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ABSTRACT

DISTRIBUTION OF THE SUCCESSIVE MINIMA OF THE PETERSSON NORM ON

CUSP FORMS

Souparna Purohit

Ted Chinburg

Given an arithmetic variety X and a hermitian line bundle L , the arithmetic Hilbert-

Samuel theorem describes the asymptotic behavior of the co-volumes of the latticesH0(X ,L ⊗k)

in the normed spaces H0(X ,L ⊗k)⊗R as k →∞. Using his work on quasi-filtered graded

algebras, Chen proved a variant of the arithmetic Hilbert-Samuel theorem which studies the

asymptotic behavior of the successive minima of the lattices above. Chen’s theorem, how-

ever, requires that the metric on L is continuous, and hence does not apply to automorphic

vector bundles for which the natural metrics are often singular. In this thesis, we discuss a

version of Chen’s theorem for the line bundle of modular forms for a finite index subgroup

Γ ⊆ PSL2(Z) endowed with the logarithmically singular Petersson metric. This generalizes

work of Chinburg, Guignard, and Soulé addressing the case Γ = PSL2(Z).
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CHAPTER 1

Background

1.1. Arithmetic Hilbert-Samuel theorems

LetX be a projective variety of dimension d over a fieldK, and L an ample line bundle onX.

Classical intersection theory over a projective variety can be used to study the dimension of

the spaces of global sections H0(X,L⊗k). The Hirzebruch-Riemann-Roch theorem expresses

the Euler characteristic χ(L⊗k) of L⊗k in terms of intersection theory, which can then be

used to deduce the classical Hilbert-Samuel theorem

lim
k→∞

χ(L⊗k)

kd/d!
= c1(L)d,

where c1(L) denotes the first Chern class. Since L is ample, for k large enough, note that

χ(L⊗k) = dimK H
0(X,L⊗k).

An arithmetic variety is an integral scheme X equipped with a flat, projective morphism

π : X → Spec(Z) with a smooth generic fiber XQ. Classical intersection theory turns out to

be inadequate over such varieties, since unlike Spec(K), Spec(Z) is not proper. The analog

of the fact that the sum of the orders of vanishing of a meromorphic function is zero on a

projective curve over a field is the product formula for number fields. This suggests that the

archimedean place of Q, which is not reflected by the points of Spec(Z), must also be taken

into account in order to have a meaningful intersection theory over Spec(Z).

In his seminal papers (Arakelov, 1974, 1975), Arakelov proposed such an intersection theory

for arithmetic surfaces. His work was generalized by Faltings (Faltings, 1984), Deligne

(Deligne, 1987), and eventually to arbitrary dimensions (i.e. arbitrary arithmetic varieties)

by Gillet and Soulé (Gillet and Soulé, 1990; Gillet and Soulé, 1992). The resulting theory is

often called arithmetic intersection theory. The key, as alluded to above, is to keep track of

the contribution to intersection theory coming from the archimedean places, which involves
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some analytic computations on the complex manifold X (C), in addition to the contributions

from the usual “algebraic” intersection theory.

For arithmetic intersection theory, we work with hermitian line bundles. These are given by

pairs (L , h) where L is a line bundle - i.e., an invertible sheaf - on the arithmetic variety X ,

along with a hermitian metric h on the complex line bundle LC over the complex analytic

manifold X (C) (note that X (C) is a smooth complex analytic manifold by our assumption

that the generic fiber of X is smooth). This means that for each point x ∈ X (C), the

fiber LC(x) is equipped with a hermitian inner product hx that varies smoothly with x

(we further require that these inner products are invariant under the action of complex

conjugation on X (C), but we will not belabor this point). The idea of the hermitian inner

product is to give an analog of “integral models” and “integral sections” over archimedean

places. For brevity, we will denote a hermitian line bundle (L , h) by L .

Given a hermitian line bundle L , the space of complex global sections H0(XC,L
⊗k
C ) can

be equipped with two natural norms (we do not distinguish between the complex projective

variety XC with the complex analytic manifold X (C)). Given s ∈ H0(XC,L
⊗k
C ),

1. we have the L∞ (or sup) norm:

‖s‖k := sup
x∈X (C)

|s(x)|x,

where s(x) is the image of s in the fiber LC(x), and |s(x)|x :=
√
hx(s(x), s(x));

2. and the L2 norm:

‖s‖2k :=

∫
X (C)

|s(x)|2x dµ,

where dµ is the volume form associated to a Kähler metric on X (C) (invariant under

complex conjugation).

The space of integral sections H0(X ,L ⊗k) is a free Z-module, and equipped with either of

the above norms ‖ · ‖k on H0(X ,L ⊗k) ⊗Z C = H0(XC,L
⊗k
C ) becomes a metrized vector
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bundle over Spec(Z). If ‖ · ‖k is the L2 norm, then H0(X ,L ⊗k) is a hermitian vector

bundle over Spec(Z). We then define the arithmetic Euler characteristic

χ̂
(
H0(X ,L ⊗k), ‖ · ‖k

)
:= log

vol
(
{v ∈ H0(XR,L

⊗k
R ) : ‖v‖k ≤ 1}

)
vol
(
H0(XR,L

⊗k
R )/H0(X ,L ⊗k)

) ,

where H0(XR,L
⊗k
R ) := H0(X ,L ⊗k)⊗R is equipped with the restriction of the norm ‖·‖k.

Here, vol(·) denotes any Haar measure on H0(XR,L
⊗k
R ).

If the arithmetic variety is of relative dimension d (i.e. if d = dim X (C)) then the arithmetic

Hilbert-Samuel theorem says that

lim
k→∞

χ̂
(
H0(X ,L ⊗k), ‖ · ‖k

)
kd+1/(d+ 1)!

= ĉ1(L )d+1,

under suitable (arithmetic) ampleness assumptions on L . Here ĉ1(L ) denotes the arith-

metic first Chern class associated to L , and ĉ1(L )d+1 denotes the intersection product

in the arithmetic Chow ring as defined by Gillet and Soulé (followed by a pushforward to

ĈH
1
(Spec(Z)) ∼= R, the first arithmetic Chow group of Spec(Z)).

The arithmetic Hilbert-Samuel theorem was first proved by Gillet and Soulé in (Gillet and Soulé,

1992) as a consequence of their Riemann-Roch theorem. Abbes and Bouche (Abbes and Bouche,

1995), gave a simpler proof without using intersection theory. Then various generalizations

were proved by many people, some of which are (Zhang, 1995), (Randriambololona, 2006),

(Yuan, 2008, 2009), (Chen, 2010), and (Chen and Moriwaki, 2022). There are also adelic

generalizations in the works of Lau-Rumely-Varley (Rumely et al., 2000) and Chinburg-

Lau-Rumely (Chinburg et al., 2003). The interest in this theorem stems from its various

applications to arithmetic geometry: in particular, Vojta’s proof of Mordell’s conjecture,

and Zhang’s proof of the generalized Bogomolov conjecture.
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1.2. Successive minima and Chen’s version of arithmetic Hilbert-Samuel

In this thesis, we will focus on one of Chen’s versions of arithmetic Hilbert-Samuel theorem.

Before describing Chen’s work, we recall one of Minkowski’s theorems about successive

minima. Suppose (V, ‖ · ‖) is a normed R-vector space of dimension n, and Γ ⊆ V is a

lattice (free Z-module of rank n). Let Bn := {v : ‖v‖ ≤ 1} denote the closed unit ball.

For i = 1, . . . , n, then ith successive minima, denoted µi, is defined to be the infimum over

all real numbers µ with the property that Γ ∩ µBn contains at least i linearly independent

elements. So, for instance, µ1 is the length of the shortest non-zero lattice point. We

remark that these successive minima are in general very difficult to compute. In fact, there

are proposed post-quantum cryptography algorithms based on the difficulty of finding the

shortest non-zero lattice vectors.

Minkowski’s theorem on successive minima states that for any Haar measure vol(·) on V ,

2n

n!
≤ µ1µ2 . . . µn

vol(Bn)

vol(V/Γ)
≤ 2n.

Applying − log(·) to the above inequality, we get

n∑
i=1

− log(µi) = χ̂ (Γ, ‖ · ‖) +O(n log(n)).

This suggests that from the point of view of Arakelov theory, the quantities − log(µi) are

more natural. These are called the successive maxima of the (normed) lattice, which we will

denote by λi := − log(µi).

While the previous versions of the arithmetic Hilbert-Samuel theorems describe the asymp-

totic behavior of the χ̂ (Γ, ‖ · ‖) over a family of lattices, Chen’s version, roughly speaking,

can be thought of as describing the asymptotic behavior of the summands λi of the Euler-

characteristic (normalized appropriately).

More precisely, Chen’s theorem states the following. Let X be an arithmetic variety, and let

4



L be a smooth hermitian line bundle on X such that LQ is ample (in fact, it suffices for the

metric on L to be continuous - meaning that the hermitian norms vary continuously over

the fibers). Equip H0(XC,L
⊗k
C ) with either the L∞ or the L2 norm, ‖ · ‖k. Suppose dk :=

rankZ H0(X ,L ⊗k), and suppose λk,i are the successive maxima of the lattice H0(X ,L ⊗k)

in the normed space H0(XR,L
⊗k
R ). Let δx denote the Dirac-delta function supported on

the point x ∈ R, and let

νk :=
1

dk

dk∑
i=1

δ 1
k
λk,i

denote the discrete probability measure on R supported on the normalized successive maxima

1
kλk,i. Then Chen’s theorem 4.1.8 in Chen (2010) implies

Theorem 1.2.1 (Chen). The sequence of discrete probability measures νk converges weakly

to a probability measure ν on R with compact support.

1.3. Singular metrics

The metrics we have considered thus far are smooth (or continuous). It turns out, however,

that many natural metrics of arithmetic interest are not smooth or continuous - in fact, they

are not even defined at every point x ∈ X (C). Automorphic vector bundles on Shimura

varieties provide a rich source of examples of such metrics. Mumford studied one such

class of such metrics in (Mumford, 1977), which he called good metrics. These metrics

are examples of metrics with logarithmic singularities. Mumford showed that the smooth

metrics on a certain class of automorphic vector bundles can always be extended to a toroidal

compactification of the Shimura variety in question, and that the extended metric is good.

Good metrics turn out to be inadequate for developing an analog of arithmetic intersec-

tion theory for singular line bundles. Kühn (Kühn, 2001), and Burgos Gil-Kramer-Kühn

(Burgos Gil et al., 2007, 2005), define a more general notion of singular metrics that they

use to develop a generalized arithmetic intersection theory suitable for working with hermi-

tian line bundles with singular metrics, generalizing many results of Gillet and Soulé to the

singular setting.
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Working with (a generalization of) this singular setting, Berman and Montplet (Berman and Montplet,

2012) proved an arithmetic Hilbert-Samuel theorem for singular hermitian line bundles in

adjoint form. Let L be a suitably singular hermitian line bundle (for example, with log-

arithmic singularities, but can be more general) on an arithmetic variety X of relative

dimension d. The line bundles L ⊗k⊗K are said to be in adjoint form, where K is an inte-

gral model of the canonical bundle of XQ. The space of global sections H0(XC,L
⊗k
C ⊗KC)

comes equipped with a natural L2 hermitian inner product, call it ‖ · ‖k. Then theorem 1.1

(Berman and Montplet, 2012) shows that the limit

lim
k→∞

(d+ 1)!

kd+1
χ̂
(
H0(X ,L ⊗k ⊗K ), ‖ · ‖k

)

exists, and is equal to a (generalized) arithmetic intersection number (under suitable am-

pleness hypotheses on L ). The same paper also shows a similar, more general, result if

we restrict to line bundles with logarithmic singularities along a normal crossings divisor

D ⊆XQ (theorem 1.2).

