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ABSTRACT

ON THE ORBITAL RIGIDITY CONJECTURE AND SUSTAINED P-DIVISIBLE
GROUPS

Tao Song
Ching-Li Chai
The orbital rigidity phenomenon for p-divisible groups was first discovered by Ching-Li Chai,
motivated by the Hecke orbit conjecture. Later, the general orbital rigidity conjecture was

formulated and the second case of this conjecture was proved by Ching-Li Chai and Frans

Oort. In this thesis we prove a third case of this conjecture.
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CHAPTER 1

INTRODUCTION

1.1. The Orbital Rigidity Conjecture: First Example

The first case of the orbital rigidity conjecture is the following theorem proved in [Cha08§].

Theorem 1.1.1. Let E be a p-divisible formal group over an algebraically closed field k of
characteristic p. If W is a reduced irreducible closed formal subscheme of X which is stable
under a strongly non-trivial action of a subgroup G of Aut(FE), where Aut(E) consists of all

group automorphisms of X. Then W is a p-divisible subgroup of E.

Here the assumption of G acting strongly non-trivially on F means that for every open
subgroup U C G and every pair Y7 C Yo of U-invariant p-divisible subgroups of E, the

=

action of U on Y3/Y] is non-trivial.

To better understand how this relates to moduli spaces of Abelian varieties and in which
way we can generalize theorem 1.1.1, we need to recall the concept of sustained p-divisible

groups as introduced in [CO22|.
1.2. What is a Sustained p-Divisible Group

In a nutshell, a p-divisible group X — S over a base scheme S of characteristic p is sustained
if its p"-torsion subgroup schemes X [p"] — S are constant locally in the flat topology of S,

for every natural number n. For a precise definition, see 2.2.1.

Let X be a p-divisible group over the base field x, and we define the sustained deformation
space of X, denoted by Defq,s(X), to be the subfunctor of Def(X) that consists of only

sustained p-divisible groups. As it turns out:

e Defsus(X) has a natural structure as a smooth formal variety for any p-divisible groups

X()//{.



e Defsus(X) can be ‘built-up’ from some p-divisible groups together with some bilinear

pairings. Informally speaking, De fq,s(X) possesses some ‘linear structure’.

To get a better sense of the geometry of Defs,s(X), let K € N, and let X = Hfil X; where

X, are isoclinic p-divisible groups with slope s;, and assume that s; > s9 > ... > sk.
Case 1. If K =2, then Defg,s(X) is an isoclinic p-divisible of slope s1 — so.

Case 2. If K = 3, then Defg,s(X) can be built up from three p-divisible groups De fs,s(X; X
X;),V1 <i < j <3, and these three p-divisible groups are glued together by a family

of bilinear pairings one for each n € N

<7 >n : Defsus(Xl X X2)[Pn} X Defsus(X2 X XS)[pn] — Defsus(Xl X XS)[P”]

See 3.4.3 for a precise description. In fact, Defq,s(X) has a biextension structure in

the sense of 3.1.1.

Remark 1.2.1. In fact, these ‘linear structures’ on Defq,s(X) generalize the Serre-Tate
coordinates: if A is an ordinary abelian variety over k = k an algebraically closed field of

characteristic p, and X = A[p>] the p-divisible group of A, then
Defous(X) = Def(X)

where Def(X) is the deformation space of X. As X has two slopes {0,1}, in this case
Defsus(X) is a formal torus, and this formal torus structure is precisely the Serre-Tate

coordinates on Def(X).

Remark 1.2.2. The definition of sustained p-divisible groups generalizes the concept of ge-
ometrically fiberwise constant p-divisible groups, and helps to illuminate the structural prop-
erties of central leaves, for precise definitions of geometrically fiberwise constant p-divisible

groups and central leaves, see [Oor04].



Remark 1.2.3. The definition of central leaves was motivated by the Hecke orbit conjecture.
A special case of the Hecke orbit conjecture says the following: let M be a PEL type Shimura
variety over F,. Let zg € M(F,). Let C(zq) be the central leaf of xg, that is locus of all
points of M having ‘the same p-adic invariants as xo’. Then the prime-to-p Hecke orbit

HP) .z of g is dense in the central leaf C(xg) containing xo. See [Cha05] for more details.

The notions of sustained p-divisible groups and sustained deformation spaces provide a
connection between 1.1.1 and deformation spaces of p-divisible groups when we substitute
the p-divisible group E as in 1.1.1 by Defs,s(X) where X = X; x Xy with Xj isoclinic of

different slopes.

Somewhat surprising, this 'orbital rigidity’ phenomenon as described in 1.1.1 seems to hold
in a much broader context. To formulate the general form of 1.1.1, we need to define a family

of special subvarieties of Defs,s(X). This is the notion of Tate-linear formal subvarieties.
1.3. Tate-linear Formal Subvarieties

Let K e N, X = Hfil X; where X; are isoclinic p-divisible groups with slope s; over a field

k of characteristic p , and assume that s; > s9 > ... > sk.

e As it turns out, we can associate to X a projective system of finite group schemes

where Aut*!(X),, are finite group schemes over the base field k. Moreover, let

De f gupst (X)-torsor

be the deformation functor of left Aut®(X)-torsors, then

DefAutSt(X)—torsor = Defsus (X)



e Let H' C Aut*®(X) be an admissible subgroup. For the precise definition of admissible
subgroups see 4.7.3. The contraction product that sends each H’ torsor F' to the

Aut®t(X) torsor Aut®*(X) A" F induces a morphism

QngDefAutSt(X)—torsor : Defyr_torsors — DefAutSt(X)-torsor

Definition 1.3.1. A formal subvariety E' of Defs,s(X) is called a Tate-linear formal sub-
variety if there exists an admissible subgroup H' such that the schematic image of

Dy

%DefAutSt (X)-torsor
is E'.

Remark 1.3.2. We give two examples: let X = Hfil X; where X; isoclinic p-divisible

groups with slopes s; such that s1 > sa... > sk .

Case 1. If K = 2, then Defg,s(X) is a p-divisible group. In this case, the set of Tate-linear

formal subvarieties coincides with the set of p-divisible subgroups of Defgys(X).

Case 2. If K = 3, then De fo,s(X) is ‘built up’ by three p-divisible groups De fo,s(X; x X;),V1 <
i < j <3 and a family of bilinear pairings (,)n. In this case each Tate-linear formal
subvariety is ‘built up’ by certain p-divisible subgroups H{j of Defeus(X; x X;),V1 <

i < j < 3 that satisfy certain constrains given by (, )p.

Remark 1.3.3. Readers familiar with the notion of Shimura varieties might find the notion
of Tate-linear formal subvarieties similar to the notion of Shimura subvarieties: both Tate-
linear subvarieties and Shimura subvarieties come from subgroups (in this case H') of the

bigger groups (in this case Aut®' (X)) that define the ambient spaces.

Remark 1.3.4. One way to obtain Tate-linear formal subvarieties of De fs,s(X) is to deform

not only the p-divisible group X but also some extra structures on X (e.g. a polarization



of X) in a ‘sustained manner’ See [CO22] especially Chapter 6 for more information. This
provides an extra layer of similarity between Tate-linear formal subvarieties and Shimura
subvarieties: Let Ay be the Shimura variety corresponding to the symplectic group Spag, then
roughly speaking, each Shimura subvarieties of Ay is the sublocus on which the restriction of
the universal Abelian scheme carries some extra Hodge cycles of given shape, see [Mum69]

for the precise statement.
1.4. The Orbital Rigidity Conjecture: General Form

Now we can state the orbital rigidity conjecture in its general form:

Let K e N, X = Hfi 1 X; with X; isoclinic with slopes s; over an algebraically closed field
k of charcateristic p, and assume that s; > so > ... > sg. Let E = Defg,s(X), which is
a smooth formal scheme over k. Let G C le/t(E) be a closed subgroup, acting strongly
non-trivially on E. Suppose that W is a reduced irreducible closed formal subscheme of E

stable under the action of G. Then W is a Tate-linear formal subvariety of E. Here:

o @(E) is a subgroup of Autscheme(F) that consists of automorphisms of E that pre-

serves certain ‘linear structure’ of E in some sense. For precise definition see 4.4.8.

e The definition of a strongly non-trivial action is given in 3.3.1. Roughly speaking, a
strongly-nontrivial action means the following: the action of ;@/t(E) acts on all the
Jordan-Holder components of De fg,s(X), with each component a p-divisible group.
The action is strongly non-trivial if the action on each component is strongly non-

trivial in the sense of 1.1.1.

When X a p-divisible group with two slopes, the conjecture 1.4 was proved in [Cha0§].
When X is a p-divisible group with three slopes, the conjecture 1.4 was proved in [CO22].
The main result of this thesis is to prove the conjecture 1.4 when X has four slopes, that is

the following:

Theorem 1.4.1. Let X = Hle X; with X; isoclinic with slopes s; and assume that s; >



S9 > s3 > s4 over an algebraically closed field k of characteristic p > 5. Let E = Defs,5(X),
which is a smooth formal subvariety over k. Let G be a closed subgroup of Zla/t(E), acting
strongly non-trivially on E. Suppose that W is a reduced irreducible closed formal subscheme

of E stable under the action of G. Then W is a Tate-linear formal subvariety of E.

