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ABSTRACT

STUDY OF NASH EQUILIBRIA IN BLOCKCHAIN VOTING SYSTEMS

Alon Benhaim

Brett Falk

In the first part of this thesis we analyze the three most common blockchain committees

selection strategies: lottery, single-vote and approval voting, where voters can “approve” of

any number of candidates. We first show that all these mechanisms converge to optimality

exponentially quickly as the size of the committee grows. Approval-voting requires that

even honest voters act strategically, we characterize different approval voting strategies and

we show that although finding the optimal approval voting strategy is extremely complex,

almost any approval voting strategy outperforms the single-vote mechanism enforced on the

majority of blockchains. In the second part, we investigate a blockchain governance model

where a group of n voters must choose between two collective alternatives. As opposed to

the usual voting system (one person – one vote), we propose a voting system where each

agent buys votes in favor of their preferred alternative, paying the m-th root of the number

of votes purchased. Its novelty relies on allowing voters to express the intensity of their

preferences in a simple manner. We provide a rigorous comparison of the utilitarian welfare

between Regular Voting (m = 1) and Quadratic Voting (m = 2). We present closed form

equilibrium solutions to the 2 voters and 3 voters games. In addition to characterizing the

nature of equilibria, one of our main result demonstrates that the normalized utilitarian

welfare of the mechanisms tends to one as the population size becomes large.
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PREFACE

This thesis is divided into two parts, the unifying theme being the analysis of optimal

strategies in voting games. Theorems from game theory and probability theory like Chernoff

bound are used throughout, and each part is intended to be self-contained. In particular,

each part has its own introduction. In the first part (Chapter 1), we analyze the three most

common committees selection strategies: lottery, single-vote and approval voting and show

they are converge to optimality exponentially quickly as the size of the committee grows. We

provide an expression for the probability of selecting an honest committee in the approval

voting setting. We then continue to characterize the different approval voting strategies and

compare them with respect the probability of selecting an honest committee.

In the second part (Chapter 2), we characterize the nature of Nash equilibria of a blockchain

governance model where a group of n individuals must make a binary choice. We compare

the mechanisms of RV and QV where agents buy votes (in favor of their preferred binary

choice), paying the exact and square of the number of votes purchased, respectively. We

demonstrate that the utilitarian efficency of the mechanisms tends to the same value as

the population size becomes large. The results obtained in this thesis naturally lead us

to a few questions. One is, how to relate the quadratic voting in the committee selection

setting. The other is extending our model to the multi-choice setting and allowing non-

discrete votes. All of the work is joint with my advisor Brett Falk and his colleague Gerry

Tsoukalas, Sections 1.4 to 1.6 and 2.3 to 2.5 are my main contribution.

xi



CHAPTER 1

Committee-based consensus in blockchain systems

ABSTRACT

In the high-stakes race to develop more scalable blockchains, some platforms (BSC, Cosmos, EOS, TRON,

etc.) have adopted committee-based consensus protocols, whereby the blockchain’s record-keeping rights

are entrusted to a committee of elected block producers. In theory, the smaller the committee, the faster

the blockchain can reach consensus and the more it can scale. What’s less clear, is whether this mechanism

ensures that honest committees can be consistently elected, given voters typically have limited information.

Different voting blockchains use different mechanisms for selecting committees, and in this work we ana-

lyze the three most common selection strategies: lottery, single-vote and approval voting, where voters can

“approve” of any number of candidates. We first show that all these mechanisms converge to optimality

exponentially quickly as the size of the committee grows. Approval-voting requires that even honest voters

act strategically, we characterize different approval voting strategies and we show that although finding the

optimal approval voting strategy is extremely complex, almost any approval voting strategy outperforms the

single-vote mechanism enforced on the majority of blockchains.

Keywords: Approval Voting, Blockchain Consensus Protocols, Blockchain Economics, Token Voting,

Committee-Based Consensus, Delegated Proof of Stake, DPoS, Stake-Weighted Voting.

1.1. Introduction

Permissionless blockchains face a challenging problem: How can anonymous/untrusted de-

centralized agents all agree on a sequence of events, e.g., transactions, or more general state

updates? The Bitcoin Whitepaper (Nakamoto, 2008) introduced “Nakamoto Consensus”, a

novel consensus protocol that allowed participants to reach agreement on the state of a dis-

tributed database in the absence of trust and stable identities, paving the way to a new form

of decentralized money. Once Bitcoin’s success highlighted the value of blockchain technol-

ogy, a high-stakes race ensued to build improved consensus mechanisms that could shore-up

Bitcoin’s flaws – most notably low throughput/scalability, high economic and environmental

costs, and delayed finality of records (we expand on these in §1.2).
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One suggested alternative with the potential to address all of the above is “Committee-based

consensus”, whereby participants delegate the chain’s record-keeping rights to a relatively

small committee. The core idea is that smaller committees can reach consensus more effi-

ciently (albeit, at the cost of less decentralization). Currently, several prominent blockchains

including the Binance Smart Chain (BSC), Cosmos-based chains1, Algorand, EOS, and

TRON use this approach,2 though, importantly, they differ in how the committee members

are chosen.

Despite the prevalence of committee-based consensus protocols in practice, they have re-

ceived relatively little attention in the academic literature so far. In particular, the question

of how participants of blockchain systems, who typically have limited and dispersed infor-

mation, can optimally choose/elect effective and trustworthy committees to maintain the

state of the chain is of critical importance, and is not well understood. This work seeks to

help bridge this gap.

Before diving into further details, we first provide a brief overview of some common consensus

protocols.

Leader-based vs. committee-based consensus protocols

Bitcoin’s implementation of Nakamoto consensus relies on leader-based consensus protocol

termed “Proof of Work” (PoW). In PoW, blockchain users can compete with each other

by engaging in “wasteful” computations, for the chance of being selected “block leader.” If

selected, they have the (exclusive) right to append a block of transactions to the blockchain,

and reap any rewards that come with it. The more computing (hash) power participants

have, the higher their odds of selection. This incentive structure, in turn, has lead to an

arms race to invest in specialized computing hardware (ASIC), beyond traditional chips.
1Including the Cosmos Hub, crypto.org, Terra, Osmosis and Secret among many others.
2Note, blockchains like EOS, WHO raised a record-breaking $4 billion in its Initial Coin Offering, in

2017, and Tron, define themselves as “Delegated Proof of Stake” systems, but this branding has become
tarnished by the criticisms of their technical design (The Interchain Foundation, 2017; Xu et al., 2018) and
some of their business behavior (Copeland, 2020; Rubin, 2021; Hui, 2020). It is important to note that these
criticisms do not undermine the core ideas of committee-based consensus, as evidenced by the fact that more
prominent blockchains (like Cosmos) rely on it as well.
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One desirable feature of PoW’s wasteful computation is that it affords Sybil resistance3 by

imposing a cost to enter the block-producer “lottery.” However, less wasteful alternatives ex-

ist: Nakamoto consensus can also be implemented using Proof-of-Stake (PoS), and early PoS

protocols like Nxt (Nxt Community, 2016) were essentially PoS-based versions of Nakamoto

consensus, where the chance of being selected as block leader is proportional to one’s token

stake, rather than one’s computing power.

Blockchain platforms are increasingly gravitating towards PoS consensus as this mechanism

is generally believed to be more scalable and less wasteful than PoW (John et al., 2020).

Nonetheless, both PoW and PoS suffer from lack of “instant finality”: records aren’t con-

sidered "final" until several successive blocks have been appended to the chain, meaning,

their internal states can only reach eventual consistency. In practice, these chains can and

do “fork” unpredictably, creating conflicting versions of message history, for instance, when

two producers independently produce blocks at around the same time, or when a malicious

producer actively purposely produces multiple conflicting blocks.4

Committee-based consensus protocols attempt to address this issue (and others) by replacing

the "single-block-producer" leader model of PoW and PoS, with one that relies on the

formation of dynamic committees.5 As such, they can be built on top of existing PoW and

PoS systems.

At its core, (elected) committee-based consensus is rather simple: users continuously vote

to elect their preferred block producers to the committee. Keeping the committee size small

improves efficiency: increasing throughput, decreasing latency and allowing for member

specialization. Unfortunately, a small number of malicious committee members can also

undermine the security of the entire blockchain, thus there is a fundamental tension be-
3A Sybil attack involves creating a large number of pseudonymous accounts in an attempt to seize control

of the network.
4It should be noted that forking frequency on PoW and PoS can be quite different in practice. For

instance, Ethereum (PoS) sees hundreds of (short-term) forks every day (Etherscan, 2022). By contrast,
Bitcoin (PoW) sees fewer than one fork per month (Lovejoy, 2020).

5When the committee is static, the blockchain is said to be “permissioned.” In this work, we focus solely
on the permissionless setting, where the committee changes dynamically.
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tween performance and robustness – a small committee is extremely efficient but is more

centralized, and may compromise security.

Despite their simplicity, there is considerable variation in the design of committee-based

consensus protocols in practice, and in particular, on the question of how committee members

should be optimally chosen. We outline below three of the most popular implemented

designs:

• Lottery: Algorand committees are elected by a (stake-weighted) lottery.

• Single-vote election: Most Cosmos-based chains (including the Cosmos Hub, Terra,

Crypto.org, Osmosis and Secret) use single-vote elections to elect a committee, as does

Tron and the Binance Smart Chain.

• Approval voting: EOS (which raised a record breaking $4 Billion in its ICO in

2017) as well as its forks like Telos use “approval voting” where voters can approve of

a collection of candidates rather than focusing their voting power on a single one.

Although these blockchains (Algorand, BSC, Cosmos, EOS, Tron etc) differ widely in their

features – they have different tokenomics, different virtual machines and their committees

run different consensus algorithms – the method for selecting committees can be largely

divorced from the other features of the system, making it amenable to independent study.

Research Questions

Several interrelated questions follow: First, how should agents vote for their preferred can-

didates given they only have partial information? Second: How small can the committee be

without undermining security? Third: How does committee-based consensus with approval

voting compare to other PoS protocols?

Summary of Model

To answer these questions, we develop a simple voting model using EOS’ Delegated Proof

of Stake (DPoS) protocol as a backdrop. Block producers have two types, either “honest” or

4



“dishonest,” and the vote succeeds if a (1− p) fraction of the elected committee is honest.

This mimics the analysis of most consensus protocols (like those used in Cosmos, Algorand

and EOS) where participants are either honest or “byzantine,” and the consensus protocol

exhibits a strict phase transition when the number of byzantine participants exceeds a given

threshold (usually 2/3rds).

Token holders elect block producers into a committee, but the voters have limited informa-

tion about the candidates: they receive private signals about the type of each candidate

block producer and vote strategically to try and maximize the probability of electing an

honest committee. The election process is based on a variation of approval voting, whereby

voters approve of a collection of candidates, and the candidates with the most approvals

are elected to the committee (Brams and Fishburn, 2007). As we will discuss later, this is

fundamentally different from traditional voting schemes, where voting for more than one

candidate means splitting your vote.

Assuming the block producer committee uses a traditional consensus protocol to certify

blocks, such as Practical Byzantine Fault Tolerance (Castro and Liskov, 1999), this imposes

a strict threshold effect on the committee: if fewer than 1/3rd of the committee members

are dishonest, they cannot disrupt the consensus protocol, but once more than 1/3rd of the

committee members are dishonest, they can completely subvert the committee (which can

result in halting transactions, or executing double-spend attacks).

We seek to characterize agent optimal voting strategies under these conditions. Further,

guided by some stylized facts emerging from our basic empirical observations, we also con-

sider a restriction of the voting strategy space to two simple and intuitive classes: “threshold

voting,” where voters vote for all candidates whose (conditional) probability of being honest

is above a certain threshold (Definition 5), and “cardinal voting,” where voters vote for their

top k candidates (Definition 6).
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Summary of Results

Even with this relatively simply model, computing the probability of electing an honest

committee turns out to be extremely challenging. In Theorem 1, we derive this probability

in the most general terms, allowing for specialization to various voting strategy classes. We

then proceed to examine the outcomes success probabilities for the two, intuitive, voting

strategy classes we consider.

We first analyze a special case where there is only a single voter, and show that it is (mathe-

matically) equivalent to a setting in which all voters can credibly (and costlessly) pool their

information. Pooling of information is often regarded as a pure hypothetical exercise, but it

is worth studying in our setting because voter incentives are aligned, and there is no obvious

downside to sharing one’s information with others. Under these conditions, we show that

the cardinal voting strategy is in fact the optimal strategy (Proposition 2). But this result

breaks down when there is more than one voter, if signals cannot be shared (Proposition 5).

Proposition 1 gives a closed-form solution for the the probability of electing an honest com-

mittee when voters follow the threshold strategy. But threshold voting can be suboptimal

even when there is just a single voter (Proposition 3).

Despite the general suboptimality of these simple strategies (other than in the special pooling

case), we show that the system is asymptotically stable. More specifically, regardless of the

strategy considered, and under very weak assumptions, the probability of electing an honest

committee tends to one, exponentially fast, as the number of voters increases (Theorem 3).

Thus, although the optimal voting strategy may be too complex to be realistically achievable

in practice, simple, intuitive voting strategies, that token holders tend to use in practice,

exhibit very strong robustness.

Finally, we compare the approval-voting mechanism for committee selection to another pop-

ular mechanism used by many PoS blockchains: the random assignments protocol. We

find that approval voting typically requires much smaller committee sizes (1 to 2 orders of

6



magnitude) to attain the same levels of failure tolerance.

Overall, our results suggest that for most practical purposes, committee-based consensus,

of the type implemented in DPoS blockchains, is theoretically efficient and robust to the

complexity it introduces on the agent strategy space (some limitations are discussed in

Section 1.9).

Below, in Section 1.2, we discuss some of the basics of blockchain consensus protocols and

the approval voting mechanism that we model. Readers already familiar with these concepts

can skip the section, or its relevant parts, without loss.

1.2. A Primer on Blockchain Consensus Protocols & Committee Elections

Herein we provide a primer on single-leader and committee-based consensus protocols. Read-

ers familiar with their basic operational features can skip this section without loss.

As mentioned in the introduction, the core problem facing all cryptocurrencies (and decen-

tralized databases of all kinds), is how to provide a single, universally accepted ordering of

transactions (or state updates). Most modern cryptocurrencies are based on the notion of a

hash chain, where blocks of data are chained together using cryptographic hash functions.

Hash chains are an append-only data structure, meaning that new blocks (containing trans-

actions) can be appended to the end of the chain, while internal blocks of the chain cannot

be modified or re-ordered (without modifying all subsequent blocks). Since anyone can eas-

ily append new blocks to the end of a hash chain, decentralized systems need a method for

deciding how and when new blocks can be added to the chain.

Most cryptocurrencies use a form of leader election, where a leader is elected at regular

intervals. This leader, or “block producer,” is given the right to produce a single block.

There is an inherent value in becoming a block producer, as block producers have the

power to insert, re-order and censor transactions (Daian et al., 2020).6 In addition, most
6The value that can be extracted by inserting, re-ordering and censoring transactions is termed “Maximum

Extractable Value" (MEV), and is worth hundreds of millions of dollars on blockchains like Ethereum
(Flashbots, 2021).
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cryptocurrencies provide direct incentives for block production in the form of transaction

fees and block rewards. Transaction fees are paid by the users to incentivize the block

producer to include specific transactions in a block. Block rewards are new coins that are

minted and paid directly to block producers. For example, in Bitcoin, block rewards are

currently set to 6.25 BTC. In many cryptocurrencies, block rewards are the only mechanism

by which new coins are generated. For reference, in July 2021, Ethereum miners received

about 18% of their direct compensation from transaction fees and 82% from block rewards

(The Block, 2021).

Block producers also have the ability to harm the platform itself. Block producers can

censor transactions within the block they produce. Lazy or inept block producers can reduce

the total transaction throughput of the system by failing to include enough transactions in

a block or failing to produce a block altogether. Malicious block producers can “fork” the

chain by appending two blocks at the same block height. This type of behavior can lead to

“double-spending attacks” and can destabilize the entire blockchain.

Block producers’ power to harm the ecosystem, means that the selection mechanism must

ensure that only “honest” producers are elected. When block producer candidates have

stable identities, classical consensus protocols (e.g. Lamport et al. (1982); Castro and Liskov

(1999)) provide efficient and robust mechanisms for leader election. In a permissionless

setting, however, where the set of block producer candidates is anonymous and dynamic,

classical consensus protocols fail, and other leader-election methods must be devised.