1.4. Analog of Chen’s theorem for singular metrics?

Motivated by all of this, we ask the following general question. Let X be an arithmetic

variety, L a hermitian line bundle with logarithmic singularities along a normal crossings

divisorD ⊆XQ. The log-singularity assumption makes it so that the space of global sections

H0(XC,L
⊗k
C (−DC)) can be endowed with either the L∞ or L2 norm, ‖·‖k (for the L2 norm,

we must choose a Kähler metric on X (C) invariant under complex conjugation, as before).

We have the lattice

H0(X ,L ⊗k) ∩H0(XQ,L
⊗k
Q (−D))

in the normed R-vector space H0(XR,L
⊗k
R (−DR)). Let λk,i denote the successive maxima,

and let

νk :=
1

dk

dk∑
i=1

δ 1
k
λk,i

6



denote the discrete probability measure on R associated to the normalized successive max-

ima.

Problem 1.4.1. Do the νk converge weakly to a probability measure? If so, what can we

say about the support of the limit measure?

In this thesis, we address this problem in the case X is an arithmetic surface associated

to (a finite index subgroup) Γ ⊆ PSL2(Z), D ⊆ XQ is the divisor of cusps, and L is the

hermitian line bundle associated to the modular forms of weight 12, equipped with the

Petersson metric, which turns out to have logarithmic singularities along D (as well as at

the elliptic points). See chapter 3 for descriptions of these objects, and theorems 2.0.1 and

2.0.2 for the precise statements.

This thesis is motivated by work of Chinburg-Guignard-Soulé (Chinburg et al., 2018), in

which they addressed the case Γ = PSL2(Z).

1.5. Outline of this thesis

In chapter 2, we give precise statements of our main results (theorems 2.0.1 and 2.0.2),

and discuss some key differences between our work and those of (Chinburg et al., 2018) and

(Chen, 2010).

In chapter 3, we start with some background on complex modular forms and modular curves.

Then, following (Kühn, 2001), we define integral models for modular curves and the line

bundle of modular forms in §3.3, and describe the Petersson metric on this bundle in §3.4.

We then introduce the notion of adelic vector bundles, as in definition 3.1 of (Gaudron,

2008), their successive maxima, and apply these concepts to the space of rational cusp

forms of weight 12k for finite index subgroups of PSL2(Z). This lets us define a decreasing

R-filtration on each Sk, which enables us to use results of Chen on quasi-filtered algebras in

order to prove our results.

In chapter 4, we prove theorem 2.0.1. In §4.1, we prove a uniform upper bound on normalized

7



successive maxima using (generalized) intersection theory of Kühn and Bost-Gillet-Soulé,

which is then used in §4.2 along with Chen’s theorem on quasi-filtered algebras to deduce

vague convergence of measures (for the sequence νk as in problem 1.4.1). Then in §4.3 we

show that the vague convergence is weak by doing explicit calculations with bases of cusp

forms of large weights.

Finally, in chapter 5, we prove theorem 2.0.2. After setting up some notation in §5.1, we

prove in §5.2 some results comparing the R-filtrations on various spaces of cusp forms. These

comparison results are used in §5.3 to prove theorem 2.0.2. Finally, in corollary 5.3.1, we

prove that the support of the limit measure from theorem 2.0.1 is unbounded below.

8



CHAPTER 2

Statements of main results

We follow the setup in §4.11 of (Kühn, 2001). Let Γ(1) := PSL2(Z), and identify the complex

modular curve X(1)C associated to Γ(1) with P1
C via the modular j-function (see example

3.1.1). Let Γ ⊆ Γ(1) be a finite index subgroup. The modular curve X(Γ)C and the natural

map πΓ,C : X(Γ)C → P1
C are defined over a number field E (see §3.3). Let X(Γ) be a (smooth

projective geometrically connected) model of X(Γ)C over E, let πΓ,E : X(Γ) → P1
E be the

model of πΓ,C over E, and let πΓ : X(Γ) → P1
Q denote the composition of πΓ,E with the

natural map from P1
E to P1

Q. Let ∞ ∈ P1
Q correspond to the unique pole of the j-function,

and let D ∈ Div(X(Γ)) denote the sum of the points in π−1
Γ (∞). We call D the divisor of

cusps of X(Γ).

Let X (Γ) be an arithmetic surface associated to Γ (see §3.3 and §4.11 of (Kühn, 2001)).

Then X (Γ) is a regular projective arithmetic surface with generic fiber X(Γ), and comes

with a morphism πΓ,Z : X (Γ)→ P1
Z extending πΓ. Let L denote the metrized line bundle

on X (Γ) associated to modular forms of level Γ and weight 12 endowed with the Petersson

metric (see §3.3 and §3.4, and §4.12 of (Kühn, 2001)). As mentioned before, this metric has

logarithmic singularities at elliptic points and cusps (proposition 4.9 in (Kühn, 2001)).

Theorem 2.0.1. Let Γ ⊆ Γ(1) be a finite index subgroup. Let X (Γ) be an arithmetic

surface associated to Γ, X(Γ) its generic fiber, and let D denote the divisor of cusps of

X(Γ). Let L be the line bundle on X (Γ) associated to modular forms of level Γ and weight

12 endowed with the Petersson metric. For every k ≥ 1, let

Sk := H0(X (Γ),L ⊗k) ∩H0(X(Γ),L ⊗k
Q (−D))

denote the euclidean lattice of integral cusp forms of level Γ and weight 12k with respect to

the Petersson inner product. Let µk,i denote the successive minima of Sk, and let λk,i :=

9



− log(µk,i) denote the successive maxima. Let dk := rkZSk, and let

νk :=
1

dk

dk∑
i=1

δ 1
k
λk,i

denote the probability measure on R associated to the normalized successive maxima of Sk.

Then the νk converge weakly to a Borel probability measure ν on R. ν has support bounded

above and unbounded below.

A natural question is: given finite index subgroups Γ′ ⊆ Γ of Γ(1), how do the successive

maxima of their integral cusp forms, and the associated limit measures compare? This is

addressed by the following theorem.

Theorem 2.0.2. Let Γ′ ⊆ Γ be finite index subgroups of Γ(1). Let X (Γ′) (resp. X (Γ))

be an arithmetic surface associated to Γ′ (resp. Γ) with generic fiber X(Γ′) (resp. X(Γ)).

Suppose there is a Q-morphism πΓ′,Γ : X(Γ′)→ X(Γ) that is a model over Q of the natural

map X(Γ′)C → X(Γ)C of complex modular curves.

Let ν ′k (resp. νk) denote the probability measure on R associated to the normalized successive

maxima of the euclidean lattice of integral cusp forms of level Γ′ (resp. Γ) and weight 12k

with respect to X (Γ′) (resp. X (Γ)) as in theorem 2.0.1. Suppose that ν ′k → ν ′ (resp.

νk → ν) weakly for a Borel probability measure ν ′ (resp. ν) on R (by theorem 2.0.1). Then

there is a Borel probability measure ω on R such that

ν ′ =
1

deg(πΓ′,Γ)
· ν +

(
1− 1

deg(πΓ′,Γ)

)
· ω.

2.1. Remarks

Remark 2.1.1. Theorem 2.0.1 generalizes theorem 3.2.2 (i), (ii) of (Chinburg et al., 2018),

which addresses the case Γ = Γ(1) for the associated arithmetic surface X (1) = P1
Z (iden-

tification coming from the j-function). We remark that our overall approach is similar to

that of (Chinburg et al., 2018), with a couple of key differences. First, the approach in

10



(Chinburg et al., 2018) uses various properties of q-expansions of modular forms for Γ(1),

including integrality of the coefficients of q-expansions of modular forms over the integral

modular curve X (1) to obtain (lower) bounds on the Petersson norms of integral cusp

forms (see for instance, proposition 3.3.1, lemma 3.3.1, theorem 3.4.1, and lemma 3.4.2 in

(Chinburg et al., 2018)). For a general (in particular, non-congruence) finite index subgroup

Γ ⊆ Γ(1), we do not have access to such integrality properties for the q-expansion coefficients

of integral modular forms.

Instead, following (Chen, 2010), we use results from the intersection theory of logarithmically

singular line bundles on arithmetic surfaces as developed by Kühn in (Kühn, 2001), along

with height formulas developed by Bost, Gillet, and Soulé in (Bost et al., 1994) to obtain

corresponding (lower) bounds for the sup norms of integral cusp forms (see proposition 4.1.3,

which is the counterpart to lemma 3.4.2 in (Chinburg et al., 2018)). We then appeal to a

“Gromov’s lemma” type result in our log-singular setting (see proposition 4.1.2, page 1 of

(Friedman et al., 2013), and theorem 1.7 in (Auvray et al., 2016)), comparing sup norms

to L2 norms for sections in increasing powers of the line bundle of modular forms, to get

analogous (lower) bounds on the L2 (i.e. Petersson) norms of integral cusp forms for Γ. The

estimates obtained from the intersection theory approach, however, are not as sharp as those

obtained from the q-expansions, and this ultimately prevents us from showing directly that

the support of the limit measure ν in theorem 2.0.1 is unbounded below. Instead, we deduce

unboundedness (in corollary 5.3.1) from theorem 2.0.2 along with the unboundedness in the

case Γ = Γ(1) proved in part (ii) of theorem 3.2.2 of (Chinburg et al., 2018).

Another key difference with (Chinburg et al., 2018) is that, unlike the Γ = Γ(1) case consid-

ered there, it is difficult to write down explicit bases for the spaces of cusp forms for general

Γ, which are then used for getting bounds on the successive maxima. In proposition 4.3.1,

we construct less explicit bases that nevertheless have the same general shape as those in

(Chinburg et al., 2018) theorem 3.4.1 and lemma 3.4.4, and that turns out to be enough to

yield the desired bounds on the successive maxima in our case.
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Remark 2.1.2. An important feature of theorem 2.0.1 and theorem 3.2.2 of (Chinburg et al.,

2018) is the fact that the limit measures have support unbounded below, in stark contrast to

Chen’s theorem for smooth or continuous metrics mentioned before, where the limit measure

has compact support. This is explained, very roughly, as follows. When L has continuous

metric, then at least if LQ is ample,

⊕
k≥0

H0(XQ,L
⊗k
Q )

is a finitely generated quasi-filtered algebra over Q (in the sense of definition 3.2.1 of (Chen,

2010)). The convergence result for the measures then follows from a more general result of

Chen (theorem 3.4.3 (Chen, 2010)) concerning the distribution of successive maxima for such

algebras, which shows, in particular, that the limiting distribution has compact support.

In our setting, and that of (Chinburg et al., 2018), the Petersson metric on the line bundle

L of modular forms is logarithmically singular, and hence to make sense of the norms at the

archimedean places, we restricted to the subspace H0(XQ,L
⊗k
Q (−D)) of sections vanishing

along the cusps. The graded Q-algebra

B :=
⊕
k≥0

H0(XQ,L
⊗k
Q (−D))

is not finitely generated. However, we can “approximate” B by a sequence of finite-type

quasi-filtered Q algebras BL indexed by integers L (as in §4.2, and §3.6 of (Chinburg et al.,

2018)). Then applying theorem 3.4.3 of (Chen, 2010) to each BL, we get a sequence of

compactly supported measures νL,∞, where the support of each νL,∞ is bounded above by

a constant independent of L, but the lower bound for the support goes to −∞ as L → ∞.

