < Ko} = . By Definition
3.3.11, {Yz : £ € B} is Ky/N-Sperner. By Lemma 3.3.12, |B| < 2VN 2K;' =
Ko_lN% |T1|| 1] - - - |Tw| which contradicts with assumption 2.

Now we consider the general case and we first prove that we can assume k = 1

without loss of generality. By assumption 2,
Ky 'WANE|T||Tol -+ [Tw| < |BI < T[T - [T

thus we have k2N < K,. In particular, k < K.

Claim 3.3.17. We can assume k = 1.

Proof of the claim. For each i, since A; is k-colourable, we can write E; as a disjoint
union F; = Uk E™ such that any two edges in E™ have no intersection. For

each ¥ € B, by pigeonhole principle, there exists m(Z) € {1,2,--- ,k}, such that

Since B = J* _, By, with B,, = {# € B : m(&) = m}, by pigeonhole principle again,

there exists m’ € {1,--- ,k} with |B,»| > [1|B|] and thus

K -1
Bl 2 | 52| MHTT - 7,
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We substitute A; = (T;, E;) by A} = (T, EZ-(m,)) for i =1,---, N, substitute B by

By, Ky by (ﬁkﬂ and k by 1. [l

Now we assume k = 1. We prove the lemma by contradiction. We assume
there are no two elements in B satisfying both (a) and (b). (3.3.11)

Given i € {1,--- N}, write E; = {e;s : s = 1,--- ,n;} and denote the set T =

T\ U {e;,, e-}. For simplicity, denote

N
XT; =Ty xTy x -+ xTy.

i=1

Let F; = E; U T, which consists of some edges and vertices. For each element in the

Cartesian product f: (fi,--+, fn) € F1 X Fy x --- x Fy, denote

N
CJ;:{feXE:v1§i§N,xi:fiiffieZI}’;xie{f[,fj}iffieEi}.

i=1

Then

Ty x Ty X - x Ty = U Cy. (3.3.12)

fEFl XFoX--XFn

For each 1 < i < N, since A; is 1-colourable, any two edges in E; have no intersection.
Thus the union in (3.3.12) is a disjoint union. Since |B|/(|T1||T3| - - - |Tn|) > K ' Nz,

by pigeonhole principle again, there exists [/ = (ff,- -, fy) € Fi x Fy x -+ X Fy
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such that

IBNCpl/|ICq| > Ky ' N2 (3.3.13)

Let Z = {1 <i < N : f/ € E;} be the set of coordinates such that f/ is an edge. By
assumption 1, for each ¥ € BN Cj and j € {1,---, Ko}, we have e;(7) = f}j(f),

e; (¥) = z1,(2) and I;(¥) € Z. Denote

Ye={ieT z= ()"}

(2

for each ¥ € BN Cfv. Then Z +— Yz is an injection from B N C’f, to the power set
of Z. Note that, the definition of set Yz is analog of (3.3.10) except that we are now
restricting on the subset Z.

We claim that {Yz : # € BN Cp} is Ko/|Z|-Sperner as a set of subsets of Z. To
see this, suppose Yz C Y} for some #, ¢ € BN Cs. Then ¥,y satisfy property (a). By

assumption (3.3.11), #, ¢ do not satisfy property (b), thus

Y {L(@) :j =1, Ko} = 0.

Since {I;(Z) : j=1,--- , Ko} C T\ Yz, our claim follows from Definition 3.3.11.

Now Lemma 3.3.12 implies

BNCpl={Ye: 7€ BNCp}| < 27K T|: < Ol N,
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which contradicts with (3.3.13). O

3.3.3 Proof of Wegner estimate

We now prove analogue of the Wegner estimate [DS20, Lemma 5.6].

Proposition 3.3.18 (Wegner estimate). Assume

(1) e > 6 >0 are small and co > 0 is a numerical constant

(2) integer K > 1, odd number r > C. 55 and real V > exp(r?)

(8) Ao & JY which is defined in Definition 3.2.12

(4) scales Ry > Ry > -+ > Rg > exp(cor) with R,lg_% > Ry > R,lf_%g and Ry, R3
are r-dyadic

(5) Q C Z? an r-dyadic box with ((Q) = Ry

(6) Q- , Q% C Q r-dyadic boxes, each with length R3 (called “defects”)

(7) G C UpQ,, with 0 < |G| < R}

(8) © C Q and Q \ © = Upep§2.(b) for some D C7Z* N Q

(9) © is 5§ -reqular in every box Q' C Q \ UpQ) with ((Q') = Rg, where g¢ is defined
by (3.2.2)

(10) potential V' : © — {0,V'} satisfies the following: for any V : Q — {0,V} with
Vle=V', any X € [)\0 — Vs N\ + V‘R5], any t € [0,1] and any subset R of r-bits

that do not affect © UJ, Q}, each Q.(b) € R is admissible and Hg’tu = \u 1mplies

VA ulle@u,ep < lulle@ < (1 + By?)llulle). (3.3.14)
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Then we have

P [|(Ho— o) | < V| V]e = V"] > 1- Ry 2. (3.3.15)

As mentioned in Section 3.1.2; in order to prove the Wegner estimate, we need

to prove the upper bound estimate and the lower bound estimate. In particular, the
upper bound estimate is proved in Claim 3.3.21 and it provides a significantly smaller
subset Ay of eigenvalues (depending on potential V') such that eigenvalues outside
Ay have zero probability to be close to A\g. Thus we only need to consider eigenvalues
in Ay. The lower bound estimate is proved in Claim 3.3.23 and it implies that, any
eigenvalue in Ay can be perturbed to move away from \g by changing the potential
function on any vertex in a significant portion of the box. By combining this fact
and the Sperner lemma (Lemma 3.3.16), we prove a probability upper bound for the
event that there is an eigenvalue in Ay which is close to Ay and thus prove the Wegner

estimate.

Proof of Proposition 3.3.18. Throughout the proof, we allow constants C' > 1 > ¢ > 0

to depend on ¢, §, K.

Claim 3.3.19. We can assume without loss of generality that UpQ) C ©.

Proof of the claim. Let ©" = U@} \ © and observe that for any event &,

P[E|V]e=V'] =E[P[E|V]ever = V' UV"]] (3.3.16)
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where the expectation is taking over all V" : ©' — {0, V'}. Thus, it suffices to estimate
the term in the expectation. Now we replace © by © U ©’ and check assumptions.
Except for assumption (8), other assumptions are straightforward. As for assumption
(8), note that Q\ (OUO’) = (Q\O)\ (UxQ},). For any a € Z?, by Lemma 3.2.15 and
the assumption that Q}’s are r-dyadic, either ,.(a) C (Ux@}) or Q,.(a) N (UxQ}) = 0.
Thus Q \ (O U O') = Upep Q. (b) where D' = {b € D : Q.(a) N (UQ}) = 0}. The

assumption follows. O

Now we assume U,Q}, C O, then by Lemma 3.2.15, Q,.(b) N (UrQ}) = 0 for each
beD.

We fix R = {Q,(b) : b € D}. By assumption (10), when the square @,(b) € R,
(Qr(b), V|, @) is admissible. For each V : @ — {0,V} with V]e = V' and ¢ € [0, 1],

denote all the eigenvalues of H g " by

(V) S (V) < -0 < A1),

In particular, AX2(V) < A(V) < -+ < )\OR?J(V) are all the eigenvalues of Hp. Let

uyr(k =1,---, R3) be an orthonormal eigenbasis such that for each k,

HQUV,k = /\g(V)UVVk
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Since HS’I(m,y) = 0 whenever {z,y} € U,cp 05,(b), we have

HS' = P Hs, () D Hovrens. ) (3.3.17)

beD

Here, we also used the fact that S,.(b) N S, (b') = 0 whenever b # V' € D (see Remark
3.2.5).

Thus eigenvalues of Hg ! consist of eigenvalues of H. s, (b € D) and eigenvalues of
H\(Upeps, v))- By item 1 in Lemma 3.2.8, @ \ (UsepSr(b)) C ©. Thus Ho\ (e ps, ()
only depends on Vi]g = V'. Let \y < Ay < --- < A, be all the eigenvalues of
Ho\(Upeps. ) Let Ay < Agp1 < -+ < Agyp be all the eigenvalues of Hoy\(u,eps, ()

inside the closed interval [A\g — V=54 \g + V4], Then

)\q—l <Ay — V_R4

if ¢ > 1. Denote

i(V)=Hk: (V) <X = VY + 1= n(HS 5 M = V) + 1.

Because \g ¢ JTV, by item 2 in Proposition 3.2.13, any eigenvalue of Hg, (b € D) is
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outside the interval [\g — %‘_/—%, Ao + %V_%]. Thus by (3.3.17),

o(HY') N [Ao — V7, ag + 7 H4]
= 0(Ho\(Upeps, @) N [Ao — V4 Ao + V4]

(3.3.18)
:{Aq-&-j:OSjSp}

= { Ny (V) 10 <5 <p}.
Claim 3.3.20. p < CR}.

Proof of the claim. Let

{v; € 2(Q\ (UpepSr (b)) : 0< i < p}

be an orthonormal set with Ho\ (u,. s, (5)Vi = Ag+i¥i for each 0 <7 < p. Consider the
function v{ on @ defined by v{|u,. s, = 0 and v}|o\ e ps, ) = vi- By (3.3.17), v} is
an eigenfunction of Hg ! with the eigenvalue \,;. By assumption (10), ||v}]] e =

(1+ Ry°)~' >1— Ry°. From (v, Vi) e2(q) = 0i; we deduce that

(s ey — 0l < Fo® < (51G1) 4.

17 7]

Thus, {v}|¢ : 0 < i < p} is a set of almost orthogonal vectors and Lemma 3.3.10 im-

plies the claim. O

Claim 3.3.21. Suppose A}(V) € [A\g — V2 Ny + V=22 for some 1 < k < R2. Then
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there exists j € {0,1,--- ,p} such that k =i(V') + j.

Proof of the claim. Fix such V' and for simplicity, when ¢ € [0,1] we denote \i =
A (V) and choose uf, to be an ¢*normalised eigenfunction of H, Z; ' with eigenvalue
Ai. Denote X = UpepdS,(b). The first order variation implies (see [Kat13, Chapter

2, Section 6.5])

A — )\°|—/ > up(x ds| . (3.3.19)

T~y
{zylex

By Lemma 3.2.15, U, p Q- (0) N (Ux@3,) = 0. Since X C Ujep Q-(b), assumption (10)

and equation (3.3.14) imply
\/ > up(z)up(y)ds| < 26| X |V < 4RIV < v Ra

T~y
{z,y}eX

as long as |AL — X\g| < V=F5. Thus (3.3.19) implies
_ 1-
’)\Z - )\0‘ S V7R2 —|— §V7R4 + 4R31ma){0§3§t ‘)\z_)\o‘zf/—R5. (3320)

Since AL is continuous with respect to ¢, by continuity, (3.3.20) implies |[AL — Ao| <
V~Ei for each t € [0,1]. In particular, |[\}—Xo| < V5. Thus by (3.3.18), k = i(V)+j

for some j € {0,1,--- ,p}. O

By Claim 3.3.21, we only need to consider eigenvalues in set {)\Z-(V)H~C 10 <k <p}
We will prove that, with high probability, these (p + 1) eigenvalues are away from Ag

with distance at least V1. We first prove that each of these (p + 1) eigenvalues’
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eigenfunctions has a large support (Claim 3.3.22). Then we use these supports of
eigenfunctions to do an eigenvalue perturbation argument which, combined with the
Sperner lemma, proves that eigenvalues in { N y4x 1 0 < k < p} are away from Ay

with high probability (Claim 3.3.23).

Claim 3.3.22. P [£,.|V]e = V'] > 1 — exp(—R}), where &, denotes the event that
_ 3
{aeQ: @] 2 -5 qul} \ 6 > 7

holds whenever |\ — \o| < V1 and Hou = \u.

Proof of the claim. Our strategy here is that we first use Lemma 3.3.6 to find a vertex
a, with |u(a,)| being lower bounded, then use the unique continuation Lemma 3.3.5
to find R§ vertices in Qpr,(ax).

Recall the definition of £5:*(Q), ©) in Lemma 3.3.5 and that equation (3.2.2) implies

1
g{ < e1. By Lemma 3.3.5 and assumption (9), there exists o’ > 1 such that the event

1

o= [] &2@.6nQ)

Q'CQ\UyQy,
4Q")=Re
satisfies
12
P [E.[Vo =V'] > 1 —exp(—e{ R¢ + Clog(Ro)) > 1 — exp(—R). (3.3.21)

Thus it suffices to show £, C E,.. Suppose ., holds, [A\—Xo| <V~ and Hou = \u.
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Lemma 3.3.6 provides an Rs-box Q. with Q. C Q\ U@}, and a, € %Q* such that,

u(as)| > V= ul| o) > VK |ul ()

Since 5525 ’O/(QRG(a*), © N Qgy(as)) holds and

A= No| S Vs < (RgV) ' Fs,

we see that

[ul > (RoV) ™ lu(a.)|} N @r(a) \ O] > 25 R

Thus by taking r > C. 5 x large and observing Rg > exp(cor), we have
— 1 1 3 3
[l > V45 ull )} NQ\ O] > 5= B2 > R

(3.3.24) provides the inclusion and the claim.