Remark 1.4.2. The actual statement of the main result 4.8.2 is slightly more general than

1.4.1.
1.5. Structure of the Thesis

Some key components of this thesis are:

e In chapter 2, we collect some basic definitions and properties of sustained p-divisible

groups, following [CO22].

e In chapter 3 and chapter 5, we discuss the structure of Defg,s(X) when X = X; X
X5 x X3 and the orbital rigidity conjecture in this case. This serves as the 'induction

hypothesis’ for the case when X has four slopes.

e In chapter 4, we prove the main structural theorem of De fq,5(X) when X = H?Zl X,
which roughly says that a suitable closed subscheme E,, of De fs,s(X) can be trivialized
using some p-divisible groups and several families of bilinear pairings. See 4.2.1 for the

precise statement. This result serves as the main entry point of analyzing the action

for Aut(E) on E.

e Also in chapter 4, we define the notion of Tate-linear nilpotent groups of type A.
Here the name 'type A’ is inspired by the notion of simple Lie algebra of type A. The
category of Tate-linear nilpotent groups of type A slightly generalized the category of
projective system of group schemes of the form Aut*!(X) where X = Hfi 1 X; with
X, isoclinic. Let H be a Tate-linear nilpotent group of type A, we will show that
DefH_torsor pOssesses geometric structure that is similar to De fsus(Hfil X;). Hence

we may substitute Defs,s(X) by Defrtorsor in the conjecture 1.4. The upshot is



that this bigger category (i.e. consists of all the Defr torsor) is closed under certain

operations, thus allowing us to perform some reductions.

In chapter 6, we recall the definition of tempered perfection as defined in [CO22|. This
is a technique that Ching-Li Chai and Frans Oort used in their proof of the orbital
rigidity conjecture for the three slopes case. The idea is that for each n € N and
certain susbcheme FE,, C Defg,s(X), the action of g, € m(E) can be written down
explicitly for g, sufficiently closed to the identity. Tempered perfection allows us to
‘glue’ this family of information together when we vary n. We show that this tempered
perfection technique can also be used in our case to prove similar results, in particular

theorem 6.3.2 and theorem 6.4.6.

In chapter 7, we prove that the existence of a formal subvariety W invariant under
G C Eu/t(X ) imposes certain Lie bracket conditions, see 7.3.4. Finally, we prove the

main result in 7.4.1.



CHAPTER 2

SUSTAINED P-DIVISIBLE GROUPS

We recall the definition and some useful facts of p-divisible groups and collect some defini-

tions and facts about sustained p-divisible groups as given in [CO22].
2.1. p-Divisible Groups

Definition 2.1.1. Fix a prime number p, a positive integer h, and a commutative ring R.
A p-divisible group of height h over R is a codirected diagram (G,i,)yen where each Gy, is

a finite commutative group scheme over S of order pU that also satisfies the property that

0= Go 8 Gos1 D G
is exact. In other words, the maps of the system identify G, with the kernel of multiplication
by p¥ in Gy41. Note that these conditions imply that

Im(p’ : Gy41 — Gyg1) = ker(p)

as subschemes of Gy41.

Remark 2.1.2. We can also define the notion of a p-divisible group over an arbitrary scheme

S. See for example [Mes72].

Example 2.1.3. Let R be a commutative ring, and let X be an abelian scheme over R of
dimension g, then for each n € N the miltiplication map by p™ has kernel X [p"] which is a
finite group scheme pver R of order p?9". The natural inclusion satisfiy the conditions for

the limit lim X [p"] to be a p-divisible group of height 2g.
n

Theorem 2.1.4. (Serre-Tate Theorem) Let k be a field of characteristic p. Let A be an

abelian variety over k. Let Defs be the deformation functor of A, that is the functor that



sends every artinian local ring (R, m)/k to the set

{(A,(p) . A an abelian scheme over R, p: A X, R/m = A xp R/m} / ~
Let A[p™>] be the p-divisible group of A, and let Def pp) be the deformation functor of
A[p*>]. Then there is a natural isomorphism of functors between Defa and Defpp00)-

Definition 2.1.5. (Isogeny of p-divisible groups) Let Py, P be p-divisible groups over a
base scheme S. A homomorphism f : Py — Ps is called an isogeny if f is surjective and that
ker(f) is a finite scheme over S. We say two p-divisible Py, P» are isogeneous if there exists

an isogeny f : P, — Pa. Note that if such f exists, then there exists a isogeny g : Po — Py.

Definition 2.1.6. (Isoclinic p-divisible groups) A p-divisible group P over a field r of
characteristic p is called isoclinic with slope A € [0,1] N Q if P 1is isogeneous to another

p-divisible Py such that there exists s,t € N with

A=2,
t
ker(Frobp,) = ker([p]},)
here Frobp, is the relative Frobenius of P;.

Theorem 2.1.7. (T. Zink) A p-divisible group P over a field k. Then there exists natural

number m and a unique filtration 0 = Py C Py.. C P, = P such that
e Fach P; is a p-divisible subgroup of P.
e P 1/P; is an isoclinic p-divisible group over k.

e Let s; be the slope of P;/P;_1, then

1>s1>...>58,>0



such a filtration is called the slope filtration of P.
Proof. See [Zin01]. O

Definition 2.1.8. (Slopes of a p-divisible group) Let P be a p-divisible group over a
field k. Let 0 = Py C Py.. C P, = P be the slope filtration of P and s; be the slope of
P;/P;_1. The slopes of P is the set {s; : 1 <i<m}.

2.2. Sustained p-Divisible Groups
Definition 2.2.1. Let k D, be a field, and let S be a k scheme.
(i) (Strongly sustained p-divisible groups) A p-divisible group X /S is k-strongly sus-

tained if there exists a p-divisible group Xo/k such that for every n € N there exists a

faithfully flat morphism S1, — S and an Sy ,-isomorphism
XO[pn] X Spec(k) Sl,n = X[pn] XS Sl,n

A p-divisible group X — S with the above property is said to be strongly k-sustained

over S model on Xy, and Xy s said to be a k-model of X — S.

(ii) (Sustained p-divisible groups) A p-divisible group X/S is k-sustained if Vn € N

there exists a faithfully flat morphism Sa, — Sx xS and an Sa, isomorphism

(X[p"] X5, S) X5x,.5 S2.n — (S X5y X[P"]) X5x,5 S2.m

Lemma 2.2.2. (Slope Filtration of Sustained p-divisible group) Let k be a field of
characteristic p. Let X a p-divisible group over k. Let S an k scheme and X o k-strongly
sustained p-divisible group over S modeled on X. Let 0 = Xo € Xi.. € X, = X be the
slope filtration of X in the sense of 2.1.7. Then there exists a canonical slope filtration

0=A4& C Xy.. C X, = & in the sense that

10



o Fach X; is a k-strongly sustained p-divisible subgroup of X modeled on X;.

e The quotient X;11/X; is k-strongly sustained modeled on X;11/X;. In fact

Xi+1/Xi ~ Xi—i—l/Xi XRS

Remark 2.2.3. In fact, slope filtration exists when X is k-sustained (instead of k-strongly

sustained). See [CO22] especially Chapter 6 for more details.
2.3. Stable Homomorphism Schemes

Definition 2.3.1. (Stable Hom scheme of p-divisible groups) Let x D F), be a field
and let Y, Z be p-divisible groups over k. We summarize the definition of Hom®' (Y, Z), the

stable hom scheme between Y, Z.

(i) For every n we have a commutative affine group scheme

Hom(Y [p"], Z[p"])

of finite type over k, which represents the functor

S — Homg(Y[p"]s, Z[p"]s)

on the category of all k-schemes S. In the rest of 2.3.1 we will shorten the notation

Hom (Y [p"], Z[p"]) to Ha(Y, Z).

(i) There exist natural restriction map

Tnn+i - Hy,; — Hy,

and corestriction map

ln+tin * H, — Hp4;

11



and these maps satisfy
((l) n+itjn+i O lntin = Intitjn and Tn,n+i © T'ntintiti = Tnontitj fOT all n, i,j € N.

(b) Tnn+ti© tnyin = P, , bntim © Tnonti = [pi]HnM for all n,i € N, where [p']g,,

denote the endomrophism "multiplication by p'" on H,y,.

(C) ntjmn © Tnntj = T'ntjntits © bntitjnti for alln,i,j € N.

(i1i) For any m,n € N, denote by

Im(rnnym : Hypem (Y, Z) = H, (Y, Z)

the image in H,(Y,Z) of the homomorphism vy, nim in the sense of fppf sheaves of

abelian groups.