We then show that the νL,∞ converge to ν as L→∞, which accounts for the support of ν

being unbounded below.
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CHAPTER 3

Background on integral modular forms

In this section, we start with some background on complex modular forms and modular

curves. Then, following (Kühn, 2001), we define integral models for modular curves and the

line bundle of modular forms in §3.3, and describe the Petersson metric on this bundle in

§3.4. We then introduce the notion of adelic vector bundles, as in definition 3.1 of (Gaudron,

2008), their successive maxima, and apply these concepts to the space of rational cusp forms

of weight 12k for finite index subgroups of PSL2(Z).

3.1. Modular curves and modular forms over C

Let Γ be a finite index subgroup of Γ(1) := PSL2(Z). Then Γ acts on the (complex) extended

upper half plane h∗ := h ∪ P1(Q) by linear fractional transformations

Γ 3

a b

c d

 · z =
az + b

cz + d
.

The quotient

X(Γ)C := Γ\(h ∪ P1(Q)).

is a compact Riemann surface called the modular curve associated to Γ. The inclusion

Γ ⊆ Γ(1) induces a holomorphic map πΓ,C : X(Γ)C → X(Γ(1))C of Riemann surfaces of

degree [Γ(1) : Γ].

For a point z ∈ h∗, let

Γz := {τ ∈ Γ : τ · z = z}

denote the stabilizer of z in Γ. This group is either trivial, finite, or infinite cyclic, and

we call the image of z in X(Γ)C an ordinary point, elliptic point, or cuspidal point (or

just a cusp) in these cases, respectively. For Γ(1), the elliptic points are the images of i

and e2πi/3 and there is a unique cusp corresponding to the image of (any) point of P1(Q).
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For a general Γ, the elliptic points and cusps of X(Γ)C map to elliptic points and cusp of

X(Γ(1))C, respectively.

Given γ ∈ PSL2(R), the weight k slash operator (·|kγ) on holomorphic functions on h is

given by

f(z) 7→ (f |kγ)(z) := (cz + d)−kf

(
az + b

cz + d

)

for γ =

a b

c d

. For Γ ⊆ Γ(1), a meromorphic modular form of level Γ and weight k is a

meromorphic function f : h→ C such that

(a) (f |kγ)(z) = f(z) for all γ ∈ Γ, and

(b) f is meromorphic at the cusps of Γ. This means that at each cusp, if t denotes a local

parameter, then f admits a Fourier expansion of the form f(t) =
∑

n ant
n, with an = 0

for sufficiently small n.

Meromorphic modular forms of weight 0 are called modular functions - these are simply the

rational functions of X(Γ)C. A modular form of weight k for Γ is a meromorphic modular

form that is holomorphic everywhere, including at the cusps. A cusp form of weight k for

Γ is a modular form that is zero at every cusp (i.e., the a0 coefficient in the local Fourier

expansion at every cusp is zero). The space of modular (resp. cusp) forms of level Γ and

weight k is denoted by Mk(Γ)C (resp. Sk(Γ)C) - these are finite dimensional vector spaces

over C.

Example 3.1.1. (i) The classical j-invariant function is a modular function for Γ(1)

given by

j(z) =
1

q
+ 744 + 196884q + . . . ,

where q = e2πiz is the local parameter at the unique cusp S∞ of X(1)C := X(Γ(1))C.

Note that j has a unique pole of order 1 at S∞, so that the induced morphism j :

X(1)C → P1
C is an isomorphism. Henceforth, we identify X(1)C with P1

C via j.
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(ii) The classical discriminant function ∆ is a cusp form of weight 12 for Γ(1) given by

∆(z) = q
∞∏
n=1

(1− qn)24,

where as before, q = e2πiz.

The functional equations satisfied by meromorphic modular forms show that they are sec-

tions of a line bundle Mk(Γ)C on X(Γ)C, and the meromorphic modular forms that are zero

at every cusp form a sub-bundle Sk(Γ)C. The following is proposition 4.7 in (Kühn, 2001):

Proposition 3.1.2. Let Γ ⊆ Γ(1) be a finite index subgroup, and let k ≥ 1 be a positive

integer. Let S1, . . . , St ∈ X(Γ)C denote the cusps, and let πΓ,C : X(Γ)C → P1
C denote the

canonical map. Let DC := S1 + · · · + St ∈ Div(X(Γ)C). Then we have an isomorphism of

line bundles:

M12k(Γ)C → π∗Γ,COP1
C
(∞)⊗k : f 7→ f/∆k,

which restricts to an isomorphism

S12k(Γ)C →
(
π∗Γ,COP1

C
(∞)⊗k

)
(−DC).

3.2. Petersson metric on complex modular forms

The Petersson metric on M12k(Γ) is defined as follows. Given a section f of M12k(Γ) over

the open subset U ⊆ X(Γ)C and a point z ∈ h corresponding to a point of U , we set

|f |Pet(z)2 := |f(z)|2(4π im(z))12k. (3.2.1)

This metric has logarithmic singularities along the set of elliptic points and cusps of Γ in the

sense of definition 3.1 of (Kühn, 2001), which we now recall. Let X be a compact Riemann

surface, S = {S1, . . . , Sr} a finite set of points of X, and Y := X \ S. A hermitian line

bundle L = (L, ‖ · ‖) on X is said to be logarithmically singular along S if h is smooth on
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Y , and for every i, in a local coordinate z centered at Si, and for any meromorphic section

` of L, we have

‖`(z)‖ = − log(|z|2)α · |z|ordSj (`) · ϕ(z), (3.2.2)

for some real number α, and a positive continuous function ϕ(z), smooth away from Si,

such that the first and second (mixed) partials of ϕ are bounded by certain powers of 1/|z|

away from Si. α, ϕ, the powers of 1/|z|, etc. all depend on L, Si, and `. The bounds on the

second partials ensure local integrability of the first Chern form associated to the metric.

We remark that in Mumford’s definition of a good metric (Mumford, 1977), ϕ is smooth on

the whole coordinate neighborhood around Si.

Proposition 4.9 of (Kühn, 2001) shows that the Petersson metric is logarithmically singular

along the elliptic points and cusps. Briefly, a local chart around the cusp ∞ is given by

z 7→ e2πiz/w =: q, where z ∈ h, and w is the width of ∞ in Γ. In the coordinate q, the

(square of the) Petersson metric is given by

|f |Pet(q)2 = |f(q)|2 · (−w log |q|2)12k.

Any other cusp Si can be brought to ∞ by an element of Γ(1), so the local computation at

Si reduces to that around ∞.

Meanwhile, a local chart around an elliptic point that is the image of z0 ∈ h is given by

z 7→
(
z − z0

z − z0

)n
=: t,

where n := |Γτ0 |. The (square of the) Petersson metric in the local coordinate t is given by

|f |Pet(t)2 = |f(t1/n)|2 ·

(
1− |t1/n|2

|1− t1/n|2
· 4πim(τ0)

)12k

.

(The f on the right side above denotes the function on the unit disk induced by the modular

form f under the isomorphism z 7→ (z − z0)/(z − z0).)

16



By comparing both of these local expressions with (3.2.2), we see that the Petersson metric

is, indeed, logarithmically singular at the cusps and elliptic points.

Remark 3.2.1. The Petersson metric defined above in equation (3.2.1) differs from the

classical Petersson metric by a factor of (4π)12k. The reason for this factor is roughly as

follows - see (Kühn, 2001) p. 227-228 for more information. Suppose Γ is a congruence

group such that the moduli functor representing “elliptic curves with Γ-level structure” is

representable, and let X be the compactified moduli space as in (Deligne and Rapoport,

1973). Let v : E → X denote the universal elliptic curve, and let e : X → E denote the

zero section. The sheaf

ωE /X := e∗Ω1
E /X

has a natural hermitian metric given as follows. For a complex point x ∈ U (C) ⊆ X (C),

where U ⊆X is the dense open subscheme representing elliptic curves (rather than gener-

alized elliptic curves), we have a canonical isomorphism

ωE /X (x) ∼= H0(Ex,Ω
1
Ex),

where ωE /X (x) (resp. Ex, and Ω1
Ex
) denotes the pullback of ωE /X (resp. E , and Ω1

E /X ) by

x : Spec(C)→X . Given α ∈ H0(Ex,Ω1
Ex

), define

|α|L2(x)2 :=
i

2π

∫
Ex

α ∧ α.

This metric, defined above over U , extends to a logarithmically singular metric on ωE /X

over X . It turns out that with the added (4π)12k factor in the Petersson metric, there is

an isometry of line bundles

(
ω⊗12k

E /X , | · |L2

)
∼= (M12k(Γ), | · |Pet) ,

where ω⊗12k
E /X is given the product metric.
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Petersson inner product of cusp forms

Let dΓ := [Γ(1) : Γ], and let FΓ denote a fundamental domain for the action of Γ on h.

Define the Petersson inner product on S12k(Γ)C by

〈f, g〉Pet :=
1

dΓ

∫
FΓ

f(z)g(z)(4π im(z))12k dx dy

y2
(f, g ∈ S12k(Γ)C),

where z = x + iy ∈ h. This is a Hermitian inner product on S12k(Γ)C, and the norm

of f ∈ S12k(Γ)C is given by ‖f‖Pet := 〈f, f〉1/2Pet, which we note is simply the L2 norm of

the Petersson metric (equation (3.2.1)) with respect to the hyperbolic volume form dµΓ on

X(Γ)C:

‖f‖2Pet =
1

dΓ

∫
X(Γ)
|f |Pet(z)2 dµΓ.

3.3. Integral models of modular curves and modular forms

We follow the setup in §4.11 of (Kühn, 2001) (with slightly modified notation). Let Γ ⊆ Γ(1)

be a finite index subgroup, and let πΓ,C : X(Γ)C → P1
C denote the natural map given by the

j-function. The branch points of πΓ,C are contained in {0, 1728,∞} ⊆ P1
C, and hence X(Γ)C

and πΓ,C are defined over a number field E. For such an E, let X(Γ)E be a smooth projective

geometrically connected curve over E with base change to C (via the implicit embedding of

E into C) isomorphic to X(Γ)C, and let πΓ,E : X(Γ)E → P1
E be an E-morphism such that

its base change to C (again, via the implicit embedding) coincides with πΓ,C. To simplify

notation, we will refer to X(Γ)E by X(Γ). Let πΓ : X(Γ) → P1
Q denote the composition of

πΓ,E with the natural map P1
E → P1

Q.

LetX(Γ)Z denote the normalization of P1
Z inX(Γ) under the natural mapX(Γ)→ P1

Q → P1
Z.

Then X(Γ)Z is a normal arithmetic surface with X(Γ) as generic fiber. By results of Lipman

(see (Lipman, 1978)), there exists a desingularization of X(Γ)Z. Namely, there exists a

regular projective arithmetic surface with a proper birational morphism to X(Γ)Z. Let

X (Γ) → X(Γ)Z denote such a desingularization, and let the composite map X (Γ) →

X(Γ)Z → P1
Z be denoted by πΓ,Z : X (Γ) → P1

Z. As in §4.11 in (Kühn, 2001), we call any
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such X (Γ) an arithmetic surface associated to Γ. We remark that this definition differs

slightly from that in §4.11 of (Kühn, 2001) in that we do not require the field of constants

E of the generic fiber X(Γ) of X (Γ) to be of minimal degree here.

Let ∞ ∈ P1
Q correspond to the unique pole of the j-function, and let ∞ ⊆ P1

Z be its Zariski

closure. Let L := π∗Γ,ZOP1
Z
(∞).