Claim 3.3.23. For 0 < ki <k <pand0 </ < CRg, we have

P €40 ke N Eue| V] = V'] < CrORgR, ?
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where &y, 1, ¢ denotes the event

X4k -1(V) = Xols N0y a1 (V) = Aol > 5041, (3.3.27)

_ . , .
where s; = VI3 Rt O for oqch i € 7.

Proof. Conditioning on V] = V', we view events &, and &, r,¢ as subsets of
{0, Ve Given 7 € {0,1}, denote by &, x,0- the intersection of &, 4, , and

the event
_ _ 1. 3
Hd' € Q\ O : Juyvytr (a')] > V=2 and V(d)=1V} > QRZ' (3.3.28)

Then

Ey kot NV Eue C Epy a0 U Epy a1+

It suffices to prove that
_3
P [Eryaer| Ve = V'] <200r°RoR, 2 (3.3.29)

for each 7 € {0, 1}.

We prove it for 7 = 0, the case where 7 = 1 is symmetric. We prove by contra-
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diction, assume (3.3.29) does not hold for 7 = 0. That is,

Vie=V'] >200r°RoR, >

I

P [Eky a0

(3.3.30)

Given V € &, ky00 With Ve = V' and a € Q,(b) with some b € D, we say a is a

“crossing” site with respect to V' (or w.r.t. V) if V(a) = 0 and
n((=A+V +Va)s,m320) = n((=A+V)s,0)i %) = 1;
we say a is a “non-crossing” site with respect to V' (or w.r.t. V) if V(a) = 0 and
n((=A+V 4+ Via)s. ) M) =n((=A+ V). ); Mo)-

Note that by rank one perturbation, for any a € @ \ © with V(a) = 0, either a is a
crossing site w.r.t. V or a is a non-crossing site w.r.t. V.

Denote by &, k,.0,0,cr0 the intersection of &, x, 00 and the event

_ 1.3
H{luviovysn | > V_%PL?} N{a € Q\ O :d is a crossing site w.r.t. V}| > ZRj.
Denote by &, k,.0,0ner the intersection of &, k, 0 and the event

_ 1 3
{lwviovyta | > V_%RQ} N{d € @\ O :d is a non-crossing site w.r.t. V}| > ZRZ.
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Then by (3.3.28),

5k1,k2,£,0 C gkl,kg,é,o,cro U gkl,kg,f,o,ncr-

By (3.3.30), one of the following holds:
3
P [k ot 0.er0] Ve = V'] > 100r°RoR, 2, (3.3.31)

or

_3
P [Ery o tomer| Ve = V'] > 100r°RoR, 2. (3.3.32)

We will arrive at contradiction in each case.
Case 1. (3.3.31) holds.

For each b € D, we define a directed graph A, = (7}, E}) with vertex set 1), =
{0, V}*® and the edge set Ej, is defined as follows. For each w € Ty, let w €
{0,V}5®) be @ = w in Q.(b) and w = V" in S,(b) \ 2,(b). Given wy,wy € Ty, there
is an edge which starts from w; and ends at wy if wy = wy + Vy for some ¥/ € Q,(b)
and n((—A)s, @) + Wa; Ao) = n((—A)s, @) + wi; Ao) — 1.

For each w € T, there are less than 2r? edges which start from or end at w. By
Lemma 3.3.15, Ay is 4r2-colourable.

For each V' € &k, ky00.0r0 N{V : V]e = V'}, by pigeonhole principle, we can find a
subset Do(V) C D with |Dy(V)| = ErﬁREW such that for each b € Dy(V), there is a
crossing site b’ € Q,(b) w.r.t. V with |uyqvy4r, (V)] > V—2%2_ This provides, for each

b e Dy(V), an edge e,(V) € Ey with e,(V)™ = Vo, ), e(V)" = Vo, @) + Vy and
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[Uvi(vy 4k, (0)] > V=272 We use Lemma 3.3.16 with directed graphs 4, = (T, E)
(b€ D), subset B = &gty 0.0 C Xyop T N = D] < B2, Ko = [Lr2R2], k = 42,
associated index set Dy(V') and edge set {e,(V') : b € Do(V)} for each V' € B. Here,
equation (3.3.32) serves as assumption 2 in Lemma 3.3.16. Lemma 3.3.16 provides

Vi, Vo € &g, ko0 such that the following holds:

o Vb € D, either Vi|o,m) = Valo. ) or Valo.v) = Vilo,@) + V 6y for some crossing

site b’ w.r.t. V).

e There exists a crossing site ap € Q \ © w.r.t. V; such that Va(ag) = V and

— 1
|uvs i) (a0)| = V7272,

Denote Vi3 = Vi + V4. Then by definition of crossing site and (3.3.17), i(V3) =
i(V4) — 1 and

i(V2) = i(V1) = {a € @ : Vi(a) # Va(a)}].

By Cauchy interlacing theorem and the fact that [{a € @ : Vi(a) # Vs(a)}| =

i(V3) —i(V3), we have

By assumption (10), for each 1 < j < R, we have |uy, j(ao)| < V7 when [A)(V;) —

Ao| < VT Since Juvy ivy)+n (a0)] = V-2 and

/\0 — S5 < A?(Vi)-&-kl (‘/1) < /\0 =+ s,
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we have

Z uv” o
/\O /\0 - Sg)
(V1)+k2

uys i(ag)? uys i(ag)?

p> A°<v1>V1’—j(<A03—s@>+ 2 AQ(%)VT(@OO)—sf)

J=i(Vi)+k1 I FE[(Vi)+h,i(Vi)+ka] ~ 7
|>\?(V1)—/\o‘§‘77R5

le,j(ao)2
2 N (e s

XY (V1)=Ao| >V~ F5

Uvi(vVi)-+ki (@0)° Z V2 (3.3.34)

> _
_)\?(V1)+k1 (‘/1) - (AO - SZ) Sp+r1 — Sy

JE[i(V1)+k1,i(V1)+ko]
A9 (Vi) —=Ao|<V ~F5

-~ > 2V fs

0 i/ — R,
‘)\j(Vl)f)\0|>V 5

77— Ro 7 —2Ry4
ZV — R2V— — 2R2V s
23y 8041 — S0
>0.
Note that

A?(v3)+k1(vl) = )‘?(V1)+k1—1(vl) < Ao — s < )\?(vl)+k1(vl)-

By Lemma 3.3.9 and (3.3.34), Ajy,) 44, (Vi +184,) < Ao — s¢ for each ¢ > 0. Let t =V,
we have A)y . (Va) < Ao — s, Thus by (3.3.33), Ay, s, (Vo) < Ao — s¢ and hence
Vo & Ek,y kp 0. We thus arrived at contradiction.
Case 2. (3.3.32) holds.

For each b € D, we define a directed graph A, = (7}, E}) with vertex set 1), =

{0, V}*® and edge set E is defined as follows. For each w € Ty, let w € {0,V }%®
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be w = w in Q,.(b) and w = V" in S,(b) \ 2,.(b). Given wy,wy € T}, there is an
edge which starts from w; and ends at w, if wy = wy + V&, for some V' € Q,(b) and
n((=A)s,p) + Wa; Ao) = n((=A)s, ) + W15 Ao).

By the similar arguments used in Case 1, there exist Vi, Vs € &, i, ¢ such that the

following holds:

o Vb € D, either Vilg. ) = Valo.) or Valo,w) = Vilo,m) + Vy for some non-

crossing site b’ w.r.t. V.

e There exists a non-crossing site ag w.r.t. V; such that we have Vy(ag) =V and

— 1
Uy ivi)i, (a0)| = V7272,

Denote V3 = V; 4+ Vd,,. Then by (3.3.17) and definition of non-crossing site, i(V3) =

i(V1) =i(V3). Since V; < V3 < V3, by monotonicity,

Xk (V1) < Mugyar (Vs) < Mugyen, (Va). (3.3.35)

Now we apply Lemma 3.3.8 to Hg — Ao + s, with 7 = 25y, 79 = S¢41, 13 = 7aich
rg = V=R and r5 = V= Then Ay, (Va) = Ao+ s By (3.3.35), Ay, 1, (V2) >

Ao + s¢ and thus Vi & &, , ¢ We thus arrived at contradiction. O

Claim 3.3.24.

{I(Ho = 2) >V n{Vie=V1c |J  Ehmu (3.3.36)

0<k1<ko<p
0<(<CR}
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Proof of the claim. By Claim 3.3.20 and Claim 3.3.21, we can always find 0 < ¢ <
C'RY such that the annulus (Ag—5¢41, Ao+5e41)\ (Ao—5¢, Ao+8¢) contains no eigenvalue

of Hg. The claim follows. O

Finally by Claim 3.3.24,

Pl|(Hg — o)l > V| V]e = V']

< Y Y PlekenEud Vie=V]+PE,|V]e=V]. (3.3.37)

0<k1,k2<p 1</<CR}

By Claim 3.3.22, 3.3.23 and let C. 5 x be large enough,

P(l[(Hg = Xo) ' > V| V]e = V']

< CrRIWRT® 4 oxp(—R:°)

10e—1
<R, ?.

We used here r > C. 5 and Ry > exp(car). O

3.4 Larger scales

We now prove Theorem 3.1.4 by a multi-scale analysis based on [DS20, Lemma 8.3]

with Wegner estimate Proposition 3.3.18.

Definition 3.4.1. Suppose r is an odd number, R is a set of r-bits and E C Z2. We
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denote

Rp ={Q,(b) € R : Q.(b) C EY. (3.4.1)

We need the following gluing lemma in multi-scale analysis which is a direct mod-
ification of [DS20, Lemma 6.2] and it follows from the same proof as [DS20, Lemma

6.2].
Lemma 3.4.2 (Gluing lemma). If
1. € > 6 >0 small and c3 > 0 a numerical constant
2. K >1 an integer, r > C.5x a large odd number and V > exp(r?)
3. t€[0,1] and )\ € [0, §]
4. scales Ry > -+ > Rg > exp(csr) with R,lg_a > Rpiq
5. 1>m > QRET‘s represents the exponential decay rate
6. Q= Qpr,(a) CZ* an r-dyadic box

7.Q4, -, Q) C Q disjoint r-dyadic Ry-boxes with ||(Hg, — Ao) '] < V4 (they

are called “defects”)
8. R a subset of admissible r-bits inside ) which do not affect UpQ),
9. for all b € QQ one of the following holds

e there is )} such that b € @}, and dist(b, Q \ Q%) > %6(@;)
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e there is an r-dyadic Rs-box Q" C @Q such that b € Q", dist(b,Q \ Q") >

'RQ// ,t

LUQ"), and |G (1,1 ho)| < VRV for b 1 € Q"
then \Gg’t(b, Vido)| < VESIY] for b 0 € Q where m =m — R5°.

Remark 3.4.3. As in [DS20, Remark 6.3], the scales Ry, -, Rg has the following

interpretations:
1. Ry: large scale
2. exp(R,): large scale resolvent bound
3. Ry: defect scale
4. —Rj3: defect edge weight
5. exp(Ry): defect resolvent bound
6. Rs: small scale
7. exp(Rg): small scale resolvent bound
They are set up to be compatible with the multi-scale analysis (Theorem 3.4.7) below.

We also need a covering lemma which is a direct modification of [DS20, Lemma

8.1] and it follows from the same proof as [DS20, Lemma 8.1].

Lemma 3.4.4. Suppose K > 1 is an integer, v is a large odd number, o > C¥ is a
power of 2, Ry > Ry > Ry are r-dyadic scales with R; > aR;1(i = 0,1), Q C Z?
is an r-dyadic Ro-box and Q7,---,Q% C Q are r-dyadic Re-boxes. Then there is an
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r-dyadic scale Rs € [Ry, aRy| and disjoint r-dyadic Rz-boxes @}, -+ , Q% C Q such

that,
1
for each Qy, there is Q) with Qy C Q; and dist(Qy, Q \ Q) > gRg. (3.4.2)

The following lemma provides the continuity of resolvent bounds and its proof was

given in [DS20].

Lemma 3.4.5 (Lemma 6.4 in [DS20]). If square Q CZ*, A€ R, a > >0, and
(Hg =Nz, y)] < exp(a — Blz —yl)
for any x,y € Q, then for all [N — \| < ¢B|Q|~! exp(—a), we have
((Hg = N) (2, y)| < 2exp(a — Blz —yl)

for any x,y € Q.