(a) There ezists a natural number ng such that the image

Im(rn,n+m : Hn—&-m()/a Z) — Hn<Y7 Z)

is a finite subgroup scheme of H,(Y,Z) and

Im(rnngm : Hyem (Y, Z) = Hy (Y, Z) = Im(1nnno © Hygno (Y, Z2) = Hp (Y, Z)

for all m > ng.

(b) Let Gp(Y,Z) := Im(rppntm : Hoam (Y, Z) = H, (Y, Z) for every n € N,m > ng
where ng is defined in part (a). For all m > n, the co-restriction homomorphism

tnm  Hn(Y,Z) — H, (Y, Z) induces a monomorphism

Similarly the restriction homomorphism rp, n : Hy(Y, Z) — Hp (Y, Z) induces a

12



epimorphism

Tmm : Gn(Y, Z) = G (Y, Z)
for alln > m.

(c) For alln,i € N, the sequence
0= Gi(Y, 2) ™5 Gyi(Y, Z) ™5 Gu(Y, Z) — 0

15 short exact, and the composition &y, ;0 Ty pti 45 equal to [pi]Gn(yjz). In other

words the triple
(Gn(Y, Z)vjn+i,na 7Tn+i,n)n,z'eN =: ’Hom/dw(Y, Z)

is a p-divisible group over k, and G, (Y, Z) is the kernel of the endomorphism [p"]
of Hom!y, (Y, Z).

Notations 2.3.2. We will use Hom®' (Y, Z) to denote the p-divisible group Homg, (Y, Z).
We collect some properties of Hom® (Y, Z).

Proposition 2.3.3. Let k D F, be the base field, Y,Z be p-divisible groups over k. We

further assume that both Y, Z are isoclinic with slope sy, sz and of dimension dy,dz. Then
1. If sy > sz, then Hom®' (Y, Z) = 0.
2. if sy < sz, then Hom® (Y, Z) is isoclinic of slope sz — sy .
3. If sy = sz, then Hom® (Y, Z) is an etale p-divisible group.

Definition 2.3.4. (Stable isomorphism schemes of p-divisible groups) Let S be a
scheme over Kk D Fy,. Let Y, Z be k-sustained p-divisible groups over S. We summarize the
definition of Isom*'(Y,Z), the stable isomorphism scheme between Y, Z. This definition is

parallel to 2.3.1.

13



(i) For every n we have a commutative affine group scheme

Zsom(Y[p"], Z[p"])

of finite type over k, which represents the functor

S — Isomg(Y[p"]s, Z[p"]s)

on the category of all k-schemes S. In the rest of 2.3.1 we will shorten the notation

Zsom (Y [p"], Z[p"]) to I, (Y, Z).

(ii) There exist natural restriction map

Tnn+i : Iy — I,

(iii) For any m,n € N, denote by

Im(rn,n+m : In+m(}/a Z) - In(K Z)

the image in H,(Y,Z) of the homomorphism 7, 5,4y, in the sense of fppf sheaves of

abelian groups.

(a) There exists a natural number ng such that the image

Im(rn,n—‘rm : In—&-m(}/a Z) — In(}/a Z)

is a finite subgroup scheme of I,,(Y, Z) and

Im(rnnim : Inym (Y, Z) = In(Y, Z) = Im(Tnning * Inang (Y, Z) = In(Y, Z)

for all m > ny.
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(b) Let Ky (Y,Z) == Im(rppntm : Ingm(Y,Z) — I,(Y,Z) for every n € N and
m > ng. The restriction homomorphism 7, ,, : In(Y, Z) — I, (Y, Z) induces a
epimorphism

T Kn(Y, Z) - K (Y, Z)
for all n > m.

(iv) The stable isomorphism scheme of Y, Z, denoted by Isom® (Y, Z) is the projective

system

Isom* (Y, Z) := ImF, (Y, Z)

n
where the connecting morphisms are r, ,,. We will also use the notation I'som® (Y, Z),,

to denote K, (Y, Z).

Notations 2.3.5. Let X be a p-diwvisible group over k D F),. Then the stable automorphism
scheme of X, that is Isom* (X, X), will be denoted by Auts'(X).

2.4. Sustained Deformation Spaces

We have the following:

Lemma 2.4.1. (Definition and Smoothness of sustained deformation space) Let
X be a p-divisible group over k D F,. The function De fs,s(X) : Arti, — Sets, sending each

Artinian local augmented k algebra (S, e) to the set
{(Xs,¢) : Xg strongly k-sustained , Xg x. Spec(k) = X an isomorphism}/ ~

1s representable by a smooth formal scheme. We will denote this smooth formal scheme again

by De fous(X).

Proof. For proof see [CO22| Chapter 6. O]
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Lemma 2.4.2. (Relation between Defg,s and Hom*t)

1. When X =Y x Z with Y, Z isoclinic, then there is a natural isomorphism

v: Hom® (Y, Z) = Defous(X)

2. When there is a exact sequence

0O=-Y—->X—>272—-0

with Y, Z isoclinic, then Defs,s(X) has a natural Hom® (Y, Z) torsor structure.

Proposition 2.4.3. (’Kummer theory’ construction of stable Hom to sustained
deformation) Let X, Y be isoclinic p-divisible groups over a field k of characteristic p with
slopes sx, sy respectively and that sx < sy. Let f be a functorial point of Hom*'(X,Y). Let

X x(LDY be the sustained deformation of X x Y corresponding to o(f) € Defous(X x Y).
Then:

(a) Let f € Hom* (X [p"],Y[p"]). Consider the Kummer sequence

0= Xp - x P x 50

and consider the pushout diagram with respect to the homomorphism

f € Hom™(X[p"],Y[p"])

16



Let X xUBDY be the p-divisible group that fits into this push out diagram, that is

[p"]x

0 X[p"] X X 0
f =
0 Y [p"] X xLNy X 0
Then

X xBNy ~ X xY/T_;

where T'_y is the graph of —f. This is the coproduct of X,Y with respect to (1, f) :
X[p"] = X XY in the category of group schemes, hence the notation. Note that this
is well defined for f € Hom®(X,Y) = ligHomSt(Xn,Yn), where X, = X[p"], Y, =

Y[p"]. Moreover, if f € Hom®(X,,,Y,,) for a given n. Then

ker(@ﬁm_,.n : Xn+m D Yn+m — Yn)

(X DY) = (x,—f(z) :z € Xy)

where ¢pin(z,y) = [p"] - f(2) + [p"] -y

(b) Given frnim € Hom* (X pmin, Yiman) a lifting f, that is
[pm]fm-m = Jn

we can define a morphism \IJ;P by the following diagram:

[p&fﬁm+ny ym) — (xm+n7 7fm+n(xm+n) + ym)

X[pern] X Y keT(‘;bern : Xn+m @ YnJr'm e Yn)

[p"]x X idy [(z,—f(z)):z € Xn

X[p™ < Y[p™] (X x®DY)p™]

In fact, this morphism \Il}” is an isomorphism of truncated p-divisible groups.
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Proof. Part (a) follows from the definition of X x(1:f) Y. Part (b) is an easy exercise.  [J

Definition 2.4.4. Let G be a group value functor on the big fpgc site over a Spec(k) where
k D Fp a field. We define the deformation functor of G-torsors, denoted by Defaq-torsor, to

be the functor that sends every Artinian local algebra (R, m) over k to the set

{(g,go) : G is a G-torsor over R and ¢ : G X R/m = G %, R/m} ] ~

Theorem 2.4.5. (Sustained deformation space and deformation space of Aut-

torsors are isomorphic) Let Xo be a p-divisible group over a field k D Fp. Let

P DefsuS(XO) = DefAutSt(X)-torsor

be the morphism that sends every functorial point X over an artinian local algebra R
to Isom*(Xo %, R,X). Note that there is a natural left Aut®*(Xo) torsor structure on

Isom®(Xo % R, X) given by precomposing with an element in Aut®*(Xy). Then
(a). ® is an isomorphism of functors.

(b). The inverse of ® can be described explicitly as: for every Aut®(Xo)-torsor T, ®~1(T)

is giwen by the contracted product with Xg, that is

O (T) = Xo x0T

Proof. See [C0O22]. O
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CHAPTER 3

BIEXTENSION AND 3-SLOPES CASE

In this chapter, we recall the definition of a biextension, then we show that Defq,s(X) is a
biextension when X = H?:1 X; with X isoclinic with mutually different slopes, see 3.2.2.
Finally, we construct a ‘trivialization’ of such Defq,s(X) in 3.4.3. Note that Mumford
constructed similar ‘trivialization’ for general biextensions of p-divisible groups in [Mum6§|,

but our method utilizes the moduli interpretation and allows us to generalize to other cases.
3.1. Biextension Basic

We use the following definition of bi-extensions of abelian groups as given in [Mum68].