Now,

X (Γ)C := X (Γ)⊗Z C =
⊔

σ:E→C
X(Γ)⊗E,σ C,

where the disjoint union is over all embeddings σ of E into C. For each σ, the base change

X(Γ)⊗E,σ C is also a modular curve, say associated to the group Γσ ⊆ Γ(1). Then

X (Γ)C ∼=
⊔

σ:E→C
X(Γσ)C.

For each k ≥ 1,

L ⊗k
C =

⊕
σ:E→C

π∗Γσ ,COP1
C
(∞)⊗k

is identified with the sum of the line bundles of modular forms of level Γσ and weight 12k by

proposition 3.1.2. Hence, we call L the line bundle on X (Γ) associated to modular forms

of level Γ and weight 12.

Now let {T1, . . . , Tr} ⊆ X(Γ) denote the preimage of ∞ ∈ P1
Q under πΓ, and let D :=

T1 + · · ·+Tr ∈ Div(X(Γ)) be the divisor of cusps of X(Γ). Then, again by proposition 3.1.2,

L ⊗k
C (−DC) := L ⊗k

Q (−D)⊗Q C

is the sum of the bundles of cusp forms for the Γσ.

Remark 3.3.1. We will be interested in studying the submodule of H0(X (Γ),L ⊗k) as-

sociated to cusp forms (see §3.6). As such, it does not matter which desingularization

X (Γ)→ X(Γ)Z we choose, since for any such desingularization, and for any vector bundle
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E on X(Γ)Z, if E denotes its pullback to X (Γ), then the natural map H0(X(Γ)Z, E) →

H0(X (Γ),E ) is an isomorphism.

3.4. Petersson metric on integral modular forms

For k ≥ 1, we endow L ⊗k with the Petersson metric as described in §3.2. Explicitly: for a

section f = (fσ)σ of L ⊗k
C over the open

⊔
σ Uσ ⊆

⊔
σX(Γσ)C,

|f |2Pet(z) := |(fσ∆k)(z)|2(4π im(z))12k,

where z ∈ h∗ corresponds to a point of Uσ ⊆ X(Γσ)C. We remark that even though there

are choices involved in picking the groups Γσ such that X(Γ)⊗E,σC ∼= X(Γσ)C, the resulting

metric on L is independent of these choices. As already mentioned in §3.2, this metric is

logarithmically singular at the elliptic points and cusps of the Γσ. We refer to L ⊗k endowed

with the Petersson metric by L
⊗k.

For each σ, denote by dµσ the invariant measure on X(Γσ)C induced by dxdy
y2 on the upper

half plane, where we use the coordinate z = x+ iy, and let dµ denote the measure
⊔
σ dµσ

on
⊔
σX(Γσ)C.

For f ∈ H0(X (Γ)C,L
⊗k
C (−DC)) a global section, define

‖f‖2k,∞ :=
1

[E : Q]dΓ

∫
X (Γ)(C)

|f |2Pet dµ

to be the normalized L2-norm of the Petersson metric. Note that for f = (fσ),

‖f‖2k,∞ =
1

[E : Q]

∑
σ

‖fσ∆k‖2Pet,

where ‖ · ‖Pet refers to the Petersson norm from §3.2.

3.5. Adelic vector bundles, heights, and successive maxima

Let K be a number field, and let ΣK denote the set of all places of K. For v ∈ ΣK , let Cv

denote the completion of an algebraic closure of Kv. For v finite, let | · |v denote the norm
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on Cv that extends the p-adic norm on Qp, where p is the rational prime lying under v. For

v an archimedean place, we let | · |v denote the usual norm on Cv = C.

A finite dimensional K-vector space V is called an adelic vector bundle over K if for each

v ∈ ΣK , V ⊗K Cv is equipped with a norm ‖ · ‖v subject to the following conditions:

(i) There exists a K-basis (s1, . . . , sr) of V such that for all but finitely many finite places

v ∈ ΣK ,

‖α1s1 + · · ·+ αrsr‖v = max(|α1|v, . . . , |αr|v).

(ii) For every v ∈ ΣK , ‖·‖v is invariant under the action of the group Gal(Cv/Kv). Namely,

if (s1, . . . , sr) is a Kv-basis of E ⊗K Kv, and if α1, . . . , αr ∈ Cv, then

‖τ(α1)s1 + · · ·+ τ(αr)sr‖v = ‖α1s1 + · · ·+ αrsr‖v

for all τ ∈ Gal(Cv/Kv).

(iii) For v ∈ ΣK finite, ‖ · ‖v satisfies ‖s+ s′‖v ≤ max(‖s‖v, ‖s′‖v).

Let V be an adelic vector bundle over K. The naive adelic height function on V is given by

λ : V → R

s 7→ −
∑
v∈ΣK

kv log ‖s‖v,

where kv := [Kv : Qp] for p the rational place lying under v. Using λ, we equip V with the

following filtration: given a ∈ R, set

V a := spanK{s ∈ V : λ(s) ≥ a}.

This is a decreasing filtration on V indexed by the real numbers with the property that

V a = V for a � 0, and V a = 0 for a � 0. If dimK V ≥ 1, the naive adelic successive
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maxima of V are the real numbers λ1, . . . , λdimK V , where

λi := sup{a ∈ R : dimK V
a ≥ i}.

Example 3.5.1. Suppose V is a finite, free Z-module of rank d ≥ 1, equipped with a norm

‖ · ‖∞ on the C-vector space V ⊗Z C. Then V := V ⊗Z Q has a natural structure of an

adelic vector bundle over Q as follows. For v =∞, we use the given norm ‖ · ‖∞ on V ⊗QC,

and for v = p finite, define ‖ · ‖p : V ⊗Q Cp → R by

‖s‖p := inf
α∈Cp
{|α|p : s ∈ α (V ⊗Z Rp)}, (3.5.1)

where Rp is the closed unit ball of Cp. If s1, . . . , sd denotes any Z-basis of V , then if we

express s ∈ V ⊗Q Cp as s =
∑

i αisi with αi ∈ Cp, we have ‖s‖p = maxi(|αi|p).

If λ1, . . . , λd denote the successive maxima for V with respect to the filtration induced by

the naive adelic height as above, then

λi = − log(µi),

where µ1, . . . , µd are the successive minima for the lattice V ⊆ V ⊗Z R, where V ⊗Z R is

equipped with the norm induced from that on V ⊗Z C.

3.6. Adelic Q-vector bundle structure on rational cusp forms

Let Γ ⊆ Γ(1) be a finite index subgroup and let X(Γ),X (Γ),L , and D be as in §3.3. Let

Mk := H0(X (Γ),L ⊗k),

Mk := Mk ⊗Z Q,

Sk := H0(X(Γ),L ⊗k
Q (−D)),

Sk := Mk ∩ Sk,
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where the last intersection takes place in Mk. These correspond to the spaces of integral

modular forms, rational modular forms, rational cusp forms, and integral cusp forms of level

Γ and weight 12k, respectively.

Note that Sk is a finite free Z-module with Sk = Sk ⊗Z Q. By example 3.5.1, Sk has

a natural structure of an adelic vector bundle over Q, with respect to the norms ‖ · ‖k,p,

as in equation 3.5.1 for a finite place p, and ‖ · ‖k,∞, the normalized L2 norm from §3.4.

We denote the naive adelic height function on Sk by λk, the induced filtration by (Sak)a∈R,

and the associated successive maxima by λk,i (for i = 1, . . . ,dimQ Sk) (as in §3.5). These

maxima are equal to the ones in theorem 2.0.1 by example 3.5.1.

23



CHAPTER 4

Proof of theorem 2.0.1

A key ingredient in the proof of theorem 2.0.1 is theorem 3.4.3 in (Chen, 2010) concerning

quasi-filtered graded algebras. We apply this result to the graded algebras BL in proposition

4.2.3. To do so, we need to get a uniform upper bound on the normalized height λk(f)/k

of any non-zero f ∈ Sk, and show that the algebra BL is quasi-filtered with respect to an

appropriate function (see definition 3.2.1 of (Chen, 2010)).

The uniform upper bound is proved in §4.1. The key ingredients for this are formulas for

the intersection numbers of logarithmically singular line bundles as in (Kühn, 2001) and

heights of cycles with respect to a smoothly metrized line bundle as in (Bost et al., 1994)

(see proposition 4.1.3), along with a version of “Gromov’s lemma” proved in (Friedman et al.,

2013) for cusp forms with respect to the Petersson norm and later improved (and generalized)

in (Auvray et al., 2016) (see proposition 4.1.2). Proposition 4.1.2 is also key to lemma 4.2.2,

which in turn is used to show that the BL are quasi-filtered. Using all of this, we show that

the νk converge vaguely to a sub-probability Borel measure ν on R.

Finally, in §4.3, we derive explicit lower bounds on the successive maxima λk,i for k large

by constructing a basis for Sk of a particular shape, and doing explicit calculations with

it. These lower bounds then imply that ν is a probability measure (and hence the vague

convergence is also weak convergence).

We follow the general structure of §3.6 and §3.7 of (Chinburg et al., 2018) in §4.2 and §4.3.

Throughout this section, we keep the notation from §3.6.

4.1. Upper bound on heights

Lemma 4.1.1. Let f ∈ Sk be a non-zero element. There exists a rational number β such

that βf ∈ Sk and βf 6∈ B ·Sk for all positive integers B ≥ 2. Furthermore, for any f ∈ Sk

such that f 6∈ B ·Sk for all integers B > 1, we have ‖f‖k,p = 1 for all finite places p, and
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hence, λk(f) = − log ‖f‖k,∞.

Proof. Take any Z-basis f1, . . . , fd of Sk, and let f =
∑

i αifi with αi ∈ Q. Then it is clear

that there is a rational number β such that βαi ∈ Z for all i and gcd(βα1, . . . , βαd) = 1. It

is also clear that βf ∈ Sk, and βf 6∈ B ·Sk for all integers B > 1.

Finally given any f ∈ Sk such that f 6∈ B ·Sk for all integers B > 1, writing f =
∑

i αifi,

we have αi ∈ Z and gcd(α1, . . . , αd) = 1. By example 3.5.1, we conclude that ‖f‖k,p =

maxi(|αi|p) = 1 for all finite places p.

Let Γ ⊆ Γ(1) be a finite index subgroup, and let S2k(Γ)C denote the space of complex cusp

forms for Γ of weight 2k. Let 〈·, ·〉Pet denote the Petersson inner product on S2k(Γ)C as in

§3.2. For f ∈ S2k(Γ), denote by

‖f‖sup := sup
z∈Γ\h

|f(z)|(4π im(z))k

the sup-norm of f with respect to the Petersson metric.

Proposition 4.1.2. Let Γ ⊆ Γ(1) be a finite index subgroup, and let S2k(Γ)C denote the

space of complex cusp forms for Γ of weight 2k. There exist positive constants c1 and c2,

with c2 independent of Γ, such that for any 0 6= f ∈ S2k(Γ)C, we have

c1‖f‖Pet ≤ ‖f‖sup ≤ c2k
3/4‖f‖Pet.

