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Preliminary Examination, Part I

Thursday, April 28, 2022 9:30am-12:00pm

This examination is based on Penn’s code of academic integrity

Instructions:

Sign and print your name above.

This part of the examination consists of six problems, each worth ten points. You should
work all of the problems. Show all of your work. Try to keep computations well-organized
and proofs clear and complete — and justify your assertions. Each problem should be given
its own page (or more than one page, if necessary).

If a problem has multiple parts, earlier parts may be useful for later parts. Moreover, if you
skip some part, you may still use the result in a later part.

Be sure to write your name both on the exam and on any extra sheets you may submit.
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1. Compute ∮
C

(
cos(x) + sin(y2)

)
dx+

(
2xy cos(y2) + xy3

)
dy,

where C is the triangle in the xy-plane with vertices (0, 1), (1, 0), (1, 2) oriented
counterclockwise.

Solution: Let CI denote the interior of the triangle. By Green’s Theorem, the
integral equals∫ ∫

CI

∂x
(
2xy cos(y2) + xy3

)
− ∂y

(
cos(x) + sin(y2)

)
dA

=

∫ 1

0

∫ 1+x

1−x
y3 dy dx =

1

4

∫ 1

0

(1 + x)4 − (1− x)4 dx

=
1

20

(
(1 + x)5 + (1− x)5

)
|10 =

1

20
(32− 2) =

3

2
.

2. Suppose that
lim
x→a+

f ′(x)

exists and is finite, for some a ∈ R. Prove that limx→a+ f(x) also exists and is
finite.

Solution: Since limx→a+ f
′(x) is a finite number, there exists δ0,M > 0 such

that |f ′(x)| ≤M for all x ∈ (a, a+ δ0). For all ε > 0, let δ = min( ε
M
, δ0). Then

according to the Mean value theorem, for all x1, x2 ∈ (a, a + δ), there exists
some ξ between x1, x2 such that

|f(x1)− f(x2)| ≤ |f ′(ξ)||x1 − x2| ≤Mδ < ε.

Hence, according to Cauchy convergence criterion, the right limit of f(x) also
exists at a and is finite.

3. Let M2×2 be the space of matrices of size 2 × 2. Let P2 be the space of poly-
nomials of degree up to 2. Let L be a linear transformation from M2×2 to P2

such that:

L

([
1 0
1 1

])
= 1 + x, L

([
1 1
0 0

])
= x2, L

([
1 1
1 0

])
= 1 + 2x+ x2.

(a) Compute L

([
0 0
1 0

])
and L

([
1 0
0 1

])
.

(b) Determine the rank and nullity of L.

2



(c) Take bases

B =

{[
1 1
0 0

]
,

[
1 0
0 1

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
and

C =
{

1, x, x2
}

ofM2×2 and P2, respectively. Recover as many matrix elements of [L]C←−B
as you can. If you don’t get all of them, explain why you cannot recover
more.

(d) Can you describe KerL? If yes, do it; if not, explain.

Solution

(a)

L

([
0 0
1 0

])
= L

([
1 1
1 0

])
− L

([
1 1
0 0

])
= 1 + 2x+ x2 − x2 = 1 + 2x.

L

([
1 0
0 1

])
= L

([
1 0
1 1

])
− L

([
0 0
1 0

])
= 1 + x− (1 + 2x) = −x.

(b) The image of L is spanned by 1+x,−x, x2, so L is surjective, hence rkL = 3.
By rank-nullity theorem, we have nulL = 4− 3 = 1.

(c)

[L]C←−B =

0 0 1 ?
0 −1 2 ?
1 0 0 ?


Cannot recover more because any choice of the fourth column provides a
matrix that satisfies the provided conditions.

(d) No, because varying the fourth column changes KerL.

4. Compute ∫ ∞
0

cosx

x2 + a2
dx

for a > 0.

Solution: Consider the contour integral of f(z) = eiz

z2+a2
along the contour

{(x, y) : |x + iy| = R, y > 0} ∪ [−R,R]. Sending R → ∞, since f(z) decays as
O(R−2) along the semi-circle, this contour integral converges to

∫∞
−∞

eix

x2+a2
dx.

By the Cauchy Residue Theorem,∫ ∞
−∞

eix

x2 + a2
dx = 2πiRes(f ; ia) = 2πi lim

x→ia

eix

x+ ia
=
πe−a

a
.
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So ∫ ∞
0

cosx

x2 + a2
dx =

1

2

∫ ∞
−∞

cosx

x2 + a2
dx =

πe−a

2a
.