Definition 3.1.1. (bi-extensions of abelian groups) Let A, B,C be 3 abelian groups. A

bi-extension of B x C by A will denote a set F' on which A acts freely, together with a map
F5BxC
making B x C into the quotient F/A, together with 2 laws of composition:

+1: FxgpF — F

49 FxogF = F

There are subject to the requirements:

(a) for all b € B, F| := 7w 1(bx C) is an abelian group under +1, T is a surjective
homomorphism of F} onto C, and via the action of A on F}, A is isomorphic to the

kernel of 7;

(b) for all c € C,F? := 7= Y(B x ¢) is an abelian group under 42, T is a surjective
homomorphism of F2 onto B, and via the action of A on F2, A is isomorphic to the

kernel of .
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(c) given z,y,u,v € F such that

m(z) = (b1, c1)
m(y) = (b, ca)
m(u) = (b2, c1)

m(v) = (b2, c2)

then

(z+1y) 2 (u+1v) = (z+2u) +1 (y +2v)

Definition 3.1.2. (bi-extensions of group functors) If F,G, H are three group functors
from the category of R-algebras to the category of abelian groups, a biextension of G x H
by F is a fourth functor K such that for every K-algebra S, K(S) is a biextension of
G(S) x H(S) by F(S) and for every R homomorphism S; — Sa, the map K(S1) — K(S2)
is a homomorphism of bi-extensions (in the obvious sense). In particular, if F,G,H are

formal groups, this gives us a biextension of formal groups.

Example 3.1.3. Let A be an abelian variety over a field k. Let A be the dual of A. Let P
be the Poincare line bundle over A x A. Let T be the total space of P and let Z be the zero

section. Then there is a biextension structure on 7 — Z. This is a biextension of A x A by

Gy,. See [MRMT74] for more details.
3.2. Sustained Deformation Spaces as Biextensions

Definition 3.2.1. Let X = H?Zl X; with X; isoclinic of slopes s; and assume s1 > so > S3.

Let E = Defgs(X). We will define a free Hy3 action on E, that is a morphism
o i H13 xFE—FE

which satisfies the axioms of being a Hiys action, as follows: Let e € E(R) and let X

be the pullback of the universal sustained p-divisible group by e : Spf(R) — E, that is
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X is a p-divisible group over R that is k-strongly sustained modeled on X. Let fi3 €
Hom*" (X, [pN], X3[pN]) for some N € N(R). Let

0cxAscHHhCcx=4x

be the slope filtration of X where X; are p-divisible groups over R. That is X fits in an exvact
sequence

02X >X > X/X—0

Then there exists M € N with M > N, ¢ € Hom* (X /X2)[p™], Xz [pM])(R) such that

X =X/X x19) x,

As fi3 € Hom* (X1 [p"], X3[p"N])(R) € Hom**(X1[pM], X3[pM])(R), and that

X /Xy ~ X1 X, R by a natural isomorphism

0= X3 X, RS Xy = Xp/X3 =0
Let v o fi13 be the composition
Lo fiz s X)X ~ X1 % RPM] L% X5 %, RPM] 5 X,
Finally, we define the action of fi3 on e by
x5 (f13,€) = X)Xy x(1o+efia) x,
It is easy to verify that this is a group action, and it is clear that
*g(fi13,6) =e <= fiz3=0

hence the action is free.
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Lemma 3.2.2. (Biextension Structure on Defq (X)) Let X = [[o_, X; with X;
isoclinic of slopes s; over a field k of characteristic p and assume s; > s2 > s3. Let

E = Defsus(X).

(a). We define a projection map 7 : E — Defo,s(X1 X X2) X Defeus(Xo x X3) as follows:
let X € E be a functorial point. Let 0 C X3 C Xo C X1 = X be the slope filtration of

X. We define m by sending X to
X/Xg X XQ € B= Defsus(Xl X Xz) X Defsus(XQ X X3)

Then 7 is a faithful morphism.

(b). m: E — B is invariant under the Hi4 action, that is for his € Hi3(R),e € E(R),
m(e) = m(xg(hi3, €))

Moreover, let © : E/H13 — B = Hiy x Has be the morphism induced by 7, then 7 is

an isomorphism.

(c). E is a biextension of Defs,s(X1 X Xo) X Defsus(Xa X X3) by Defous(X1 X X3).

Proof. For (a), it suffices to show that for R/k an Artinian local ring, f = (fl4, f33) €
(Hy2[p™] x Ha3[p™])(R) there exists an faithfully flat cover R’ over R, and e € E(R) such

that
m(e) = frr

We construct e, R’ as follows: let f25 € Has[p?™](R') for some Artinian local ring R’ faithfully

flat over R such that

[pn]H23(f22§1) = (f35)r'

Let
oy Xalp"] x Xalp"] = (X2 x M50 X))
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the isomorphism over R’ constructed using f22§‘ by the procedure in 2.4.3. Let F' be the

composition
() 5 0) Vi
Fo: Xa[p"] RS Xo[p") x Xs[p"] = (Ko x M) Xg)[p]
Let e € E(R’) be the R’ point that correspond to the p-divisible

Xl X(l»Fn) (X2 X(17f2n3) Xg)

then

m(e) = frr

We have proved (a).
For (b), to show that F/Hi3 ~ Hjs X Hag, it suffices to show that for n € N and f =

(f12, f23) € (Hi2[p"] x Ha3[p"])(R), the set teoretic preimage
7 '(f) C E(R)

is a Hy3(R) torsor. Given e,e’ € 7~ 1(f) C E(R). Let X, X’ be the sustained p-divisible
groups corresponding to e, e’ respectively. Let 0 C X3 C Ao C A =X and 0 C X C X C

X[ = X' be the slope filtrations of X', X’ respectively. As w(e) = 7w(e’) = f,
XQ ~ XQI
Let M € N, ¢,¢' € Hom*t((X/Xs)[pM], X2[pM])(R) such that

X =X/X x19) x,,

X' =X)X x(19) x,
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As m(e) = w(e), the morphism ¢ — ¢/ : X/ Xp[pM] — Xp[pM] factors through X3 — X, i.e.

¢ — ¢’ € Hom* (X Xa[p™], X5[p"])(R),

*E(¢ - ¢/7 6/) =e€

We have proved that 7=1(f) is a Hy3(R) torsor.
For (c), fix R/k an Artinian local algebra. Let X be a k-strongly sustained p-divisible group
over R modeled on X. Let 0 = Xy C X} C Xy C X3 = X be the slope filtration of X'. The

natural projection

712 ¢ Defsus(X) — Defsus(X1 x Xo2)

can be described as sending X € Defsus(X)(R) to Xo € Defous(X1 x X2)(R). Then we

have a natural extension of p-divisible groups

00— X — X —X/X—0

that is

X € Ext'(X /A, X2)(R)

thus the Baer sum structure on Ext group induces an relative group structure on De fg,s(X)
with respect to the projection map mis.

Similarly, we have another relative group structure induced by the Baer sum on

Ext!(X1, X/AY)

with respect to the projection map

23 © Defsus(X) — Defsus(X2 X XS)

Now it is an easy exercise to check that these two relative group structures satisfy the axioms

as defined in 3.1.1. ]
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3.3. Strongly Non-trivial Action

We collect the definition and some basic properties of a strongly non-trivial action, see [CO22|

Chapter 7 for proofs and more details.

Definition 3.3.1. Let X be a p-divisible group over a field k D Fy,. Let k be an algebraic
closure of k and let Xy, = X X k. Let G be a finite dimensional p-aidc Lie group. Let W (k)
be the Witt ring of k and D.(Xy) the covariant Dieudonne module of Xy. A continuous
homomorphism p : G — Aut(X) = End(X)* of G on X is said to be strongly non-trivial if

the associated W (k) @ Q-linear representation
dp: Lze(G) — Endw(k)®Q(D*(Xk)Q)

of the Lie algebra of G on Dy(Xy)q does not contain the trivial representation of Lie(G) as

a subquotient.

Remark 3.3.2. In the notation of 3.3.1, a continuous homomorphism p : G — Aut(X) is
strongly non-trivial if and only if there exists a finite number of finite sequences (w; 1, ..., Wi n,;)

in Lie(G), fori=1,...,r and n; > 1 for all i, such that

Z dp(w; 1) o dp(w; ;) € End®(X)*
=1

Definition 3.3.3. Let X = H?:1 X; with X; isoclinic of slope s;, and assume that s1 > sg >
s3. Let Hjj = Hom®(X;,X;),V1 <1i < j < 3. Let E = Defss(X), which is a biextension
of Hig x Haz by Hi3. Let G C Autpi—crt(F) be a closed p-adic subgroup. We the action of
G on E is strongly non-trivial if the induced action on each H;; is strongly non-trivial, in

the sense of 3.3.1, for all 1 < i < j < 3.
3.4. Mumford’s Trivialization

Definition 3.4.1. Let X = X1 x X3 X X3 a p-divisible group over a field k of characteristic p

with X; isoclinic. Let s; = Slope(X;) and we assume that s1 > so > s3. Let E = Defg,s(X).
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Then E has a natural structure as a biextension of Hom®t (X1, X2) x Hom*!(Xs, X3) by

Hom® (X1, X3), as described in 3.2.2. Denote by
H;j == Hom®(X;, X;),V1 <i<j<3

see 2.5.1 and 2.5.2 for the definition of Homst. Lett : E — Hyox Has the natural projection.