Proof. Let µΓ be the measure on X(Γ)C induced from the hyperbolic volume form dxdy
y2 on

h with coordinate z = x+ iy. For the first inequality, note that

‖f‖2Pet =
1

dΓ

∫
X(Γ)C

|f(z)|2(4π im(z))2k dµΓ(z) ≤ ‖f‖2sup

(
1

dΓ

∫
X(Γ)C

dµΓ

)
,

so we may let c1 = ( 1
dΓ

∫
X(Γ)C

dµΓ)−1/2.
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For the other direction, let {f1, . . . , fd} be an orthonormal basis for S2k(Γ)C for the Pe-

tersson inner product. Note that by our normalization of the Petersson inner product (i.e.

the inclusion of the (4π)2k factor), {(4π)kf1, . . . , (4π)kfd} is an orthonormal basis for the

classical Petersson inner product. Then, for z ∈ h, define

BΓ
k (z) :=

d∑
j=1

|(4π)kfj(z)|2 im(z)2k =
d∑
j=1

|fj(z)|2(4π im(z))2k

as in (Auvray et al., 2016). Note that for any 0 6= f ∈ S2k(Γ)C, if f =
∑d

j=1 αjfj , then

‖f‖2Pet =
∑d

j=1 |αj |2, and for any z ∈ h,

|f(z)|2(4π im(z))2k =

∣∣∣∣∣∣
d∑
j=1

αjfj(z)

∣∣∣∣∣∣
2

(4π im(z))2k

≤

 d∑
j=1

|αj |2
 d∑

j=1

|fj(z)|2
 (4π im(z))2k.

Hence,
|f(z)|2(4π im(z))2k

‖f‖2Pet
≤ BΓ

k (z),

and
‖f‖2sup

‖f‖2Pet
= sup

z∈Γ\h

|f(z)|2(4π im(z))2k

‖f‖2Pet
≤ sup

z∈Γ\h
BΓ
k (z).

By theorem 1.7 in (Auvray et al., 2016),

sup
z∈Γ\h

BΓ
k (z) =

(
k

π

)3/2

+O(k).

In particular, there exists a constant c2 (independent of k and Γ) which gives us the desired

bound.

We follow very closely the proof of lemma 4.1.7 in (Chen, 2010) for the following result.

Proposition 4.1.3. There is a constant C such that for any 0 6= f ∈ Sk, λk(f) ≤ Ck.
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Proof. Since λk(f) = λk(αf) for any non-zero α ∈ Q×, we may suppose, after appropriately

scaling f , that f ∈ Sk and f 6∈ B ·Sk for any positive integer B > 1. Then by lemma 4.1.1,

λk(f) = − log ‖f‖k,∞.

Taking any projective (closed) embedding ΦZ : X (Γ) ↪→ PNZ , we let L := Φ∗ZOPNZ
(1), where

OPNZ
(1) refers to OPNZ

(1) endowed with the Fubini-Study metric. Then L is arithmetically

ample with c1(L) > 0. Now take any global section ` ∈ H0(X (Γ), L) such that divL(`) and

divL⊗k(f) don’t share any common horizontal divisors (i.e. their divisors on the generic

fiber X(Γ) have disjoint support). Then the generalized intersection number L ·L ⊗k in the

sense of equation (3.10) in (Kühn, 2001) is given by

L ·L ⊗k
= (` · f)fin + 〈` · f〉∞,

where (` · f)fin = (divL(`) · divL⊗k(f))fin is equal to

(divL(`) · divL⊗k(f))fin :=

1∑
i,j=0

(−1)i+j log #H i
(
X (Γ),Tor

OX (Γ)

j (OdivL(`),Odiv
L⊗k (f))

)

(OD denotes the structure sheaf for an effective divisor D ⊆ X (Γ)), and 〈` · f〉∞ is given

in our case by

〈` · f〉∞ = −
∑

P∈X (Γ)(C)

nP log |`(P )| −
∫

X (Γ)(C)
log |f |Pet · c1(L),

if divL⊗kC
(f) =

∑
P∈X (Γ)(C) nPP (lemma 3.9 in (Kühn, 2001)). Note that this expression

makes sense since divL⊗kC
(f) and divLC(`) have disjoint support. Then, using bilinearity of

the intersection pairing, we have

(` · f)fin −
∑

P∈X (Γ)(C)

nP log |`(P )| = k(L ·L ) +

∫
X (Γ)(C)

log |f |Pet · c1(L),

where the expression on the left is the height hL(divL⊗k(f)) of the cycle divL⊗k(f) with

respect to L, as defined in 3.1.1 in (Bost et al., 1994) (see also §2.3.4 of (Bost et al., 1994),
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in particular, equation 2.3.17). Since L is arithmetically ample and divL⊗k(f) is effective,

hL(divL⊗k(f)) ≥ 0 (proposition 3.2.4 in (Bost et al., 1994)). Hence

0 ≤ k(L ·L ) +

∫
X (Γ)(C)

log |f |Pet · c1(L),

and since c1(L) > 0, we get

log sup
z∈X (Γ)(C)

|f |Pet(z) ≥ C ′k

for C ′ := −(L ·L )/
∫
X (Γ)(C) c1(L).

Denote the image of f under the map H0(X (Γ),L ⊗k(−D)) → H0(X (Γ)C,L
⊗k
C (−DC))

by (fσ)σ. Suppose |f |Pet(z) achieves its supremum on the component X(Γσ′)C, so that

sup
z∈X (Γ)(C)

|f |Pet(z) = sup
z∈X(Γσ′ )C

|(fσ′∆k)(z)|(4π im(z))6k = ‖fσ′∆k‖sup.

Then

‖f‖2k,∞ =
1

[E : Q]

∑
σ

‖fσ∆k‖2Pet ≥
1

[E : Q]
‖fσ′∆k‖2Pet ≥

1

[E : Q]
c−2

2 k−3/2‖fσ′∆k‖2sup,

where the last inequality uses proposition 4.1.2. We conclude that

λk(f) = − log ‖f‖k,∞ ≤ Ck

for a constant C independent of k.

4.2. Cusp forms vanishing to increasing orders at the cusps

For an integer L ≥ 1, define

BL,k := L ⊗k
Q (−dk/LeD) ⊆ L ⊗k

Q (−D).
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Then for each σ : E → C,

(BL,k)C|X(Γσ)C = L ⊗k
C (−dk/Le)DC) |X(Γσ)C

is identified with the line bundle of weight 12k cusp forms for X(Γσ)C that vanish to order

at least k/L at every cusp.

Let BL,k := H0(X(Γ),BL,k). We use the inclusion BL,k ⊆ Sk to define a filtration on BL,k.

Namely, for a ∈ R, we set the ath filtered piece of BL,k to be

Ba
L,k := Sak ∩BL,k.

This is a decreasing R-filtration on BL,k. For i = 1, . . . ,dimQBL,k, let

λL,k,i = sup{a ∈ R : dimQB
a
L,k ≥ i}

denote the ith successive maxima of BL,k. Since these are the successive maxima associated

to the subspace filtration, the multi-set {λL,k,i}
dimQBL,k
i=1 is a sub multi-set of {λk,i}

dimQ Sk
i=1 .

Furthermore, let

λ̃k : Sk → R ∪ {∞}, λ̃L,k : BL,k → R ∪ {∞}

be defined by λ̃k(f) := sup{a ∈ R : f ∈ Sak}, and λ̃L,k(f) := sup{a ∈ R : f ∈ Ba
L,k}.

These are called the index functions of Sk and BL,k for their respective filtrations (as in §2

of (Chen, 2007)). For f ∈ BL,k, we have λ̃L,k(f) = λ̃k(f).

Remark 4.2.1. We could have opted to use the filtration on BL,k obtained from the re-

striction of the height function λk on Sk, so that for a ∈ R the ath filtered piece of BL,k

would be

BL,k,a := spanQ{s ∈ BL,k : λk(s) ≥ a}.

This approach is taken in (Chinburg et al., 2018), §3.6 (see, in particular, the proof of lemma
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3.6.2) and makes proving various estimates (see (Chinburg et al., 2018), lemma 3.7.1) rather

tricky. By contrast, working with the subspace filtration simplifies these matters significantly

- compare lemma 4.2.4 below to its counterpart, (Chinburg et al., 2018), lemma 3.7.1.

As mentioned at the start of this section, the following lemma is used to show the algebras

BL in proposition 4.2.3 are quasi-filtered.

Lemma 4.2.2. Let ψ(k) := 3
4 log(k) + log(c2)− log(c1)/2 where c1 and c2 are the constants

from proposition 4.1.2 for Γ ⊆ Γ(1). For any collection of elements fi ∈ Ski (i = 1, . . . , n,

with n ≥ 2), we have

λ̃k1+···+kn(f1 · · · fn) ≥
n∑
i=1

(
λ̃ki(fi)− ψ(ki)

)
.

Proof. Note that c1 was set to be (
∫
X(Γ)C

dµΓ)−1, which only depends on the index of Γ in

Γ(1). Since [Γ(1) : Γ] = [Γ(1) : Γσ] for all σ, we may use the same c1 for all the Γσ. Hence

for any f ∈ Sk, proposition 4.1.2 gives

c2
1‖f‖2k,∞ ≤

∑
σ

‖fσ∆k‖2sup ≤ c2
2k

3/2‖f‖2k,∞.

Then for fi ∈ Ski (i = 1, . . . , n), letting K := k1 + . . . , kn, we get

c2
1‖f1 . . . , fn‖2K,∞ ≤

∑
σ

‖(f1 . . . fn)σ∆K‖2sup

≤
∑
σ

‖fσ1 ∆k1‖2sup · · · ‖fσn∆kn‖2sup

≤

(∑
σ

‖fσ1 ∆k1‖2sup

)
· · ·

(∑
σ

‖fσn∆kn‖2sup

)

≤ c2n
2 k

3/2
1 · · · k3/2

n ‖f1‖2k1,∞ . . . ‖fn‖
2
kn,∞,
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and consequently,

‖f1 . . . fn‖K,∞ ≤ eψ(k1)+···+ψ(kn)‖f1‖k1,∞ · · · ‖fn‖kn,∞.

(We use the fact that c1 < 1 here.)

Pick any ε > 0. By definition, fi ∈ S
λ̃ki (fi)−ε/n
ki

, and hence fi =
∑
gi,j for gi,j ∈ Ski with

λki(gi,j) ≥ λ̃ki(fi)− ε/n. It is easy to see that for any finite place p,

‖g1,j1 · · · gn,jn‖K,p ≤ ‖g1,j1‖k1,p · · · ‖gn,jn‖kn,p.

This combined with the previous paragraph yields

λK(g1,j1 · · · gn,jn) ≥
n∑
i=1

(λki(gi,ji)− ψ(ki))

≥
n∑
i=1

(
λ̃ki(fi)− ψ(ki)

)
− ε.

Since ε is arbitrary, we conclude that

λ̃K(f1 · · · fn) ≥
n∑
i=1

(
λ̃ki(fi)− ψ(ki)

)
,

as required.

Given a Borel measure ν, and an integrable function f on R, let

ν(f) :=

∫
R
f dµ.

Proposition 4.2.3. With the notation above, the sequence of probability measures

νL,k :=
1

dimQBL,k

dimQBL,k∑
i=1

δ 1
k
λL,k,i
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converges weakly as k →∞ to a probability measure νL,∞ with compact support.

Proof. First, we consider the case k = qL for integers q ≥ 1. Let

BL :=
⊕
q≥0

BL,qL.

Since deg(BL,L) > 0, BL,L is ample, and hence BL is a finitely generated Q-algebra with

BL,qL 6= 0 for q large. We endow each BL,qL with the filtration (Ba
L,qL)a∈R discussed above.

Then by lemma 4.2.2, BL is ψL-quasi-filtered with ψL(q) := ψ(qL), where ψ is as in lemma

4.2.2. By proposition 4.1.3, λ̃L,qL(f) = λ̃qL(f) ≤ CqL for all non-zero f ∈ BL,qL. Hence

by theorem 3.4.3 of (Chen, 2010) (and by rescaling the measures by 1/L), the collection of

measures

νL,qL :=
1

dimQBL,qL

dimQBL,qL∑
i=1

δ 1
qL
λL,qL,i

converges weakly to a compactly supported probability measure νL,∞ on R.