Proof of Work (PoW)

As mentioned earlier, the Bitcoin whitepaper Nakamoto (2008) introduced a novel leader-

election protocol whereby block-producing candidates (“miners”) expend effort in the form

of computing cryptographic hashes on random values, and their chance of becoming block

leader is proportional to the amount of effort they exert. This Proof of Work consensus, is

used by many of the leading cryptocurrencies (by market cap), including Bitcoin, Ethereum,

Dogecoin and Litecoin.
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Although PoW-based consensus has proven stable and secure, it has several drawbacks, most

notably its societal cost, and its low transaction throughput. Currently, block producer

candidates on Bitcoin expend about as much electricity as the country of Finland in an

effort to be chosen as block producers (Cambridge University, 2021).

Proof-of-Work based consensus, also has limitations on how frequently block producers can

be chosen, and this directly affects the blockchain’s transaction throughput. Currently,

the leading PoW-based blockchains, Bitcoin and Ethereum, can handle less than tens of

transactions per second. By contrast Visa handles thousands of transactions per second

(Binance Academy, 2021).

Proof of Stake (PoS)

The aforementioned drawbacks of PoW have pushed the blockchain community to explore

alternatives, and in this quest, Proof of Stake (PoS) has aruably emerged as the current

frontrunner. The Ethereum blockchain, for instance, which supports the world’s second

largest cryptocurrency ETH, originally launched with a PoW protocol but has been gradually

trying to transition to a form of PoS for several years (InsideTheSimulation, 2021).

In PoS, block producers are elected in proportion to their token balance (“stake”) on the

blockchain, rather than their computational effort. Similar to PoW systems, where candi-

dates signal their support of the platform by expending computing resources, in PoS systems,

candidates signal their support of the system by acquiring and holding native tokens on the

blockchain.

There are many variants of the PoS protocol, but a common feature of almost all PoS

systems is that block producers are elected with probability proportional to their “staked”

tokens (as in Ethereum 2.0) or their passive token balances (as in Algorand).

Committee-based Consensus

Although under PoS, block producers can earn significant returns, being an efficient block

producer usually requires powerful computing equipment, a dedicated internet connection,
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and a robust software configuration. In some blockchains, a nontrivial minimum amount

of tokens is also required to be eligible to participate. Many regular token holders are

thus ineligible (or simply unwilling) to take on this type of role. To address this problem,

most PoS systems support some type of delegation mechanism, whereby token holders can

delegate their stake to professional block producers (usually in exchange for some sort of

profit sharing).

Committee-based consensus takes this separation between token holders and block producers

to the extreme. In most traditional PoW systems, block producers are selected in a lottery-

like procedure according to their (proportional) hash power. Several PoS systems (e.g.

Tezos, Algorand, Cardano) adapted this idea to elect leaders randomly with probability

equal to their proportional token stake.7 As an alternative to this lottery-based leader

election, several blockchains allow users to cast (stake-weighted) votes for block producers

and the ones with the highest number of votes become producers for some fixed duration of

time.

In platforms using committee-based consensus, a small committee (k = 150 in the Cosmos

Hub, k = 21 in EOS or 27 in TRON) of block producers is elected by a stake-weighted vote,

and is responsible for producing and validating blocks.8

In committee-based consensus, the elected committee typically runs a traditional consen-

sus algorithm — Practical Byzantine Fault Tolerance Castro and Liskov (1999), Proof-of-

Authority Angelis et al. (2018) or Tendermint (Buchman, 2016) — to certify the next block.

Some Advantages of Committee-based Consensus

Committee-based consensus has several perceived advantages over other commonly used

consensus protocols. First, the committee can check each other’s actions, and prevent ma-
7In fact, the core technical contribution in systems like Algorand and Cardano is a decentralized, verifiable

lottery mechanism.
8Although almost all PoS systems support some form of delegation, the term “Delegated Proof of Stake”

is usually reserved for the specific type of committee-based consensus protocols used by systems like EOS
and TRON.
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licious behavior. For example, in most classical consensus protocols a p-fraction9 of the

participants can behave maliciously without adversely affecting the system.

Second, the voting process takes a nonzero amount of time, so electing a batch of producers at

once increases efficiency in contrast two Nakamoto consensus, where a single block producer

is selected at each step.

Third, it allows the chain to achieve instant finality – when the committee certifies a block,

that block is immediately finalized. This is in contrast to PoW blockchains that only achieve

eventual finality. Bitcoin wallets, for instance, typically wait until a transaction is buried 6

blocks deep in the chain before considering it “finalized” (Bitcoin Wiki, 2021). Blockchains

that rely on committee-based-consensus can achieve instant finality in the following sense.

If the system never elects a committee with more than a p-fraction of malicious members,

then as soon as a committee certifies a block, that block can be considered final, and will

never be forked away. Thus committee-based consensus protocols need to ensure that the

probability a malicious committee is elected is so small, that even if the chain runs for years,

there will never be a committee with more than a p-fraction of malicious members.

Fourth, it can eliminate the need for “slashing” penalties. In many traditional PoS systems

(e.g. Ethereum 2.0), block producer candidates need to stake their tokens by locking them

in a smart contract, and this stake is held as a bond against misbehavior. If a block producer

engages in (provable) misbehavior, their stake can be confiscated (“slashed”). In committee-

based consensus, if a small minority of the committee misbehaves, they cannot adversely

affect the system, and voters (having noticed this misbehavior) will not elect them again.

For this reason, some systems (like Algorand, EOS and Tron) do not have slashing penalties.

On the other hand, Cosmos, which uses committee-based consensus does include slashing

penalties.

Finally, having a distinct separation between stakeholders and block producers allows spe-

cialization, and thus block producers in systems using committee-based consensus, may have
9Most consensus protocols can tolerate p = 1/3.
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better hardware and software infrastructure which would lead to lower latency and faster

block times.

Of course, these advantages hinge on the system’s ability to consistently elect an honest

majority of committee members. This then raises the need to dive into the committee

election mechanism.

Approval Voting

Committee-based consensus protocols can vary on several dimensions, but we focus on how

the committee is selected. The selection process is independent of many other features of

the blockchain, e.g. the actual consensus protocol employed by the elected committee, or

how data is stored and processed on the blockchain. In this work, we focus on approval

voting, which is the selection mechanism employed by EOS and Telos.

In approval voting, voters “approve” of a collection of candidates, and the candidates with

the most approvals are elected to the committee (Brams and Fishburn, 2007). This is fun-

damentally different from traditional voting schemes, where voting for two candidates means

splitting your vote. In approval voting, if a voter votes for two (or more) candidates, each

receives the same “approval” as if the voter only voted for one candidate.

For example, the Cosmos blockchain uses a traditional (single-vote) mechanism to elect

a committee of 150 block producers10. By contrast, EOS uses approval voting to elect a

committee of 21 block producers. Although Cosmos and EOS vary on several other dimen-

sions (The Interchain Foundation, 2017), the committee selection mechanism is essentially

independent of all these other variables. Since Cosmos could be modified to use approval

voting, and EOS could be modified to use a single-vote mechanism, designing the most ef-

ficient committee-based consensus protocols requires analyzing the characteristics of these

mechanisms in the blockchain setting.
10The documentation suggests 125, (Cosmos, 2021), but this seems to have been increased to 150
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1.3. Literature Review

Committee-based consensus is widely used in the blockchain space (Kogias et al., 2016;

Meng et al., 2018; Gleehokie et al., 2018; TRON, 2018; Cosmos, 2021), but the academic

literature is arguably still lagging behind. Of the few studies we could find, Meng et al.

(2018), Yang et al. (2019), Hu et al. (2021) examine related topics, but they focus mostly

on hypothetical tweaks that could be added to improve existing systems. In contrast, we

seek to formally analyze and understand whether the existing systems themselves are robust

and efficient, given voters have limited information.

Approval voting was introduced into the blockchain space in Delegated Proof of Stake

(DPoS), and the first literature on DPoS started with practitioners, where it was often

asserted that DPoS consensus is a more efficient and democratic version of the standard

PoS mechanism (Binance, 2020; Cryptopedia, 2021). The approval voting mechanism un-

derlying DPoS is described in the original whitepaper, Bitshares (2021), but there is little

attempt to assess potential agent voting behavior and what could go wrong with it.

Approval voting has been widely studied in the context of political elections

(Brams and Fishburn, 2007), and we highlight here some facts about the known dynamics of

approval voting in general. In a k-winner election system, it is desirable to have the property

that if a candidate is ranked first by at least n/k of the voters, then that candidate should

be elected to the committee. Unfortunately, this property does not hold under approval

voting (Elkind et al., 2017).

Similarly, an approval voting scheme can end up electing candidates that would lose a

majority of pairwise contests against the other candidates, i.e., an approval voting scheme

may elect a “Condorcet loser” (Niemi, 1984).

One of the most interesting features of approval voting schemes is that voters typically

have multiple honest strategies (Niemi, 1984). For example, consider an up-to-2, 2-winner

system with two voters (n = 2), and four candidates (m = 4), C = {c1, c2, c3, c4}. If the two
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voters’ preference orders are (c2; c3; c4; c1) for voter 1 and (c1; c3; c4; c2) for voter 2 then the

candidate c3 will be in the elected committee for any t ≥ 2, so both c1 and c2 cannot be in

the elected committee. Should voter 1 vote for c2 only, or c2 and c3? These are both honest

strategies, and thus even honest players must think strategically. This feature makes the

analysis of approval voting systems complex.

DPoS consensus, being based on approval voting, inherits these aforementioned proper-

ties, but it differs from traditional approval voting in several ways that we describe in the

model section. The most significant departure is perhaps that extant studies (outside of

the blockchain literature) assume voters have competing interests, and usually have perfect

information about the candidates themselves. By contrast, in the DPoS setting, most voters’

interests are aligned. All voters wish to elect an honest committee, but they have limited

information about the candidates. This completely changes the nature of the analysis.

Though we are not aware of any studies considering strategic agent voting behavior in

committee-based protocols, numerous studies have looked at strategic agent behavior in

other Blockchain protocols. Saleh (2021); Roşu and Saleh (2021); Fanti et al. (2019) are

some of the first studies looking at the economics of PoS systems. Leonardos et al. (2020)

study weighted voting in validator committees in PoS protocols. There is also a relatively

large computer science literature blending strategic considerations and technical design el-

ements of PoS, such as Gaži et al. (2019); Chen and Micali (2016); Bentov et al. (2016);

Kiayias et al. (2017).

Beyond PoS, Alsabah and Capponi (2020); Biais et al. (2019); Cong et al. (2021)

Garratt and van Oordt (2020) focus on the economics of PoW, and the underlying min-

ing mechanism. Several other studies focus more specifically on Bitcoin, such as Nakamoto

(2008); Easley et al. (2019); Huberman et al. (2021); Pagnotta (2021); Prat and Walter (2021).

Other works have considered consensus in the presence of three types of participants byzan-

tine, altruistic and rational Aiyer et al. (2005), or just byzantine and rational
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Amoussou-Guenou et al. (2020). In the byzantine-rational model of consensus

Amoussou-Guenou et al. (2020), there are still two types of participants, and there is still

a phase transition when the number of byzantine participants exceeds a certain threshold,

thus our analyses applies almost equally in this setting as well.

Finally, on a broader note, our work is related to the literature studying security guarantees

for different types of blockchain protocols, e.g., Lewis-Pye and Roughgarden (2020, 2021),

though we are not aware of any prior work focused specifically on committee-based consensus.

More generally, our work also has implications for the literature studying the economics of

token systems, see e.g., Cong et al. (2021); Tsoukalas and Falk (2020); Gan et al. (2021a,b).

To the best of our knowledge, ours is the first paper to analyze the efficiency of committee

elections in committee-based consensus protocols, with private information and strategic

agents.

1.4. Preliminaries and Empirical Observations

1.4.1. Definitions

Approval voting is a system where each voter may select (“approve") any number of can-

didates, and the winners are the candidates approved by the largest number of voters (see

Kilgour (2010) for a survey on approval voting). Formally:

Definition 1 (k-winner Approval Voting). A set of voters V votes on a set of candidates,

C. Let n def
= |V|, and m

def
= |C|. Voter v chooses a subset of candidates Cv ⊆ C they wish to

vote for. For each candidate c ∈ C, the score of candidate c, that is, the number of votes the

candidate receives, is defined to be

score(c)
def
= |{v | c ∈ Cv}| . (1.1)

The elected committee is determined to be the k candidates with the highest scores.

In DPoS protocols, stake-holders vote for a set of “block-producers” modifying the k-winner

15



Approval Voting system to include a cap on the number of candidates. Formally:

Definition 2 (up-to-t-vote, k-winner Approval Voting). With notation as in definition 1,

we limit the maximum number of candidates t each voter can vote for, so that voter v chooses

a subset of candidates Cv ⊆ C restricted to |Cv| ≤ t(≤ m). As before, the elected committee

is determined to be the k candidates with the highest scores.

We will assume throughout that there are at least k candidates, m ≥ k. In general, there

may be less than k candidates in the elected committee if less than k candidates received

any votes. Alternatively, there may be more than k candidates if there are ties. We specify

how we handle these cases in Definition 3.

1.4.2. Empirical Observations: Approval Voting on EOS

Block Producers on EOS are elected by token holders according to a up-to-30-vote, 21-

winner approval voting system (see Definition 2, with t = 30 and k = 21). The 21 winning

candidates form the block producer committee. Elections are held continuously, and each

committee of block producers remains in control of the chain for 126 seconds (EOS, 2018).

EOS voters are not directly rewarded for staking (although this has been proposed as in NY

(2019)), instead voters are assumed to benefit indirectly from the stability and performance

of the platform. In EOS and other DPoS systems, votes are weighted by stake, and voters

are allowed to “proxy” their votes, i.e., delegate their voting power to a different voter.

To understand real-world voting strategies, we gathered voting data from EOS. As the EOS

blockchain is extremely large (over 8TB) and the majority of transactions are unrelated

to voting, we gathered daily voting snapshots from EOS Authority (a block producer) and

we used these to analyze voter behavior during the period 2021-08-20 - 2022-02-09. Each

snapshot contained the current votes of the nearly 1 million accounts that have ever voted.

Figure 1.1 shows the number of votes cast by individual voters (left panel), and stake-

weighted votes (right panel), on a typical day. Although EOS votes are stake-weighted, and

the unweighted votes do not directly affect the elected committee, we include them in our
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data be cause they illustrate the strategy pursued by the majority of voters.
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Figure 1.1: The number of producers that each token holder voted for, during the period
2021-08-20 - 2022-02-09. Left panel: unweighted voting. Right panel: stake-weighted voting.
Key Takeaway: most voters follow a “cardinal voting” strategy.

As can be seen from Figure 1.1, when votes are weighted by stake, most stake is proxied,

and most voters vote for either 21 or 30 producers.

Figure 1.2 shows a different view of the same data: the left panel shows the breakdown (in

%) of unweighted voting and the right panel shows the breakdown (in %) for stake-weighted

voting.
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Figure 1.2: The percentage breakdown of votes during the period 2021-08-20 - 2022-02-09.
The left-hand plot shows unweighted voting. The right-hand plot shows stake-weighted
votes.

Note, both figures represent a week’s worth of voting data on EOS, but these patterns are

consistent and exhibit relatively little variability, over different/longer time windows.
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The key observation is that most voters follow a “cardinal voting strategy” where they vote

for a fixed number of block producers. A formal definition is given in Definition 6.

We rely on these basic empirical observations to inform our model in Section 1.5. In Sec-

tion 1.6, we explore how optimal these types of voting strategies can be.

1.5. Model

1.5.1. Voting with Limited Information

We lay out a simple model, where the blockchain’s token holders vote according to an up-

to-t, k-winner approval voting system, to elect a committee of block producers. There is

a pool of m producers to choose from, c1, . . . , cm, and n strategic voters on the platform,

v1, . . . , vn. Every producer has an unknown type, either “honest”, H, or “malicious”, M .

The goal of each voter is to maximize the probability that a supermajority (e.g. a (1− p)-

majority) of the elected committee is honest. We discuss some possible alternative objectives

in Appendix A.4.

Definition 3 (Honest Committee). Suppose the k producers with highest number of votes

are elected to be on the block-producer committee, T. If there are less than k candidates

with non-zero score, then the committee is filled adversarially (i.e., in a worst-case fashion),

and if there are ties between the candidates such that there are more than k producers with

highest score, then they are broken adversarially (between the ones with least score). Since

most Byzantine Agreement protocols require at least ⌈(1− p) · k⌉ honest members, we say

the committee T is honest, T = H, if at least ⌈(1− p) · k⌉ of the elected block producers are

honest.