Let E, = 7~ Y(Hya[p"] x Has[p"]). We will define a morphism
¥n 2 Hia[p"] X Has[p™"] x Hiz = By,

as follows:
Fiz R/k an Artinian local ring. Let f = (f1, f3, fi4) € (Hi2[p"] X Has[p*"] x Hy3)(R). We

will write down an element of E(R) using f in the following steps:

(a) given f3§ € Has[p™|(R), denote f35 := [p"] f3§

(b) By 2.4.5.(b), we can construct from fa3 an isomorphism of truncated p-divisible groups

?gn : Xg[pn] X Xg[pn] — X5 ><f§b3 X3
23

(c) Let F = (\11:}2”) o (fIy, fiv) be the morphism from X1[p"] to (X2 x/ X3)[p"] given by
23

the composition

\I]TL
fn 7fn n n f2n n
Foxy VI xo00m) x xap] ZE ( < X)) p (3.1)

(d) Given F, we can define a point in E(R), denote it by Xy, by

Xy o= Xy x W) (X0 x (13) X3)
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(e) We can now define a morphism

Vn : Hia[p"] x Has[p®"] x Hiz[p"] — Ey

by sending f to Xy.

(f) It is easy to check that 1y, is Hy3[p"] equivarient, in the sense that if fi5' € His[p"|

another functorial point, then

O((flo, 35, s + f15) = =6 (f15 ¥n(f))

where xg corresponds to the Hys torsor structure on E, see 3.2.1.
(9) Now we extend the source of ¥, from His[p™] x Haz[p®"] x His[p"] to Hiz[p"] x

Hos[p*™] x His by

Un((fla: f35 F13) = *E(fi3, u((fly, f35,0))

for fis € Hisz a functorial point.

Remark 3.4.2. We will refer to v, as Mumford’s trivialization, as Mumford constructed

similar morphisms for biextensions of p-divisible groups in [Mum68|.

Theorem 3.4.3. Notation as in 3.4.1. Let f = (f, f, f13) and f' = (fIY/, 2%, fi3) be
two functorial points of Hio[p"] x Has[p*™] x Hyz. Let E,, C E and vy, : Hi2[p"] x Hag[p*™] x

His — E,, as defined in 3.4.1. Forn € N, Let

(s )n + Hiz[p"] x Hag[p"] — His[p"]

the bihomomorphism given by

(19, fos)n = f5 0 fib € Hiz[p"] = Hom™ (X1 [p"], X3[p"])
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for all {14 € Hia[p"] = Hom® (X1, X2)[p"], f35 € Haz[p"| = Hom*t(Xs, X3)[p"] both functo-

rial points. Then:
(a). (Gluing Data) 1, (f) = o (f') if and only if

n] 2n

23 :[P

n] 2n/

fla= ?2/7 [p 23

Ji3 — f{3 = (f12, 22?? - 22§H>n
(b). The morphism 1y, is faithfully flat.

Proof. For (a), as 1, respect the His torsor structure, see 3.2.1(f)(g), it suffices to prove
(a) under the assumption that fi3, fi5 € Hiz[p"]. Let F,F’ as in 3.2.1(d) that corresponds

to f, f’ respectively, that is

1/}n(f) =X x (1LF) (X2 w (1,f33) X3)

Yu(f') = X1 x (1LF) (Xo x (L,£35) X3)

then ¢, (f) = ¥n(f') < F = F'. By 3.2.1(c), we have the following diagram that defines

F:
(23, 28) — (@3, £ (@3") + )
X[p?] x Xalp"] ker(Xa[p?] x Xa[p?"] 22 Xy[p™)
[pn]Hm X Z.dH23 Trf%%
X1 Xo[p™] x X3[p"] (Xo x(1F35) X3)[p"]

(ff, 155) vy

where
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e &, : Xo[p™] x X3[p?"] — Xs[p"] is defined as sending (3", z3") to fiu([p"]z3") —

[p"]22", for 23" € X[p?™], x3" € X3[p?"] both functorial points.

o Typ ker(Xa[p®"] x X3[p?"] RN X3[p"]) = (Xo x(1f35) X3)[p"] the natural projection

map, see 2.4.3.
2n

e x5" is a p" root of x4.

We can similarly write down a diagram for F’. Now an easy diagram chasing shows that
2 2n/
F=F <= fls— fis' = (fia. f35 — 33 )n

We have proved (a).
For (b), first we note that the morphism v, is Hy3 equivariant, by 3.2.1(f)(g). By ignoring

the Hi3 component, 1, induces a morphism
U« Hig[p"] x Has[p*"] — Ey,/Hys ~ His[p"] x Has[p"]

and it is easy to check that v, = idg,, X [P"]Hys, SO ¥y, is faithfully flat. Hence 1), is also
faithfully flat. O

Corollary 3.4.4. Notation as in 3.4.3. Then for each n € N, the morphism

(Lpn]mid,id)

Un.homo : Hia[p*™] x Has[p*™] x His Hyo[p"] x Has[p*"] x Hys LN F,

is faithfully flat, and for f = (f&, f35, f13), f' = (f&, 33, fi3) € Haiz[p™]x Has[p*"] x Hy3,

¢n,h0m0(f) = wn,homo(f/) <~

i — fis' € Hiap", 53 € Has[p"] and fi3 — fi = ("7, f55 — 135" )n
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Proof. Obvious.
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CHAPTER 4

TATE-LINEAR NILPOTENT GROUPS OF TYPE A AND 4-SLOPES CASE

In this chapter we first prove a similar result to 3.4.3 for the case when X = H?:l X; with X
isoclinic with mutually different slopes. Then we define the concept of Tate-linear nilpotent

groups of type A.

We first set up some notation used throughout this section.
Notations 4.0.1. (Set up of Sustained Deformation Space 4 Slopes Case)

o Let X = H?Zl X, be a p-divisible group with 4 slopes over a base field k of characteristic

p, here each X; is isoclinic with slope s; and we assume that s1 > sg > s3 > s4.

Let E = Defsys(X), which is a smooth formal scheme over k by 4.4.6.

Let B = Defsus(Xl X XQ X X3) XDefsus(XZXXB) Defsus(XQ X X3 X X4). Note that both
Defsus(X1 x Xo x X3) and Defg,s(Xo x X3 x Xy) are biextensions.

Let Hiy = Defsus(X1 x X4) a p-divisible group.

We will show that E has a natural Hy4 torsor structure and E/H14 ~ B in 4.1.1. Let

7w : ' — B the projection map as defined in 4.1.5.

We will define for each n € N a subscheme E,, C E and B,, C B that fit into the following

diagram:
C
E, E
T T
C
B, B

To define E,, and By, we need the following notations/facts:

(a) Let Hi; := Hom®(X;, X;) = @HomSt(Xi[p”},Xj[pn]) ~ Defous(Xi x X;),Vi < j.
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We denote by H := Hi;[p"]. For all1 <i<k<j<K andn €N, let
( Vikjm + Hig[p"] x Hij[p"] — Hij[p"]

the bilinear pairing given by composition.
(b) Note that Defq,s(X1 x X2 X X3) is a biextension, same is De fg,s(Xo x X3 X Xy).
(¢c) Forn €N, let Y13, : HY x H3 x Hiz — Defsus(X1 X Xo x X3),

be the trivializations defined in 3.4.3. Denote by Bis := Defsus(X1 X Xo x X3),

B3y = img(y¥fy). For n,m € N, denote
Bisn[p™] = 130 (Hiy x H3g x Hi3)

Similarly let 1o, « H3Y x HYy x Hay — Defsys(Xo X Xo x X4), and Bay, Bosy, and

By n[p™] are similarly defined.

(d) With these notations B = Bi3 X p,, Bas. We define
Bn = BlS,n[pn] ><H23 B24,n[pn]

which is a finite subscheme of B. Let

E, =n"1(B,)

n n 3n 2n 2n
An — H172 X H173 X H1,4 X H273 X H3’4 X H274
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4.1. 4-slopes Case Basic

Definition 4.1.1. (Definition of the Hi4 torsor structure on E) Notation as in 4.0.1.

We define an Hi4 action on E = Defg,s(X), that is a morphism
Lo i H14 xE—FE

as follows: let R/k an Artinian local ring. Let N € N and hiq € Hi4[pV](R). Let X be a

k-strongly sustained p-divisible group over R modeled on X, that is X € E(R). Let
OCcXy,CcAsCcAHCcA =4
be the slope filtration of X. We have a short exact sequence
02X =X =X/ —0
Then there exists M € N with M > N and
F € Hom(X /X [p™], Xa[p™])(R)

s.t.