Definition 3.4.6. Suppose v,¢ > 0, large odd number r, real V' > exp(r?), energy
Ao, m-dyadic box Qr(a), © C Qr(a) and V' : © — {0,V}. We say (Qr(a),O,V’) is
(v, €)-good if the following holds:

Whenever we have
e V:Qr(a) = {0,V} with V]e = V',

e bceQra),
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e t€[0,1],
e R a subset of r-bits inside @ (a) such that each @,(b) € R does not affect O,

then
e for each Q,(b) € R, (Q(D),V|r.1) is admissible,

e the following inequality holds:

'R{7 . — —c l—e
|G (b5 Ao)| < Vomel s, (3.4.3)
The following multi-scale analysis is a direct modification of [DS20, Lemma 8.3].
By using a standard argument (see, e.g. the proof of Theorem 2.3.1 in Chapter 2), it
implies Theorem 3.1.4 with Yy = JY .
Recall that in Definition 3.2.17, we defined ©" = U,c;z2F-(a) for any large odd

number 7.

Theorem 3.4.7 (Multi-scale Analysis). For each k < %, we can pick e > 6 > 0 such
that, for each odd number r > C. s, V > exp(r?) and \g & JTV, the following holds.

There exist

a1
1. r-dyadic scales Ly for k > 1 with Ly € {%Lé_GE,Lé‘GE} and the first scale sat-
isfying %exp(%cl&) < Ly < exp(3c10r) where ¢1 is the constant in Proposition

3.2.0,

2. decay rates vy, > 1—(1” with v, = % and Yg+1 = Yk — L,;‘S,
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1 1 —1ie .
3. densities np < g5 with i = €5 and N1 = N, + L, > where g is defined by

(3.2.2),
4. random sets Oy C Opy1(k > 1) where ©1 = O,
such that the following statements are true for k > 1,

1. when k > 2, ©,NQ is Ve, ,nsg-measurable for any r-dyadic box Q with

2. when k > 2, O is a union of Or_1 and some r-bits,
5,
3. Oy is mp-reqular in any Qr(a) C Z* with L > LllC 2"

4. for any r-dyadic box Q with ((Q) = Ly,

P[(Q,0rNQ,Vl]e,nqg) is (Vk,€)-good] > 1 — L. ". (3.4.4)

Proof. Assume £, are small and we impose further constraints on these objects

during the proof. Set r-dyadic scale

1 1 1
L, € Eexp(ﬁcl&’),exp(éclér)

1
where ¢; is the constant in Proposition 3.2.6. Set v, = é and m = ¢;. By letting
r > C.s5, we can pick Ly, V%, mx as in conditions 1, 2 and 3 for £ > 2. Let M,

be the largest integer such that Ly, < exp(cir). Then M, < C’é’(; for a constant
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Figure 3.2: The figure illustrates the proof that ©; (the pink region) is n;-regular in
Qr(a). The blue region indicates (J{Q1-100,z)r(b) : b € 7Z*}, the black tilted square
indicates Q and the green line indicates the diagonal D.

;75 depending on ¢,6 and we have L;_p, < L,‘i for each k > M,. Set ©, = O,
for Kk =1,---,My. We prove by induction on k. We first prove the conclusion for
k < M,. Statements 1 and 2 are true since O, = ©; when k < M,. To see Statement
3, let Qp(a) C Z? such that L > Li_ga. Suppose Q C Qp(a) is a tilted square. We
claim that, if there exists b; € Q(a) N 7Z? such that Q N Q(1-100yz5)r (b1) # 0, then
O, is gé -sparse in Q). We prove our claim by elementary geometry (see Figure 3.2).

To see this, if Q N ©; = () then our claim is obvious. Otherwise, note that we have

diSt(@l, Q(l—lOO\/aT))r (bl))

= dist(F}.(b1), Q1 -100,/z5)(b1))

=dist(Qr(b1) \ Q-200)r(b1), Q1-100,/25)r (b1)) (3.4.5)
(1 —2e9)r—1 (1 —1004/g0)r — 1
B e B e

>(504/g0 — €)1

Thus QNO; # § implies that the edge length of Q is larger than @ > 25,/g0T.
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Suppose | € Z and ¢ € {+, —} such that Q N D; # () where D; is a diagonal defined

in Definition 3.3.2. Write D = Q N D; and then
|D| > 25\/eqr. (3.4.6)

By elementary geometry,

10/D)|

{beiZ? : DNQ.(1) #0} <10+ —— (3.4.7)

Since D has at most one intersection with any horizontal or vertical line, we have
|D N F.(b)| < 10gor (3.4.8)
for each b € 7Z2. On the other hand, by Definition 3.2.17 we have

©,ND| < > DN E,(b)].
berZ2:DNQy(b)#£0D

1
Thus by (3.4.8) and (3.4.7), we have |©; N D| < 100egr + 100&0|D| < g4|D|. The
second inequality here is due to (3.4.6). Our claim follows.

1
Thus any tilted square in which ©; is not ej-sparse is contained in

QL(G) \ U Q(lflooﬁ)r(b)a

beQr (a)NrZ2
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whose cardinality is less than 10*/g¢L? + 8rL < 5§ L?. Here, we used L > exp(cdr),
r > C.s and ¢y small enough (provided by (3.2.2)). Thus ©; is 5§-regular in Qr(a)
and Statement 3 follows.
To see Statement 4, by Proposition 3.2.21, an r-dyadic @ is perfect implies (@, ©1N
Q,V|eng) is (8—1r, 1)-good. Thus Proposition 3.2.19 implies Statement 4 when k& < M.
Assume k > My + 1 and our conclusions hold for any smaller k. We proceed to
prove it for k. The general strategy is to apply Lemma 3.4.2.

For each j < k, we call an r-dyadic box Qr,(a) “good” if

(Qr,(a),0; N Qr,(a), V]e,nqy, @) is (75, €)-good.

Otherwise, we call it “bad”. We must control the number of bad boxes in order to
apply Lemma 3.4.2.

For any 0 < k' < k, by Lemma 3.4.2, any bad r-dyadic Ly-box ) must contain a
bad Ly _i-box. For any 0 < i < k, and a bad L,_;-box Q' C Q, we call Q" a hereditary
bad Lj_;-subbor of Q, if there exists a sequence Q' = Q, C Q, , C --- C Q, C Q,
where for each j = 1,--- .1 @j is a bad Ly_j-box. We also call such sequence
{Qj}lgjg a hereditary bad chain of length 7. Note that the set of hereditary bad

chains of @) is Vi, _,ng-measurable.

Claim 3.4.8. If ¢ < ¢, and N > Cyy, x, then for all k > M,,

P[Q has no more than N hereditary bad chains of length Mg] > 1 — L; "
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Proof of the claim. Let N = (N')™ with N’ to be determined. We can use the

inductive hypothesis to estimate

P [@ has more than N hereditary bad chains of length M| (3.4.9)
< Z P[@" has more than N’ bad L;_;-subboxes] (3.4.10)
r-dyadic Q' C Q
HQN=L;
k—Mo<j<k
< 3 B ) (34.11)
k—Mo<j<k
< OMLE(LYT N 4 L5 Ny (3.4.12)
< CML(LET N 4 [(Cemem-6)TonTy (3.4.13)
Here, ¢,C denote absolute constants. The claim follows by taking ¢, = 55 and
_1
Crow = (%)M‘), and letting € < ¢, and N’ > C’Ajﬁljgﬁ. O

Now fix N as in the claim above. We call an Li-box @ ready if @ is r-dyadic and
@ contains no more than N’ hereditary bad chains of length M,. Note that the event
that @ is ready is Ve, _,no-measurable.

Suppose the Li-box @ is ready. Let QY',---, Q% C @ be a complete list of Lj_ -
boxes that includes every hereditary bad Ly_jz-subboxes of Q. Let Q7,--- ,Q% C Q
be the corresponding bad Lj_;-subboxes of @, such that Q7 C QY for each i =
1,2,--+,N. These cubes are chosen in a way such that {QY,---,Q%} contains all

the bad Lj_i-subboxes in (). Applying Lemma 3.4.4, we can choose an r-dyadic scale
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L' € [en Ly, L;7*] and disjoint r-dyadic L'-subboxes

such that, for each Qf, there is @ such that Q C Q) and dist(Q},Q \ Q) > L.
Note that we can choose @}, @/, Q7 in a Vg, _,ng-measurable way.

We define © to be the union of ©;_; and the subboxes @, -- ,Qy C Q of each
ready Li-box (). We need to verify statements 1 to 4. Note that Statement 2 is true

since each r-dyadic box is a union of r-bits (Lemma 3.2.15).

Claim 3.4.9. Statements 1, 3 hold.

Proof of the claim. For each Li-box @, the event that () is ready, the scale L' and
L'-boxes @Q; C Q are all V|gne,_,-measurable. Thus ©,NQ is V|e,_,n3g-measurable.
Note that we have 3(Q) in place of () because each r-dyadic Li-box () intersects 24
other r-dyadic Li-boxes contained in 3Q).

As for Statement 3, for each L};%E-box Q C Z?, the set QN O\ Or_; is covered
by at most 25N boxes ); with length at most L,lg’Ss. Suppose @ is a tilted square
such that Q) N ©g_; is nx_1-sparse in Q but Q N O is not Ni-sparse in Q, then Q

must intersect one of @)}’s and have length at most L,l; “°. This implies O, N Q is

Ne-regular in Q. O

Claim 3.4.10. If the Li-box Q) is ready, R a subset of r-bits inside Q) that do not affect

Or-1UU,; QF, then each Q,(b) € R is admissible. Furthermore, if |\ —Ao| < V2
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€ [0,1] and H Yu = Au, then
1—
Vch 1||u||goo(E < ||u||42(Q/ (1+V cL k Mo)Hu“eQ(G

where £ = Q; \ U;Q and G = Q; N U;QY".

Proof of the claim. If r-bit Q,(b) C @ does not affect O U J; @}, then it is con-
tained in a good Ljy_1-box @, ,(a’) C Q. By Definition 3.4.6, since Q),(b) does not
affect ©x_1 N Qr,_,(d’), it is admissible.

If a € Q) \ G, then there is j € {1,---, My} and a good Lj_;-box Q" C @} with
a € Q" and dist(a, Q; \ Q") > £Lj_;. Moreover, if a € E, then j = 1. By Definition

3.4.6 and Lemma 3.4.5,

u(a)| = Z Gy (a, by Au(b)

bIEQ \QII
b~b’

< 4Lk7j‘7L};j—%%_ij_j HUHP(QQ)

Here we used v;—; > 1—(1)r and Ly_; > exp(cdr). In particular, we see that

 r1-6
ulleemy < V™1 Jull 20y
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and

_ 116
[l @y < V7 =0 |lull2qyy.

Claim 3.4.11. If Q) is an r-dyadic Li-box and &;(Q) denotes the event that

Q is ready and P[||(Hg — o) 7| < Vi

Vl@kﬂQ] =1,

10e—3

then PI&;(Q)] > 1— L,

Proof of the claim. Recall the event that () ready and boxes @)} C @ are Ve, ,no-
measurable. We may assume ¢ = 1. We apply Proposition 3.3.18 to box @)} with

be >0 >0, K = N, scales

L'> L > L5 > [y > D% > 007 > [,
O = 01N QY, defects {Q7 : QF C Q1}, and G = U{Q} : QF C Q}}. Assume € > 50
and note that k > My+1and Ly_; > Ly > exp(%clr). The previous claims provide
the conditions to verify the hypothesis of Proposition 3.3.18. Since @)} C ©; when Q)

is ready, the claim follows. O]

Claim 3.4.12. If Q) is an r-dyadic Lg-box and £1(Q),--- ,En(Q) hold, then Q) is good.

Proof of the claim. Suppose R is a subset of r-bits inside () that do not affect ©, and
t € [0,1]. By Claim 3.4.10, each Q,.(b') € R is admissible. We apply Lemma 3.4.2
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to the box @ with small parameters £ > § > 0, decay rate y;_1, scales Ly > L,lg_g >

_1
L > L/,lC 2° > L,lg_45 > L1 > L,l;al, and defects @}, - , Q. We conclude that
G (a,b)] < VE "l

for each a,b € Q. Since the events & (Q) are Vg, no-measurable, we see that () is

good. O]

Finally we verify Statement 4. Combining the previous two claims, for any r-

dyadic Li-box (), we have

10e—1

P(Q,0rNQ, Vl]e,ng) is (1, €)-good] > 1 —-NL,~ > >1—L.",

provided k < % — 10e. O

3.5 Proof of Lemma 3.3.5

Our approach follows the scheme in [DS20, Section 3] and [BLMS17]. The key for
the proofs in [DS20], [BLMS17] and the current proof is the following observation for

functions u satisfying Hu = Au on a tilted rectangle R 14 defined in Definition

3.3.1.

Observation 3.5.1. Let V : Z?> - R and u : Rp a1 — R. Suppose a > 10b and
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—Au + Vu= Auin R[Q,a—l],[?,b—l]- If

||“||€°°(R[1,a],[1,2]) =1

and |u| < 1ona 1—¢ fraction of Ry 4] p-1,), then ||U||goo(R[La]y[1 ;) 18 “suitably” bounded.