5. Let R be a commutative ring (recall that we assume that R has a multiplicative
identity 1 6= 0). Prove that if the polynomial ring R[X] is a PID, then R is a
field.

Solution: Suppose 0 6= a ∈ R and let I be the ideal R[X] · a+R[X] ·X. Since
R[X] is a PID, I = R[X] · f(X) for some f(X) = cnX

n + · · · c0 ∈ R[X] with
ci ∈ R and cn 6= 0. Then

0 6= a = (cnX
n + · · · c0) · (bmXm + · · · b0) = cnbmX

n+m + t(X)

for some bj ∈ R with bm 6= 0 and some t(X) ∈ R[X], where t(X) has degree
less than n + m if n + m > 0 and t(X) = 0 if n + m = 0. Since R is a
PID it is an integral domain. Therefore cnbm 6= 0 because cn 6= 0 6= bm, so
this forces n + m = 0 and n = m = 0. Thus f(X) = c0 ∈ R and c0b0 = a.
But now X ∈ I means X = f(X) · y(Y ) = c0 · y(X) for some y(X) ∈ R[X].
Again using that R is an integral domain, we conclude that y(X) = d1X for
some d1 ∈ R with c0d1 = 1. Then I = R[X] · f(x) = R[X] · c0 contains 1, so
I = R[X]. Then 1 ∈ I = R[X] · a + R[X] · X forces 1 = az(X) + d(X)X for
some z(X), d(X) ∈ R[X], and setting X = 0 gives 1 = aZ(0) with Z(0) ∈ R.
Thus every non-zero element a of R is invertible, so R is a field.

6. Prove that for all positive integer n,

n∑
k=1

a2k ≤
∫ 1

−1
[f(x)]2dx, ak =

∫ 1

−1
f(x) sin(kπx)dx,

where f(x) is odd and piecewise continuous in (−1, 1). Hint: Start by rewriting
the inequality ∫ 1

−1

[
f(x)−

n∑
k=1

ak sin(kπx)

]2
dx ≥ 0

as

2

∫ 1

−1
f(x)Sn(x)dx−

∫ 1

−1
[Sn(x)]2dx ≤

∫ 1

−1
[f(x)]2dx, (1)

where

Sn(x) =
n∑
k=1

ak sin(kπx)
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is the partial sum of the Fourier series corresponding to f(x). Then evaluate
each of the two integrals on the left side of (??).

Solution: Let

Sn(x) =
n∑
k=1

ak sin(kπx),

which is the partial sum of the Fourier series corresponding to f(x). We have∫ 1

−1
[f(x)− Sn(x)]2 dx ≥ 0,

since the integrand is non-negative. Expanding the integrand, we obtain

2

∫ 1

−1
f(x)Sn(x)dx−

∫ 1

−1
[Sn(x)]2dx ≤

∫ 1

−1
[f(x)]2dx.

Multiplying f(x) to the partial sum and integrating gives∫ 1

−1
f(x)Sn(x)dx =

n∑
k=1

a2k.

Also, using the orthogonality of the sine functions yields∫ 1

−1
[Sn(x)]2dx =

n∑
k=1

a2k.

Substituting this into the inequality gives the required result.
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7. (a) (4 points) Fill in the blanks in the following sentence: The Heine-Borel
Theorem says that a set S ⊆ Rn is compact if and only if it is
and .

(b) (6 points) Let S be a subset of Rn. Let w be a limit point of S, and let C
be a finite family of open sets with the property that each open set U ∈ C
is disjoint from some neighborhood VU of w. Prove that C fails to be a
cover of S.

Solution: a) The Heine-Borel Theorem says that a set in S ⊆ Rn is compact
iff it is closed and bounded.

b) The intersection of the finite family of sets VU is a neighborhood W of w in
Rn. Since w is a limit point of S, W must contain a point x in S. This x ∈ S
is not covered by the family C, because every U in C is disjoint from VU and
hence disjoint from W , which contains x.

8. Suppose a function f on [a, b] is Riemann integrable. Let g be a function on [a, b]
that differs from f at only finitely many points. Prove that g is also Riemann
integrable and

∫ b
a
g(x) dx =

∫ b
a
f(x) dx.

Solution: Consider function h = f − g. By linearity of Riemann integral, it
suffices to show that h is Riemann integrable on [a, b] and has integral zero.
This follows from the definition of Riemann integration. Indeed, suppose h is
nonzero only at points a1, · · · , ak ∈ [a, b]. Without loss of generality, assume
h(ai) > 0, ∀i = 1, · · · , k. Let P = {Ij} be any partition of [a, b] into subintervals
of length less than δ, then the Riemann sum corresponding to this partition is
bounded between zero and

∑k
i=1 h(ai)|Ii| ≤ δ

∑k
i=1 h(ai). Here, Ii denotes the

unique subinterval in the partition that contains ai. As δ → 0, the limit of the
Riemann sum is obviously zero.