X =X/X xF x,

Let

LM : X4[pM] — Xg[pM]

the natural embedding. As

X42X4 X,.;R

X/X22X1 X,{R
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the element

his € Hom® (X1 [p"], X4[p"])(R)
C Hom® (X, [PM]a X4[PM])(R)

C Hom(X1[p"], X4[p"])(R)

gives rise to an element

hia s X/ X [pM] — Xy [pM]

let

tar 0 hig 1 X/ Xa[pM] = Xa[pM]

and we define the torsor structure

*E2H14><E—>E

*E(h14,X) = X/XQ X(l’F—HMOEIZ) Xy € E(R)

It is easy to check that this gives rise to an action of Hi4 on E, and as
xp(hig, X) =X <= trohiy = hy=0

this action is free.
Remark 4.1.2. The definition of the Hi4 action on E is a complete analogy of 3.2.1.
Lemma 4.1.3. Notation as in 4.0.1. Then the following statements hold:

(a). Let m : E — B be the morphism defined as follows: Fix R/k an Artinian local ring.

Let X € E(R), that is X is a p-divisible group over R strongly sustained modeled on
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X. Let
0CX4CX3CX2CX1:X

be the slope filtration of X. Define m as sending X to

Xl/X?,@XQ € B(R) = Defsus(Xl X Xo X Xg) XD@fsus(X2><X3)D€fsus(X2 X X3 X X4)(R)

Then 7 is faithful.

(b). Let 1 : E — B as in (a). Then m is invariant under the Hiy action. That is
w(xg(hia,€e)) = 7(e) for all hiy € Hia(R), E(R). Moreover, let @ : E/Hi4 — B

the morphism induced by w, as 7w is Hi4 invariant. Then T is an isomorphism.

Proof. The proof is entirely parallel to 3.2.2(a) and (b). O

4.2. Coordinates in 4-slopes Case
The main goal of this section is to prove 4.2.1, which generalizes Mumford’s trivialization

of biextensions as described in 3.1.

The main result in this section is 4.2.1. We first give a comparison between the result in

4.2.1 and Mumford’s trivialization of biextensions given in 3.4.3:

F = Defsus(l_[f’:1 X;) a biextension E = DefsuS(H?:1 X;)

Hio, Ho3, Hy3 p-divisible groups H;;,1 <i < j <4, p-divisible groups
w: F'— Hys X Hsz projection m: E — B projection

F,CF E,CFE

m(Fn) = Hia[p"] X Has[p"| m(En) = Bn = Bi3n[p"] X#,5 Baan[P"]
¢n : ng[pn] X Hgg[pn] x Hyz3 — Fn,Vn €N ’(,ZJn : An — En,Vn eN

Fn C Foqr, lim Fy, = F E, C Ewqr,limE, = F

gluing data of 1), as in 3.4.3 gluing data of 1, asin 4.2.1

Table 4.1: Comparison between two ‘trivializations’

Now we state the main result of this section:

Theorem 4.2.1. Let A,, E, as in 4.0.1.(d). Then there exists a morphism v, : A, — E,,.
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Moreover we can write down the gluing data for ¥n: let f = (fij), f' = (fi;) € An(R) for a
fized Artinian local k algebra R/k. then 1y (f) = ¥n(f') if and only if

Py = 15, 135 = 135, F3u = f3, (4.1)
iy = 15 — (135 — 35, o) = O, (4.2)
3y — 34— (F 135 — 135 )n = 0, (4.3)
fla—= = (50 = B30 ST+ (=58 — 130) + (S50 S35 — 135 o, [a)n =0 (4.4)

Proof. We use the following notations/facts:
(a) We fix R/k an Artinian local ring.
(b) We use z* to denote an element in X;[p"] and f]} to denote an element in H;;[p"].
(c) We have natural bilinear pairings
<5 >ikjm: Hir[p"] X Hyj[p"] = Hij[p")
given by compositions. These bilinear pairings will sometimes be denoted simply by
o when it’s clear from the context.

We will define a morphism 4, : A, — E,. The idea here is pretty simple: we use 2.4.3 to

construct a trivialization of (X7 x Xa x X3 x X4)[p"] one component at a time.

(a) Let
2 \—
n(Xy x5 Xa)[pn (\I]f23) ony (f24,f34)  yron
( 2 X 3)[]7 ]—>(X2XX3)[p ]—>X4 (45)

where (\I’?f;n) D ( Xy x X3)[p™] — (X3 x/% X3)[p?™] an isomorphism as defined in
2.4.3(b).

36



(b) Given g?" we can define
Wl + (X x5 X3)[p"] x Xu[p"] — (X2 x5 X3) x9" X4)[p"]

by 2.4.3, here

n

g = [pn]QZn = QQn‘n-th level (46)

(c¢) Given
2251 - [Pn}fgz? - fgi?‘?n—th level

once again by 2.4.3 we can define

W, X idx, (X2 % X3)[p"] = (X x5 X3)[p"]

(d) Denote by

F =W 0 (Vs X idy,) : (X2 % X3 x Xa)[p"] = (X2 x T35 X3) x9m X4)[p"]

(e) Let
F=(fly fi5 fia) o F: X1 — (Xo x 735 X3) x9 Xy)[p"] (4.7)
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(f) To summarize, we have the following diagram.

xn fia X fi3 < iy (Xa x X x Xa)[p"]

U, x idx,

(X2 x 735 X3)[p"] x Xy[p"F

(X35 X3)[p"] X9 Xa[p"]

(g) finally we define v, by sending f € A, (R) to

Xp = X1 xF [(Xa x725 X3) x9 Xy4)] € E,(R) (4.8)

We then get rid of the restriction f{'y € H{', using the Hj 4 torsor structure on E.

This finishes the definition of ¢, : A, — E,.

To write down the gluing data: let
fof € An(R) = (HY'y x Hi'y x H{'y x H3'% x H3"y x H3"{)(R)

Let

~ ~ ’

(F,g*), (F',,¢*")
be the data we used to construct Xy, X/, see 4.5, 4.6 and 4.7. Then

Xf:Xf’ = F:F',gnzgn/7f§3:f§?:

Note that the conditions
9" =9g", fo5 = f33
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are precisely the conditions forXy, Xy to be isomorphic after modulo the slope filtration
corresponding to Xj. In other words, let mo 4 : E' = Defg,s(X) — Defsus(X2 x X3 x X3)

then

i !
9" =9g", f23 = fa3
! 2 2 !
= fi3= f237f34 f347f24 fay = fano (fa3 — fa3")

< 7T2,4(Xf) = 7r2,4(Xf’)

Now we write down the condition for F = F’.
We adopt the following notation, if X a p-divisible group and z" € X|[p"], then 2™ is a
lifting of ™ to X [p™] for m > n.

By 2.1 we have

k X3”><X3" — X7
ker(RrQRUXSN DX xn _y x7m)

(X2 P X) x¥ Xa][p"] = " (4.9)
_gTL

Let " := f{7(z1"),Vi € {2,3,4}, then the morphism

F:X1[p"] — [(Xo 72 X3) x9 X4]|[p"]

defined in 4.7, can be described as:

Fraf — (o = fli(@1)ieqosay — (23", 03" — 35 (@3"), 2} — f57 (23") — [ («3"))

where (23", 23" — f30(a3"), 2} — f3(x3") — f31(x3")) is understood as an element in the
right hand side of 4.9.

Now the it’s a matter of elementary algebra to write down the conditions for F' = F” :

F=F' mod X3, X, < fi2 = f1o
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which is the first equation of 4.1. We can similarly derive the other two equations of 4.1.
F=F mod Xy < (25" — 3", a} —a§' — f55(23") + f33'(@3")) € Ty,
or equivalently,

3" — i = (i — fi3")(1) € "), (4.10)

— fo5(a5" — a3™) = af — o}’ — f35 (x3") + £33 (x3") (4.11)
Rewrite the RHS of 4.11 as

2n( 2n 2n/) _( 22§L 22§L/)(x2n/)

n nl
T3 —x3 — Jag Ty — T3 2
and notice that
2n/..2n 2nl\ __ fn 2n 2n/
23 (23" — 23 )—f23($2 —x3")

as x3" — 3" € [p"] and f3} is a lifting of f34, equation 4.11 becomes

ol —af' — (f35 — f35")(25) =0

i.e.
n o pen/! _ (£2n/ _ £2n/ n—0
J13 13 ( 23 23 )o fis =

which is precisely the second equation of 4.1. Here we use the fact that

55 (23") — £33 (@3") = (F35 — f35")(«3")

where the element (fa¢ — f23') is understood as in Hos[p"]. We can similarly derive the

third equation of 4.1.
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Finally, after unwinding definitions, we have F' = F” if and only if

o — 2 — (F55(23") — 35 @3) — (far (@3") — fa1 («3")

/
=~ foa(23" —a3") — fos(ad" — 23" — f35(a3") + f35"(23"))

after some reorganization together with the fact that z]* = f{(z7"),Vi € {2,3,4} this is

precisely the last equation of 4.1. We have proved this lemma. O

Lemma 4.2.2. (Basic Properties of 1, ) Notation as in 4.2.1.