For general k, suppose that k = qL + r with 0 ≤ r < L. For f ∈ BL,k ⊆ BL,(q+1)L, lemma

4.2.2 gives

λ̃L,(q+1)L(f) ≥ λ̃L,k(f) + λ̃L,L−r(1)− ψ(k)− ψ(L− r)

≥ λ̃L,k(f) + c3 log(k),

for some constant c3 independent of k. This implies that for all i = 1, . . . ,dimQBL,k,

λL,(q+1)L,i ≥ λL,k,i + c3 log(k).

Then

dimQBL,(q+1)L − dimQBL,k = [E : Q]dΓ(L− r),

is independent of q. Hence, for any bounded increasing continuous function f : R→ R, we
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have

νL,k(f) ≤ νL,(q+1)L(f) + o(1),

and hence,

lim sup
q→∞

νL,qL+r(f) ≤ νL,∞(f).

Similarly, using the inclusion BL,qL ⊆ BL,k, we deduce that

lim inf
q→∞

νL,qL+r(f) ≥ νL,∞(f),

and hence νL,k(f) → νL,∞(f) for all bounded increasing continuous functions f . Since all

measures involved are probability measures, this shows that νL,k → νL,∞ weakly.

Lemma 4.2.4. For every positive real number ε and bounded Lipschitz function h : R→ R

, there is a constant L0 = L0(ε, h) such that for all L ≥ L0, and for all k ≥ 1, we have

|νk(h)− νL,k(h)| ≤ ε.

Proof. Let |h|Lip := supx∈R |h(x)| + supx,y∈R,x 6=y
|h(x)−h(y)|
|x−y| = M . Recall that since BL,k is

equipped with the subspace filtration coming from Sk, the multi-set {λL,k,i}
dimQBL,k
i=1 is a

sub multi-set of {λk,i}
dimQ Sk
i=1 . Let dL,k := dimQBL,k and dk := dimQ Sk. Then

|νk(h)− νL,k(h)| =

∣∣∣∣∣∣ 1

dk

dk∑
i=1

h

(
1

k
λk,i

)
− 1

dL,k

dL,k∑
i=1

h

(
1

k
λL,k,i

)∣∣∣∣∣∣
≤ 1

dk

∣∣∣∣∣∣
dk∑
i=1

h

(
1

k
λi,k

)
−
dL,k∑
i=1

h

(
1

k
λi,L,k

)∣∣∣∣∣∣+

(
1

dL,k
− 1

dk

) ∣∣∣∣∣∣
dL,k∑
i=1

h

(
1

k
λi,L,k

)∣∣∣∣∣∣
≤ 1

dk
(dk − dL,k)M +

dk − dL,k
dkdL,k

dL,kM

≤ c4 (dk/Le − 1)

dk

≤ c4

L
,
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for some constant c4. The conclusion follows at once.

Corollary 4.2.5. Suppose N ≥ 2. Let h : R → R be a bounded Lipschitz function. Then

the sequences (νk(h))k and (νL,∞(h))L are convergent and have the same limit.

Proof. Let ε > 0 be any positive real number, and let L0 = L0(ε, h) be as in the previous

lemma. For any L ≥ L0, and any k, we have |νk(h) − νL,k(h)| ≤ ε from the lemma above,

and hence

νL,k(h)− ε ≤ νk(h) ≤ νL,k(h) + ε.

From this we get

νL,∞(h)− ε ≤ lim inf
k

νk(h) ≤ lim sup
k

νk(h) ≤ νL,∞(h) + ε,

and hence

0 ≤ lim sup
k

νk(h)− lim inf
k

νk(h) ≤ 2ε.

Since ε is arbitrary, we conclude that limk νk(h) exists. Moreover, since for all L ≥ L0, we

have

|νL,∞(h)− lim
k
νk(h)| ≤ ε,

we conclude that limL νL,∞(h) = limk νk(h), as required.

Now by the Riesz representation theorem for measures, there exists a sub-probability Borel

measure ν on R representing the positive linear functional limk νk = limL νL,∞ on Cc(R).

Namely, for all h ∈ Cc(R), we have

ν(h) = lim
k
νk(h) = lim

L
νL,∞(h). (4.2.1)

Hence, νk converges vaguely to ν.
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4.3. ν is a probability measure

We obtain lower bound estimates on the successive maxima λk,i of Sk in proposition 4.3.1,

which are then used in proposition 4.3.2 to show that ν is a probability measure.

Recall that T1, . . . , Tr are the pre-images of ∞ ∈ P1
Q under the map πΓ : X(Γ) → P1

Q, and

D = T1 + · · ·+ Tr. Let ei denote the ramification index of Ti over ∞. Then

L ⊗k
Q (−D) = OX(Γ) ((ke1 − 1)T1 + · · ·+ (ker − 1)Tr) .

Let g denote the genus of X(Γ)C. Then the genus of X(Γ) as a curve over E, and that of

X(Γσ)C, for each σ, is also equal to g.

Proposition 4.3.1. Fix an integer k0 such that k0ep − 1 > 2g − 2 for all p = 1, . . . , r, and

let d0 := dimQ Sk0. For all k > k0, if {λk,i}
dimQ Sk
i=1 denote the successive maxima of Sk, then:

• For 1 ≤ i ≤ d0,

λk,i ≥ 6k log

(
k − k0

k

)
− C4k.

• For d0 + 1 ≤ i,

λi,k ≥ 6k log

k − k0 −
⌈

i−d0
dΓ[E:Q]

⌉
k

− C4k.

For i > d0 + (k − k0 − 1)dΓ[E : Q], we interpret the right hand side above as −∞.

Proof. We construct an E-basis for Sk when k ≥ k0. We start by constructing a basis for

Sk0+1/Sk0 . Using proposition 1.40 in (Shimura, 1971), one easily checks that for k ≥ 1,

deg(L ⊗k
Q (−D)) > 2g − 2, and hence by Riemann-Roch,

dimE Sk = dimE H
0(X(Γ),L ⊗k

Q (−D)) = deg(L ⊗k
Q (−D))− g + 1.
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for k ≥ 1. Hence, for any m ≥ 0,

dimE Sk0+m+1 − dimE Sk0+m = deg LQ = dΓ. (4.3.1)

For p = 1, . . . , r, and q = 1, . . . , ep, since

dimE H
0(X(Γ),O((k0ep− 1 + q)Tp))− dimE H

0(X(Γ),O((k0ep− 1 + (q− 1))Tp)) = deg Tp,

there exist rational functions bq,p,i for i = 1, . . . ,deg Tp in H0(X(Γ),O((k0ep − 1 + q)Tp))

that are E-linearly independent, and that are regular everywhere on X(Γ) except at Tp,

where they have a pole of order k0ep − 1 + q.

Varying p, q, and i, there are dΓ such functions {bq,p,i}q,p,i, and bq,p,i ∈ Sk0+1 \ Sk0 . It is

clear from construction that {bq,p,i}q,p,i ⊆ Sk0+1 are E-linearly independent, which in light

of equation 4.3.1 implies that their images constitute an E-basis of Sk0+1/Sk0 .

For any m ≥ 0, note that

ordTp(j
mbq,p,i) = −mep − (k0ep − 1 + q) = −[(k0 +m)ep − 1 + q].

Since {jmbq,p,i}q,p,i ⊆ Sk0+m+1 \ Sk0+m are E-linearly independent, equation 4.3.1 again

implies that their images make up an E-basis of Sk0+m+1/Sk0+m. Now let d′0 = dimE Sk0

and fix an E-basis {c1, . . . , cd′0} of Sk0 . For k > k0, the above discussion yields the E-basis

{c1, . . . , cd′0} ∪
k−k0−1⋃
t=0

{jtbq,p,i}q,p,i

of Sk. By scaling the cv’s and the bq,p,i’s by elements of Q×, we may assume that they

are integral (i.e., they lie in Sk0 and Sk0+1, respectively). Then since j ∈ M1 is integral,

jtbq,p,i ∈ Sk are integral as well. Fixing a Z-basis {α1, . . . , α[E:Q]} of the ring of integers
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OE , we get the Q-basis of Sk:

[E:Q]⋃
u=1

(
{αuc1, . . . , αucd′0} ∪

k−k0−1⋃
t=0

{αujtbq,p,i}q,p,i

)
.

Since each Sk is an OE-module, the αucv and αujtbq,p,i are integral as well.

Let ασucσv and ασuj
tbσq,p,i denote the images of αucv and αvj

tbq,p,i, respectively, in Sk ⊗E,σ

C. Each ασuc
σ
v∆k0 ∈ S12k0(Γσ)C, and ασub

σ
q,p,i∆

k0+1 ∈ S12(k0+1)(Γσ)C. There is a positive

constant C1 such that the estimates

sup
zσ∈Γσ\h

|(ασucσv∆k0)(z)| ≤ C1

sup
zσ∈Γσ\h

|(ασubσq,p,i∆k0+1)(z)| ≤ C1

|j(z)| ≤ C1e
2πy

|∆(z)| ≤ C1e
−2πy

hold for all σ, u, v, and triples (q, p, i). Then

‖ασucσv∆k‖2Pet =
1

dΓσ

∫
FΓσ

|(ασucσv∆k)(z)|2(4πy)12k dxdy

y2

≤ C2
1

dΓσ

∫
FΓσ

|∆k−k0(z)|2(4πy)12k dxdy

y2

≤ C
2(k−k0)+2
1

dΓσ

∫
FΓσ

e−4πy(k−k0)(4πy)12k dxdy

y2

≤ C
2(k−k0)+2
1 w

dΓσ

∫ ∞
0

e−4πy(k−k0)(4πy)12k dxdy

y2

≤
(

k

k − k0

)12k

eC2k,

for some constant C2, and where we pick a connected fundamental domain FΓσ for Γσ

contained in a vertical strip of the form {(x, y) : β ≤ x ≤ β + w, 0 < y} for some β ∈ R,
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where w is the width of the cusp ∞ for Γσ. Similarly, for t = 0, . . . , k − k0 − 2,

‖ασubσq,p,ijt∆k‖2Pet =
1

dΓσ

∫
FΓσ

|(ασubσq,p,ijt∆k)(z)|2(4πy)12k dxdy

y2

=
1

dΓσ

∫
FΓσ

|(ασubσq,p,i∆k0+1)(z)|2|(jt∆k−k0−1)(z)|2(4πy)12k dxdy

y2

≤ C2
1

dΓσ

∫
FΓσ

|(jt∆k−k0−1)(z)|2(4πy)12k dxdy

y2

≤ C2t+2k−2k0
1

dΓσ

∫
FΓσ

e−4πy(k−k0−t−1)(4πy)12k dxdy

y2

≤ C2t+2k−2k0
1 w

dΓσ

∫ ∞
0

e−4πy(k−k0−t−1)(4πy)12k dxdy

y2

≤
(

k

k − k0 − t− 1

)12k

eC3k

for some constant C3. Then

‖αucv‖2k,∞ =
1

[E : Q]

∑
σ

‖ασucσv∆k‖2Pet ≤
(

k

k − k0

)12k

eC2k,

‖αubq,p,ijt‖2k,∞ =
1

[E : Q]

∑
σ

‖ασubσq,p,ijt∆k‖2Pet ≤
(

k

k − k0 − t− 1

)12k

eC3k.

Since αucv and αubq,p,ijt are all integral and hence their p-norms are all at most 1 for every

finite place p, we have

λk(αucv) ≥ − log ‖αucv‖k,∞ ≥ 6k log

(
k − k0

k

)
− C4k,

λk(αubq,p,ij
t) ≥ − log ‖αubq,p,ijt‖k,∞ ≥ 6k log

(
k − k0 − t− 1

k

)
− C4k,

for a sufficiently large constant C4.