9. Is this R-module M free?

(a) R = Z, M = Q
(b) R = Q, M = R

Solution:

(a) No, because Q is clearly not free of rank one, and any two nonzero rational
numbers are linearly dependent over Z.

(b) Yes, because every vector space is a free module.
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10. Construct the conformal map ψ from the unit disk {z ∈ C : |z| < 1} to the first
quadrant {x+ iy : x > 0, y > 0}, such that ψ(0) = 1 + i and limz→1 ψ(z) = 0.

Solution: Let φ(z) = 2i1−z
1+z

. Then φ is the conformal map from the unit disk

to the upper half plane with limz→1 φ(z) = 0. Therefore, ψ(z) =
√
φ(z) is the

desired map to the first quadrant.

11. Let V be a complex vector space of dimension 7 with basis v1, . . . , v7. Let
H : V → V be the linear map defined as H(vk) = vk+1 for k = 1, . . . , 6 and
H(v7) = 0. Find the Jordan canonical form of the map T = I+H2 +H4, where
I : V → V is the identity map.

Solution: A matrix for H relative to the basis {v7, v6, . . . , v1} is a single Jordan
block with eigenvalue 0. The matrix of T is then upper triangular with 1’s down
the diagonal, so all eigenvalues of T equal 1. Let n1, · · · , nm be the sizes of the
Jordan blocks of T . Then these are also the sizes of the Jordan blocks of T − I,
and

∑
i ni = 7. We know m is dimension of the null space of T − I since all

blocks of T − I have eigenvalue 0. Now

T − I = H2 +H4 = H2(I +H2)

has the property that I +H2 is invertible, while H2 is 0 on the two dimensional
space Cv7⊕Cv6 and is injective on ⊕5

i=1Cvi. So T−I has null space of dimension
2 and there are m = 2 Jordan blocks of sizes n1 ≤ n2 with n1+n2 = 7. A Jordan
block matrix Mi of size ni with eigenvalue 0 has the property that the smallest
power of Mi that is the 0-matrix is Mni Thus n = max{n1, n2} is the smallest
integer such that

(T − I)n = (H2 +H4)n = H2n(1 +H2)n

is zero. Here 1 + H2 is invertible and H2n(vi) = vi+2n for 1 ≤ i ≤ 7 − 2n and
H2n(vi) = 0 if i > 7− 2n. So n = 4 = max{n1, n2}. The only positive integers
n1 ≤ n2 with 1 ≤ n1 ≤ n2 ≤ 4 and n1 + n2 = 7 are n1 = 3 and n2 = 4. So the
Jordan form of T has two Jordan blocks of sizes 3 and 4 with eigenvalue 1.

12. Let M be an invertible n × n matrix of real numbers. Let F (x) = Mx + p(x)
where x ∈ Rn, p is a continuously differentiable function from Rn → Rn and
‖p(x)‖ ≤ C‖x‖m for some m > 1. Here ‖x‖ =

√∑n
i=1 x

2
i is the usual Euclidean

norm.

(a) Let u ∈ Rn, ‖u‖ = 1. Recall that the definition of the directional derivative
Du(p(x)) at 0 is

lim
ε→0

p(εu)− p(0)

ε
.
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Show that Du(p(x)) at 0 equals 0, and explain why this implies the gradient
of p at 0 equals 0, i.e. ∇p(0) = 0.

(b) Using part (a) above (even if you couldn’t prove it), show the gradient (or
Jacobian) of F at x = 0 equals M , and use this to conclude that there is a
neighborhood of x = 0 such that F is invertible.

Solution:

(a) The directional derivative of p at zero satisfies

∇p(0) · u = lim
ε→0

p(εu)

ε
, ‖u‖ = 1,

since p(0) = 0. This derivative is zero since

‖∇p(0) · u‖ = lim
ε→0

∥∥∥∥p(εu)

εu

∥∥∥∥ ≤ C lim
ε→0

εm−1 = 0,

and so ∇p(0) = 0 due to arbitrary u.

(b) The gradient (or Jacobian) of F at x = 0 satisfies

∇F (0) = M +∇p(0) = M.

Since ∇F (0) = M is invertible and F is continuously differentiable, by the
inverse function theorem, there is a neighborhood of x = 0 such that F is
invertible.
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