(a). Let % be the trivial Hi4 torsor structure on A, = HYyx Hi'3 X Hy g X Hgg X H??,?L X H22,7}1
Let F,, be the schematic image of ,,. Then % descents to a Hi4 torsor structure on

., which we denote by xf, , that is
xp, @ Hia X Fy, — F, a torsor structure

and the diagram

*

H14 X An An
Z'dH14 X 1[}701 Wz
*Fn
H14 X Fn Fn
id,, X pn Pn
*En
H14 X En En

where
e p,: F, — E, the embedding morphism.
e xp the morphism corresponding to the Hyy torsor structure on Ey,.

o ¢ is the morphism A, — F, corresponding to vy, as F, is defined as the
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schematic image of ¥, .

(b). The following diagram commutes:

_ gyn+l n+1 3(n+1) 2(n+1) 2(n+1) ¢n+1
Any1 = H{'3 x Hi'3" x Hya x Hyy " " x Hyy 70 X Hy,y Eni1
C% p—
n n 3n+2 2n+1 2n+1 Vnt1
H1,2 X H1,3 X Hy 4 X HQ,3 X H374 X H2,4 Eni
. n 2n
ldH12><H13 X [p ]H24><H34 X [p ]H23 —
A, = H" x H x Hy 4 x H3% x H2® x H2? ¥n E
n = 1119 1,3 1,4 2,3 3.4 2.4 n

(c). Let Bis = Defous(X1 x Xo X X3) and B2y = Defsus(Xa X X3 x Xy) both biexten-

sions. Let Y13 n, V24.n, B13n[p"], Baan[p™] and By, as defined in 4.0.1(c),(d). Then the

following diagram commutes:

Un

A, = H{y x Hi'3 X Hy4 X Hg% X H§’}1 X HQQZ E,
T4 ™

H?, x H", x H3" x H2" x H2" ¥n B
1,2 1,3 2,3 3,4 2.4 n

. n _
7'dﬁﬁzxﬁﬁzs X [p ]H23><H24><H34 -

13,0 @ Hoy V24,m
Hig[p"] x Has[p?] x Hys[p"] x Hsa[p"] x Haa[p"] B

where
e 14 18 the natural projection.
e 1, is the natural morphism induced by 1, .

® Y135 @Hys V24n 15 the tensor product of Y13, and a4, over Hoy.
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Proof. Proof of (b) and (c) is left as an exercise. We now prove (a).

It suffices to show that

Pn ©p 0% = *g, O (ide X pn) © (idH14 X wn)

Let hia € Hua[p"), f = (fly, f35, f30, f1y, f32, f4) € A,, both functorial points over the

same Artinian local algebra R/k. Recall that in (f) starting from f we constructed

FF ‘IJ}LQn7g g nn

that fit into the following diagram:

X7 Jia % fi3 X 1y (X x X3 x X4)[p"]

U, x idx,

(X x5 X3)[p"] x X4[p'lJF

Note that the vertical sequence of the diagram does not depend on the f{) component. Now

by definition

o 3 2 2
*(h147f):(f{l27 2§L= 327](.17137 2£7f{l4+h7114)

Let F', F', \Iﬂ}%’, U™, " be the morphisms correspond to *(hig, f) = (1, fan, fap, fis, fan, fiu+
hY,). Then we have

F=F
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hence

F—F'=(0,0, f{1 — (fia + B74)) xp o (Xax Xsx X0 p) © F

Let

Is @ (Xo x 723 X3)[p"] x 9" Xy[p"] — Xy x 13 X3)[p"]

the natural projection, then it is easy to see that the composition

F n IT n
Xa[p"] = (Xo x X3 x Xa)[p"] = (Xo x5 X3)[p"] x9 Xy[p"] = (Xo x5 X3)[p"]
is the trivial morphism, and that the following diagram commutes

Xy[p"]

= l(_}
Xalp") T (X2 x Xa x Xa)[p"] —— (X2 xJ55 Xa)[p"] 5 Xa[p"]
JH23
(Xo xT3 X3)[p"]

then the morphism ' — F| as a morphism from X [p"] to Xo x /33 X3)[p"] x9» X4[p"], factors
through X4[p"] < (Xo x¥2 X3)[p"] x9» X4[p"]; As a morphism from Xi[p"] to X4[p"],

F—F = f{y — (fis+ h1a)" = —hl}
This means precisely that
P © Pp © ;(h?@ f) = *B, © (idHM X Pn) o (idH14 X wn)( 71147 f)

by the definition of Hy4 torsor structure on E,,, see 4.1.1. We have proved (a).

Theorem 4.2.3. Notation as in 4.2.1. The morphism v, : A, — E, is faithfully flat.
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Proof. By 4.2.2.(c), we have a commutative diagram

A, ¥n E,
i | .

n n 3n 2n 2n wn
H1,2 X H1,3 X }]273 X H374 X H274 — B,
where

o Tia: An — HY'y x H{'3 x H3'" x H3'"{ x H3'; is the natural projection.

o Y, : Hiy x Hi's X HS% X Hg’}l X H%Z — B, the morphism induced by . 1, is

faithfully flat by 4.2.2.(c).
e v, is Hy4 equivariant by 4.2.2.(a).

Hence v, is faithfully flat. O

Corollary 4.2.4. Recall E,, is a H14 torsor over By,. Denote by [an14]*En the contraction

product induced by [pf ], that is
(P
[p?{M]*En = Hyy /\H14 — Hi4 E,

By definition [p’}{M]*En 15 also a Hyy torsor over B,,. Then [p}l{m]*En 1s a trivial Hi4 torsor,

that is [py, |« En = Bn X Hig.
Proof. By 4.2.1 E,, can be trivialized by

A, = Hp'y x H{'3 x Hi4 x H3% x HJ} x H3"}
with gluing data lies in H7',, therefore [p"]. E;, can also be trivialized by

H{y x Hi's x Hyy x Hy% x H3" x H3';
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with gluing data in [p"|H{ 4 = 0, i.e. [p"].Ey is trivial, i.e. there exists an morphism
Tean : Bn X Hyy i) [pn]*En
O

-1
Tcan

PrHq4 .
Corollary 4.2.5. Let n, : E, — [p"«En =% B, x Hyy —> Hiy 4 where E,, — [p"].E is

the natural map induced by [p™|m, . Then

i1l B, = [Pl . © B, (4.12)
Proof. An easy corollary of 4.2.2(b). O

We rewrite the trivialization as in 4.2.1 in a more homogeneous way.

Corollary 4.2.6. Let
A, = (Hya x Hag x Hzy)[p*] x (Hyz x Hag)[p*"] x Hia,

let

" = ([p2n]H127idH237 [pn]H34’ [pn]H13’idH24?idH14) A — Ap

the natural morphism. Then the morphism
Vn,homo 1= n 0P+ A — Ep
is faithfully flat and finite, as both 11, and v, are. Moreover, for
f= (15 135, 130 15 J30, fua)s ' = (P38 fsss 38, P38 32 fla) € A

d}n,homo(f) = wn,homo(f/)
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if and only if

i I !
f{l2:f{l2,f§3:f§37f§l4:f§l4a
2 2n! 3 3n' 3
1:?— 1§L —< 2§L—f2:?, 12n>3n:0a

2n 2n’_< 3n r3n 3n’> -0
24 24 345J23 23 /3n = Y,

/ / /
Fra = fla = (F58 = f51 5 Fi8)on + (= (21 = F30) + (B30 128 — £33 Jsm, 15 )an = 0

here we adopt the following notation: supscript means level in the corresponding p-divisible
group, i.e. f;; is an element in H;;[p*]; If m < n and fis € Hyj[p"], then fi7 = [p" " |f]

which is an element in H;;[p™].
Proof. An obvious corollary of 4.1.

Remark 4.2.7. The coordinate system in 4.2.6 has the following advantage against 4.1: all

the bilinear pairings involve are at level 3n, and the level of f;; only depends on j — i.
4.3. Trivialization of Universal Torsors

Notations 4.3.1. We use the following notations in this section:

(a) X = Hfil X, be a p-divisible group with X; isoclinic of slope s;, and that s1 < so2.. <

si. Here K € {3,4}.
(b) E = Defss(X) = DefAutst(X)-tomor
(c) Auts'(X), = Auts(X[p"]).
(d) Hij := Hom*(X;, X;), H}} := Hom*"(X;, X;)[p"].
(e) Let X be the universal sustained p-divisible group over E and let X, := X[p"].