Suppose the a priori probability that producer j is honest is Pr[cj = H] = pj . Also, suppose

voter vi receives a private noisy signal vector, s∗i = (s∗ij)
m
j=1 about producer’s cj honesty,

s∗ij =

 ph + ϵij if Producer j is honest

pm + ϵij if Producer j is malicious,
(1.2)
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where ϵij is a normally distributed noise term with E[ϵij ] = 0 and Var[ϵij ] = σ2
ij , i.e.,

ϵij ∼ N (0, σ2
ij),∀j ∈ {1, . . . ,m}. It follows that signals are normally distributed with s∗ij ∼

N (ph, σ
2
ij) if producer j is honest, and s∗ij ∼ N (pm, σ2

ij) if producer j is malicious.

When voter i receives a signal, s∗ij , regarding producer j, the voter can compute the posterior

probability that producer j is honest conditioned on s∗ij . We call this conditional probability

sij :

sij
def
= Pr

[
producer j is honest

∣∣ s∗ij] . (1.3)

The map sij ↔ s∗ij is a bijective function, and we calculate it explicitly in Lemma 2 in

Appendix A.1.1. The result is given below in (1.4).

sij =
1

1 +
1−pj
pj

e

(s∗
ij

−ph)2−(s∗
ij

−pm)2

2σij
2

(1.4)

Our core model assumes all voters are strategic (fully rational), and we seek to characterize

the pure-strategy Bayesian Nash equilibria of the game.

Note, we also assume all voters in our model have equal weight. Although essentially all

real-world platforms rely on stake-weighted voting where voters can have different stakes,

our model still applies since we can view each voter as encompassing the voting power of a

single unit stake.

Voter i’s payoff is given by ui if the elected committee is honest (T = H) and 0 otherwise.

We assume voting has some unit cost, c (the opportunity cost of staking one unit of capital).

Thus voter i’s goal is to optimize the rewards

ui Pr [T = H]− c. (1.5)
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This means that voter i’s goal is to maximize the success probability — the probability that

the elected committee T is honest, conditioned on the private signal vector they receive, si,

given the platform voting system in Definition 2.

max
Cvi⊆C

Pr [T = H | {si}ni=1]. (1.6)

We assume that (pj)1≤j≤m, (σij)1≤i≤n,1≤j≤m, ph, pm, are publicly visible, but voters cannot

observe others’ private signals.

Definition 4 (Voting Strategy). A voting strategy is an algorithm A (in the class S) used

by all voters, that takes as input the parameters the voter has access to

si = (sij)
m
j=1, (pj)

m
j=1, (σij)

m
j=1, ph, pm and outputs a subset of candidates the voter wishes to

vote for Cv ⊆ C. We denote the committee elected by exerting algorithm A as TA.

After observing their private signal, voters simultaneously submit their “votes" Cvi = Cvi(si);

we consider any voting strategy in the class of voting strategies, represented by the letter

S. With Definition 4, we can interchangeably talk about the voters maximizing the success

probability by exerting a voting algorithm A ∈ S and rewrite Equation 1.6 as:

max
A∈S

Pr [TA = H]. (1.7)

We say that a strategy is optimal if it maximizes the success probability - the probability of

electing an honest committee, Equation 1.6 or 1.7. Table 1.1 summarizes the notation.
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m Number of (candidate) block producers
n Number of voters
pj A priori probability block producer candidate j is honest
pm The base signal for a malicious candidate producer
ph The base signal for an honest candidate producer
σij Standard deviation of the noise, ϵij for voter i, and producer j
k Elected Committee size
s∗ij Voter i’s raw signal about producer j

sij Producer j’s posterior probability of being honest, conditioned on s∗ij .

Table 1.1: Notation

While voters’ optimization problem is well-defined, computing the objective function Pr [TA = H]

is challenging. As a first step, we need to define the types of voting strategies that are ac-

cessible to agents. This is the goal of the next section.

1.5.2. Class of Voting Strategies

In principle, any function f : [0, 1]m → {0, 1}m is a possible voting strategy. It seems

clear, however, that any reasonable strategy should be coordinate-wise non-decreasing, i.e., if

s′j > sj and f(s1, . . . , sm) = (y1, . . . , ym) ⊂ {0, 1}m, and if f(s1, . . . , sj−1, s
′
j , sj+1, . . . , sm) =

(y′1, . . . , y
′
m) then y′j ≥ yj . In other words, if one candidate’s signal increases (while the

other signals remain the same) this cannot cause the voter to switch their vote away from

the candidate. If we also assume that, aside from the signals, the candidates are otherwise

indistinguishable to each voter, then a class of reasonable voting strategies would be to sort

the candidates by their signal and vote for the top t candidates. With this intuition we will

now consider the reasonable strategies described above as the class S.

Within this broad class, we also single out two particularly simple and intuitive strategies

related to our empirical observations, that users could follow: threshold voting (Definition 5)

and cardinal voting (Definition 6).

Definition 5 (Threshold Voting). Voter vi is said to follow the threshold voting strategy if

(prior to seeing the realization his or her signals), voter vi chooses a threshold zi ∈ [0, 1] and

voter vi votes for all producers cj, with probability of being honest higher than the threshold
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sij = Pr
[
cj = H

∣∣∣ s∗ij] > zi.

If we define pij
def
= Pr [sij > zi], then pij is the probability that voter i votes for producer

j (assuming voter i is following the threshold voting strategy). Summing over all n voters,

the number of votes received by producer j is distributed as the sum of n Bernoulli random

variables with parameters p1j , . . . , pnj . If p1j = · · · = pnj , then the number of votes received

by producer j is a binomial random variable. When the pij are distinct, then the number

of votes received by producer j is a Poisson Binomial Random Variable. See Appendix A.2

for a review of known facts about the Poisson Binomial Distribution.

This characterization of the distribution of votes when voters follow the threshold voting

strategy will be important as we study the dynamics of this strategy in Section 1.6.

Definition 6 (Cardinal Voting). Voter vi is said to follow the cardinal voting strategy if

(prior to seeing the realization his or her signals), voter vi creates a strategy zi ∈ {1, . . . , t},

then voter vi orders producers according to their probability of being honest

sij = Pr
[
cj = H

∣∣∣ s∗ij] and votes for the top zi producers in the list.

When voters follow the cardinal voting strategy, the number of votes received by each pro-

ducer is still distributed as a Poisson Binomial random variable, but now the parameters pij

(the probability that voter i votes for candidate j) are much more difficult to compute.

Connecting this back to the empirical voting strategies discussed in Section 1.4.2, Figure 1.1

shows that EOS voters tend to follow the cardinal voting strategy with z = 1, 21 or 30.

1.6. Analysis

We begin our analysis by characterizing the probability of electing an honest committee in

the most general terms possible (Section 1.6.1) and unveiling some associated complexities

(Section 1.6.2). We then examine outcomes in a special single-voter/signal pooling case

which helps build intuition (Section 1.6.3), before looking at the general multi-voter case

(Section 1.6.4). The results obtained raise additional questions about asymptotic optimality
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(Section 1.6.5). We then compare DPoS to other PoS-based mechanisms (Section 1.7).

1.6.1. The Probability of Electing an Honest Committee

The first step in the analysis is to determine the objective function of the optimization,

which is the probability that an elected committee is honest.

Theorem 1 (Success Probability). Suppose there are m producers, and each producer is

honest independently with probability p. If the number of votes received by each candidate

are independent random variables then the probability that there are at least ⌈(1− p) · k⌉

honest producers in a committee of size k, is given by:

Pr [T = H] =
m∑

a=m−⌈p·k⌉+1

(
m

a

)
pa(1− p)m−a +

m−⌈p·k⌉∑
a=⌈(1−p)·k⌉

(
m

a

)
pa(1− p)m−a

n∑
x=0

[
(⌈(1−p)·k⌉−1∑

j=0

(
a

j

)((
1− F h(x)

)j (
F h(x)

)a−j
−

(
1− F h(x) + fh(x)

)j (
F h(x)− fh(x)

)a−j
))

⌈p·k⌉−1∑
j=0

(
b

j

)
(1− Fm(x) + fm(x))j (Fm(x)− fm(x))b−j

],

(1.8)

where fh, F h are the PDF and CDF of the number of votes received by an honest producer,

and fm, Fm are the PDF and CDF of the number of votes received by a dishonest producer.

All proofs are in the Appendix. Theorem 1 is very general, in the sense that it gives the

expression for the probability of electing an honest committee under any type of voting

strategy – provided that the distribution of votes (fh, fm) can be computed.

Note, in Theorem 1 and for the rest of this section, we assume that producers are indistin-

guishable except for their type, meaning, the variance of the noise σij = σi, for 1 ≤ j ≤ m in

Equation 1.2. This implies there is a single pdf, fh(x) that denotes the probability an honest

producer receives x votes. This simplification is done purely for expositional purposes; to

obtain the result for the more general case, one would need to replace Theorem 9 (used in
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the proof of Theorem 1) by the more general Bapat-Beg Theorem (Bapat and Beg, 1989).

The resulting expression remains closed-form, but is too cumbersome for display.

Theorem 2 gives the general form of the distribution of votes (fh, fm) received by honest

and dishonest producers given the probability that voter i casts a vote for producer j.

Theorem 2 (Distribution of Votes). For a producer, j, let phi (resp. pmi ) denote the prob-

ability that voter i casts a vote for producer j conditioned on producer j being honest (resp.

dishonest). Then the probability distribution of the number of votes received for honest and

dishonest producers is given by

fh(x) =
∑
A∈Fx

∏
i1∈A

phi1

∏
i2∈Ac

1− phi2 (1.9)

fm(x) =
∑
A∈Fx

∏
i1∈A

pmi1

∏
i2∈Ac

1− pmi2 , (1.10)

where Fx is the set of all subsets of x integers that can be selected from {1, 2, 3, ..., n}.

Combining Theorems 1 and 2 gives a closed-form expression for the success probability

whenever phi and pmi can be calculated. In Propositions 1 we show how to calculate these

probabilities for the threshold-voting strategy.

Proposition 1 (Threshold voting). For a producer j, let phi (resp. pmi ) denote the proba-

bility that voter i casts a vote for producer j conditioned on producer j being honest (resp.

dishonest).

When voters follow the threshold strategy (Definition 5) with threshold, zi,

phi = 1− Φ

(
h−1(zi)− ph

σi

)
, pmi = 1− Φ

(
h−1(zi)− pm

σi

)
, (1.11)

where Φ is the density function of the standard normal distribution, and

h−1(q)
def
=

p2h − p2m − 2σ2 log
(
p(1−q)
(1−p)q

)
2(ph − pm)

(1.12)
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is derived in Lemma 2.

In 12 in Appendix A.6 we show how to calculate those probabilities for the cardinal-voting

strategy. Unfortunately, for cardinal voting, we cannot apply Theorem 1 because the number

of votes received by each candidate are not independent.

1.6.2. The Complexity of Approval Voting

Combining Theorems 1 and 2 with Propositions 1, gives concrete formulas for the probability

of electing an honest committee when voters follow either the threshold voting strategy.

When voters follow the Cardinal strategy, Theorem 1 does not apply (see Appendix A.6).

Unfortunately, these objective functions are extremely complex, and this makes the voters’

general optimization problem in (1.7) challenging. To understand the origin of this complex-

ity, we visualize below the objective function, that is, the probability of electing an honest

committee, focusing on the case where voters follow a simple threshold voting strategy (the

more tractable of the two voting strategy classes).

As a first step, we imagine that all voters follow a threshold voting strategy, with some

common threshold, z. In this setting, Proposition 1, into Theorems 1 and 2, allow us to

calculate the exact probability of success as a function of the threshold chosen. Figure 1.3

shows the success probability under threshold voting, for small numbers of voters (n = 1 to

n = 4). Although, in practice, systems have many more voters, these graphs highlight the

complex dynamics of approval voting.
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Figure 1.3: Success probability as a function of threshold chosen, assuming small number of
voters (n ∈ {1, 2, 3, 4}), and all voters use the same threshold. Key Takeway: The number
of local optima increases with n.

The optimal thresholds tend to hover around 0.5−0.7, meaning that with these parameters,

voters should vote for any candidate, j, whose posterior probability, sij , is above this thresh-

old and not vote for any candidate below this threshold. The thinness of the peaks, however,

indicates that even small deviations from the optimal strategy can drastically reduce the

success probability. In addition, the number of local optima increases with n. These prop-

erties can make the optimization problem intractable at relatively low or medium values of

n (with the exception of n = 1, for which the objective is unimodal).

Next, we examine the situation for a large number of voters n = 100, in Figure 1.4.
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Figure 1.4: Success probability as a function of threshold chosen, assuming large number of
voters (n = 100). Key Takeway: For large n, the probability of success goes to 100% across
a wide range of thresholds, and thus a wide range of voting strategies yields nearly optimal
results.

Figure 1.4 shows that for large n, the previous issues fade: the local optima tend to merge,

and almost any reasonable threshold has an almost 100% probability of success.

Combining insights from Figures 1.3 and 1.4, we conclude that the voters’ problem behaves

drastically differently depending on low vs. high-number of voters, and hints that asymptotic

analysis may offer more tractable results.

Next, we analytically characterize (to the extent possible) the optimality of voting strategies,

separating the n = 1 case from the general n > 1 case.

1.6.3. Special Cases: Single-Voter & Signal Pooling

In this section we consider the special case of a single voter (n = 1). Beyond letting us build

intuition, we show that the general n > 1 case, collapses to n = 1 when voters are allowed to

credibly (and costlessly) share their signals. This is more than a mere hypothetical exercise.

Signal pooling has no obvious downside in our setting given voter incentives are aligned,

and thus could be plausible in practice.
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Single Voter

Before presenting the result, we introduce one intermediate technical lemma that will be

useful throughout the analysis.

Lemma 1. Suppose X is a Poisson Binomial random variable with k trials and let XP

with P = {pj1 , . . . , pjk} denote the Poisson Binomial with parameters (pj1 , . . . , pjk). Let

m ≥ k, and x be positive integers, {p1, . . . , pm} ⊆ [0, 1]m such that p1 ≥ · · · ≥ pm then

argmax
P⊆{p1,...,pm}

Pr[XP > x] = {p1, . . . , pk}.

To understand the implication of Lemma 1, consider a k-winner approval voting system

in which candidates have posterior probabilities of being honest s1, . . . , sm. Suppose the

subset of candidates elected to the committee is T = {cj1 , . . . , cjk} so that their posterior

probabilities are {sj1 , . . . , sjk}. If we think about the realization of honesty of each candidate

as a trial l with probability sjl then the number of honest candidates on the committee X

is a Poisson Binomial with parameters (sj1 , . . . , sjk). The success probability, e.g. the

probability of an honest committee is the probability that the number of honest candidates

on the committee is at least ⌈(1− p) · k⌉. Lemma 1 implies that the success probability is

maximized when each of the posterior probabilities of the different candidates is as high as

it can be.

Proposition 2 (Optimality of Cardinal voting when n = 1). Consider a k-winner approval

voting system with n = 1 voter and m ≥ k candidates, then the globally optimal strategy is

the cardinal strategy with z = k.

Proposition 2 follows from the fact that if there is only a single voter, that voter possesses

all relevant information about each producer’s type, and the voter can unilaterally decide

the committee. Thus the optimal strategy is to form the committee from the candidates

that have the highest (posterior) probability of being honest. In other words, the voter

should vote for the top k candidates (when sorted accorded to their posterior probability of

being honest), and this strategy is optimal across all possible strategies, not just cardinal
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Figure 1.5: The success probability when there is a single voter who follows the cardinal
voting strategy. In this figure, the committee size, k = 21. The optimal success probability
occurs when the threshold z = k, even as the accuracy of the voter changes.

or threshold voting.

Proposition 3 (Suboptimality of Threshold voting when n = 1). Consider a k-winner

approval voting system with n = 1 voter and m ≥ k candidates, then any threshold strategy

is not optimal.

More specifically, when we say a strategy A ∈ S is not optimal we mean that there is a non-

zero probability event (realization of signals) in which the non-optimal strategy achieves a

success probability that is strictly smaller than would be achieved using a different strategy

B ∈ S.

Pr [TA = H | (si)ni=1] < Pr [TB = H | (si)ni=1] , for Pr[(si)
n
i=1] > 0. (1.13)

In particular, in the proof of Proposition 3 we show Equation (1.13) is true for n = 1 and

A = Threshold, B = Cardinal. In other words, we show that for n = 1 the threshold strategy

gives a strictly lower success probability than the cardinal strategy.
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Signal Sharing/Pooling

If voters could credibly (and costlessly) share their private signals, then it is straightforward

to show that they effectively act as a single voter.

As in the private signal setting, each voter can calculate the probability that a given producer

is honest, conditioned on the received signals. But now, we assume voters can condition on all

the signals. We calculate the resulting posterior probability in Lemma 3 in Appendix A.1.1.