Observation 3.5.1 does not hold for arbitrary V" and A. It was proved in [BLMS17,
Lemma 3.4] for the case when V' =0 and A = 0 (i.e. w is a harmonic function). It
was also proved to hold with high probability for the case when a > Cb*log(a) and
{V(2)}rezz is a family of i.i.d. Bernoulli random variables taking values in {0, 1}
([DS20, Lemma 3.13]).

In Lemma 3.5.20 below, we will prove that observation 3.5.1 holds with high
probability only requiring a > 10b and {V(x)},czz is a family of i.i.d. Bernoulli
random variables taking values in {0, V}.

Lemma 3.5.20 is the main new ingredient in the current proof. As long as Lemma
3.5.20 is proved, the rest of the proof of Lemma 3.3.5 follows the same scheme in
[DS20] and [BLMS17] by proving a “growth lemma” (Lemma 3.5.22) and using a
covering argument (Section 3.5.5) to conclude.

To prove the observation 3.5.1 (Lemma 3.5.20), we first consider the case when
u =0 on Ry 2 (Lemma 3.5.8). We use the triangular matrix structure of the
operator Mﬁ]:] defined in Definition 3.5.10. Then we use Lemma 3.1.6 to estimate
the probability. We refer the reader to the beginning of Section 3.5.3 for an intuitive

=0.

argument of the simple case when u Rita (1.2)UR (el p-1] =
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3.5.1 Auxiliary lemmas

We first prove Lemma 3.1.6 by using Lemma 3.1.7.

Proof of Lemma 8.1.6. Write {e;}}_, to be the standard normal basis in R™. Write
I' = I'y 4+ ag where I'y is a k dimensional subspace and ay € R". Let I'y be the
orthogonal complement of I'y and let P : R® — I'; be the orthogonal projection.
Define v; = Pe; for i = 1,2,--- ,n, then Y, vivj = I, (the identity operator on
).

Using Lemma 3.1.7 with [l = n, m = n—k and m' = n — k — 1, we can find
S c{1,2,--- ,n} with |S| = n — k — 1 such that the n — k — 1-th largest eigenvalue

of

Z vl = Z Pe;el P (3.5.1)

€S i€S
is at least m. Assume without loss of generality that S = {1,2,--- ,n —k — 1}.
Denote by T” the subspace generated by {e; ?:_1’“_1 and let Q : R — I” be the
orthogonal projection onto I'. Then (3.5.1) is just PQTQPT. Note that the dimension
of the range of QP is at most n — k — 1, thus the rank of the operator PQTQP" is at
most n — k — 1. Hence the n — k — 1-th largest eigenvalue (which is also the smallest

eigenvalue) of the positive semi-definite operator QPTPQT is at least m. This

1
1PQalls > \/ mHGHQ (3.5.2)

implies

for any a € I".
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Consider the Boolean subcube B’ = {Z?:_lk_l zie;  x; € {0, 1}} C I". We claim

that for any v' € R",
1
#{a € B+ :minla — b2 < Zn—%(n — k)<L (3.5.3)
S

To see this, assume the claim does not hold. Then for some v” € R", there are two
different ay,a2 € (B’ + v"”) with minger ||a; — bll2 < in*%(n — k)72 for j = 1,2.
Choose by, by € I' with ||a; — bj]2 < in_%(n — k)72 for j =1,2. Let @ = a; — as and
b =by —by. Then |ja' —¥|js < in"2(n— k)2 and o’ € T, ¥/ € T,

Since any two vectors in B’ + v” has ¢ distance at least 1, ||d’|z > 1. On
the other hand, we have minger, ||a’ — b]|2 < %n_%(n — k)~2 which is equivalent to
|PQTd || < %n_%(n — k)~2. However, this contradicts with (3.5.2) and our claim
(3.5.3) follows.

Finally, B = |J {B/ + 2 ke x; € 40,1} forn —k <j < n} Thus by

(3.5.3),

: | 1
#{GEB'II?EIFHG_Z)”2<ZH 2(n—k) 2}

- 1 \
i . . Y —=
< E #{aEB—l— E xjej.rgg%lHa—bH2<Zn 2(n—k) 2}

x;€{0,1} for n—k<j<n j=n—k

< > 1

z;€{0,1} for n—k<j<n

— 2k‘+1
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]

We will also need the following lemma to bound the inverse norm of principal

submatrices of a triangular matrix.

Lemma 3.5.2. Let d > 0 be an integer, K > 1 be a real number and {m; < my <

- < mg} be a set of positive integers. Let A = (a;;) be a lower (or upper)

1<i,j<d

triangular matriz. Assume that |a;| = 1 for each i = 1,--- . d and |a;;| < KM=l
for each 1 <i,j < d. Then the Euclidean operator norm of the inverse A~! satisfies

|7 < d(2K )",

Proof. We assume A to be a lower triangular matrix, the case for upper triangular

: -1 _ /
matrix follows the same argument. Denote A7 = (aij) \<ij<d
We prove that |af;| < (2K)™~™il by induction on k =i — j. For k = 0, since A

-1

is lower triangular, a};, = (a;;)~" and thus |a};| = 1. Assume our conclusion holds for

0 < k < k', we prove the case when i — j = k’. Note that

d
> ayay; =0. (3.5.4)
=1

This implies
i1
Qi = — Z a;1ay;- (3.5.5)

1=j

Since |a;;| = 1, by inductive hypothesis and |a;| < K™= we have
i—1 i—1
1 < 3 Ry = g S < oy, (350
I=j I=j
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Thus the induction proves |aj;| < (2K)™~™ for 1 <4, j < d. Finally,

AT < (Y Jay?)z < d2K)™

ij
1<ij<d

since 0 < mq < --- < my. ]

3.5.2 Tilted rectangles

In this section, we collect basic lemmas on functions satisfying the equation Hu = \u
on a tilted rectangle (see Definition 3.3.1). The following Lemma 3.5.4, Lemma 3.5.6
and Lemma 3.5.7 are rewrite of [DS20, Lemma 3.8], [DS20, Lemma 3.10] and [DS20,
Lemma 3.11] respectively. They are modified to depend on V explicitly.

We will keep several notations from [DS20, Section 3]. In particular, we work in

the tilted coordinates of

(s,t) = (z+y,xz—y). (3.5.7)

Under coordinate transformation (3.5.7), the transformed lattice is 72 = {(s,t) € Z*:
s —t is even}. The equation

Hu = \u (3.5.8)

becomes

u(s,t) =4+V(s=1,t—=1)=Nu(s—1,t—1)—u(s—2,t) —u(s —2,t —2) —u(s,t —2).

(3.5.9)
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Given two intervals Ji, Jo C Z, by Definition 3.3.1, under the coordinate transfor-

mation, the tilted rectangle Ry, ;, C Z? is transformed to

—_——

Ry g, ={(s,t) € J1 x Jy: s —t is even}

in the new lattice Z2. With a little abuse of notations, we also use R, s, to denote

—_——

Ry, j, for the rest of this section.

Definition 3.5.3. Given integers a; < as and by < by, the west boundary of the tilted

rectangle is

awR[al7a2],[b1,b2] = R[(ll,a2]7[b17b1+1] U R[al,a1+1]7[b17b2]'

The following lemma is a rewrite of [DS20, Lemma 3.8] and it follows from the

same proof of [DS20, Lemma 3.8].

Lemma 3.5.4. Suppose energy A\ € R, real number V € R and integers a; < as, by < by.

Then every function u : 0% Rq, ay],jb1,bo) — R has a unique extension

0 _ E()‘vf/)

u’ =
Riay sa3],[b1,b2]

(u) : R[a17a2],[b1,b2] —R

such that

Hu® = \u° (3.5.10)

. AV . . ‘
i R, 11,a0—1),[b1+1,00—1)- Moreover, Eg%[ ) 1s a random linear operator and is

ay,az],[by,ba]

VR 41,0511y 41,0,y “TT0CASUTADE.
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Remark 3.5.5. Given energy ), real V and integers a; < as, and b; < by, we also

(A,V) ()‘7‘7) 3 101 r /
denote F Rio: oyl (b1.00] (o1 o1, bo] for simplicity. When energy A and real number V'
. . . y (\V)
are given in context, we also omit A, V' and denote by Egr and
la1,a2],[b1,b2] [a1,a2],[b1,b2]

V)
E[al,ag},[bl,bg} by E[alan]v[blvbQ]'

Lemma 3.5.6. Suppose we have real numbers \,V and integers a; < as and by <
by. Assume N\ € [—2,10] and V > 2. If Hu = \u in Ria,41,a5—1],[b1+1,0—1] and

Hu||€°°(8wR[a1’a2]’[blyb2]) - ]-; then

||u||éoo(R[a1,a2],[b1,b2]) < (V(GQ —ay + 1))01(b2—b1—1)\/0 (3511)

[l (R, 0y o) < (V (B2 = by + 1)) Crle2er=v0 (3.5.12)

for a numerical constant C.

Proof. We only prove (3.5.11), and (3.5.12) follows by symmetry.

Assume without loss of generality that a; = b = 1. We prove

lu(s,t)| < (CVs)t=2VO (3.5.13)

by induction on (s,t) € Ry a1, Here, C' > 10 is a universal constant to be

determined. Firstly, if (s,t) € R q,),1,2, then ¢ <2 and

u(s, )| < 1 < (CVs)t-2V0
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by assumption. Secondly, if (s,%) € Rj1 934, then |u(s,t)] < 1 < (CVs)=2V0 by
assumption. Now suppose (s,t) € R34, 3, and assume (3.5.13) holds for (s',t') €

Rugng \{(s,1)}. We use (3.5.9) to get

|u(s, t)
<14+ W)|u(s — 1, = D) + Ju(s — 2,8)] + |u(s — 2, — 2)| + |u(s,t — 2)|
<14+ V)COVs) 3 4 (CV (s —2))72 + (CV (s — 2)) 70 4 (CVs) VO

<(16 +V)(CVs) 3 4+ (CV (s —2))2

_ 16+V s—2\'?
< t—2 _ —1
<(CVs) (cv s +( - ) )

_ 16+V
<(CVs)i2 ( 60+V s+ 1— 25—1)
<(OVs)2.
Here, we used [A| < 10, V > 2 and C > 10. O

The following lemma follows the same proof of [DS20, Lemma 3.11].

Lemma 3.5.7. Suppose real numbers A\, \o, V and positive integers a,b > 2. Assume
A, Ay € [=2,10] and V > 2. If Huy = \uy and Huy = \uy in R a—1),j26-1) and

uy = Uy in OV R q) 1, then

||u1 - UZHP"(R[La],[l,b]) < (aV>C2bHu1ng(awRu,a],[l,b])’)‘1 - )‘2’7 (3'5‘14>

where Cy is a numerical constant.
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3.5.3 Key lemmas

The main task in this subsection is to prove the following Lemma 3.5.8 which will
be used to prove the key estimate Lemma 3.5.20. See the context below observation

3.5.1 for a comparison between Lemma 3.5.20 and [DS20, Lemma 3.13].
Lemma 3.5.8. There are constants cc; > 1 > ¢4 > 0 such that, if

1. integers a > b > a; with 10b < a < 60D,
2. N €0,8] and V > 2,

3. © CZ* is (ca, —)-sparse in Ry a4,

4. V':0 = {0,V},

5. Ew(Rpq ) denotes the event that,

Hu = Xu m R a—1},12,p-1)

all e (Rpy gy.pa) = 1 (3.5.15)

\ u=0 on Ry a2

implies [u| > (aV)™™* on a 155 fraction of Ry a),p—1.),
then P [&T(R[La],[l’b])‘ Ve = V’} > 1 — exp(—cya).

We give an intuitive argument here for the simple case when we have Hu = Au in

Rpp.a—1),2,5-1) With a > 10b. We claim that, with high probability,

U|Ryy 411,29V, jp-1,6) = O
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will force u = 0 in Ryy 4,514 (Which is implied by observation 3.5.1 and linearity).

To see this, by Lemma 3.5.4, we can regard function u| Rppap_1y A the image of

b—1,b

ul Ri1a),1.2)UR(1.2],3.] under a linear mapping determined by the potential V. We assume
ulry gy = 0 and u(1,3) = 1 (recall that we are working in the tilted coordinate

(3.5.7)). It suffices to prove that, with high probability,

ulRy, o, pory 7 0 for any choice of ulr, , - (3.5.16)

Once this is proved, ulg, = 0 will force u(1,3) = 0 and further

1,a],[1,2)YB[1,a],[b—1,0]

ulp, yny = 0. By repeating this argument, ulp, . = 0 will force

1,2]YR[1,a],b-1,8]

u(s,t) = 0 for each (s,t) € Ry g3 and then u =0 in Ry 4,1, by Lemma 3.5.4.