Now, let d0 = dimQ Sk0 = [E : Q]d′0. For 1 ≤ i ≤ d0, any i elements of the set

[E:Q]⋃
u=1

{αuc1, . . . , αucd′0}

38



are Q-linearly independent. Hence, for 1 ≤ i ≤ d0,

λk,i ≥ 6k log

(
k − k0

k

)
− C4k.

For d0 + t0dΓ[E : Q] + 1 ≤ i ≤ d0 + (t0 + 1)dΓ[E : Q], where t0 = 0, . . . , k − k0 − 2, we can

take the subset
[E:Q]⋃
u=1

(
{αuc1, . . . , αucd′0} ∪

t0−1⋃
t=0

{αujtbq,p,i}q,p,i

)
∪ S,

where S ⊆
⋃[E:Q]
u=1 {αubq,p,ijt0} is any subset of cardinality i − d0 − t0dΓ[E : Q]. (If t0 = 0,

then the set
⋃t0−1
t=0 {αujtbq,p,i}q,p,i in the above union should be interpreted as the empty

set.) This set of i Q-linearly independent elements shows that for i in the above range,

λk,i ≥ 6k log

(
k − k0 − t0 − 1

k

)
− C4k.

Noting that t0 + 1 =
⌈

i−d0
dΓ[E:Q]

⌉
, we conclude that:

• If 1 ≤ i ≤ d0, then

λk,i ≥ 6k log

(
k − k0

k

)
− C4k.

• If d0 + 1 ≤ i ≤ d0 + (k − k0 − 1)dΓ[E : Q], then

λk,i ≥ 6k log

k − k0 −
⌈

i−d0
dΓ[E:Q]

⌉
k

− C4k.

• If i > d0 + (k − k0 − 1)dΓ[E : Q], the above expression still holds if we interpret the

right hand side to be −∞.

This gives us the lower bounds in the proposition.

We now show that the sequence of measures (νk)k is uniformly tight : namely, given any

ε > 0, there exists a compact set K ⊆ R for which νk(R \K) ≤ ε for all k.
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Proposition 4.3.2. The sequence of measures (νk)k is uniformly tight, and hence ν is a

probability measure and the vague convergence νk → ν is in fact weak convergence. Further-

more, ν has support bounded above.

Proof. By proposition 4.1.3, there is a constant C (which we may take to be positive)

such that λk,i/k ≤ C for all k and all i, meaning that the supports of the measures νk

are all contained in (−∞, C]. Hence for any positive real number a, νk(R \ [−a,C]) =

νk((−∞,−a)) + νk((C,∞)) = νk((−∞,−a)). Thus, to show uniform tightness, it suffices to

show that for any ε > 0, there is a positive real number a1 and a positive integer k1 such

that for all reals a ≥ a1 and all integers k ≥ k1, νk((−∞,−a)) < ε. (For each i < k1, there

is some compact set Ki such that νi(R \Ki) < ε. Letting K ′ = K1 ∪ · · · ∪Kk1−1 ∪ [−a,C],

we note that νk(R \K ′) ≤ ε for all k.)

We keep the conventions from proposition 4.3.1. Take any k > k0. Given a positive real

number a,

νk((−∞,−a)) =
#{i : λk,i/k < −a}

dimQ Sk
.

We first restrict to counting only those i with d0 + 1 ≤ i ≤ d0 + (k−k0−1)dΓ[E : Q], noting

that the remaining i’s contribute at most d0 + dΓ[E : Q] to the count (which is a constant

independent of k). Then for i in the above range, proposition 4.3.1 gives

6 log

k − k0 −
⌈

i−d0
dΓ[E:Q]

⌉
k

− C4 ≤ λk,i/k < −a,

which implies that

i > d0 + (k − k0 − 1− C5ke
−a/6)dΓ[E : Q]

for C5 = eC4/6. Hence,

νk((−∞,−a)) =
#{i : λk,i/k < −a}

dimQ Sk
≤ (C5ke

−a/6 + 2)dΓ[E : Q] + d0 + dΓ[E : Q]

dimQ Sk
.
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Noting that dimQ Sk grows linearly with k, we may pick k1 and a1 large enough so that for

any k ≥ k1 and a ≥ a1, νk((−∞,−a)) < ε. This concludes the proof of uniform tightness.

To see that ν is a probability measure, we note that by Prohorov’s theorem, uniform tightness

implies that (νk)k admits a weakly convergent subsequence (νkm)m. If νkm → ω weakly, then

ω is also the vague limit of the νkm . Then by uniqueness of vague limits, we conclude that

ω = ν. Since ω is a probability measure, we conclude that ν is one as well. It is a standard

result that if the limit measure is also a probability measure, then vague convergence is

equivalent to weak convergence, and hence νk converges weakly to ν. Finally, it is clear that

the support of ν is contained in (−∞, C].
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CHAPTER 5

Comparison of measures - Proof of theorem 2.0.2

5.1. Notation

Given finite index subgroups Γ′ ⊆ Γ of Γ(1), we say that Γ′ ⊆ Γ is defined over E, where E

is a number field, if there exist smooth projective geometrically connected E-curves X(Γ′)

and X(Γ) such that:

• the base change of X(Γ′) and X(Γ) to C give the modular curves X(Γ′)C and X(Γ)C,

respectively, and

• there exist E-morphisms π : X(Γ′) → X(Γ) and πΓ : X(Γ) → P1
E with base change

to C equal to the natural maps X(Γ′)C → X(Γ)C and X(Γ)C → P1
C induced by the

inclusion Γ′ ⊆ Γ, and by the j-function, respectively.

In particular, there is also an E-morphism πΓ ◦π : X(Γ′)→ P1
E with base change to C equal

to the natural map X(Γ′)C → P1
C given by the j-function.

Given a finite index subgroup Γ ⊆ Γ(1), we also say that Γ is defined over E to mean that

Γ ⊆ Γ(1) is defined over E. In this case, the above conditions are equivalent to the existence

of models X(Γ) and X(Γ) → P1
E over E of X(Γ)C and the j-function map X(Γ)C → P1

C,

respectively. Note that if Γ′ ⊆ Γ is defined over E, then so are Γ′ and Γ.

For the rest of this section, suppose that Γ′ ⊆ Γ is defined over a number field E, and

let X(Γ′), X(Γ), and π : X(Γ′) → X(Γ) be as above. As in §3.3, let X(Γ)Z denote the

normalization of P1
Z in X(Γ) under the natural map X(Γ) → P1

E → P1
Z, and define X(Γ′)Z

analogously. The natural map π : X(Γ′) → X(Γ) induces a morphism X(Γ′)Z → X(Γ)Z

(over P1
Z). For any choice of a desingularization X (Γ) → X(Γ)Z, there exists a desingu-

larization X (Γ′) → X(Γ′)Z along with a morphism πZ : X (Γ′) → X (Γ) that extends

X(Γ′)Z → X(Γ)Z.
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Let L ′ := π∗ZL , where L = π∗Γ,ZOP1
Z
(∞) (see §3.3). Keeping the same conventions as in

§3.6, we let

Mk := H0(X (Γ),L ⊗k), M ′
k := H0(X (Γ′),L ′⊗k)

Mk := Mk ⊗Z Q, M ′k := M ′
k ⊗Z Q

Sk := H0(X(Γ),L ⊗k
Q (−D)), S′k := H0(X(Γ′),L ′⊗k

Q (−D′))

Sk := Mk ∩ Sk, S ′
k := M ′

k ∩ S′k,

where D and D′ are the formal sums of the pre-images of ∞ ∈ P1
E in X(Γ) and X(Γ′)

under the natural maps X(Γ) → P1
E and X(Γ′) → P1

E , respectively. We remark that these

definitions are independent of the choices of the regular models X (Γ) and X (Γ′).

Given an extension F/E of number fields, let X(Γ)F := X(Γ)⊗E F denote the base change,

and let X(Γ)F,Z denote the normalization of P1
Z under the natural map X(Γ)F → P1

Z. The

map X(Γ)F → X(Γ) extends to a map between the normalizations X(Γ)F,Z → X(Γ)Z.

Next, let X (Γ)F be a desingularization of X(Γ)F,Z over F that admits a morphism to

X (Γ) extending the natural map X(Γ)Z,F → X(Γ)Z. Let MF,k denote the global sections

of the pullback of L ⊗k to X (Γ)F , and define MF,k, SF,k, and SF,k in the obvious manner.

For any place v of Q, we let ‖ · ‖k,v, ‖ · ‖′k,v, and ‖ · ‖F,k,v denote the local norms on Sk ⊗Q

Cv, S′k ⊗Q Cv, and SF,k ⊗Q Cv, respectively. Finally, let λk, λ′k, and λF,k be the naive adelic

height functions on Sk, S′k, and SF,k, respectively.

We adopt the convention that we drop the subscript E for objects defined over E (as in

§3.3), but include the subscript for objects over subfields or field extensions of E.

5.2. Main results

Lemma 5.2.1. Let E be a number field, X and Y smooth projective integral curves over

E, and π : Y → X a non-constant map of curves over E. Suppose X and Y are regular

projective models of X and Y , respectively, over Spec(OE), and let πZ : Y → X be a
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Spec(OE)-morphism extending π. For any line bundle L on X with L := L |X , we have

the equality

H0(X ,L ) = H0(X,L) ∩H0(Y , π∗ZL ),

where the intersection takes place in H0(Y, π∗L).

Proof. First let X ′ η−→ X denote the normalization of X in Y with respect to the map

Y → X → X . Then X ′ is a normal arithmetic surface, which admits a birational map

Y 99K X ′ (inducing the identity on the generic fiber Y ). By (Liu, 2002) chapter 9.2,

theorem 2.7, there is a projective birational morphism Y ′
α−→ Y , with Y ′ regular, and a

birational morphism Y ′
β−→ X ′ lifting Y 99K X ′. The natural pullback morphisms induce

the equality H0(X ′, η∗L ) = H0(Y ′, β∗η∗L ) = H0(Y , π∗ZL ) (since η ◦ β = πZ ◦ α) in

H0(Y, π∗L). Hence, it suffices to show that H0(X ,L ) = H0(X,L) ∩H0(X ′, η∗L ).

We only need to show ⊇. Take s ∈ H0(X,L) ∩ H0(X ′, η∗L ). Let Spec(A) ⊆ X be an

affine open subset where L is trivial. Then L is trivial on A ⊗Z Q, and η∗L is trivial on

η−1(Spec(A)) = Spec(A′), where A′ is the integral closure of A in the rational function field

κ(Y ). The section s then corresponds to an element in A′ ∩ (A⊗Z Q) = A ⊆ κ(X), since A

is integrally closed in its fraction field κ(X).

Lemma 5.2.2. Let Γ′ ⊆ Γ be finite index subgroups of Γ(1) defined over a number field E,

and let F/E be a finite extension. Then with the notation in §5.1, the local norms respect

the inclusions

(a) Sk ⊗Q Cv → S′k ⊗Q Cv, and

(b) Sk ⊗Q Cv → SF,k ⊗Q Cv

for all places v of Q.

Proof. First let v = p be a finite place. The inclusion of finite free Z-modules Mk ⊆ M ′
k

implies that there exists a Z-basis {b1, . . . , bd′} of M ′
k for which there exist integers n1, . . . , nd
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such that n1b1, . . . , ndbd is a Z-basis for Mk. Since Mk = Mk∩M ′
k by lemma 5.2.1, we must

have bi ∈Mk, and hence ni = 1 for all i = 1, . . . , d. Given s ∈ Mk ⊗Q Cp, if s =
∑d

i=1 αibi

with αi ∈ Cp, then ‖s‖k,p = ‖s‖′k,p = max{|αi|}di=1, by the definition of the local norms at

p. A similar argument also shows that ‖s‖k,p = ‖s‖F,k,p.