Proposition 4 shows that when voters share their signal, the optimal strategy (out of all

possible strategies) is to follow the cardinal voting strategy with threshold z = k.

Proposition 4 (Optimality of Cardinal Voting with Shared Signals). Consider a k-winner

approval voting system with n > 0 voters, m ≥ k candidates and such that voters’ private

signals are credibly shared. Then the globally optimal strategy is the cardinal strategy with

z = k where each voter vi is ranking based on the shared sj instead of their private sij.

A natural question that follows is, whether cardinal voting persists to be the optimal strategy

in the general multi-voter case. We examine this in the next section.

1.6.4. General Case: Multiple Voters

Given we show in the previous Section 1.6.3 that the threshold strategy is already suboptimal

for n = 1, while the cardinal strategy is in fact optimal for n = 1, we focus our attention

here on the latter.

In the multi-voter setting (n > 1), the optimal cardinal strategy becomes extremely complex

and even computing the exact success probability for a fixed strategy is difficult. Despite

this, we can formally show that the cardinal strategy that was always optimal with n = 1

may become suboptimal with n > 1.

Proposition 5 (Suboptimality of Cardinal voting when n > 1). Consider a k-winner Ap-

proval Voting system with n > 1 voter and m ≥ k candidates, then the cardinal strategy can

be suboptimal.
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Intuitively, this result occurs because a vote for a candidate can actually bump other can-

didates out of the committee. To dig deeper, consider a situation with two voters (voter

0 and voter 1), where voter 0 has better information than voter 1, (i.e., σ0j ≪ σ1j for all

j ∈ [m]). Even if σ1j is large, voter 1’s signals convey information (a single voter who

had access to the signals (s01, . . . , s0m) and (s11, . . . , s1m) would do better than one with

access to (s01, . . . , s0m) alone). The problem is that voter 1 can only convey information

about their signal through discrete votes, and a vote for candidate j may be too strong an

endorsement for that candidate given that the signal s1j is only weakly informative.

As an extreme case, consider a situation where voter 0 is perfectly informed (i.e., voter 0

can differentiate between honest and dishonest producers with probability 1), and voter 1 is

perfectly uninformed (i.e., from voter 1’s perspective, each candidate is honest independently

with probability p, in other words s1j = p for all j ∈ [m] ). In this case, it should be clear

that voter 1 should not cast any votes, while voter 0 should cast k votes.

The suboptimality of the cardinal voting strategy persists even if both voters have the

same information (i.e., ϵ0j = ϵ1j for j ∈ [m]). This is because the realized signals can

convey different amounts of information. For example, suppose voter 0’s sorted signals are

s0j01 ≥ s0j02 ≥ · · · ≥ s0j0m and voter 1’s sorted signals are s1j11 ≥ · · · ≥ s1j1m . Suppose

as well that s0j0k
≫ s0j0k+1

, but s1j1k−1
≈ s1j1k

≈ s1j1k+1
. In this case, voter 0 has high

confidence that the committee should consist of the candidates
{
j01 , . . . , j

0
k

}
, but voter 1

is essentially indifferent between candidates j1k−1, j
1
k , j

1
k+1. The cardinality strategy with

threshold k would force voter 1 to vote for j1k−1 and j1k , but not j1k+1, and this vote (based

on little information) could displace committee members who would have been elected by

voter 0 (whose signals were very informative).

1.6.5. Asymptotic Optimality

So far, we have established via Proposition 3, that the threshold strategy is suboptimal,

and via Proposition 5, that the cardinality strategy may be suboptimal. However, our

basic numerical study in Section 1.6.2 suggests that as the number of voters increases, this
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optimality gap becomes less important.

Theorem 3 (Exponential Convergence). Let M denote the set of dishonest producers, and

suppose there exists a set of honest producers, H, with |H| ≥ (1−p) ·k, and a δ > 0 such that

mini∈[n],j∈H pij ≥ maxi∈[n],j∈M pij + δ, where pij denotes the probability that voter i votes

for producer j. Then

Pr [T = H] ≥ 1− 2m2e−δ2n/2. (1.14)

Theorem 3 shows that as the number of voters, n, tends to infinity, almost any reasonable

strategy has a very high chance of electing an honest committee. In particular, as long

as signals are not completely uninformative, that is, as long as there exists a δ > 0 gap

pij > pij′ + δ when j is honest and j′ is dishonest, the probability of an honest committee

tends to one exponentially in the number of voters n (assuming there are enough honest

producers to fill the committee). The lower bound on the success probability decreases

quadratically in the number of block producer candidates m, because if there are too many

block producers relative to the number of voters, no single block producer can amass enough

votes to make it onto the committee with high probability. As long as there are not too

many candidates, however, the exponential dependence on the number of voters dominates

the quadratic dependence on the number of producer candidates. Importantly, this result

holds across all voting strategy classes, and this leads to the following two corollaries.

Corollary 1. If ph > pm, and m · p ≫ k, then the probability of an honest committee when

all voters follow the Threshold strategy converges to 1 as m,n → ∞ (assuming n ≫ m).

Corollary 2. If ph > pm, and m · p ≫ k, then the probability of an honest committee when

all voters follow the Cardinality strategy converges to 1 as m,n → ∞ (assuming n ≫ m).

Remark 1. Since m is the number of producers, and p is the a priori probability a candidate

is honest, the number of honest candidates is distributed as Bin(p,m), and the expected

number of honest candidates is m · p. If the number of honest candidates is less than k, then
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there is no way to elect k honest producers. The assumption that m · p ≫ k ensures that the

probability there are fewer than k honest candidates is small.

Figure 1.6 illustrates the exponential convergence result, assuming each voter follows a

(generally suboptimal) Threshold Voting strategy (Definition 5) with z = p. The figure

shows that as long as the signals are not completely uninformative (ph ̸= 0.5), the probability

of success rapidly converges to 100%.
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Figure 1.6: Rate of Convergence to Optimality under a suboptimal threshold voting strategy.
Note that these are exact probabilities, and the jaggedness of the plot comes about from the
combinatorial nature of the problem, which depends on the number of voters (which only
takes integral values). Key Takeaway: The success probability quickly goes to one, as n
increases.

Note, convergence to optimality also holds (more trivially) for other asymptotics of interest,

such as if the signal informativeness ph−pm
σ → ∞ or if the prior p → 1. See Appendix A.5

for an illustration.

1.7. Alternatives to approval voting

Since most Proof of Stake systems support delegation, the main difference between Proof of

Stake and Delegated Proof of Stake comes down to how the block producers are elected.

Although DPoS systems like EOS and TRON elect committees using approval voting, other

blockchains that make use of committee-based consensus use alternative methods for electing

committees.
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This feature is not restricted to DPoS, and PoS systems also use committees to run classical

consensus mechanisms.

1.8. Single-vote elections

Most blockchains built using the Cosmos SDK11also employ committee-based consensus,

where a committee is elected by single-choice voting (not approval voting), and the elected

committee runs the Tendermint consensus protocol (which requires a 1/3 fraction of honest

participants). This is the voting mechanism used by the Cosmos Hub, Terra, crypto.org,

Osmosis, Secret, Oasis, Binance Chain etc. It is also the mechanism used by Tron and the

Binance Smart Chain.

In this setting, in stark contrast to approval voting, each voter’s optimal strategy is simple:

vote for the candidate that is most likely to be honest, i.e., voter i votes for candidate j

where sij is maximized.

Unfortunately, in this setting, we cannot apply Theorem 1, because when voters follow a

cardinal-voting strategy the number of votes received by each candidate are not independent

variables. See Appendix A.6 for a more detailed discussion of the problem.

In this setting, we resort to simulations to analyze the effectiveness of different cardinal-

voting strategies. The strategy z = 1, where voters vote for a single producer, is of particular

interest because that is the only strategy available on most chains that use elected committee-

based consensus.

Figure 1.7 show how the probability of electing an honest committee differs when voters

follow a cardinal voting strategies with different thresholds, z. The key observation is that

when voters vote for only a single voter, z = 1, the success probability is minimized. In

single-vote systems (e.g. Cosmos chains and Tron) voters are forced to follow the cardinal

voting with threshold z = 1, and this essentially forces them to follow the worst cardinal

voting strategy.
11In addition to the Cosmos Hub, this includes several other popular chains including, Terra, Secret,

Osmosis, Binance Chain, Thorchain, crypto.org, axelar and many others.
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Figure 1.7: Success probabilities with cardinal voting strategies. The key observations is
that when the threshold is one (i.e., single-vote elections) the success probability is at its
lowest. Voting for a single candidate (which is the only possible strategy on most platforms)
is essentially the worst strategy.

By contrast, in approval voting systems (e.g. EOS, Telos), even if voters choose their

threshold suboptimally, they are essentially guaranteed to have higher success probabilities

than in the single-vote setting.

The dashed line shows the probability of electing an honest committee by lottery, when

p = .75 (i.e., each candidate has a 75% chance of being honest) and the committee size

is 21. The line is flat because it does not depend on voters’ strategy – the committee is

selected at random with no voting at all.

1.8.1. Electing committees by lottery

Algorand employs committee-based consensus, but uses a randomly selected committee to

certify each block. In order to ensure that the Algorand protocol never forks, the protocol

must never elect a dishonest committee.

The analysis of the Algorand protocol proceeds as follows. Suppose some fraction, p > 2/3,
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of the tokens are held by honest participants (i.e., , an elected committee member is honest

with probability p) then if a committee of size k is randomly selected, then the probability

the committee is at least 2/3rds honest is

Pr

[
Bin k, p ≥ 2

3
k

]
(1.15)

A Chernoff bound (e.g. Dubhashi and Panconesi (2009)[Exercise 1.2]) then shows

Pr

[
Bin k, p ≥ 2

3
k

]
> 1− e−

(1− 2
3p)

2
pk

2 (1.16)

which decays exponentially as the committee size, k, increases (as long as p > 2
3). In

particular, we can make the failure probability arbitrarily small by choosing the committee

size to be large enough.

Remark 2. A key drawback of the lottery-based election method is that the success probability

only converges to 1 as the committee size (k) increases. By contrast, Theorem 3 shows that

for approval voting, the success probability converges to 1 as the number of voters increases.

This is the key reason why voting-based systems can have much smaller committee sizes than

lottery-based systems.

For example, Algorand suggests a target committee size of about 1500, instead of 21 for EOS

(Chen and Micali, 2016)[Section 5.1]. If we assume that (at most) 20% of the tokens are

ever held by malicious participants, a Chernoff bound gives that the probability of electing a

dishonest committee (i.e., a committee with more than 1/3 dishonest members), is bounded

by 10−12.

The probability that a dishonest committee is ever elected can then be bounded by taking

a union bound over all potential elections (e.g. if there is an election every four seconds

for the next twenty five years, there will be approximately 200 million elections). Taking a
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union bound over the 2 · 108 elections held in the text 25 years, we have the probability of

a fork in the next 25 years is at most .5%.

In Algorand, it is very easy to calculate the probability of a dishonest committee, for a given

fraction of honest candidates (p), and a given committee size (k).

Intuitively speaking, allowing users to vote, should increase the probability of electing an

honest committee, and thus reduce the size of the committee needed to ensure that it reaches

the critical (2/3rd) threshold of honest members.

In Figure 1.8, we plot the minimum committee size necessary to achieve a desired failure

probability, when the committee is chosen randomly (as in Algorand) or according to an

approval vote (as in DPoS). Even when the voters have only minimal information (pm =

.5, ph = .51 and σ = .1), allowing users to vote for candidates drastically reduces the size of

the committee necessary to achieve a specific failure bound. Since the committee executes a

Byzantine Agreement protocol with communication cost that is quadratic in the committee

size, k, minimizing the committee size is critical for performance.
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Figure 1.8: The minimum committee size required (y axis) to achieve a failure probability
of 10−x, x ∈ [3, 10], when the committee is chosen at random (as in Algorand) vs. when
the committee is elected by voters (as in DPoS). Key takeaway: DPoS consensus requires
much smaller committee sizes for the same level of security.

Note, Figure 1.8 was generated assuming the voters follow the threshold voting strategy with

z = p. Since we know this strategy is suboptimal, the figure can be viewed as a conservative
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estimate. In other words, plotting a similar figure for the optimal election strategy would

further reinforce our key insight.

1.9. Discussion

Different objectives: Our results suggest that while voters in committee-based consensus

seem to be following intuitive, yet suboptimal strategies, these systems are nonetheless

asymptotically robust and efficient from an election perspective. Beyond optimizing to

reduce failure rates, however, our model does not deal with other features that voters may

care about (a discussion can be found in Appendix A.4). These are outside the scope of this

work, but could be of interest for future work.

For instance, one drawback of electing committees as opposed to selecting random com-

mittees is that elections seems to lead to stagnation, especially early on in the blockchain

life-cycle. EOS represents a rather extreme example: The first 89 million EOS blocks were

mined by only 63 distinct producers Zheng et al. (2020b). By comparison, the first 655,000

Bitcoin blocks were mined by more than 275,000 distinct addresses, and the first 8 million

Ethereum blocks were mined by over 5000 distinct addresses Zheng et al. (2020a).

A small, static set of block producers reduces decentralization – a core tenet of almost all

cryptocurrencies. The idea that there should be a diversity of block producers is core to the

open, democratic ideals that spawned much of the blockchain ecosystem, and the idea that

there should be turnover in the set of block producers has been formalized in the notion

of chain quality which is a measure of fairness. Chain quality is a measure of whether (in

sufficiently long time windows) the fraction of blocks contributed by each participant is

proportional to their hash power or stake Garay et al. (2015).

Chain quality is a different metric by which we could measure different election mechanisms,

and this could be an interesting direction for future research.

Different voting schemes: In this work, we focused on lottery-based selection, single-

vote mechanisms and approval voting because these are the systems that have currently
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been deployed for committee selection.

Many alternative voting systems exist, e.g. ranked-choice voting Nurmi and Palha (2021),

and it is an interesting question whether these can outperform approval voting in settings

where voter incentives are aligned, but voters are (on the whole) poorly informed.

A separate question is vote-weighting. All current Proof-of-Stake blockchains weight stake

linearly, but there are alternative weighting mechanisms, the most common being Quadratic

Voting Posner and Weyl (2014); Lalley and Weyl (2018a). In Quadratic Voting, a voter’s

vote weight is proportional the square-root of their stake, rather than being proportional

to the stake itself. Quadratic Voting has been used in the blockchain context (e.g. Gitcoin

Grants), but has not been used as a method for electing a consensus committee.

It is worth noting that the quadratic weighting mechanism is compatible with many different

types of vote-aggregation mechanisms (e.g. single-vote, approval voting, or ranked-choice

voting). One problem with quadratic voting mechanisms is that voters are incentivized

to split their stake, and so systems that employ quadratic voting need some mechanism

to prevent a single voter from splitting their stake, and such a mechanism is difficult to

implement in permissionless blockchains.
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CHAPTER 2

Nash equilibria for quadratic voting in blockchain governance

ABSTRACT

We investigate a blockchain governance model where a group of n voters must choose between two collective

alternatives. As opposed to the usual voting system (one person – one vote), we propose a voting system

where each agent buys votes in favor of their preferred alternative, paying the m-th root of the number

of votes purchased. Its novelty relies on allowing voters to express the intensity of their preferences in a

simple manner. We provide a rigorous comparison of the utilitarian welfare between Regular Voting (m = 1)

and Quadratic Voting (m = 2). We present closed form equilibrium solutions to the 2 voters and 3 voters

games. In addition to characterizing the nature of equilibria, one of our main results demonstrates that the

normalized utilitarian welfare of the mechanisms tends to one as the population size becomes large.

Keywords: Quadratic Voting, Collective Decisions, Blockchain Governance, Blockchain Economics, Bayes-

Nash equilibrium.

2.1. Introduction

Decentralized blockchain projects require decentralized governance, and most projects have

incorporated some form of stake-weighted governance. Layer-1 blockchains, like Tezos Tezos

(2021), which use stake-weighted voting to determine system upgrades. DeFi projects like

Curve Curve (2021), Uniswap Uniswap (2021) and Maker MakerDao (2021a) use stake-

weighted voting to determine system parameters. Votes can be binary (e.g. should a token

like WBTC be allowed as a collateral type for minting DAI tokens? MakerDao (2021c)) or

multiple choice (e.g. should the system surplus buffer be increased? With 5 possible options

for the amount and speed of increase MakerDao (2021b)). In these situations, voter interests

are aligned – all voters are incentivized to set the surplus buffer to the size that maximizes

the stability of the system. The issue is that voters have limited information about which

option will actually provide the most benefit to the system.