To see (3.5.16), let us first calculate u|g Using equation (3.5.9) for t = 2,

1,a],{8}"
we have u(s,3) + u(s — 2,3) = 0 for any odd number s € [3,a]. Since u(1,3) = 1,

inductively we have

s—1

u(s,3) = (—1) 2

(3.5.17)

for odd s € [1,a]. Let us calculate further ulg, Using equations (3.5.9) and

{4}

s—

(3.5.17) for t = 3, we have u(s,4) + u(s —2,4) = (—1)"2 (44 V(s —1,3) — A) for any

even number s € [3,a|. Inductively, for even s € [1, ],

u(s, ) = ()T (u@4)+ > @+V(E3) =N |- (3.5.18)

2<s’<s, s’ is odd

By equations (3.5.17) and (3.5.18), we can write ulg, = u® +u® 4+ u(2, 4)u®

1,a],[3,4]
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with w9 € (2(Ryy 43,4 for i = 1,2,3. Here, u(1)|R[1,a],{3} =0 and U(1)|R[1,a],{4} = A(V)

in which A is a triangular matrix and the vector

V =(V(3,3),V(53), - ,V(a—i43)) (3.5.19)

satisfies i, € {1,2} and a — i, is an odd number. Moreover, u?(s,3) = (=1)"z for

odd s € [1,a] and u®(s,4) = (1) 2N for even s € [1,a]; u®|g

gz = 0

and u®(s,4) = (—1)°% for even s € [1,a). Note that, u® and u® are independent

of potential V' (in the sense of random variables). By Lemma 3.5.4, ulry ., 8

determined linearly by u|gw Riya, Hence, there are linear operators My, M; such

(3,6

that

U|R[1,a]7[b_17b] = M(](u(l) + u(2) + u(2,4)u(3)) —+ M1<u’R[1,2],[5,b])‘ (3520)

Since u() is the zero extension of A(V) and u(2,4)u® is determined linearly by

u(2,4), we have

ulg M(A(V)) + Mo(u®) + Ma(ulg, (3.5.21)

(1,al,b—1,6] 1,21,[4,1)1)

with linear operators A, M, My and M, all independent of V| Rp1. Thus we have

{3}

u|R[1,a],[b—1,b] = 0 implies

M(A(V)) + Mo(u®) + Ms(ulgy ) = 0. (3.5.22)
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It will be proved later that M can be regarded as a triangular matrix and the operator

M A is injective. Thus (3.5.22) implies

V= —(MA) ™ (Mo(u®) + My(ulp, (3.5.23)

1,2],[4,b] ))

with (M A)~! defined on the range of M A.
However, the rank of operator M, is at most | Ry 2} 4| which is bounded by b < 5.

Thus, conditioning on V|R[l,a],[l,b]\R[l,a],{3}7

{—(MA)_l(MO(u(Q)) + Mg(v)) U E £2<R[172]7[4,b])}

is an affine subspace with dimension no larger than {5. Recall (3.5.19), Vis VIRy a
measurable and can be regarded as a random element in a Boolean cube with dimen-
sion larger than . Thus by Lemma 3.1.6, with probability no less than 1— 215+ >
1 — exp(—ca), (3.5.23) fails for any u|r, , ,,- Our claim follows.

The proof of Lemma 3.5.8 below makes the above argument quantitative. Lemma

3.5.8 is also the key in proving Lemma 3.5.20. We start by defining the operator M

in (3.5.21) and prove its triangular matrix structure.

Definition 3.5.9. Given S; C S, C 72, we use P52 1 (%(Sy) — (2(Sh) to denote the
restriction operator from Sy to Si. i.e. ng(u) = ulg, for u € £*(S;). We use Igf to
denote the adjoint operator (P;Q)T, ie. Igf (u) = u on Sy and Igf (u) =0 on Sy \ Sy

for each u € (2(Sy).
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Definition 3.5.10. Given energy A € [0, 8], real number V and integers a, k, k' such
that a > 1 and k < &/, we define the linear operator

M s C(Rpa ) = C(Rpa. o)

as follows:

kk _ plfiale-1m OV Ryt o),k —1,4]
M[lva] o PR[l,a],{k’} E[l,a],[kﬁ—l,k‘/]IR[17Q]7{]€} . (3524)

Lemma 3.5.11. Given energy A € [0,8], real number V and integers a, k, k' such that

’ . kK .
a>1andk <k, the linear operator M[l,a] 1S V’R[Q,a—l],[k,k/—l] -measurable.

Proof. Lemma 3.5.4 implies that the extension operator Ejy ) k—1 iS V\R[2 ] e 1]

kk!
measurable, thus M[La} is also V\R[anfl]y[k’k,fl]—measurable. [l

Given (s,t) € 72, we use (s to denote the function that equals 1 on (s,t) and 0

elsewhere.

Proposition 3.5.12. Suppose we have energy A € [0, 8], real number V > 2 and integers

a,k, k' s, s such that a >4, k <k, (s, k), (s, k') € 72 and 4 <s,8 <a. Then

i 0 ifs<s
{0y, My qp0(s.)) | = (3.5.25)
1 ifsd=s
and
By MisigSisi)| < (K =k +2)7)TE)df ' > . (3.5.26)
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Here, C'y is the constant in Lemma 3.5.6.

Proof. Denote Ry = Ry q),k—1,. Assume the function u : Ry — R satisfies u|pup, =

O(s k) and Hu = Au in Ry o—1),jk,w—1)- 1t suffices to show that

u(s', k') =0 if ' <s (3.5.27)
u(s' k') = (—1)# ifs'=s (3.5.28)
lu(s', K| < (K — k +2)V)1=9) if s > s. (3.5.29)

Firstly, since v = 0 on 0“Ryy s—1},[k—1,»], We have u = 0 on Ry _1) k-1, by Lemma
3.5.4. Thus (3.5.27) holds. Secondly, we inductively prove u(s, k + 2i) = (—1)" for

1=0,1,---, L%J This is true for i = 0 since u|gwr, = d(s ). Suppose u(s, k+2i) =

(—1)" for some i < [#J Since s > 4, we can use the equation Hu = Au at the
point (s — 1,k + 2i 4+ 1). By (3.5.27), we have u(s, k + 2i) + u(s, k 4+ 2¢ +2) = 0 and

thus u(s, k +2i + 2) = (1)1, By induction we have |u (s,k + 2 | ¥

J)‘ = 1. Since

s = & implies k — k£’ is even, (3.5.28) follows.

Finally we suppose s’ > s. By (3.5.27) and (3.5.28), ||ulle=@ury,_, 0y = L
Then by (3.5.12) in Lemma 3.5.6,
el (ryy s sy < (VK =K+ 2))C1(s'=9),
In particular, |u(s’, k)| < (V (k' — k 4+ 2))%=) and (3.5.29) follows. O

Corollary 3.5.13. Suppose we have energy X € [0, 8], real number V > 2 and integers
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a, k, k" such that a > 6 and k < k'. Assume k and k' have the same parity. Suppose
S1 C Rpya—1),{r}

and let Sy = {(s,k) : (s,k') € S1} C Rua—1){k}- Then

(P00 MR TGO < a2V (K — k4 2))%. (3.5.30)

2

R ’ ' R
143 [1,a],{k"} k.k [1,a],{k}
PTOOf By PI‘OpOSlthIl 3512, PR[4,E71],{1€/}M[17a]1R[4,a71],{k} can be regarded as all upper

triangular matrix (a;;),, ;4 such that |a;| =1 and
Jagg| < (K =k +2)V)*1

for 1 <i,j5 <d. Here, d = |R[4,a—1],{k}‘ < a.
. Ry, / /R 4 . . . . .
Since Pg* MﬁZ] I¢""" can be regarded as a principal submatrix which is

also an upper triangular matrix, our conclusion follows from Lemma 3.5.2. O

Lemma 3.5.14. Suppose we have real numbers \,V, integers a > 1 and 2 < b, < b.
Denote Ry = R a1, B2 = Rpajip.+1 and Ry = Ry g ip.—1)- Then the following
linear operator from (*(0" Rs) — (*(Rp.q) (v}

R1 oY Ry . b«+1,b pRo 0% Ry
PR[l’a]’{b}Eleang M[17a} PR[I,a],{b*+1}ER2-[awR3 (3.5.31)

is independent of V|, . ., (in the sense of random variables).
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Ov Ry

Lemma 3.5.14 allows us to write the operator Pg[ll ERr Igup, as the sum of

al,{b}

two operators: a V| Ry o).,y “€asUrable operator and a V] Rp1.q. 0.y -1dependent op-

{bx} {bx}

erator. Here, the V| Ri1 -measurable operator can be written as the composition

{bx}

b«+1,b

0% Ry
L I

R
and the operator PR[I,a],{b*Jrl}ERQ 9w Rs -

of a V| Ry -independent operator M

1,a],{bx}

Thus intuitively, Lemma 3.5.14 says that the V| Rpy.a. 5, " I€ASUrable “part” of opera-

{bx}
R OYRy . w« : ” s Ry % Ry . .
tor PR[I,a],{b} ERr Iug, 1s “contained” in PRu,a],{b*H}ER?I@”Rs' The proof is by direct
calculation.

Proof of Lemma 8.5.14. Denote Ry = Rpgp,p and let v € (2(0¥R3). Let v =

Eg, [g;ﬂgg (u), then by uniqueness in Lemma 3.5.4,

VIRa) 00 = Pgﬁ,a],{b}E& (v]owrs)- (3.5.32)

Let v; = U‘R[La]’{b*} and vs = v|p Note that v|R[ = 0. By (3.5.32) and

(1,a],{bx+1}" 1,2],[bx,b]

linearity of Eg,,

VI Ry a0

_ pRa 0" Ry Ry 0" Ry 3.5.33
- PR[LaL{b}ER“IR[LaL{b*}<U1) T PR[l,al,{b}ER‘*IR[l,aL{b*H}<UZ) ( )

— Ry 0" Ry b«+1,b
o PR[l,a],{b}ER‘*[Ru,a],{b*}(Ul) T M[La} (v2).

Here, we used Definition 3.5.10.

]8“’ R

. . _ phe
By uniqueness in Lemma 3.5.4, vy = PR[I,a],{b*Jrl} Ro Lo R,

(u). Thus the image of

u under the operator (3.5.31) is v|r, , ,, — M[bl*’;“}l’b(w). Thus by (3.5.33), in order to
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prove the conclusion, it suffices to prove that the linear operator

R4 awR4
ur— P i )
Ri1,q) g0y B4 Ru,aJ,{b*}( 1)

is independent of V|R[1 A {on] "

To see this, note that Fg, is independent of V’R[l,a],{b*} by Lemma 3.5.4. On the
other hand, let Rs = R[j q)1,,], then by uniqueness in Lemma 3.5.4 again, we have

vy Eg, 15, 1}%235 (u). Since Ep, is also independent of Vg by Lemma

_ phRs
B PR[La],{b*} 1al,{bx}

3.5.4, the conclusion follows. m

Proof of Lemma 3.5.8. For each (s',t') € Ry g3y, let 5ffl’tl) denote the following

event:
Hu = Xu in R q_1],12,p—1]

ue#) =1 (3.5.34)

u(s,t) =0 on Rpia)1.2)

Ju(s, 1)) < (aV)" ) on Ry g1y

\

1
—5a1a 1

implies |u| > (aV) on a 155 fraction of R g b1

Claim 3.5.15. {gt(fl’t/) (s 1) € R[1,2],[3,b]} C & (R a)1p) for an > 200,

Proof of the claim. Assume Sff’t) holds for each (s,t) € Ry 34, We prove that
Euwr(Rp1a),n,)) also holds.