Now suppose v = ∞. For any σ : E → C, the base change of π : X(Γ′) → X(Γ) by σ

gives πσ : X(Γ′σ)C → X(Γσ)C for finite index subgroups Γ′σ ⊆ Γσ ⊆ Γ(1). Now given any

f = (fσ)σ ∈ Sk ⊗Q C ⊆ S′k ⊗Q C, the Petersson norm of the cusp form fσ∆k ∈ S12k(Γσ)C ⊆

S12k(Γ
′
σ)C is independent of the groups Γσ and Γ′σ, we get ‖f‖k,∞ = ‖f‖′k,∞.

Finally, we note that for f as above,

‖f‖2F,k,∞ =
1

[F : Q]

∑
τ :F→C

‖f τ∆k‖2Pet

=
1

[F : Q]

∑
σ:E→C

∑
τ

τ |E=σ

‖f τ∆k‖2Pet

=
1

[E : Q]

∑
σ:E→C

‖fσ∆k‖2Pet = ‖f‖2k,∞.

Now suppose Γ′ E Γ is normal, and that π : X(Γ′) → X(Γ) is Galois over E. Since

X(Γ′)Z is also the normalization of X(Γ)Z in X(Γ′), the universal property of normal-

ization implies that every element τ ∈ Aut(X(Γ′)/X(Γ)) lifts uniquely to an element

τ̃ ∈ Aut(X(Γ′)Z/X(Γ)Z). Let the elements of Aut(X(Γ′)/X(Γ)) be denoted τj , and let

(·)|τj denote the pullback map on sections induced by τj .

Suppose also that F/E is a Galois extension of number fields. Since X(Γ) is geometrically

integral over E, Gal(X(Γ)F /X(Γ)) = Gal(F/E)op (where the “op” means that we take

the opposite group). For αj ∈ Gal(F/E), let α∗j denote the corresponding element of

Gal(X(Γ)F /X(Γ)). Again by the universal property of normalization, α∗j extends uniquely

to an automorphism Aut(X(Γ)Z,F /X(Γ)Z). We denote by (·)αj the pullback map on sections
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induced by α∗j .

Lemma 5.2.3. Let Γ′ E Γ be defined over E and suppose that π : X(Γ′)→ X(Γ) is Galois

over E. Let F/E be a Galois extension of number fields. Then with the conventions of §5.1,

we have

(a) Sak ⊆ S′ak ∩ Sk ⊆ S
a−log[Γ′:Γ]
k , and

(b) Sak ⊆ SaF,k ∩ Sk ⊆ S
a−log[F :E]
k

for all a ∈ R.

Proof. The first containment for both (a) and (b) is the content of lemma 5.2.2. For the

second containment, take any f ∈ S′ak ∩Sk (resp. s ∈ SaF,k∩Sk). Then f =
∑

i gi for gi ∈ S′k
with λ′k(gi) ≥ a (resp. s =

∑
i ti for ti ∈ SF,k with λF,k(ti) ≥ a). Let hi :=

∑
j gi|τj (resp.

ui :=
∑

j t
αj
i ). Then we claim that hi ∈ Sk with λk(hi) ≥ a− log[Γ′ : Γ] (resp. ui ∈ Sk with

λk(ui) ≥ a− log[F : E]) for all i, from which the conclusion follows.

First suppose v = p is a finite place. Given any Z-basis {bk} of M ′
k, if gi =

∑
k αkbk with

αk ∈ Q, then ‖gi‖′k,p = max{|αk|}k. Now since τj extends uniquely to Aut(X(Γ′)Z/X(Γ)Z),

the pullback map (·)|τj : M ′k →M ′k restricts to an automorphism of the integral sections M ′
k

(see the remarks in §3.3). Hence {bk|τj} is also a Z-basis of M ′
k, from which we conclude

that ‖gi|τj‖′k,p = ‖gi‖′k,p for all τj . Hence,

‖hi‖k,p = ‖hi‖′k,p =

∥∥∥∥∥∥
∑
j

gi|τj

∥∥∥∥∥∥
′

k,p

≤ max
j
‖gi|τj‖′k,p = ‖gi‖′k,p.

A similar argument shows that ‖ui‖k,p ≤ ‖ti‖F,k,p.
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Next, suppose v =∞. First, we address (a). We have the base change diagram by σ : E → C

X(Γ′σ)C X(Γ′σ)C

X(Γ′) X(Γ′)

γj

τj

where the top horizontal map γj ∈ Aut(X(Γ′σ)C/X(Γσ)C) corresponds to the automorphism

of the modular curve X(Γ′σ)C induced by the coset γjΓ′ ∈ Γ/Γ′ for some γj ∈ Γ. Hence for

all i and j, we have (gi|τj )σ = gσi |γj (where |γj denotes the usual slash operator for modular

forms, which in this case is simply pre-composition by γj). Then we have

‖hi‖2k,∞ = ‖hi‖′2k,∞ =
1

[E : Q]

∑
σ:E→C

‖hσi ∆k‖2Pet

≤ 1

[E : Q]

1

dΓ′

dΓ′

dΓ

∑
σ

∫
FΓ′

∑
j

∣∣∣((gi|τj )σ∆k)(z)
∣∣∣2 (4πy)12k dxdy

y2

=
1

[E : Q]

1

dΓ′

dΓ′

dΓ

∑
σ

∫
FΓ′

∑
j

∣∣∣((gσi |γj )∆k)(z)
∣∣∣2 (4πy)12k dxdy

y2

=
1

[E : Q]

dΓ′

dΓ

∑
j

∑
σ

‖gσi ∆k‖2Pet

=

(
dΓ′

dΓ

)2

‖gi‖′2k,∞.

where we use Cauchy-Schwartz inequality in the second line, and the invariance of the

Petersson inner product with respect to the slash operator for modular forms in the fourth

line. We conclude that

λk(hi) = −
∑
v

log ‖hi‖k,v ≥ −
∑
v

log ‖gi‖′k,v − log

(
dΓ′

dΓ

)
= λ′k(gi)− log[Γ′ : Γ].

Finally, we address (b). For each σ : E → C, fix a lift σ̃ : F → C. Then all lifts of σ to F
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are given by σ̃ ◦ αj as αj varies over Gal(F/E).

‖ui‖2k,∞ =
1

[E : Q]

∑
σ:E→C

‖uσi ∆k‖2Pet =
1

[E : Q]

∑
σ:E→C

‖uσ̃i ∆k‖2Pet

=
1

[E : Q]

∑
σ:E→C

∥∥∥∥∥∥
∑
j

(t
αj
i )σ̃∆k

∥∥∥∥∥∥
2

Pet

≤ [F : E]

[E : Q]

∑
σ:E→C

∑
j

∥∥∥tσ̃◦αji ∆k
∥∥∥2

Pet

= [F : E]2
1

[F : Q]

∑
τ :F→C

∥∥∥tτi ∆k
∥∥∥2

Pet

= [F : E]2‖ti‖2F,k,∞.

Hence, we conclude that

λk(ui) ≥ λF,k(ti)− log[F : E],

as required.

5.3. Proof of theorem 2.0.2

Proof of theorem 2.0.2. Let E and E0 be the fields of constants of X(Γ′) and X(Γ), respec-

tively. Taking global sections of the structure sheaves for the morphism πΓ′,Γ : X(Γ′) →

X(Γ) yields an inclusion E0 ↪→ E, and hence an E-morphism X(Γ′) → X(Γ) ⊗E0 E such

that its base change to C is equal to the natural map X(Γ′)C → X(Γ)C by assumption.

Hence, Γ′ ⊆ Γ is defined over E.

Let Γ′′ be a finite index subgroup of Γ′ with Γ′′ E Γ. Let F be a finite extension of E that is

Galois over E0, and suppose that Γ′′ is defined over F , with model X(Γ′′)F . By extending F

if necessary, we may also assume that there exist F -morphismsX(Γ′′)F → X(Γ′)F → X(Γ)F

with base change to C equal to the natural maps X(Γ′′)C → X(Γ′)C → X(Γ)C, and that the

maps X(Γ′′)F → X(Γ′)F and X(Γ′′)F → X(Γ)F are Galois covers of curves. Then repeated
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application of lemma 5.2.3 gives

SaE0,k ⊆ S
a
k ∩ SE0,k ⊆ S′ak ∩ SE0,k ⊆ S′aF,k ∩ SE0,k

⊆ S′′aF,k ∩ SE0,k ⊆ S
a−log[Γ′′:Γ]
F,k ∩ SE0,k ⊆ S

a−log[Γ′′:Γ]−log[F :E0]
E0,k

.

In particular, we have

SaE0,k ⊆ S
′a
k ∩ SE0,k ⊆ S

a−log[Γ′′:Γ]−log[F :E0]
E0,k

. (5.3.1)

Let λ′E0,k,i
denote the successive maxima of SE0,k with respect to the subspace filtration

S′ak ∩ SE0,k, and let

ν ′E0,k :=
1

dimQ SE0,k

dimQ SE0,k∑
i=1

δ 1
k
λ′E0,k,i

.

Equation 5.3.1 gives

λE0,k,i ≤ λ′E0,k,i ≤ λE0,k,i + log[Γ′′ : Γ] + log[F : E0]

for all i = 1, . . . ,dimQ SE0,k. Consequently, ν ′E0,k
→ νE0 weakly.

Consider now the short exact sequence

0→ SE0,k → S′k →Wk := S′k/SE0,k → 0.

If we equipWk with the quotient filtration as on page 16 of (Chen, 2010), then by proposition

1.2.5 of (Chen, 2010), there is a Borel probability measure ωk on R such that

(dimQ S
′
k) · ν ′k = (dimQ SE0,k) · ν ′E0,k + (dimQWk) · ωk,

and hence

ωk =
dimQ S

′
k

dimQWk
· ν ′k −

dimQ SE0,k

dimQWk
· ν ′E0,k.
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Taking the limit as k →∞, we get that ωk converges weakly to the Borel probability measure

ω :=
[E : E0][Γ : Γ′]

[E : E0][Γ : Γ′]− 1
· ν ′ − 1

[E : E0][Γ : Γ′]− 1
· νE0 .

Rearranging, we get

ν ′ =
1

[E : E0][Γ : Γ′]
· νE0 +

(
1− 1

[E : E0][Γ : Γ′]

)
· ω.

Finally, since [E : E0][Γ : Γ′] = deg(πΓ′,Γ), we get the desired conclusion.

Corollary 5.3.1. Assume the setup in theorem 2.0.1. Then the support of the limit measure

ν is bounded above and unbounded below.

Proof. That the support of ν is bounded above follows from lemma 4.1.3. The modular

curve X(1)C for Γ(1) has a model X(1)Q over Q that we identify with P1
Q via the j-function.

We have the morphism πΓ : X(Γ)→ P1
Q associated to the inclusion Γ ⊆ Γ(1), and hence we

may apply theorem 2.0.2 to get

ν =
1

deg(πΓ)
· νΓ(1),Q +

(
1− 1

deg(πΓ)

)
· ω,

where νΓ(1),Q is the limit measure associated to the successive maxima of the spaces of Q-

rational cusp forms of level Γ(1) and weight 12k as in theorem 3.2.2 of (Chinburg et al.,

2018), and ω is a Borel probability measure on R. By part (ii) of the same theorem, the

support of νΓ(1),Q is not bounded below. Consequently, the support of ν is unbounded below

as well.
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