This scenario – where voters’ have common interest but imperfect information – differs

significantly from most models in the voting literature, where voters have heterogeneous
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incentives, but perfect information about their payouts.

Our model is more akin to the crowdsourcing literature, where votes are used to capture

“the wisdom of the crowd.” In the blockchain setting, essentially every governance sys-

tem requires voters to stake tokens as a form of sybil resistance. It is an open question,

however, how to design a mechanism to aggregate these votes in order to maximize the

utilitarian welfare. The simplest mechanism aggregates user votes and weights them ac-

cording to each user’s stake. One widely-studied alternative mechanism is quadratic voting

Lalley and Weyl (2018a,b); Posner and Weyl (2014, 2015); Quarfoot et al. (2017), where

user votes are weighted according to the square-root of their stake. When voters have per-

fect information (but diverse incentives), quadratic voting has been shown to be optimal

Lalley and Weyl (2018a). In this work, we introduce the study of quadratic voting in the

situation where voters have imperfect information, but aligned incentives.

2.2. Related Work

One of the known drawbacks of traditional one-person-one-vote (1p1v) or approval voting

mechanisms is that they do not allow voters to signal the strength of their preference. Qual-

itative Voting Hortala-Vallve (2012) considers a setting where voters are choosing between

N alternatives, and they have a fixed voting budget of V that can be allocated between

the N alternatives. Voters are heterogeneous, but have perfect information about their own

payoffs.

An alternative method for allowing voters to express the strength of their preference by

“storing” their votes on issues for which they have weak preferences, and then using those

votes later on issues where their preferences are stronger Casella (2005). Storable voting

only makes sense when voters are asked to vote on a sequence of propositions, whereas our

model focuses on a single-shot vote. Like most of the voting literature the Storable votes

model assumes that voters know their current preferences at the time they cast a vote. Their

model does implicitly incorporate imperfect information, because a voter who stores a vote

during round i does not (yet) know their preferences over the issues in round j > i.
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Other models have incorporated a cost to voting Matveenko et al. (2021), but these works

also assume that voters have perfect information about their own preferences at the time

they choose to participate.

2.3. Model

2.3.1. Motivation

Consider a binary (±1) collective-decision problem with n voters. Each voter has a value

ui > 0 that determines their utility towards the decision and si = ±1 that determines their

preference, i.e., si = 1 indicates affinity towards outcome +1 and si = −1 towards outcome

−1.

In tradition one-person-one-vote (1p1v) systems, the outcome will be sgn (
∑

i si), and the

overall welfare of the system will be
∑

i ri, where

ri =

 ui if sgn(si) = sgn (
∑

i si)

0 otherwise
(2.1)

Although the one-person-one-vote mechanism is widely used, it cannot maximize aggregate

welfare since voters have no way of signaling the magnitude of their preference (ui).

To allow voters to signal the magnitude of their preference, we can allow voters to purchase

a number of votes vi ∈ R≥0, at a cost of c(vi). If the revenue from the sale of these

votes is redistributed to the voters, the aggregate utility is independent of the redistribution

mechanism, and the aggregate utility is
∑

i ri

ri =

 ui if sgn(si) = sgn (
∑

i sivi)

0 otherwise
(2.2)

When c(v)
def
= v2, we obtain Quadratic Voting, which can be shown to be the unique mech-

anism for optimizing aggregate welfare in this model Lalley and Weyl (2018a).

42



Quadratic voting can be optimal for funding public goods Buterin et al. (2019). In this

model, citizens, with perfect information, but heterogenous preferences contribute money to-

wards in the Quadratic Funding mechanism, proposition p receives a funding level
(∑

i

√
cpi

)2
,

where cpi is the amount of funding contributed towards proposition p. One issue with this

mechanism is that it may incur a budget deficit (i.e.,
∑

p

(√
cpi

)2
>
∑

p

∑
i c

p
i ). In this case

the deficit needs to be filled through some other mechanism (e.g. taxation or charitable do-

nation). This quadratic funding mechanism is currently implemented in the Gitcoin Grants

program Gitcoin (2021a), where individual users’ contributions to public goods are matched

quadratically by philanthropic donors. As of Q4 2021, Gitcoin Grants has distributed over

$40M USD in funding to community projects Gitcoin (2021b).

Quadratic voting has also been implemented in blockchain governance, e.g. in the Panther

protocol Panther.io (2021).

2.3.2. Voting with Imperfect Information

Voters are asked to make a choice between two alternatives, one of which is “good” while the

other is “bad”. The voters, however, have imperfect information, and voter i can identify

the good option with probability pi. If the good option is chosen, voter i receives a payout

of ui > 0, and if the bad option is chosen, all voters receive payout of 0. In case of a tie the

bad option is chosen. We assume that the pi and ui are publicly known.

Concretely, assume that voter i receives a signal pi ∈ [0, 1] (see Appendix B.2 for the

distribution). Now, suppose each voter is allowed to buy votes. Each voter i chooses a

number of votes vi ∈ Z≥1 to buy, and pays f(vi) for these where f(x) = xm for m ∈ Z≥1

and f(x) = 0 for m = 0. Each voter receives 1
n−1 of the revenues paid in by all other voters

and none of the revenue collected directly from him

Summary of the game environment:

• Voters i = 1, . . . , n.

• Binary decision with a good option and a bad option. Voters are aligned in their
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preference with respect to the binary decision.

• Voter i has probability pi of choosing the good option. His reward is ui > 0 if the

good option is chosen and 0 if the “bad" is chosen.

• Tie break rule: in case of a tie the bad option is chosen.

• The voters’ probabilities p1, . . . , pn are independent.

• pi, ui are publicly known.

• Voters are asked to submit votes v1, . . . , vn with strategy space vi ∈ {1, 2, . . .} - no

abstaining. Each voter pays f(vi) where f(x) = xm (m ≥ 1).

For each voter i, we define si ∈ {±1} to be the realization of the direction of voting. For

good; si = 1, and for bad; si = −1.

Notation: We will denote the strategy (votes) vector as v⃗ = (v1, . . . , vn), vi ∈ Z≥1,

the signals vector as p⃗ = (p1, . . . , pn), pi ∈ [0, 1] and the votes directions vector as s⃗ =

(s1, . . . , sn), si ∈ {±1}. Also 1⃗n ∈ Zn will denote the 1-vector of size n.

Definition 7. With the above notation, the probability of winning the game or the

winning probability is

p (v⃗)
def
= Pr

[
n∑

i=1

sivi > 0

]
(2.3)

The expected payoff to voter i is:

Ui = ui · p (v⃗)− f(vi) +
1

n− 1

∑
j ̸=i

f(vj) (2.4)

The last term in Equation 2.4 represents a redistribution transfer in which each voter receives

n−1 of the revenues paid in by all other voters and none of the revenue collected directly from

him; however, none of the results below depend on this particular redistributive scheme.1

1Any rule in which all revenues are redistributed and each voter receives the same share of the revenues
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Remark 3. Note that this scheme is budget balanced as

n∑
i=1

f(vi)−
1

n− 1

∑
j ̸=i

f(vj)

 =
n∑

i=1

f(vi)−
n− 1

n− 1

n∑
j=1

f(vj) = 0

Voters are expected payoff maximizers and thus voter i chooses his vi to maximize

ui · p (v⃗)− f(vi) (2.5)

Let U =
∑n

i=1 ui, the expected welfare of the mechanism is

W (v⃗) =

n∑
i=1

Ui = U · p(v⃗) (2.6)

Definition 8. A voting mechanism is a choice of m ≥ 1 that determines the vote cost

function f(vi). We give names to the following values of m = 1, 2:

• Regular Voting (RV): m = 1, f(v) = v

• Quadratic Voting (QV): m = 2, f(v) = v2

We wish to compare the different voting mechanisms in terms of the overall net utility for

all voters and find the one that maximizes it. This is the same as asking which voting

mechanism maximizes the probability of winning the game.

Question 1. For what value of m ≥ 0 is p (v⃗) maximized?

Each game might have multiple Nash Equilibria. The problem with phrasing the question

this way, is that we might get a different value of this probability for different Nash Equilib-

rium of the game. Moreover, since this probability is dependent on ui, pi. It might be the

case that for different values of ui, pi this probability is maximized for different values of m.

This leads us to the following definition:

he pays suffices to establish essentially all results that follow.
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Definition 9. Denote
{
NE(1)

1 , . . . ,NE(1)
k

}
the set of Nash equilibrium strategies of the game

under voting mechanism m1 and
{
NE(2)

1 , . . . ,NE(2)
l

}
under voting mechanism m2 (k, l non-

negative integers). We say that a voting mechanism m1 is better than m2 if for every ui, pi,

it holds that either
{
W
(
NE(1)

i

)}
i
=
{
W
(
NE(2)

j

)}
j
or min

NE(1)
i

W
(
NE(1)

i

)
≥ max

NE(2)
j

W
(
NE(2)

j

)
and if for a range of values ui, pi it holds that the equilibria are not identical and the above

inequality is strict.

2.4. Analysis

2.4.1. Preliminaries

Even the n = 3 case is harder to solve than the simple n = 2 case and requires some

key observations. We start from analyzing the one-person-one-vote strategy vi = 1. The

probability of winning in this game will turn out to have great importance in our results.

Proposition 6. In a one-person-one-vote game (1p1v) vi ∈ {1}, the probability of winning

is

p
(
1⃗n

)
= Pr

[
n∑

i=1

si · 1 > 0

]
= Pr

[
X >

n

2

]
, (2.7)

where X ∼ PoiBin(p1, . . . , pn).

All proofs are in the appendix B.1. We will now provide the preliminary definitions needed

to prove the main tool for analyzing the game.

Definition 10. We define Fv⃗ to be the set of all subsets of [n] such that the sum of votes

of voters indexed by it, is strictly larger than the sum of votes of voters indexed by the

complement set:

Fv⃗
def
=

{
A ⊆ [n]

∣∣∣∣∣ ∑
i∈A

vi >
∑
i∈Ac

vi

}
(2.8)

This definition is motivated by the following observation:
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Proposition 7 (Success probability).

Pr

[
n∑

i=1

sivi > 0

]
= Pr [{i | si = 1} ∈ Fv⃗]

=
∑
A∈Fv⃗

∏
i∈A

pi
∏
j∈Ac

(1− pj),

(2.9)

Remark 4. Note the similarity of the expression of Equation 2.9 to that of the probability

of a Poisson Binomial with k trials. Let X ∼ PoiBin(p1, . . . , pn) then

Pr[X = k] =
∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj), (2.10)

where Fk is the set of all subsets of k integers that can be selected from [n].

In this analysis, we are required to deal with a more general weighted Poisson binomial

random variable since it can be viewed as if each si is weighted with weight vi. Let’s see

this in practice, Proposition 7 generalizes the result of Proposition 6 to any integral strategy

space v⃗ ∈ Z≥0 and thus gives a different proof to Proposition 6 in Appendix B.1.1.

Proposition 7 tells us that voter i’s goal is to maximize:

max
vi

ui
∑
A∈Fv⃗

∏
i∈A

pi
∏
j∈Ac

(1− pj)− f(vi) (2.11)

The key observation here is that the success probability depends on Fv⃗ and many different

voting strategies v⃗ yield the same Fv⃗. In fact, when the number of voters is small, we can

enumerate all possible realizations of Fv⃗.

Let Fn denote the set Fv⃗ for all possible (sorted) realizations of the vote-weights v⃗. In other

words

Fn
def
= {Fv⃗ | v⃗ ∈ (Z≥1)

n and v1 ≥ v2 ≥ · ≥ vn} (2.12)
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Example 1.

F3 = {{{1, 2, 3}, {1, 2}, {1, 3}},

{{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}},

{{1, 2, 3}, {1, 2}, {1, 3}, {1}}}

We can use F3 to calculate all possible success probabilities in the 3 players game. By abuse

of notation we denote F−1
v⃗ to be the set of strategy vectors v⃗ that result in the set Fv⃗.

Example 2. Assume v1 ≥ v2 ≥ · ≥ vn.

Fv⃗ p(v⃗) F−1
v⃗ ⊆ (Z≥1)

n

{{1, 2, 3}, {1, 2}, {1, 3}} p1p2 + p1p3 − p1p2p3 v1 = v2 + v3
{{1, 2, 3}, {1, 2}, {1, 3}, {2, 3} } p1p2 + p1p3 + p2p3 − 2p1p2p3 vj < vj+1 + vj+2∀j

{{1, 2, 3}, {1, 2}, {1, 3}, {1}} p1 v1 > v2 + v3

Table 2.1: 3 Players game variables summary

Permuting the indices {1, 2, 3} gives the variables for all other assortments of the vi. From

here on we will assume that ∀i : ui = u. It facilitates the analysis and doesn’t change any of

the key insights. We may also assume that p1 > p2 > · · · > pn ≥ 0.5 since if a voter receives

a signal pi < 0.5 he votes for the other option with probability 1 − pi ≥ 0.5 and we order

the voters by the signals.

2.4.2. Two Players Game

We start by analyzing the simple case of only two voters.

2 Player game presentation:

v1 / v2 1 2
1 up1p2 − 1, up1p2 − 1 up2 − 1, up2 − 2m

2 up1 − 2m, up1 − 1 up1p2 − 2m, up1p2 − 2m

Table 2.2: 2 Player game normal form for v1, v2 ≤ 2
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Proposition 8. Assume that n = 2, then the following is an exhaustive list of the possible

Nash Equilibria of the game:

Nash Equilibrium Welfare Necessary and Sufficient Condition
(1, 1) Up1p2 c1 ≤ 2m − 1 and c2 ≤ 2m − 1
(2, 1) Up1 c1 ≥ 2m − 1
(1, 2) Up2 c2 ≥ 2m − 1

where c1 = up1(1− p2) and c2 = up2(1− p1) and it holds that c1 ≥ c2.

Corollary 3. For n = 2, neither RV or QV is better.

For n = 2 it is not true that RV is better than QV. It is only true in the region c1 <

3 or [c1 ≥ 3 and (c2 < 1 or c2 > 3)]. Figure 2.1 captures the voting mechanism RV and QV

welfare as function of c1, c2 and comparing them by regions.

Figure 2.1: 2 players game welfare for RV and QV. Green region is RV better than QV with
strict inequality, Red is where it fails. Grey is where the mechanisms have the same N.E.
set. The terms for each region are

{
W
(
NE(RV)

i

)}
i
,
{
W
(
NE(QV)

j

)}
j
.
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2.4.3. Three Players Game

Denote P1̄23
def
= p2p3(1− p1), P12̄3

def
= p1p3(1− p2), P123̄

def
= p1p2(1− p3),P3

def
= p(⃗13).

Using Table 2.1 we can present the 3 Players Game Normal Form:
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v2 / v3 1 2
1 uP3 − 1, uP3 − 1, uP3 − 1 u (P3 − P123̄)− 1, u (P3 − P123̄)− 1, u (P3 − P123̄)− 2m

2 u (P3 − P12̄3)− 1, u (P3 − P12̄3)− 2m, u (P3 − P12̄3)− 1 uP3 − 1, uP3 − 2m, uP3 − 2m

Table 2.3: 3 Player game normal form for v2, v3 ≤ 2, v1 = 1

v2 / v3 1 2
1 u (P3 − P1̄23)− 2m, u (P3 − P1̄23)− 1, u (P3 − P1̄23)− 1 uP3 − 2m, uP3 − 1, uP3 − 2m

2 uP3 − 2m, uP3 − 2m, uP3 − 1 uP3 − 2m, uP3 − 2m, uP3 − 2m

Table 2.4: 3 Player game normal form for v2, v3 ≤ 2, v1 = 2
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Proposition 9. Assume that n = 3, then the following describes all possible options of Nash

Equilibria of the game:

Nash Equilibrium Net Utility Necessary and Sufficient Condition
(1, 1, 1) UP3 c4 ≤ 3m − 1
(3, 1, 1) Up1 c4 ≥ 3m − 1
(1, 2, 2) UP3 c4 ≤ 5m − 1, c2 ≥ 2m − 1, c3 ≥ 2m − 1
(2, 2, 1) UP3 c4 ≤ 4m − 2m, c1 ≥ 2m − 1, c2 ≥ 2m − 1
(2, 1, 2) UP3 c4 ≤ 4m − 2m, c1 ≥ 2m − 1, c3 ≥ 2m − 1

where c1 = uP1̄23, c2 = uP12̄3, c3 = uP123̄, c4 = u(p1 − P3)

Corollary 4. For n = 3, only if p1 > P3 then RV is better than QV. Otherwise, they always

yield the same unique welfare UP3.

2.4.4. General Case

Proposition 10. Let 1 > p1 > p2 > · · · > pn ≥ 0.5 then

lim
n→∞

p(⃗1n) = 1

Since p(v⃗) ≤ 1 always then when n is large, all voting mechanisms are essentially the same.