Given any u : Ry — R satisfying (3.5.15), let (s',t") € Rp g3, maximize
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(aV) 194 fu(/,#/)|. Then [ullp= (s , ;) = | implies

]

fu(s/, )] > (al7) 00,

Let @ = =4, then u satisfies (3.5.34) and thus |@| > (aV)"21% on a s fraction of

Rpap-1,. Hence |u] > (a‘_/)’(%m“ocl)“ on a 5 fraction of Ry g p-14- The claim

follows from «a; > 20C. O
Claim 3.5.16. If t' € {b— 1,b}, then P [Efj/’t')\ Ve = V’] =1

Proof. If t' € {b —1,b} and u satisfies (3.5.34), we claim that
[ulle Ry, oy gy < (@V)P1EH (3.5.35)

foreacht =1, - ,¢ — 1 and we prove (3.5.35) by induction. For ¢ = 1,2, this is true
since u = 0 on Ry 4,2 Suppose our claim holds up to ¢ < #' — 1, using equation

(3.5.9) on Ry g, and inductive hypothesis, we have
lu(s,t +1) +u(s 4+ 2,t + 1)| < [16 + V|(aV)>1 ) (3.5.36)
for s € [1,a — 2] with the same parity as t + 1. By (3.5.34),

|u(30,t+ 1)| S (aIV)IOC1(t+1—t/)
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for s € {1,2} with the same parity as t + 1. Recursively using (3.5.36), we have

lu(s, t + 1)| < s(16 + V) (aV)>) < (qV)5 =)

for any s € [1,a] with the same parity as ¢ + 1. Thus induction proves (3.5.35) and

Hu||f°°(R[1,a],{t/—2,t/—1}) < (a\_/)_

Using equation (3.5.9) on R q) #—1}, We have

lu(s,t') +u(s +2,t)| <16 + V](aV) > < (aV) 72 (3.5.37)

for s € [1,a — 2] with the same parity as t'. Since u(s’,t') = 1, using (3.5.37)
recursively, we have |u(s,t')] > 5 for any s € [1,a] with the same parity as t’. Thus

g8 holds since ¢/ € {b—1,b}. O

Claim 3.5.17. Suppose (s',t') € Ry o 3p-9. Let s” € {1,2} and by € {b— 1,b} both

have the same parity as t' + 1. Then there exist

1. operators Ay : EQ(R[LQHM/_”) — 52(3[1@]7{170}) and A, : EQ(R[LQHVHJ)]) —
C?(Rp a) tb}) which are independent of V|R[

1,a],{t'}’

2. vector v* € (2(Rp o) {0o}) which is independent of Vg,

1,a],{t'}’
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3. wvector Vi € R% with dy = |R1a) 413 — 1 defined by
do
Vo= V(" +2i—1,t)e (3.5.38)
i=1

where {e; : 1 <i < dy} is the standard basis of R®,
4. Ao : R™ — (2(Rp o) v+1y) defined as follows: for any (s,t' + 1) € Ry g p41}
and i€ {1,--- ,do},

(—1)3_52/_1 if s>s" and 1 <i< 54"
2
<(5(37t/+1), A0€i> = (3539)

0 otherwise,

such that the following holds.

For any u satisfying (3.5.34), there exists u* € £*(Rp o) qr+13) with
|u*]| < (aV)7?, (3.5.40)
such that

t'+1,b * ¥ *
UlRp o0y = M (W +A0(Ver)) + Ar(ulry o) H A2l Ry ) H07 (3.5.41)

Proof. Assume u satisfies (3.5.34). Denote Ry = Ry o)1, Let ug = ¢4y on 0" Ry,

Uy = U‘R[I,Q],[l,t’—l] and ug = u|R[1,2],[t’+1,b]' Then w is determined by u; and uy since we
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Figure 3.3: An illustration for tilted rectangles. Here, we have Ry = Ry 4 ¢ and
Ry = Ry 41,041 which are contained in Ry = Ry g1,

can decompose

Ulgwr, = uj + ub + ug, (3.5.42)
/ _ 70%R1 / _ 70%Ry
where v} = IR[l,zl,[l,t’—uul and uy = IR[l,zl,[t'H,b] ug. Thus

U= ER1 (u/1> + ERl (UIQ) + ERI (u0>

and

u]R[l’aMbo} (3543)
o R / R ! R
= PR[i,a],{bo}ERl (U1> + PR[i,a],{bo}ERl (UQ) + PR[i,a],{bo}ERl (Uo) (3544)
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We analyse each of three terms in (3.5.44) and will arrive at equation (3.5.41). More
specifically, we will derive the correspondence between terms in (3.5.41) and (3.5.44)

as follows:

LR B (i) = As(a) + M0,

2. Pflg[ll,a],{bO}ERl ('LL/2> = AQ(UQ),

3. Pg[ll,a],{bo}ER1 (U(]) =¥+ Mt +1, bOAo(V;/)

Here, Ay, A1, Ay, u*, v* and Vy satisfy the properties in the conditions of this claim.

The first term in (3.5.44): The strategy here is to apply Lemma 3.5.14. Note that

Eg, (u}) = P Eleg[“lfj]{m_n (uy). (3.5.45)

Ry
Ry a], (b} R,a), {00}

Denote Ry = Rpjq)1,041] (see Figure 3.3), using Lemma 3.5.14 with b, = ', we can

write

R1 OV Ry o t'+1,bo pRo 0% Ro
PR[lya]»{bo}ERl]Ru,z],u,t/fu = A+ M[l al PR[1 al, {t/+1} ER?IR[LQHM/,H' (3'5-46)

Here, A; : KQ(R[LQHM/,”) — €2(R[17a},{b0}) is a linear operator which is independent of

V‘R[l,a],{t/}' We claim that

O™ R,
1PE? oo Bradry alle < (V)™ (3.5.47)
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To see this, let v = ER2]]‘?;1;2[1 oy - We inductively prove that

vy (s,1)| < (aV)PLE1) (3.5.48)

for each (s,t) € Rpqpv—1- For t = 1,2, this is true since v; = 0 on Ry 1,9
Suppose (3.5.48) is true for ¢ and ¢ + 1 and suppose t + 2 < t/, using inductive

hypothesis and (3.5.9) on Ry q),1¢41}, we have

lo1(s,t 4+ 2) +v1(s +2,t + 2)] < [16 + V|(aV)>C10H+171)

for each s € [1,a — 2] with the same parity as ¢. Since by (3.5.34),

|U1(817 t + 2)| S ((lV)lOCl(t+2_t/)

for s; € {1,2} with the same parity as t + 2. We recursively have

i (s, t + 2)| < s(16 4+ V)(aV)PCr 1)

IN

(aV7)Pr2=r) (3.5.49)

for each s € [1, a] with the same parity as t+2. Thus by induction we have |vy(s,t)| <

(aV) =5 for (s,t) € Ry pnp—1)- Finally, since vy = 0 on Ry o) ¢,¢#41], We have

||Ul||€°°(6wR[1,a],[z’—2,t/+1]) S (a‘_/)_SCI‘
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Thus (3.5.47) follows from Lemma 3.5.6 and C; > 10.

In conclusion, by (3.5.45), (3.5.46) and (3.5.47),

PR By (uh) = Ay(un) + M (), (3.5.50)
Ro 0" Ry .
where u” = Py Rt a),qvf +1}ER2[R[1,21,[1¢/_11 (u1) with
[u]l2 < (aV) 7" (3.5.51)

The second term in (3.5.44): We have

R
PR[i,a],{bO}ERl(UIQ) = As(uy) (3.5.52)
R 0¥ Ry
where Ay = PR[1 a0y R ARG o i1 . We claim that A, is independent of V|R1 e
To see this, let v, = Eg, IS (ug). Since I§ (ug) =0 on OR n, We
2T TR Ry 01,/ 41,0] Ry o) 11741,0) 2 (L,a],[1,t']s

have v, = 0 on Ry g1, by Lemma 3.5.4. Using equation (3.5.9) for v, on Ry g 13,
we get

a8, 8 + 1) = (=1)F ua(s", ' + 1) (3.5.53)

for s € [1, a] with the same parity as s”. By (3.5.53) and U2’R[1,a],{t/} = 0 and Lemma
3.5.4, the linear transform

* .
I7 2 g = V2low Ry oy
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is independent of Vg . Note that

R ’
_ [1,a],[t",b]
b2 R[lva]v{bo} - R[l,a],{bo} E[l,a],[t’,b}(U2|8MR[1,Q],[t,’b])

_PR[l,aJ,[t',bJ

- R[l,a],{bo} E[l’aL[t/?b} ]* (U,2) N

By Lemma 3.5.4, Ejy ) i is independent of V\R[l e} Since

A, = PR[I,a],[t’,b

] *
Ri1.a), (b} E[La]{t’,b][ )

thus A, is independent of V| Ry a1ty

The third term in (3.5.44): Let vy = Eg,(ug). The strategy here is to express

UO|R[1’G]’[H¢,H] as a function of V. We have

VOIRy o)1 —1) = Epa) 1] (uolawRu,a],[l,tuu) =0. (3.5.54)

Using equation (3.5.8) on the segment Ry ,—1],1#—13}, by (3.5.54), we have

vo(s, 1) +vo(s +2,8) =0

for each (s,t") € Ry q—9),q13- Thus recursively from vy(s’,t') = 1, we have

vols, ) = (—1)°3 (3.5.55)
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for (s,t') € Rjyq ¢} Using equation (3.5.8) on the segment Rjp,_ 1]}, We have

UO(S + 17t, + 1) + UO(S - 17t, + 1) = (V(Sa t/) - )‘0 + 4)’00(8, t/)

for each (s,t') € Rjgq-1){1}- Recall s” € {1,2} has the same parity as ¢’ + 1. Then

recursively from vy(s”,t' +1) = 0 and (3.5.55) we have

Uo(Sl,t/ + 1) (3556)
—(—1)" Yo (V(st) = Xo+4) (3.5.57)
s;,sﬁisosdl2
31—9”
5175/7 4 — — 5" 5175/7 2
—(-1)"7 :{ A°>2(51 ) + (DT Y V(s 120 -1,t)  (35.58)
=1

for any s; € (s”,a] with the same parity as s”. By (3.5.38) and (3.5.39), we can
rewrite (3.5.58) as

= v, + Ao(Vy), (3.5.59)

Vol Ry g

where v, € (*(Rp 4 r+1}) satisfies

a=s/=1 (4—=X)(s—s")

ve(s,t'+1) = (—1) 5 ,

for s € [1, a] with the same parity as s”. Hence we have

= U+ A () (3.5.60)
R

Yo Ry ap e e 41) [1,a],{t'+1}
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where ViR, oy = U and vi(s, 1) = (—1)5_273/ for s € [1,a] with the same parity

as s’
Denote Ry = Ry a5, (see Figure 3.3), then

_ PR Ov Ry
Y0lR 1,0}, (o) = PR[l,a],{bo} Ro R[l,a],[t’,t’+1]vo Ryl 0411

Together with (3.5.60), we have

V0| Rt oo

= pko Eg 12" 10 v pho Er I2°%0  Ay(V;
Ri1,a],{bg} R0 R[l,a],[t',twu( ) F Rital (v} B0 By g qer 413 o(Ve) (3.5.61)

o Ro O% Ry t'+1,bo s
- PR[l,a],{bo}EROIR[I,a],[t’,t’+1] (/U**> + M[La] AO(‘/t,)

= 0"+ M Ao (V).

Here, we used the Definition 3.5.10 of M, [tllzll P and in the last equation we denoted

« _ DRo " Ry
vo= PRu,aJ,{bo}EROIR[LaL[t',t’HJ (V)

which is independent of V| Ry .0y by Lemma 3.5.4. In conclusion,

Ry * t'+1,b 7
PRM{%}ERI(UO) = 00| Ry oy = U M[L*a] " Ag(Viy). (3.5.62)
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Finally plug (3.5.50),(3.5.52) and (3.5.62) into equation (3.5.44), we have
Ry ey = Mol (" + Ag(Vir)) + Ar(ua) + A(up) +v* (3.5.63)

which is equation (3.5.41) and our claim follows. O

Now let ¢, < %. Fix (s',t') € Ry g,i3-2)- Since O is (¢4, —)-sparse in Ry )14,
10N Rpyapqy] < caa < 1107. (3.5.64)
Pick by € {b—1,b} and s” € {1,2} with the same parity as ¢ + 1. Denote
O, ={(s,b0) : (s = 1,t') € ©} N Ria0—1] {b0}- (3.5.65)
For any S C Ry q—1] {be}, let Sés/’t/) denote the event:
(3.5.34) implies |[ul (s > (aV) 5919, (3.5.66)
Claim 3.5.18. For any a > 107, we have

ﬂ {8és',t’) 05 C R[4,a—1},{b0} \ O., |R[1,a},{b0} \ S| = La/loﬂ} C gt(:,’t/)‘

Proof of the claim. Assume the event Et(fl’t,) does not hold. Then we can find u €
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EQ(R[LG]’[U)]) satisfying (3.5.34) but
1{(s,t) € Ry ap o1 : |uls, )] > (aV)™ 1} < 10 %.
Hence by (3.5.64),

0. U{(s,t) € Rpa)qnoy : [u(s, )] > (aV) 1}
<10 "a+ 107 %

<107%a — 5.

Thus there is S C Rpua_1),qp} \ O« such that |Rpq 0 \ S| = [a/10°] and

Jullee(sy < (aV)~@1e. This implies

||U||g2(s) < a(a\_/)_‘““ < (aV)‘%“la.

Hence Eésl’t/) does not hold. O

Claim 3.5.19. For large enough a, P [8ésl’t’)| Ve = V’} > 1 — exp(—a/50) holds for

any subset S C Ry a—1),po} \ O« such that |Rpy a1y \ S| = [a/10°].

Proof of the claim. Denote Ry = Ry 4 1. It is sufficient to prove that

P [55"'5') Veutr\ry )| = 1 — exp(—a/50) (3.5.67)
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for any S C Rya—1){5} \ O« such that |Rp 4 03 \ S| < a/50. We pick an arbitrary

So C R[4,a71],{b0} \ O, with

| Rt 160} \ Sol < a/50. (3.5.68)
Let
So={(s,t" +1) : (s,b0) € So} C Rpga—1) 413
and
Mg, = Pg)[l’a]’{bo}Mﬁﬂ}l’bolg)“‘“]‘“'“}.
By Corollary 3.5.13,
MG < a(2(bo — ' + 1)V)*e < (aV)?e. (3.5.69)

Let dy = |Rpa v+ — 1 and {e;}%2, be the standard basis in R%. For any S C
{1,--- ,dp}, let Ps be the orthogonal projection onto the span of {¢; : i € S} and Pg

be its adjoint. Denote

So={(s—=s")/2: (s,t' +1) € S} C{L,--- ,do}, (3.5.70)
and let
Ag, = psi[l,a],{t/mAOPgo

where Aj is defined in (3.5.39). By (3.5.39), Ag, can be regarded as a triangular
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matrix and by simple calculations, we have
[Ag |l < a. (3.5.71)

R ’ R /
Denote A/ =7 [1,a],{t'+1} [1,a],{t/+1} c _ . . .
R[l,a],{t’+1}\56PR[l,a],{tUrl}\Sé and SO {1’ ’dO} \ SO Then we can de

. . R ’ R ’
compose the identity operator on *(Rp o (#+13) by IV = A’ + [S(,)“’“]’{t +1}PS(,)“’“]’“ i

and the identity operator on R% by 1) = Pgo Ps, + P;SPSS‘
Suppose u satisfies (3.5.34). By Claim 3.5.17, there exists u* € (*(Rp g {¢+1})

with [|u*]] < (aV)~® and we have

t'+1,b * ¥ *
u Ri1,4),{bg} = M[l:;] O(u +A0(V;‘/>> +A1(U|R[1,2],[1,t’—1]> +A2(U’|R[1,Q],[ )+U (3-5'72)

t/+1,b]

such that Ao, A1, Ay, v* are all independent of V| Ry and vector Vy, € R% is

At}

14 Ry o {t,}—measurable. By the argument above, we can expand the first term in

(3.5.72) (or (3.5.41)) as follows:

Mt’—l—l,bo (u* + AO(‘Z&’))

Ll
=M IO+ A(V)

:Mturl,bo (A' + IRl[l,a],{ﬂH}P;Z[La],{ﬁu}) (u* + AO(V;/)) (3.5.73)

[1,q] 5

At Lbo Aty % > t'+1,b0 1801,a], {1/ 41} pIL,a), {¢/+1} /%
=M A (o Ag(Vir)) + My T ) Py, (u*)

—

t'+1,b0 781,a], ¢/ +1} LL,a],{¢/+1}
+M[1,a] IS() PS() Ao(Vi),
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and the last term in the last equation of (3.5.73) can be further expanded:

41,00 781,01, ¢/ +13 pRa) {41} >
Mg P, Ao(Vi)

t'+1,b0 1801,a],{¢/ 41} pE1,a],{¢/+1 2) (17
—M 0156[ ]{H}PS()[ Ht+}A0[()(Vt,)

[La]
t'+1,b0 78¥1,a],{¢/ i N
:M[l,a] 0]56[1 1.4t +1}P56[1 Y 4 (P;OPSO + P§8P85> (Vi) (3.5.74)

t'+1,bo 81,0, {t/+1} =
:M[l,a] O]sg) ’ Asgy Ps, (V)

'+ 1,00 pB1a) (/413 pBa 41} t %

Plug (3.5.73) and (3.5.74) into (3.5.41), after projecting onto Sy, we have

U|So

—1 pl,a) e 41 * ¥
:MSOASO (Asolps(’)[ e }(u ) + PSO(‘/;/))

Ry - Ry . -

+PSO[1, L{bo}M[tl’;]l,boA/(u* + Ao(V) + Msopsé[l’ ]’{t/H}AoP;gPSg(Vt’) (3.5.75)
R{1,a), (b} R{1,a), (b0}

+PSo “ A <u’R[1,2],[1,t’—1]) + PSo ’ A2<U|R[1,2],[t’+l,b]>

_H}*’So-

Let I' C £%(Sy) be the direct sum of the ranges of the following four operators appeared

in the third and fourth lines of (3.5.75):

R

[Lal.{bo} 3 st'+1,b0 4/ R0,/ 41) 1 R1,a], {60} Ry a1, (b}
PS M 704} A7 MSOP56 AOPSSPSS, PSO Al, PSO AQ.

0 1

Let us denote

[ —v¥g, = {—v*|s, +x:2 €T} C 2(S)
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and define the event &y as

diSt<P$0(‘7t’)7 (MSOASO)_I(F - U*lso)) >

| <

a ! (3.5.76)
where dist is the Euclidean distance. We claim that £z C 5éf)/’t/) by choosing a; >

15C (recall definition (3.5.66) of Eésl’t/)). To see this, assume £y holds. (3.5.75)
implies
[l ez so)

. — R al,{t * e *
> dist (MSOASO(AS;PS{)“‘ M (%) 4+ Psy (Vi) T = v*[g,)

— — : — R al, {t/ * ¥ — *
> ||(MSOASO) 1” 1dISt (Asolps(’)[L H H}(u )+P30(V;f’)v (MSOASO) l(r -v |So))

7\ — a q; — Ri1,a), (441 * 7 _ *
> (CLV) i dist (ASIP56[ b }(u )+PSO(‘/15’)7(MSOASO) 1<F_U |So))'

(3.5.77)
Here, we used (3.5.69) and (3.5.71). By (3.5.40) and (3.5.71), we have

HA?PR“’“]’“'“}

o Psy (W)l < 145l < a(aV)™ < a™*
Thus (3.5.77) further implies

[ll(sy) > (aV) 4% (dist (Ps, (Vir), (Mo Asy) (T — v*]s,)) —a™*)

(3.5.78)
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By letting a; > 15C, Eyist (or (3.5.76)) implies

[ullezsy) > (aV) 74 (%a_l - a_4) > (aV) %% > (aV) 509,

This proves our claim that £y C 5(92’,1:’)' Thus in order to prove (3.5.67) with S = S,

it suffices to prove

P |:Sdist‘ V‘@u(Rl\R[lya]y{t,})] > 1 — exp(—a/50). (3.5.79)

To see this, we first prove an upper bound for the dimension of I'. The ranks of opera-
tors Pg) (hel-tto} A1 and P;z el tho} A, are less than b since the dimensions of their domains
are less than b. On the other hand, the ranks of operators MSOP;Z“’“]’“/“}AOP%PSS
and P;E”’“]’{bo}M[qZ]l’boA’ are at most a/50 since we have |S§|, | Rp.q),v+13 \ So| < a/50.
Since b < a/10, the dimension of I is at most b+ b+ a/50 + a/50 < 2a.

Together with Claim 3.5.17, these imply that (Mg, Ag,) (' — v*|s,) C R is an

affine subspace with dimension at most %a and is independent of V| Riy a0y On the

At

other hand, since Sy C Ris,a—1) {5} \ O+, by definition (3.5.65) of ©, and equations

(3.5.38) and (3.5.70), Ps,(Vy) is independent of V|o. Moreover, by (3.5.68), we have

2 1
&2 ‘So‘ 2d0-@/502 ga+%a.

Thus by Lemma 3.1.6, conditioning on V'|gu(z,\ Ry o , with probability no less than

At'Y)
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1— 220" > 1 — exp(—a/50), we have

diSt<P$0(‘7t’)7 (MSOASO)_I(F - U*lso)) >

| <

a—l

which is (3.5.76). Hence (3.5.79) holds and Claim 3.5.19 follows.

Now, by Claim 3.5.18 and Claim 3.5.19, and letting ¢4 be small enough,

P [(sff“t'>>c| 1% |@]
<

> P(ES) | Vi)
SCR4,a-1],{by} \Ox
|Ri1,a1, 1003 \S|= | a/10°

>

exp(—a/50)
SCR4,a—1],{by} \Ox
[R(1,a], (b0} \S|= | a/10° |

< (jajion) e/

< exp(—2c4a)

<

for any large enough a.
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Finally, by Claim 3.5.15 and Claim 3.5.16,

P [Eir(Rpa )| Vie = V']

>1- Y P[(e8) [ Vie=V]

(8", )ER 2),13,8]

> 1 — bexp(—2c¢4a)

> 1 — exp(—cya).

Our conclusion follows. O
Lemma 3.5.20. There are constants ay > 1 > ¢5 > 0 such that, if

1. integers a > b > ag with 100 < a < 60b,

2. N €[0,8], V>2,

3. © CZ* is (cs5,—)-sparse in Ry a4,

4. V0 —={0,V},

5. Eni(Rpq ) denotes the event that,

A= Xo| < (aV)—oze

Hu = \u in R[Q,afl},[zb*ﬂ (3 5 80)

lul <1 on Ry e

\ luf <1 onal—10"7 fraction of Ry q)p-1.4

implies [u| < (aV)*2* in Ry a1
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then P [5m‘(R[1,a},[1,b})’ Ve = V’} > 1 —exp(—csa).

Proof. Denote Ry = Ry 41,5 Set ¢s = ¢4 where ¢4 is the constant in Lemma 3.5.8
and as to be determined. We prove that &, (R;) C &,;(Ry) where &, (R;) is defined
in Lemma 3.5.8. Suppose event &, (R;) holds and u satisfies (3.5.80). By Lemma

3.5.4, there is u; : Ry — R such that

Huy = Auy in R[Q,a—1],[2,b—1]
up =u on Ry )12 (3.5.81)

Uy = 0 on R[LQ]’[g’b].

\

By Lemma 3.5.6, ||u1]so(r,) < (aV)? since ||ug]|pe(gwr,) < 1. Let ug = u —uy, then

ug| < 1+ (aV)“1? (3.5.82)

onal— 1077 fraction of R q),p—1,4- Define uz : Ry — R as follows:

}I'u/3 = )\OU,3 in R[Q,a—l],[zb_l]

Uz = 0 on R[17a]7[172] (3583)

\ ug = us on R 913,
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By Lemma 3.5.7,

Hu?, - U2||é°°(R1)

< (aV) % gl e @ ) |A = Aol
(3.5.84)

< (aV) 2072 |ug | oo oy

< (a‘_/)_zma||U3||€°°(R[1,21,[3,b])’

as long as ag > 2a; + Cy. By the definition of &,.(R;),
|us| > (av)ialauu?ﬁHZ(’O(R[LQ],[

3,5])

on a 1079 fraction of Ry 4 -1 Thus by (3.5.84),

‘u2’ > ((a‘?)fala - (av)72ala)Hu3H£°°(R[1,2],[3,b]) > (av>72ala”u3Hf°°(R[1,2],[3,b])

on a 107% fraction of Ry q)p-14- By (3.5.82),

(aV) 721 Jug| oo Ry 5y ) < 1+ (@V)Y

1,(3,0]

and thus

I/ 77\ C1b+2
Hu?HE""(R[l,Q],[s,b]) = Hui’)”Zw(R[l,g]’[&b]) < (GV)QO”G + (aV)Crbtzee,
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Since up = 0 on Ry q)1,9, by Lemma 3.5.6, we have |[us||s(r,) < 2(aV)?bF2e10,

Finally,

[wlleoo(ry) < [Juallesery) + luallese(ry)
S (aV)C1b + 2(@‘_/)201b+2a1a

< (a‘_/)aza

as long as ay > 20y 4+ 3C4. Thus &, (R;) C &,:(R1) and our conclusion follows from

Lemma 3.5.8. O

3.5.4 Growth lemma

Definition 3.5.21. Given a tilted square Rjq, q,),[01,0,] and integer k& € Z*, we define

(k—&-l)al—(k—l)az—‘ 4, = {(k+1)a2—(k—1)a1J

kR[al,ag],[bl,bg] to be R[ag,a4],[b3,b4] where a3 = { 3 5

by — [w} and by — LwJ

For a tilted square Q, the following lemma allows us to estimate ||u|| ro(20) from an
upper bound of |[ul|y<(g), provided the portion of points with [u| > 1 is small enough
in 4Q. The proof is similar to that of [DS20, Lemma 3.18] and [BLMS17, Lemma

3.6].
Lemma 3.5.22. For every small € > 0, there is a large o > 1 such that, if
1. Q tilted square with ((Q) > «,

2. © C 72 is e-sparse in 2Q),
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4R[1,a),01,a]

Figure 3.4: An illustration of covering argument.
3. X €10,8] and V > 2,
4. V0 —={0,V},

5. £5%(Q, 0) denotes the event that,

A= ol < (UQ)V) 1@
Hu = M in 2Q

(3.5.85)
ul <1 in 3Q

lu| <1 in a1 — ¢ fraction of 2Q \ ©

Ve

implies |u| < (L(Q)V)*Q in Q,

then P [5;5(@, 0)| Ve = v'} > 1 — exp(—el(Q)).