This subsection is dedicated to making this statement precise.

Proposition 11. Let v satisfy v = argmax
1<v≤n

[
up(v,1,...,1) − vm

]
. The strategy v⃗ = 1⃗n is a N.E.

if and only if

u(p(v,1,...,1) − p1⃗n) ≤ vm − 1 (2.13)

Theorem 4. Let p̄ = 1
n

∑n
i pi and assume that u(p(v,1,...,1) − p1⃗n) ≤ vm − 1 with

v = argmax
1<v≤n

[
up(v,1,...,1) − vm

]
, then

max
v⃗

pv⃗ ≥ 1− e−2(p̄−1/2)2n (2.14)
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Corollary 5. When n → ∞, RV and QV yield the same probability of winning in the u, pi,

n dimensional space defined by

u(p(v,1,...,1) − p1⃗n) ≤ v2 − 1 (2.15)

where v = argmax
1<v≤n

[
up(v,1,...,1) − v2

]
.

2.5. Discussion

Our results suggest that while voters reach a different set of Nash Equilibria in RV versus

QV, these systems are nonetheless asymptotically the same with respect to the utilitarian

objective. However, for small committees RV is better than QV. This follows from the fact

that QV does not allow a single knowledgeable user to express their dominance. For larger

committees, the wisdom of the crowd is so strong that no individual is more knowledgeable

than the crowd.

Extant literature says the QV is better when all voters have equal information. However,

our work shows that when voters are not perfectly informed, QV can actually be worse.

In chapter 1 we discussed different voting mechanisms and in this chapter we discussed

voting weighting mechanisms. As a future direction, it would be interesting to combine the

two and analyze a model where both weighting and the mechanism are not traditional, e.g.

approval-quadratic voting.
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APPENDIX A

Chapter 1 Appendix

A.1. Proofs

A.1.1. Posterior probabilities

Lemma 2. Let c be a producer with a priori probability to be honest p, suppose a voter

receives a signal

s∗ =

 ph + ϵ if Producer j is honest

pm + ϵ if Producer j is malicious

with ϵ ∼ N (0, σ2), then

(i) Pr [c = H | s∗] = 1

1 + 1−p
p e

(s∗−ph)2−(s∗−pm)2

2σ2

(ii) fs|H(x) =
σ√

2πx(1− x)(ph − pm)
· e

−

 (ph−pm)2+2σ2 log

(
p(1−x)
(1−p)x

)
2
√
2σ(ph−pm)

2

One useful implication of Lemma 2 is that we can interchangeably talk about the voters

considering the probabilities of producers to be honest conditioned on their signals instead

of the original signals. Meaning, the model facilitates comparisons with Bayesian posteriors.

In particular conditioned on s∗ij , Lemma 2 shows that the probability that producer cj is

honest is

sij
def
= Pr[cj = H|s∗ij ] =

1

1 +
1−pj
pj

e

(s∗
ij

−ph)2−(s∗
ij

−pm)2

2σij
2

. (A.1)
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Proof of Lemma 2. Part (i): Let fϵ(x) denote the PDF of ϵ. Bayes’ Theorem says

Pr [c = H | s∗] = Pr [c = H] Pr [s∗ | c = H]

Pr [s∗]
(A.2)

=
Pr [c = H] Pr [s∗ | c = H]

(Pr [c = H] Pr [s∗ | c = H] + Pr [c = M ] Pr [s∗ | c = M ])
(A.3)

=
1

1 + Pr[c=M ]
Pr[c=H]

Pr[s∗ | c=M ]
Pr[s∗ | c=H]

(A.4)

=
1

1 + 1−p
p

fϵ(s∗−pm)
fϵ(s∗−ph)

(A.5)

(A.6)

Now,

fϵ(x) =
1

σ
√
2π

e−
x2

2σ2 . (A.7)

Thus

Pr [c = H | s∗] = 1

1 + 1−p
p e

(s∗−ph)2−(s∗−pm)2

2σ2

(A.8)

Part (ii): Let

h (s∗) def
=

1

1 + 1−p
p e

(s∗−ph)2−(s∗−pm)2

2σ2

(A.9)

then s = h(s∗), by Lemma 2.

Since h(·) is strictly increasing, the cumulative density function satisfies

Fs(x) = Fs∗
(
h−1(x)

)
(A.10)

and the conditional cumulative distribution function satisfies

Fs|H(x) = Fs∗|H
(
h−1(x)

)
(A.11)
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Thus it suffices to calculate h−1(·).

q =
1

1 + 1−p
p e

(s∗−ph)2−(s∗−pm)2

2σ2

⇕
1

q
= 1 +

1− p

p
e

(s∗−ph)2−(s∗−pm)2

2σ2

⇕
p

1− p

(
1

q
− 1

)
= e

(s∗−ph)2−(s∗−pm)2

2σ2

⇕
p(1− q)

(1− p)q
= e

(s∗−ph)2−(s∗−pm)2

2σ2

⇕

log

(
p(1− q)

(1− p)q

)
=

(s∗ − ph)
2 − (s∗ − pm)2

2σ2

⇕

2σ2 log

(
p(1− q)

(1− p)q

)
= (s∗ − ph)

2 − (s∗ − pm)2

⇕

2σ2 log

(
p(1− q)

(1− p)q

)
= 2(pm − ph)s

∗ + p2h − p2m

⇕

s∗ =
p2h − p2m − 2σ2 log

(
p(1−q)
(1−p)q

)
2(ph − pm)

Thus

h−1(q) =
p2h − p2m − 2σ2 log

(
p(1−q)
(1−p)q

)
2(ph − pm)

(A.12)
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Since Fs∗|H(x) = Fϵ(s
∗ − ph), and

fϵ(x)
def
=

1

σ
√
2π

e−
x2

2σ2 , (A.13)

We have

fs|H(x) =
df

dx
Fs∗|H(h−1(x)− ph)

= fs∗|H(h−1(x)− ph) ·
df

dx
h−1(x) (A.14)

Now

fs∗|H(h−1(x)) = fϵ
(
h−1(x)− ph

)
=

1

σ
√
2π

e−
(h−1(x)−ph)

2

2σ2

=
1

σ
√
2π

e−

−(ph−pm)2−2σ2 log

(
p(1−x)
(1−p)x

)
2(ph−pm)


2

2σ2

=
1

σ
√
2π

e
−

 (ph−pm)2+2σ2 log

(
p(1−x)
(1−p)x

)
2
√
2σ(ph−pm)

2

(A.15)

and

d

dx
h−1(x) =

d

dx

p2h − p2m − 2σ2 log
(
p(1−x)
(1−p)x

)
2(ph − pm)

= − σ2

ph − pm

d

dx
log

(
p(1− x)

(1− p)x

)
=

σ2

ph − pm

1

x(1− x)
(A.16)
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Thus by Equations A.14, A.15 and A.16

fs|H(x) =
1

σ
√
2π

e
−

 (ph−pm)2+2σ2 log

(
p(1−x)
(1−p)x

)
2
√
2σ(ph−pm)

2

· −σ2

x(x− 1)(ph − pm)

=
σ√

2πx(1− x)(ph − pm)
· e

−

 (ph−pm)2+2σ2 log

(
p(1−x)
(1−p)x

)
2
√
2σ(ph−pm)

2

(A.17)

Similarly

fs|M (x) =
σ√

2πx(1− x)(ph − pm)
· e

−

 (ph−pm)2−2σ2 log

(
p(1−x)
(1−p)x

)
2
√
2σ(ph−pm)

2

(A.18)
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pm+ph

2 ph

P
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s∗

Figure A.1: The probability a producer is honest, conditioned on a single voter’s received
signal, s∗
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Figure A.2: The distribution of the posterior probability, s, conditioned for an honest pro-
ducer.

Lemma 3. Let cj be a producer with a priori probability to be honest pj, suppose voter vi

receives a signal (s∗ij) about producers cj honesty as in equation (1.2).

s∗ij =

 ph + ϵij if Producer j is honest

pm + ϵij if Producer j is malicious

with ϵij ∼ N (0, σ2
ij), then

Pr
[
cj = H

∣∣ s∗1j , . . . , s∗nj] = 1

1 +
1−pj
pj

e

∑n
i=1 [(s∗ij−ph)2−(s∗

ij
−pm)2]

2σ2
ij

.
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Proof of Lemma 3.

Pr
[
cj = H

∣∣ s∗1j , . . . , s∗nj] = Pr [cj = H] Pr
[
s∗1j , . . . , s

∗
nj

∣∣∣ cj = H
]

Pr
[
s∗1j , . . . , s

∗
nj

]
=

Pr[cj=H]Pr[s∗1j ,...,s∗nj | cj=H]
(Pr[cj=H]Pr[s∗1j ,...,s∗nj | cj=H]+Pr[cj=M]Pr[s∗1j ,...,s∗nj | cj=M])

=
1

1 +
Pr[cj=M ]
Pr[cj=H]

Pr[{s∗1j ,...,s∗nj | cj=M]
Pr[{s∗1j ,...,s∗nj | cj=H]

=
1

1 +
Pr[cj=M ]
Pr[cj=H]

∏n
i=1 Pr[s∗ij | cj=M]∏n
i=1 Pr[s∗ij | cj=H]

=
1

1 +
1−pj
pj

∏n
i=1 fϵij (s

∗
ij−pm)∏n

i=1 fϵij (s
∗
ij−ph)

(A.19)

Now,

fϵij (x) =
1

σij
√
2π

e
− x2

2σ2
ij . (A.20)

Thus

Pr
[
cj = H

∣∣ s∗1j , . . . , s∗nj] = 1

1 +
1−pj
pj

e

∑n
i=1

(s∗
ij

−pm)−(s∗
ij

−ph)

2σ2
ij

. (A.21)

A.1.2. Proofs for Section 1.6

Proof of Theorem 1. We condition on the number of honest and dishonest producers.

There are m producers, and each is honest with probability p. Suppose there are a honest

producers and b
def
= m− a dishonest producers. (Note that a ∼ Bin (m, p)).

The committee is honest if at least ⌈(1− p) · k⌉ of the elected block producers are honest.

Claim 1. The committee is honest if and only if the ⌈(1− p) · k⌉-st top-ranked honest pro-

ducer has more votes than the ⌈p · k⌉-th ranked dishonest producer
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Let Xh
1 , . . . , X

h
a denote the number of votes received by an honest producer j and Xh

a,1, . . . , X
h
a,a

their order statistics. Similarly, let Xm
1 , . . . , Xm

b denote the number of votes received by a

malicious producer j and Xm
b,1, . . . , X

m
b,b their order statistics. With this notation Claim 1

becomes:

Xh
a,a−⌈(1−p)·k⌉+1 > Xm

b,b−⌈p·k⌉+1 (A.22)

We define X
def
= Xh

a,a−⌈(1−p)·k⌉+1 and Y
def
= Xm

b,b−⌈p·k⌉+1.

If a < ⌈(1− p) · k⌉ then the success probability is zero. Also if a > m−⌈p · k⌉ then b < ⌈p · k⌉

so the success probability is 1 hence:

Pr [T = H] =
m∑

a=m−⌈p·k⌉+1

1 · Pr [a = a] +

m−⌈p·k⌉∑
a=⌈(1−p)·k⌉

Pr [X > Y |a = a] Pr [a = a] (A.23)

We have:

Pr [a = a] ∼ Bin (m, p) =

(
m

a

)
pa(1− p)m−a (A.24)

For any discrete, independent random variables, X and Y

Pr[X > Y ] =
∑
x

Pr[X = x] Pr[Y < x] (A.25)

so together with Theorems 9,10 we have:

Pr [X > Y ] =

n∑
x=0

Pr[X = x] Pr[Y < x]

=
n∑

x=0

fX(x)(FY (x)− fY (x))

=
∑n

x=0

[(∑⌈(1−p)·k⌉−1
j=0 (aj)

(
(1−Fh(x))

j
(Fh(x))

a−j−(1−Fh(x)+fh(x))
j
(Fh(x)−fh(x))

a−j
))

(∑⌈p·k⌉−1
j=0 (bj)(1−Fm(x)+fm(x))j(FM (x)−fm(x))

b−j
)]

(A.26)
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Plugging the last equation and Equation A.24 to Equation A.23 gives the result.

Proof of Theorem 2. If the probability that voter i votes for candidate j when candidate

j is honest (resp. dishonest) is phi (resp. pmi ), then the total number of votes for candidate

j is distributed as a Poisson Binomial with parameters ph1 , . . . , p
h
n (resp. pm1 , . . . , pmn ).

Then applying Equation A.54 in Definition 11 gives the result.

Proof of Proposition 1. The number of votes received by an honest producer is distributed

according to a Poisson random variable with parameters ph1 , . . . , p
h
n, where

phi = 1− Fs|H(zi) = 1− Φ

(
h−1(zi)− ph

σi

)
(A.27)

where Φ is the CDF of the standard normal distribution and h−1(·) is defined in Equa-

tion A.12. Similarly, the number of of votes received by a dishonest producer is distributed

according to a Poisson random variable with pm1 , . . . , pmn , where

pmi = 1− Fs|M (zi) = 1− Φ

(
h−1(zi)− pm

σi

)
(A.28)

Proof of Proposition 12. When voters follow the cardinal strategy, for voter i to vote for

candidate j, its signal needs to be among the top zi signals, meaning:

pi = Pr [sij is in the top zi signals] (A.29)

Let Si
m,1, . . . , S

i
m,m denote that order statistics of si1, . . . , sim. Then for candidate j to be

chosen by voter i it needs to hold that sij ≥ Si
m,zi so:

pi = Pr
[
sij ≥ Si

m,zi

]
= Pr

[
si ≥ Si

m,zi

]
(A.30)

with the last equality since we assumed σij = σi. Let Xi = si and Yi = Si
m,zi then
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equation A.30 becomes:

pi = Pr [Xi ≥ Yi] =

∫ ∞

−∞
Pr [Yi ≤ x] Pr [Xi = x] dx =

∫ ∞

−∞
FYi(x)fXi(x) dx (A.31)

As in the Proof of Theorem 1, we condition on the number of honest producers: a. a ∼

Bin (m, p) where p is the probability of a producer to be honest. The real valued random

variables (sij)1≤j≤m are drawn from two populations. Lemma 2 provides the PDF and CDF

of honest producers fsi|H , Fsi|H and malicious producers fsi|M , Fsi|M . W.L.O.G, suppose

that Fsij = Fsi|H for all 1 ≤ j ≤ a and Fsij = Fsi|M for all a+ 1 ≤ j ≤ m. By Theorem 12

we have that

FYi(x) =
m∑

l=zi

(a!(m− a)!)2

zi!(m− zi)!∑
0≤λ1≤zi

0≤λ2≤m−zi
λ1+λ2=a

[(
zi
λ1

)(
Fsi|H

)λ1
(
Fsi|M

)zi−λ1

(
m− zi
λ2

)(
1− Fsi|H

)λ2
(
1− Fsi|M

)m−zi−λ2

]

(A.32)

So finally Equation A.31 becomes:

pi =

m∑
a=0

pa(1− p)m−a

∫ ∞

−∞
FYi(x)fsi(x) dx, (A.33)

where FYi is given by Equation A.32. If the candidate is honest then phi is given by Equa-

tion A.33 with fsi = fsi|H derived in Lemma 2. Similarly, if the candidate is malicious then

pmi is given by Equation A.33 with fsi = fsi|M .

Proof of Lemma 1. Follows immediately from Lemma 4,5 and stochastic order defini-

tion 13.

Proof of Proposition 2. Suppose that voter v1 receives conditioned signals sj on candidate

cj and they are sorted so that s1 ≥ · · · ≥ sm. Let Cv1 = {cj1 , . . . , cjz} be voter v1 strategy

then the candidates on the chosen committee are T = {cj1 , . . . , cjz , cjz+1 , . . . , cjk} where

cjz+1 , . . . , cjk are filled adversarially. Let X be the random variable that is the number of
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honest producers on the chosen committee. Then X is a Poisson Binomial with probabilities

(sj1 , . . . , sjz , sjz+1 , . . . , sjk) and so Pr[T = H] = Pr[X > (1 − p) · k]. Define XP with

P = {sj1 , . . . , sjl} ⊆ {s1, . . . , sm} to be the Poisson Binomial with parameters (sj1 , . . . , sjl)

then by Lemma 1 we have (with x = (1− p) · k) that

argmax
P⊆{s1,...,sm}

Pr[XP > (1− p) · k] = {s1, . . . , sk} (A.34)

So by definition the optimal strategy for v1 is achieved by setting z = k and Cv1 =

{c1, . . . , ck}. That is, choosing the top z = k candidates which is the Cardinal strategy

with z = k.