Proof. We identify Q with 2R 1,4, Define Ri = Rjg .4, B2 = Bpa)ja+1.2q]

Rs = Rpy_ao1,ay B4 = Rpai—a0, B5 = Rpat1,2a)[1,0)s 6 = Rjat1,2a],ja+1,24, 7 =
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Rpi—a0),jat1,2q B8 = Rj1—a,0),[1-a,0] and Ry = Ria+1,24),[1-a,0]- See Figure 3.4 for an

illustration. For some large a and 1 < 1,5 <9, let £/ (7, j) denote the event that

.

A= Xo| < (aV)7oe

{ (3.5.86)

\ [{(s,t) € Rj : |u(s,t)] > 1}| < 100ea?

implies |u| < (aV)2% in R;.

Claim 3.5.23. Let S = {(1,2),(1,3), (1,4), (1,5), (2,6), (3,7), (4,8), (5.9)}. Then we

have (i jyes €ealis J) C €7 (2R, O).
Proof of the claim. The strategy here is to use a covering argument from elementary

E!.(i,7) holds and u satisfies (3.5.86). Our goal is to

geometry. Assume event ﬂ(ij) csEta

prove |u| < (£(2R;)V)*CF) in 2R

Since © is e-spares in 4Rp 41,4 and |u| < 1in a 1 — ¢ fraction of 4Ry o 1,4 \ ©,
we have [{(s,t) € 4Rpqp,q ¢ |u(s,t)] > 1}| < 100ea®. Then the event &,(1,2) N
EL,(1,3) N EL(1,4) NEL(L,5) implies |u| < (aV)2% in |-, R;. Finally, the event
E (2,6)NE (3, 7)NE (4,8 NE (5,9) implies |u| < (aV)* in Ui<j<o - Since

2R, C U1§j§9 R;, the claim follows. ]

Denote &/,(1,2) by &, and let S be the set in the Claim 3.5.23. By Claim

3.5.23, it is sufficient to prove that P [£/,(,j)| V]e = V'] > 1 — exp(—¢a) for each
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Rt a),1br—1,b 4]

4R 4, 1,4]

Figure 3.5: A schematic for the proof of Lemma 3.5.22

(7,7) € S. By symmetry, we only need to prove for the case where (i,7) = (1,2), i.e.
P [€,(1, 2)‘ Vle=V'] >1— exp(—¢a).

By Lemma 3.5.20 and a union bound, the event

Eni = ﬂ Eni(Rp,a) [ed))

[c,d]C[1,34a]
so=d—c=15

satisfies P[€,:|V|e = V'] > 1—exp(—csa+C log(a)) where ¢s is the constant in Lemma
3.5.20. It suffices to prove that, for every small ¢ < ng’,, there is a large o such that
Eni C E(1,2). Assume &,; and (3.5.86) hold, our goal is to prove |u| < (aV)2*® in

Ry = Ry ) [a41,2q]-

Claim 3.5.24. Suppose ¢ < 107'2. Then there is a sequence by < --- < bys € [a, 2a—2]

such that

1. b():a
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2. 625226L
3. G—Bagbk+1—bk§4—%af0r0§k<25

4. Jul <1 onal—10"7 fraction of Ry 4  for 0 <k <25

brt1—1,bp11

Proof of the claim. Let by = a. For each k € {1,--- 25}, let interval

PO
r=1a 40a,a m al .

Since |u| > 1 on at most 100za® points in Ry1,4),1,24), We have
#{(S,t) c R[La]’{]k : ‘U(S,t)‘ > 1} < 1048 |R[17a]7jk|

for each kK = 1,--- ,25. The pigeonhole principle implies that, there is b, € J, N Z

such that

#{(5,1) € Rua) -1 © |uls, t)] > 1} < 10%¢ ‘R[l,a],[brl,bk} )
Since € < 1072, we have

#{(5,1) € Rua)pe—1 : u(s, t)] > 1} < 1077 ‘R[l,a],[brl,bk]‘

for each kK = 1,---,25. On the other hand, by, — by € [%a, %Oa] C [%a, %a] for

0 <k < 25. Finally, bos > a + %a > 2a and our claim follows. O
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With the claim in hand, we apply &£.i(R1,q],[5,—1,6,,]) to conclude

||u||£OO(R[1,a],[bk71,bk+1]) S (aV)OQa(l + ||u||ém(R[1,a],[bk71,bk]))

for k=0,---,24. Since |[ulle=(r, 4. < 1, by induction, we obtain

)[1,a]

= 1
||u||£oo(R[1’a]7[1y2a]) < 225(av)25a2a < (aV)?O‘a

by setting a > 100cs. O]

3.5.5 Covering argument

The proof of Lemma 3.3.5 below is a random version of [BLMS17, Proposition 3.9].

Definition 3.5.25. Given a tilted square Rjq, 4,),p,,0,] With ag —a; = by — by > 0, we

a + as b1+b2 X ”"2’
([ [*57] +o) <

the center of Ria, ay),b1,5,). Here, i € {0,1} such that |“$92| — | 2422 ] —j js an even

call the point

number.

Proof of Lemma 3.3.5. Let o > 1 > ¢’ > 0 be a pair of valid constants in Lemma
3.5.22. Let

g1 < 10730 (3.5.87)

and suppose € < 1. We impose further constraints on 1, a during the proof.
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Assume without loss of generality that @ = @,(0). Given integers |si|, [t1] <

10700(Q)z and |ss], [t2] < €€(Q)3, let Qq, 4.4, be the tilted square with center
(100 [£@)F | 51 +2 [ 52,100 [€(@Q)F | 1+ 2 [= "] 12)

and length being any integer satisfying

(48) 7" < UQsy by 50.00) < (20)71 (3.5.88)
Then for different pairs (s1, 1, $2,t2) and (s, t], s5,t5),
Qsy 150,00 N Qut it spr = 0 (3.5.89)
Meanwhile, for any s,,t, € [ €€(Q)% E(Q)%],
(3.5.90)

diSt(Qsl,tl,Sg,tQ) Qs’l,t’l,sz,tg) > 50€<Q>%

when (s1,t1) # (s],t]). Let

winN
—

gjé’tl’smtg = m{ga ' Q 2 Qs1 t1,52,t25 (Q ) < K(Q)

253



By Lemma 3.5.22 and (3.5.88), for each s1, 11, S, to,

9
et Vie=V] 21— 3 10Pexp(~'l) > o5 (3.5.91)

1>(4e)~1

by choosing ¢ < ¢; small enough. Here, we used the fact that for any integer [,

the number of tilted squares with length [ that contain Q, 4, s, i less than 1072

Note that, for each tilted @', £2(Q’, 0) is V|ag-measurable. Thus for any sh,t) €

[ el(Q)3, E(Q)%], by (3.5.90), we have

{Emsth s Jsi], || < 107°0(Q)% }

is a family of independent events. We denote by 55%’75,2 the following event

at least half of events in {Ej;’tl’sé’té ssaly ] < 10_10€(Q)§} happen.  (3.5.92)

Then by (3.5.91) and a large deviation estimate,

P [ggg’t’z\ Ve = v’} > 1 — exp(—cl(Q)3) (3.5.93)
for a numerical constant c¢. Let

€€$

=2« [sal, [ta] < 6(Q)} N[ WELT(Q,0) : UQ) > UQ)5,Q € Q).
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Then by Lemma 3.5.22 and (3.5.93),

PlE| Ve = V'] 21— exp(—c0(Q)5 + Clog(Q)) > 1 — exp(—c"((Q)?)

for constants ¢, ¢ depending on &’. Hence, it is sufficient to prove that

Eex CEMQ,O).

Thus we assume &, holds and u satisfies (3.3.4). Our goal is to prove

lull e 1) < (UQ)V)D. (3.5.94)

Let Q denote the subset of all Qs, ¢, s,,’s such that E511152%2 happens. Then by

definition of &, and (3.5.92), we have

19| > 107*e20(Q)*. (3.5.95)

Claim 3.5.26. For any Qs 45,1, € Q and Q" C Q with Q" O Qs, 4, 50,1, we have

EXE(Q",©) holds.

Proof. If £(Q") < £(Q)3, then £ttt  £9< ()" ©). Otherwise,

M2 (@,0) : 6Q) > ((Q)F. Q' € Q} € £2°(Q". O).
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The claim follows from the definition of &,,. ]

Let
={Q € Q:3Q" C Q such that Q" 2 Q" and O is not e-sparse in Q"}.

Write Q,, = {QEQ :1 <i < Ki}. Foreach 1 < i < K3, choose Qg?m C @ to be a
tilted square in which © is not e-sparse and Qsp C Qspm By Vitalli covering theorem,

there exists J' C {1,---, K1} such that

Qspm lep?m = @
for each i; # iy € J' and

QY. i€ '}
_100| U{Qspm 1<i< K} (3.5.96)

Since O is e-regular in @,

QW -ie T} <et(@Q).

Thus by (3.5.96), |U{Q%) : 1 < i < Ki}| < 100e((Q)% Note that by (3.5.89),
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{QY) 11 < i< K} are pairwise disjoint. Thus by (3.5.88),
K, <10%%0(Q)*. (3.5.97)
By choosing e < 1072, (3.5.95) and (3.5.97) imply
10\ Q.| > 10722%4(Q)>. (3.5.98)

Now for any @' € Q\ Q,, and any Q" C @ with Q" D @', © is e-sparse in Q”. In
particular, © is e-sparse in Q" and by (3.5.88) and Definition 3.3.3, © N Q" = (). Thus

by (3.3.4),

’{M >N J{Q: Q€ 2\ Qyu}| < £21(Q). (3.5.99)

Equations (3.5.99), (3.5.89) and (3.5.98), together with ¢ < 10720, guarantee that

there is Qgooq C (Q \ Qsp) With
|Qgooa| > 1072°620(Q)? (3.5.100)

such that

HUHgoo(Q/) S 1

for each Q' € Qgopa-

We call a tilted square Q' C @ “tamed” if the following holds:
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1. the center of )" is in % ,
2. Q@ D Q" for some Q" € Qgood,
3. Q' C Q" C (@ implies O is e-sparse in Q"

4 lufle @y < (HQHV)HA@).

Let Qy, be the set of tamed squares. Then Qgooq C Qi We call Q' € Qy, maximal
if any Q" € Qy, with Q" D Q' implies Q" = Q'.

Claim 3.5.27. Suppose mazimal Q' € Qi with £(Q') < L0(Q). Then |u| > 1 on at

least a €' fraction of 4Q)" \ ©.

Proof. Since Q"’s center is in %Q, U(Q") < 5:0(Q) implies 4Q" C Q. Assume |u| < 1
on a 1 — ¢ fraction of 4@’ \ ©. Since Q' D Q" for some Q" € Q, by Claim 3.5.26,
EX¥'(2Q),0) holds. Moreover, Q' containing some Q" € Qgo0q implies © is ’-sparse

in 4Q" and thus £%°'(2Q’', ©) implies

lulle= gy < UQIVY**MOUL+ fJulle=(@)) < (L(2Q) V),

as long as a > 10a/. Thus 2@’ is also tamed and this contradicts with the maximality

of Q. H

Write Qgooa = {QW : 1 < i < Ky} and by (3.5.100),

K, > 10722%(Q)>. (3.5.101)
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For each 1 < i < K», pick a maximal Q%)ax € Q,, with Q¥ ¢ Qﬁ,?ax. Assume

1

UQu) > 570(Q) (3.5.102)

for some 1 < ig < Kj. By definition of Qy,, the center of Q,(f{;)x isin %Q and (3.5.102)

(@0)

implies 100@ C Qmaz- Hence

_ (i9) _
el 20y < Null i), < (HQUL)V) @) < (£(Q)V) P
(100 ) 14 (Qmaa:)

and our conclusion (3.5.94) follows.

Now we assume /( n?ax) < L0(Q) for each 1 < i < K, and we will arrive at

contradiction. By Vitalli covering theorem, there is J” C {1,--- , K3} such that

for i1 # iy € J” and

> 14Q0, |

iceJ”

1 | | (3.5.103)
>— || {4QW) 1<i<
—100’ {4Qmax 1<:i< KQ}‘

—1oo’U{Q 1 1< < Ko)l.
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By Claim 3.5.27, for each 1 < i < Kj, |u| > 1 on a & fraction of AQ\ e \ ©. Thus

{lul > 13\ O] 2" > 4Q50,. \ €] (3.5.104)
ieJ//
1, )
255 Z ‘4Qmax| (35105)
ieJ"”
1 .
> o55€l J{QW 1 <i< Ko} (3.5.106)
1
2%5%(45)—2 (3.5.107)
>107£"0(Q)2. (3.5.108)

Here, (3.5.105) is because © is e-sparse in AQ\ e (3.5.106) is due to (3.5.103);
(3.5.107) is due to (3.5.88) and (3.5.89); (3.5.108) is due to (3.5.101). However,

by (3.5.87), (3.5.108) contradicts with |[{|u| > 1} \ ©] < £30(Q)? in (3.3.4). O
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