Proof of Proposition 3. It suffices to consider the single voter case. Let z ∈ (0, 1) and

suppose voter v1 receives ordered, conditioned signals sj , follows the threshold strategy and

votes for all candidates sj > z. Let mz ∈ [0, . . . ,m] denote the number of candidates that

receive a vote.

If mz ̸= k then this strategy is not optimal by equation A.34. To show that the Threshold

strategy is not optimal, it remains to show that Pr[mz ̸= k] > 0.

Since mz is distributed as a Poisson Binomial with parameters p1, . . . , pm with pj
def
=

Pr [sj > z] and pj > 0, ∀j ∈ [1, . . . ,m], we have that Pr [mz = i] > 0 for all i ∈ [0, . . . ,m],

which means that Pr [mz = k] < 1.

Proof of Proposition 4. Suppose that the resulting posterior probabilities of honesty for

the candidates using Lemma 3 are sj and they are sorted so that s1 ≥ · · · ≥ sm. Let the

elected candidates on the committee be T = {cj1 , . . . , , cjk}. Let X be the random variable

that is the number of honest producers on the chosen committee. Then X is a Poisson

Binomial with probabilities (sj1 , . . . , sjk) and so Pr[T = H|si] = Pr[X > (1− p) · k]. Define

XP with P = {sj1 , . . . , sjl} ⊆ {s1, . . . , sm} to be the Poisson Binomial with parameters
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(sj1 , . . . , sjl) then by Lemma 1 we have (with x = (1− p) · k) that

argmax
P⊆{s1,...,sm}

Pr[XP > (1− p) · k] = {s1, . . . , sk} (A.35)

If we set z = k and Cvi = {c1, . . . , ck}. That is, choosing the top z = k candidates based on

the posteriors sj we achieve the maximum on the RHS of equation (A.35).

Proof of Proposition 5. Proposition 2 shows that for z ̸= k the Cardinal strategy may

be suboptimal.

Consider a setting with two voters, where pm = ph. When pm = ph, all the signals are

uninformative, i.e., sij = p for all i ∈ [n], j ∈ [m].

Now, suppose both voters follow the cardinal strategy with thresholds z0, z1. In this case,

voter i will vote (randomly) for zi candidates.

Since there are only two voters, every candidate receives 0, 1 or 2 votes. Let X0, X1, X2

denote the subsets producers that receive 0, 1 and 2 votes respectively. Let H and M

denote the set of honest and dishonest producers.

Thus X0
⋃̇
X1
⋃̇
X2 = [m] = H ⋃̇M, where

⋃̇
denotes the disjoint union of sets.

First, note that since there are two voters,

|X1|+ 2 |X2| = z0 + z1 (A.36)

Since |X2| ≤ min(z0, z1), we have |X1 ∪X2| ≥ max(z0, z1), which means that when

max(z0, z1) ≥ k (i.e., either voter votes for k candidates) no candidates from X0 will ever

make it to the committee.

To show that the threshold zi = k strategy is suboptimal, it suffices to consider strategies
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with max(z0, z1) ≥ k.

Since we assume that ties are broken in a worst-case fashion, the committee will be dishonest

if and only if there are x dishonest candidates in X2 and there are at least t+1−x dishonest

candidates in X1 and |X2| ≤ k− (t+ 1− x). because in this case, the adversary can choose

k − (t+ 1− x) dishonest candidates from X1 to fill the committee.

In other words, the committee will be dishonest with probability

Pr [T ̸= H] =

min(z0,z1)∑
a=0

Pr[|X2| = a]
a∑

x=0

Pr [|X2 ∩M| = x | |X2| = a] Pr [|X1 ∩M| ≥ t+ 1− x]

(A.37)

Note that if we did not assume min(z0, z1) ≥ k, some candidates from X0 could make it

onto the committee, and Equation A.37 would have extra terms.

Now |X2| is distributed as a hypergeometric random variable with parameters (z0, z1,m)

(i.e., z1 draws from a population of size m with z0 “distinguished” items), and |X1| is

distributed as a z0 + z1 − 2|X2|.

Thus we have

Pr [|X2| = a] =

(
z0
a

)(
m−z0
z1−a

)(
m
z1

) (A.38)

Since each producer is dishonest independently with probability p, the number of dishonest

producers in X2 is binomial random variable with parameters a, p.

Pr [|X2 ∩M| = x | |X2| = a] = Pr [Bin(a, p) = x] (A.39)

(A.40)
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and

Pr [|X1 ∩M| = x | |X2| = a] = Pr [|X1 ∩M| = x | |X1| = z0 + z1 − 2a] (A.41)

= Pr [Bin(z0 + z1 − 2a, p) = x] (A.42)

(A.43)

Equation A.37 becomes

Pr [T ̸= H] =

min(z0,z1)∑
a=0

Pr [|X2| = a] ·
a∑

x=0

Pr [Bin(a, p) = x] · Pr [Bin(z0 + z1 − 2a, p) ≥ t+ 1− x]

(A.44)

=

min(z0,z1)∑
a=0

Pr [|X2| = a] · Pr [Bin(z0 + z1 − a, p) ≥ t+ 1]

≥
min(z0,z1)∑

a=0

Pr [|X2| = a] · Pr [Bin(max(z0, z1), p) ≥ t+ 1]

= Pr [Bin(max(z0, z1), p) ≥ t+ 1]

When z0 = z1 = k (both voters vote for k producers) Equation A.44 becomes

k∑
a=0

Pr [|X2| = a] ·
a∑

x=0

Pr [Bin(a, p) = x] · Pr [Bin(2(k − a), p) ≥ t+ 1− x]

=
k∑

a=0

Pr [|X2| = a] · Pr [Bin(2k − a, p) ≥ t+ 1]

>

k∑
a=0

Pr [|X2| = a] · Pr [Bin(k, p) ≥ t+ 1]

= Pr [Bin(k, p) ≥ t+ 1]

(A.45)
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When z0 = k, and z1 = 0 (voter 1 abstains) Equation A.44 becomes

Pr [Bin(k, p) ≥ t+ 1] =
k∑

b=t+1

(
k

b

)
(1− p)bpk−b (A.46)

Here, we see that Equation A.45 is strictly greater than Equation A.46, so voter 1 is strictly

better off setting z1 = 0 (voting for no producers) than voting for k producers.

Proof of Theorem 3. First, note that since |H| ≥ (1 − p) · k, then if all members of H

receive more votes than all dishonest producers, then the committee will be honest. Thus it

suffices to show that all members of H will receive more votes than all members of M with

high probability.

Let Xj denote the number of votes received by producer j. Then Xj is a Poisson Binomial

with parameters p1j , . . . , pnj .

Fix jh ∈ H, and jm ∈ M. Then, by assumption

n∑
i=1

pijh ≥ nδ +
n∑

i=1

pijm (A.47)

The Chernoff bound for Poisson Binomials (Theorem 7) shows that for all t > 0

Pr

[
Xjh <

n∑
i=1

pijh − t

]
≤ e−

2t2

n (A.48)

and similarly

Pr

[
Xjm >

n∑
i=1

pijm + t

]
≤ e−

2t2

n (A.49)

If Xjh ≤ Xjm , then either

Xjh <

n∑
i=1

pijh − nδ

2
(A.50)

68



or

Xjm >
n∑

i=1

pijm +
nδ

2
. (A.51)

By a union bound, the probability that either of these events happens is bounded by

2e−δ2n/2. (A.52)

Taking a union bound over all pairs jh ∈ H, and jm ∈ M, we have the probability that all

jh ∈ H receive more votes than all jm ∈ M, is at least

1− 2m2e−δ2n/2. (A.53)

A.2. Poisson Binomial Distributions

A.2.1. Definitions

Definition 11 (Poisson Binomial Distribution). If {Xi} are independent Bernoulli random

variables, and Pr[Xi = 1] = pi, then the distribution of X def
=
∑

iXi is called the Poisson

Binomial Distribution with parameters (p1, . . . , pn).

A simple counting argument shows that if X has a Poisson Binomial distribution with

parameters p1, . . . , pn, then for any ℓ ∈ 0, . . . , n

Pr[X = ℓ] =
∑
A∈Fℓ

∏
i∈A

pi
∏
j∈Ac

1− pj (A.54)

where Fℓ is the set of all subsets of ℓ integers that can be selected from {1, . . . , n}.

Lemma 4 (Symmetry of Poisson Binomial Distributions). Suppose σ : [n] → [n] is a

permutation, and let X be a Poisson Binomial random variable with parameters p1, . . . , pn,
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and X ′ be a Poisson Binomial random variable with parameters σ(p1), . . . , σ(pn), then for

all ℓ ∈ 0, . . . , n,

Pr [X = ℓ] = Pr[X ′ = ℓ]

Lemma 5 (Monotonicity). Suppose X is a Poisson Binomial random variable with param-

eters p1, . . . , pn, and X ′ is a Poisson Binomial random variable with parameters p′1, . . . , p
′
n,

satisfying pi ≤ p′i for i = 1, . . . , n, then

X ≤st X
′.

Proof.The proof follows immediately from Lemma 6 since a Bernoulli random variable

with parameter p′i stochastically dominates a Bernoulli random variable with parameter

pi ≤ p′i.

A.2.2. Alternative characterizations of Poisson Binomial Distribution

Theorem 5 (Alternative characterization of a PDF of a Poisson Binomial

Fernández and Williams (2010)). If X has a Poisson Binomial Distribution with parameters

(p1, . . . , pn), then

Pr [X = t] =
1

n+ 1

n∑
j=0

(
e−2πi jt

n+1

n∏
k=1

(
pke

2πi j
n+1 + (1− pk)

))
(A.55)

We use f
(PB)
p1,...,pn(x) to denote the PDF of a Poisson Binomial random variable with parame-

ters p1, . . . , pn.

Theorem 6 (CDF of a Poisson Binomial Fernández and Williams (2010)). If X has a

Poisson Binomial Distribution with parameters (p1, . . . , pn), then

Pr [X ≥ t] = 1− 1

n+ 1

n∑
j=0

((
t−1∑
k=0

e−2πi jk
n+1

)
n∏

ℓ=1

pℓe
2πi j

N+1 + (1− pℓ)

)
(A.56)
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We use F
(PB)
p1,...,pn(x) to denote the CDF of a Poisson Binomial random variable with param-

eters p1, . . . , pn.

A.2.3. Concentration bounds

Theorem 7 (Chernoff-Hoeffding (Dubhashi and Panconesi, 2009, Theorem 1.1)). Let X =∑n
i=1Xi is a Poisson Binomial with parameters {pi}, and define p̄

def
= 1

n

∑n
i=1 pi, then

Pr [X > np̄+ t] ≤ e−2t2/n (A.57)

Pr [X < np̄− t] ≤ e−2t2/n (A.58)

Linear combinations of order statistics of Poisson Binomial RVs also satisfy a central limit

theorem Pham and Tran (1982).

A.3. Order Statistics

Definition 12 (Order statistics). Let X1, . . . , Xn be random variables. Define Xn,1, . . . Xn,n

to be the order statistics of X1, . . . , Xn, to X1, . . . , Xn in sorted order.

Remark 5. The random variables Xn,1, . . . , Xn,n are dependent even if the underlying {Xi}

are independent, and they satisfy

Xn,1 ≤ · · · ≤ Xn,n. (A.59)

Theorem 8. If {Xi} are continuous IID random variables, with absolutely continuous PDF

f(x) and CDF, F (x), then the CDF of the kth order statistic from a sample of size n is

Pr [Xn,k ≤ x] = F(k,n)(x) =

n∑
j=k

(
n

j

)
(F (x))j (1− F (x))n−j (A.60)

Theorem 9. If {Xi} are discrete IID random variables, with PDF f(x) and CDF, F (x),
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then the PDF of the kth order statistic from a sample of size n is

Pr[Xn,k=x]=f(k,n)(x)=
∑n−k

j=0 (
n
j)((1−F (x))j(F (x))n−j−(1−F (x)+f(x))j(F (x)−f(x))n−j) (A.61)

Theorem 10. If {Xi} are discrete IID random variables, with PDF f(x) and CDF, F (x),

then the CDF of the kth order statistic from a sample of size n is

Pr [Xn,k ≤ x] = F(k,n)(x) =
n−k∑
j=0

(
n

j

)
(1− F (x))j (F (x))n−j (A.62)

Theorem 11 (Bapat-Beg Theorem (Glueck et al., 2008, Theorem 3.1)). Let Xi, i = 1, . . . ,m

independent, real-valued random variables with cdf Fi(x) respectively. Yi the order statis-

tics defined by sorting the values of Xi. Let n, 1 ≤ n1 < n2 < · · · < nk ≤ m and

y1 ≤ y2 ≤ · · · ≤ yk the values of the arguments of the joint cdf of {Yn1 , Yn2 , . . . , Ynk
}.

Define the index vector i = (i0, i1, . . . , ik+1) and the summation index set I = {i : 0 = i0 ≤

i1 ≤ · · · ≤ ik ≤ ik+1 = m, and ij ≥ nj for all 1 ≤ j ≤ k}. The joint cdf of the order

statistics satisfies:

FYn1 ,...,Ynk
(y1, . . . , yk) =

∑
i∈I

Pi1,...,ik(y1, . . . , yk)

(i1 − i0)!(i2 − i1)! · · · (ik+1 − ik)!
, (A.63)

where Pi1,...,ik(y1, . . . , yk) are permanents of block matrices

Pi1,...,ik(y1, . . . , yk) = per
[
[Fi(yj)− Fi(yj−1)](ij−ij−1)×1

]j=k,i=m

j=1,i=1
, (A.64)

with the subscripts indicating the dimensions of blocks created by the repetition of the term

in the brackets, and Fi(y0) = 0, Fi(yk+1) = 1.

Theorem 12 ((Glueck et al., 2008, Theorem 3.2)). With notation as in Theorem 11, sup-

pose that Fi(x) = F (x) for all 1 ≤ i ≤ n, and Fi(x) = G(x) for all n + 1 ≤ i ≤ m.
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Then:

FYn1 ,...,Ynk
(y1,...,yk)=

∑
i∈I

∑
λ

∏k+1
j=1

n!(m−n)!
λj !(ij−ij−1−λj)!

[F (yj)−F (yj−1)]
λj [G(yj)−G(yj−1)]

ij−ij−1−λj ,

(A.65)

where λ = (λ1, λ2, . . . , λk+1) ranges over all integer vectors such that

λ1 + λ2 + · · ·+ λk+1 = n, 0 ≤ λj ≤ ij − ij−1, (A.66)

and F (y0) = G(y0) = 0, F (yk+1) = G(yk+1) = 1.

Definition 13 (Orderings). Let X and Y be random variables with PDFs fX , fY and CDFs

FX , FY .

• Stochastic Order:

X ≤st Y ⇔ FY (x) ≤ FX(x) for all x , (A.67)

• Hazard-rate Order:

X ≤hr Y ⇔ (1− FY (x))/(1− FX(x)) is increasing in x , (A.68)

• Likelihood-ratio Order:

X ≤lr Y ⇔ fY (x)/fX(x) is increasing in x , (A.69)

Lemma 6 (Summations). If X1 ≥st Y1, and X2 ≥st Y2, then

X1 +X2 ≥st Y1 + Y2
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Proof.

Pr [X1 +X2 ≥ t] =
n∑

x1=0

n∑
x2=t−x1

Pr [X1 = x1] Pr [X2 = x2]

=
n∑

x1=0

(
n∑

x2=t−x1

Pr [X2 = x2]

)
Pr [X1 = x1]

=

n∑
x1=0

Pr [X2 ≥ t− x1] Pr [X1 = x1]

≥
n∑

x1=0

Pr [Y2 ≥ t− x1] Pr [X1 = x1]

=

n∑
x1=0

(
n∑

x2=t−x1

Pr [Y2 = x2]

)
Pr [X1 = x1]

=
n∑

x2=0

(
n∑

x1=t−x2

Pr [X1 = x1]

)
Pr [Y2 = x2]

=

n∑
x2=0

Pr [X1 ≥ t− x2] Pr [Y2 = x2]

≥
n∑

x2=0

Pr [Y1 ≥ t− x2] Pr [Y2 = x2]

=

n∑
x2=0

(
n∑

x1=t−x2

Pr [Y1 = x1]

)
Pr [Y2 = x2]

= Pr [Y1 + Y2 ≥ t]

Corollary 6. If X is a Poisson Binomial with parameters p1, . . . , pt, pt+1, and Y is a

Poisson Binomial with parameters p1, . . . , pt, then

X ≥st Y (A.70)

A.4. Alternative Objective Function: Quality Model

Our main model considers discrete types of producers (“honest” and “dishonest”). In addition

to selecting honest producers, voters may be interested in electing block producers who will
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offer the highest performance (e.g. transaction throughput). In this section, we outline an

alternative model where producers vary continuously based on their “quality” (e.g. a metric

of their computing performance, uptime and network latency). As before, voters receive a

noisy signal about each producer’s quality, and the voters use approval voting to elect a

committee.

Definition 14 (Continuous quality model). Producer j has an (unknown) quality, qj ∼

Q for some (known) quality distribution Q. As before, suppose voter i receives a quality

estimate q̂ij = qj + ϵij, where ϵij ∼ N(0, σi).

As above, voter i will rank the block producers in order of of the signals {qij}j , and may

employ a Threshold or Cardinality voting strategy to determine how many block producers

they choose to elect.

When focusing on honesty, we considered a one-shot game, since a single dishonest committee

can potentially wreak havoc on the system, whereas a single low performing committee may

only have a small effect on the overall popularity and utility of the system as a whole.

Thus in the quality model, it would make more sense to consider a multi-round game where

voters earn rewards and receive feedback at each round. When a set of block producers is

elected, the voters can observe their throughput and latency, and thus get feedback about

the quality of the committee. We can consider different levels of granularity regarding the

feedback received by the voters:

• Individual feedback: The quality of each of the c block producers that were elected

to the committee

• Average feedback: The average quality of the c block producers that were elected

to the committee

We can also consider different types of voter rewards, which model the benefit they receive

from higher throughput and and lower latency among the block-producer committee.
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• Average rewards: The average quality of the c block producers that were elected to

the committee

• Weakest-link rewards: The minimum quality of the c block producers that were

elected to the committee

Once we specify the exact type of feedback and rewards, we can ask how should voters

behave in order to maximize their rewards. If a single voter could unilaterally specify the

entire committee, the problem would fall in the class of combinatorial multi-armed bandit

problems (CMAB) (Cesa-Bianchi and Lugosi, 2012).

Combinatorial bandit problems have been reasonably well studied Cesa-Bianchi and Lugosi

(2012); Chen et al. (2013); Combes et al. (2015); Chen et al. (2016); Agarwal and Aggarwal

(2018); Rejwan and Mansour (2020) under two different feedback models (i) semi-bandit

feedback, where the voters learn the quality of each individual producer in the committee

and (ii) (full) bandit feedback, where the voters learn the average quality of the committee.

There would be two main differences between our own model and traditional combinatorial

multi-armed bandit problems:

First, most CMAB papers assume there is a single player who unilaterally selects which

bandits to play (i.e., which candidates to elect). In our setting, we have multiple voters,

who vote independently, and the committee is chosen based on the outcome of this vote.

Second, most CMAB papers assume the player starts with no information about the under-

lying bandits (i.e., the voters receive no signals). If voters start with no information about

the committee (and all committee feedback is public), then for practical purposes, there is

essentially only one voter, and the problem completely becomes a CMAB problem.

Given the difficulty of finding the optimal voting strategy in the static model, it will like be

intractable to find the voting strategy that optimally combines with the CMAB exploration-

exploitation strategy. But this could nonetheless be an interesting direction for future work.
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A.5. Other Asymptotic Results

Figure A.3 shows that when the signal informativeness is high, that is, ph ≫ pm, the success

probability rapidly approaches 1 (even for a small number of voters), but if the threshold is

too high (z ≈ 1), then the success probability drops to zero as all candidates receive 0 votes.
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Figure A.3: Success probability as a function of voting threshold when signal informativeness
is high.

Figure A.4 shows that when the signal informativeness is high, as the a priori probability

that a producer is honest increases, then almost any threshold yields a nearly 100% chance

of electing an honest committee.

0

0.2

0.4

0.6

0.8

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

S
u
cc
es
s
p
ro
b
a
b
il
it
y
P
r
[T

A
=

H
]

Probability honest (p)

Success probability (m = 200, n = 10, pm = .5, ph = .7)

z = .3
z = .5
z = .7
z = .9

Figure A.4: Success probability as a function of the prior.
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A.6. Dependencies in Cardinal Voting

When voters follow a cardinal voting strategy, i.e., they vote for the z candidates with the

highest posterior probability of being honest, the analysis is Theorem 1 no longer applies

because the probabilities that each candidate receives a vote are no longer independent. If

you vote for candidate j1, you are less likely to vote for candidate j2, since you are only

going to cast z votes. By contrast, when voters follow the threshold-voting strategy, the

votes for different candidates are independent.

Nevertheless, in the cardinal-voting setting, we can calculate the probabilities phi (resp. pmi )

denote the probability that voter i votes for producer j conditioned on j being honest (resp.

dishonest).

Proposition 12 (Cardinal voting). With notation as in Proposition 1, when voters follow

the cardinal strategy (Definition 6) with cardinal, zi, then

phi =
m∑
a=0

pa(1− p)m−a

∫ ∞

−∞
FYi(x)fsi|H(x) dx, (A.71)

pmi =

m∑
a=0

pa(1− p)m−a

∫ ∞

−∞
FYi(x)fsi|M (x) dx, (A.72)

where

FYi(x) =
m∑

l=zi

(a!(m− a)!)2

zi!(m− zi)!∑
0≤λ1≤zi

0≤λ2≤m−zi

[(
zi
λ1

)(
Fsi|H

)λ1
(
Fsi|M

)zi−λ1

(
m− zi
λ2

)(
1− Fsi|H

)λ2
(
1− Fsi|M

)m−zi−λ2

]
(A.73)

and fsi|H , Fsi|H , fsi|M , Fsi|M are derived in Lemma 2.

Now, voter i will vote for an honest candidate if the top-ranked honest candidate is higher

than the top-ranked dishonest candidate. Let fs|H (resp. fs|M ) denote the cdf of the signal,

s, conditioned on a candidate being honest (resp. dishonest). These cdfs are calculated
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explicitly in Equations A.17 & A.18.

Suppose there are a honest candidates and b dishonest candidates, in this setting, the CDF

and pdf of the highest ranked honest candidate are

FH(a)
(x) = F a

s|H (A.74)

fH(a)
(x) = a

(
Fs|H(x)

)a−1 · fs|H(x) (A.75)

Similarly, the CDF and PDF of the highest ranked dishonest candidate are

FM(b)
(x) = F b

s|M (A.76)

fM(b)
(x) = b

(
Fs|M (x)

)b−1 · fs|M (x) (A.77)

Thus the probability that voter i votes for an honest candidate is

∫ 1

0
FM(b)

(x)fH(a)
(x)dx = a

∫ 1

0
F b
s|M ·

(
fs|H

)a−1 · fs|H(x)dx (A.78)

Thus

phi =
m∑
a=1

(
n

a

)
pa(1− p)m−a

[∫ 1

0
Fm−a
s|M ·

(
fs|H

)a−1 · fs|H(x)dx

]
(A.79)

pmi =

m∑
a=1

(
n

a

)
pa(1− p)m−a

[∫ 1

0
F a
s|H ·

(
fs|M

)b−1 · fs|M (x)dx

]
(A.80)
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APPENDIX B

Chapter 2 Appendix

B.1. Proofs

B.1.1. Proofs for Section 2.4

Proof of Proposition 6.

Pr

[
n∑

i=1

si > 0

]
= Pr

[
n+

∑n
i=1 si

2
>

n

2

]
= Pr

[
n∑

i=1

si + 1

2
>

n

2

]

Let X =
∑n

i=1
si+1
2 random variable. Since si+1

2 = 1 for si = 1 with probability pi and

si+1
2 = 0 for si = −1 with probability (1 − pi), then X ∼ PoiBin(p1, . . . , pn) and we are

done.

Proof of Proposition 7. We use a simple counting argument. Let v⃗, s⃗ be some realization

of the votes and their direction respectively and let A = {i ∈ [n] | si = 1} be the set of

indices of all successful voters. If
∑n

i=1 sivi > 0 then

0 <

n∑
i=1

sivi =
∑
i∈A

vi −
∑
i∈Ac

vi (B.1)

and so
∑

i∈A vi >
∑

i∈Ac vi meaning A ∈ Fv⃗. Hence

Pr

[
n∑

i=1

sivi > 0

]
=
∑
A∈Fv⃗

Pr(A) (B.2)

Now,

Pr(A) =
∏
i∈A

Pr(si = 1)
∏
j∈Ac

Pr(sj = −1) (B.3)

And we are done since Pr(si = 1) = pi and Pr(sj = −1) = 1− pj .
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Another proof of Proposition 6. If vi = 1 for all i then

Fv⃗ =

{
A ⊆ [n]

∣∣∣∣∣ ∑
i∈A

vi >
∑
i∈Ac

vi

}

= {A ⊆ [n] | |A| > |Ac|} =
{
A ⊆ [n]

∣∣∣ |A| > n

2

}
=

⋃̇
k>n/2

Fk

(B.4)

Plugging into Proposition 7 we get

Pr

[
n∑

i=1

sivi > 0

]
=

∑
A∈ ⋃̇

k>n/2

Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj) =
∑

k>n/2

∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj)

=
∑

k>n/2

Pr[X = k] = Pr
[
X >

n

2

] (B.5)

Proof of Proposition 9.

This is an easy to check fact about real numbers.

Claim 2. Let x, y ∈ R. If 1 > x > y > 0.5 then x+ 2y − 2xy > 1.

As an immediate result we get (for x = p1, y = p3):

Corollary 7. P3 > p2, p3

Proof.P3 = p1p2 + p1p3 + p2p3 − 2p1p2p3 > p1p2 + p2p3 + p2p3 − 2p1p2p3 = p2(p1 + 2p3 −

2p1p3) > p2 > p3

We can use the winning probabilities calculated in Table 2.1. We use iterated dominance,

that is, for N.E. strategy it suffices to show that vi = BRi(v−i) for i = 1, 2, 3.

v⃗ = (1, 1, 1):
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v1 (v2, v3) = (1, 1)

1 uP3 − 1
2 u (P3 − P1̄23)− 2m

≥ 3 up1 − vm1

(a) Voter 1 payoffs

v2 (v1, v3) = (1, 1)

1 uP3 − 1
2 u (P3 − P12̄3)− 2m

≥ 3 up2 − vm2

(b) Voter 2 payoffs

v3 (v1, v2) = (1, 1)

1 uP3 − 1
2 u (P3 − P123̄)− 2m

≥ 3 uP3 − vm3

(c) Voter 3 payoffs

Table B.1: Strategy space for n = 3 for the cell v⃗ = (1, 1, 1). The values in the table
represent the voter i’s payoff

Starting from v1: Table B.1(b), we see that v1 = 2 decreases the winning probability

and increases the payment so this strategy is dominated. Also, the strategies v1 > 3 are

dominated by v1 = 3 since the winning probability stays the same while the payment

increases. So we are left with comparing the payoff from v1 = 1 to v1 = 3. The condition

for when v1 = 1 is a better response is

u (p1 − P3) ≤ 3m − 1 (B.6)

For v2: Table B.1(a), we see that v2 = 2 decreases the winning probability and increases

the payment so this strategy is dominated. Also, the strategies v2 > 3 are dominated by

v2 = 3 since the winning probability stays the same while the payment increases. So we are

left with comparing the payoff from v2 = 1 to v2 = 3. Since P3 > p2 then v2 = 1 is the

dominant strategy.

The case of v3 is proved similarly to v2. The above calculation can be made to show the

rest of the N.E. in the table.

We will now show that this list is exhaustive. Assume by contradiction there exists another

N.E. strategy v⃗.

If p(v⃗) ̸= p(⃗1n): then the only other option is p(v⃗) = p1 since any other winning probability

is strictly smaller than p(⃗1n) and costs more. The calculation from Table 2.1 shows that

this is only possible in the case v1 > v2 + v3. So assume v1 > v2 + v3, if v2 ̸= 1 or v3 ̸= 1
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than these voters are paying higher cost for the same winning probability, so v2 = v3 = 1.

And then if v3 > 3 then voter 1 is paying higher cost for the same winning probability so

v⃗ = (3, 1, 1) which is already on our list.

If p(v⃗) = p(⃗1n): then we know that vj < vj+1+vj+2∀j. Assume W.L.O.G that v1 ≥ v2 ≥ v3

then v1 can vote v2 amount, the probability of winning will stay the same while the cost

for him will decrease. Then v2 can vote v3 amount and the probability of winning stay the

same. And then v1 can vote v3 amount. For any value of t ≥ 2 the strategy (t, t, t) will be

decreased by each voter using t → t − 1 sequentially until t = 2. And we saw before this

decreases to either (2, 2, 1), (2, 1, 2) or (1, 2, 2).

Proof of Corollary 4. This follows from the fact that if Up1 is the maximum welfare for

QV then it must be the maximum welfare for RV (since c4 ≥ 3m−1 for m = 2 ⇒ c4 ≥ 3m−1

for m = 1).

If c4 < 2 then the only possible welfare for both games is UP3.

If 2 ≤ c4 < 8 then the strategy (3, 1, 1) becomes a N.E. for m = 1 but not m = 2 so in any

case the RHS of the inequality is UP3 and the LHS is ≥ Up(⃗13). If we restrict 4 < c4 < 8

then it is guaranteed the RV has Up1 with (3, 1, 1) as a unique N.E. so since p1 > p(⃗13) we

get a strictly larger welfare for RV in this region. If c4 > 8 then RV only gets (3, 1, 1) as

N.E. and so the unique welfare for it is Up1 so we are done.

Proof of Proposition 10.

Lemma 7. Let 1 > p1 > p2 > · · · > pn ≥ 0.5 then

Pr
[
X =

n

2

]
→

n→∞
0

Let p̄ = 1
n

∑n
i pi we have using the Chernoff bound (Theorem 7) that for any t > 0

Pr [X < np̄− t] ≤ e−2t2/n (B.7)
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Let t = np̄− n
2 > 0 then Pr

[
X < n

2

]
≤ e−2(p̄−1/2)2n

Now, by Lemma 7,

p1⃗n = Pr
[
X >

n

2

]
= 1−Pr

[
X <

n

2

]
−Pr

[
X =

n

2

]
≥ 1−Pr

[
X =

n

2

]
−e−2(p̄−1/2)2n →

n→∞
1

(B.8)

Proof of Proposition 11.

Lemma 8. For all 1 < i ≤ n: u(v1,1,...,1) − vm1 ≥ up(1,...,vi,...,1) − vmi for all vi > 1

If v⃗ = 1⃗n is a N.E. then 1 ∈ BRi(v−i) for all i. Meaning that for all i:

up1⃗n − 1 ≥ up(1,...,vi,...,1) − vmi for all vi > 1 (B.9)

Letting i = 1 and rearranging the last equation, we have:

u(p(v1,...,,1) − p1⃗n) ≤ vm1 − 1 for all v1 > 1 (B.10)

which gives the forward direction. Conversely, assume by contradiction that v⃗ = 1⃗n is not a

N.E. then there exists an i for which

up(1,...,vi,...,1) − vmi > up1⃗n − 1 for some vi > 1 (B.11)

By lemma 8 we know that

up(vi,...1) − vmi > up1⃗n − 1 for some vi > 1 (B.12)

If we take the maximum of the LHS over all vi > 1 then we obviously get something bigger,

that yields:

up(v,...1) − vm > up1⃗n − 1 (B.13)
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where v = argmax
1<v≤n

[
up(v,1,...,1) − vm

]
, which is a contradiction to Equation 2.13.

B.2. Underlying signals

There are two options, one “good” and one “bad.” A priori, each voter gets a signal for each

alternative

sib ∼

 N(µg, σi) if option b is “good.”

N(µb, σi) if option b is “bad.”
(B.14)

where σi is a measure of voter i’s information, and µg > µb are the means of the good and

bad options.

Since (by assumption) µg > µb, then sib > si(1−b) if and only if Pr [ option b is good ] > 1
2 .

Thus voter i will vote for option b if and only if sib > si(1−b).

Thus voter i’s probability of voting for the good option is

Pr [ Voter i votes for the good option ] = Pr
[
N
(
µg, σ

2
i

)
> N

(
µb, σ

2
i

)]
(B.15)

Thus we define

pi
def
= Pr

[
N
(
µg, σ

2
i

)
> N

(
µb, σ

2
i

)]
(B.16)

Since the signals are independent,

pi = Pr
[
N(µg − µb, 2σ

2
i )
]
> 0 (B.17)

This means
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pi = Pr

[
N(0, 1) >

µb − µg√
2σi

]
(B.18)

=
1− erf

(
µb−µg

2σi

)
2

(B.19)

For most of the analysis, we will focus on the probability pi rather than the underlying

signals si0, si1.
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