Lemma 4.3.2. Following the notations as in 4.5.1 and let K = 3. Let by, : Hy x H3} x
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His — E,, be Mumford’s trivialization. Denote by
En[p"] := o (Hiy x HY x HT3)
Let ¢, be the following morphism.:
b+ B2 x 3 g e Wy W) g g

Then X‘En[pn} X B [p™],ém (Hfg X Hg’g X H12§L) is isomorphic to X [p"] x (H12 X Hg’g X Hfg,f)
That is the Xy | g, [pn) can be trivialized when pullbacked to HZ < H3% x H% by ¢, Moreover

we can compute the gluing data of this trivialization.

Proof. Fix a Artinian local k algebra R. Let
f= (/5. 155, [§) € (HY x Hy x Hig)(R)
As 6n(f) € Eulp")(R), let
Xy = Xl R ()
We now trivialize Xy by the following steps:

1. We first define a morphism Fb, as in the following commutative diagram:

2n 2n
Xl [p2n] fl f X2 [p2n] % X3 [p2n]

Fon Vg
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Define F,, as the restriction of F,, to X;[p"], that is

F, o= [p"]Fay : X1[p"] — (X2 x 735 X3)[p"]

2. We can show that
Xy = Xa[p"] "™ (X2 x5 X5)[p")
This part is left as an exercise.
3. Recall the construction ¥ as in 2.4.3. then
on

f2n (idxl,—‘f?—én)

Ty = (X1xXoxX3)[p"] 3 X1[p"]x (X2 x 7% X3)[p"] Xy xF7 (X x5 X5) [p")

(4.13)
is an isomorphism between (X; x X3 x X3)[p"] x R and Xy. As these constructions

are functorial, we obtain a morphism

T (X1 x X2 X X3)[0"] X g )5, (His X H3 X HES) = XX g, pn) g, (HT3 % HS x HEY)

To write down the gluing data, consider another element f' = ( 122"/, g’il},, 12§1l) such that

we can similarly define T, and the gluing data between f and f’ is
T;' o Ty € Aut®™ (X [p"])

some tedious computation similar to 4.2.1 shows that
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1 fiy— 2n -1 13 < f3 f23’ 12 >2n
T

-1
plemi=o 3 - 15

0 0 1
note that as ¢, (f) = ¢n(f’) we have
s — fis+ < f35 — 135 fly >a=10
hence T7;,! 4 0Ty is an element in Autst (X [p™]). O
Lemma 4.3.3. Notations as in 4.3.1 and let K = 4. Let i, : Ay, — E,, be as in 4.2.1, and
([PF, Di<i<i<a Wn

bn s HE x HE x Hyg x Hyy x Hap x H3? — A, % E,

and

En[p"] = ¢n(H12§l X lez? X Hl2 X H23 X H34 X HSZ)

Then

Xl Bulpr] X En[pm],6m (Hiy x Hy x Hif x H23 x H3p x H3})

18 isomorphic to

X[p") X, o), 6 (HT3 x HE§ > HEY > Hyg x H3Q < H3Y)

Moreover, we can compute the gluing data of this trivialization. This result is an analogy of

4.3.2.

Proof. We sketch the proof, as the proof is pretty similar to 4.3.2.
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Given

f_( 2n  g£2n p2n pdn  £3n 3n)
- 12->J13>J14>J23 5 J24 > /34

f/ _ ( 2n'  p2n'  p2n'  pdn’ 30/ 3n’)
— \J12 »J13 »J14 »J23 »J24 »J34

both elements in (HZ x H x Hyy x H3% x H3P x H3P)(R) for some fixed Artinian local

ring R such that ¢, (f) = én(f’). Let
Xy = Xpr = Xalro(s)
Using f, f' we can write down T, Ty both isomorphisms
X[ = X
in a similar way as in 4.13, and we define
h=h(f,f") = (hij)axa = T;" o Ty
h is an element in
Aut* (X)) = {(hij)ij, hij € Hij[p"] V1 >4 < j <4, hiy; = 1,hj =0Vi > j}

Now similar computation shows:

hio = fia — fi3' hos = fa5 — f35  haa = f37 — f31 (4.14)
/ 3

has = 2 — 20— < fin gl g, (4.15)
/ 3

hos = [ — 3 — < f30 — 130, £30 >om, (4.16)

2 o’ 3 3n’ 2 3 3n’ 3 4 An’ 2
his = fid — fir — (fsf — f31 ) o fig + [=(faf — fa4" ) + f34' o (fag' — fa3' )] o fiz (4.17)
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Remark 4.3.4. As a byproduct, X = H?Zl Xi a p-divisible group over a field k/F,, with X;
1soclinic, we can use the above gluing data to write down the universal sustained deformation

of X over E = Defs,s(X). That is, at nth level, we start with the trivial
A, x X[p"

and use Py, as define in 4.2.1 and the gluing data as in 4.3.3 to obtain a ’truncated sustained
p-divisible group’ over E, = ¢,(A,). Let n — 0o we obtain a sustained p-divisible group

over k modeled on X over the base E.
4.4. Tate-linear Nilpotent Groups of type A

In this section we extend the category of projective systems Aut®!(X) = T&nAutSt(X)n
where X = H?:l X p-divisible group with X; isoclinic of slopes s; and s1 < s9 < 53 < 84 tO
a slightly bigger category.

In the following discussion, we use H;; to denote a p-divisible group. In particular, we are

not assuming that there exists X;, X, s.t.
Hij = Defsus(Xi X Xj)

Fix K € N. Let H;; be p-divisible groups over the base field x of characteristic p, V1 <1 <
7 < K and let

(, )ikjnHin[p"] x Hyj[p"] — Hij[p"]
bilinear pairings such that

e We have

((Tijn, Tikn)ijhns Thin)ikln = (Tijn, (Tjkns Thin) jkin)ijln (4.18)

forall1 <i<j<k<Il<K and %, Tjkn, Tr,n functorial points of H;;[p"], H;x[p"]

and Hy[p"] respectively.
e the following diagram commutes
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Hip[p"] x Hij[p"] ij[p"]
<, >ikjn+1
Hik [anrl] x ij [anrl} Hz'j [pn+1]

Consider

Ln = @ Hij[pn}

1<i<j<K

Then:

e (,)ikjn naturally gives rise to an multiplication on L,, which will be denoted by *,
as follows: for h = (hij)i<i<j<r,h’ = (hi;)1<i<j<x both functorial points of L, we
define

hon b = (hij)1<icj<i

where

hij = Z (Miks Prj)ikjn
kst i<k<j

This multiplication structure is associative by 4.18. It is also nilpotent in the sense

that for every € L,

xK:z*nx...*nm:()
—_—

K times

e This ring structure *, on L,, also induces a Lie algebra structure [,], on L,, by

[h, bl = hsp B — B %, b

o Let
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where the transition map L,+1 — Ly, is simply [p] and the projective limit takes place
in the big fpqc site over Spec(k). Then x,’s induce an associative algebra structure

on L and all the [,],,’s induce a Lie bracket [,] on L.

e The algebra structure *, on L, also induces an group structure on L,,, denoted by -,

by the formula

hi-ha = hi + ha + hy * ho

for all functorial points hy, hy € L,. We will denote this group by H,. The group

structure on L induced by * is defined similarly and we denote this group by H.

o Let

Tn+ln - Hn+1 — Hn

given by [p] Lie(H,)- Lhen mp41p is a group homomorphism and

H:T&lHn

n

where the transition maps are those induced by 7,41 5.
e We will use the notation
Lie(H,) := Ly,

Lie(H) := L

Definition 4.4.1. Let T be the system that consists of
o A family of p-divisible groups (Hij)i<i<j<k

o bilinear pairings (,)ijkn,V1 <i<j<k<K,neN
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and assume the conditions as in 4.18 are satisfied; The group H is called the Tate-linear
nilpotent group of type A associated to T and (Lie(H),[,]) is called the Lie algebra of H.

We will use the notation H = lim Hy, or H = (Hij)1<i<j<ik to denote a Tate-linear nilpotent

group of type A.

Definition 4.4.2. A Tate-linear nilpotent group of type A of rank K is called pure if for

each (i,7), the p-divisible group H;j; is isoclinic.

Definition 4.4.3. A pure Tate-linear nilpotent group of type A of rank K is called perfect

if 8i + ik = sVl < i < j < k < K, where s;; is the slope of H;;.

Example 4.4.4. Let X = H?:1 X; with X; isoclinic of slope s; and assume s1 < s9 < §3 <
S4. Let
H;j = Hom®*(X;, X;)

and

(Vijkn : Hom®™ (X, X;)[p"] x Hom® (X;, Xi.)[p"] = Hom* (X;, Xi)[p"]

the natural bilinear pairing. Then the system (H;;)1<i<j<4 together with (,);jr, forms a

perfect and pure Tate-linear nilpotent group of type A of rank 4.

Remark 4.4.5. Tate-linear nilpotent groups of type A of rank 3 or 4 that are perfect and

pure are the main object of interests in this thesis.

Given a Tate-linear nilpotent group of type A H = T&nHm we can consider the universal

deformation space of H torsors, and we have the following

Lemma 4.4.6. The universal deformation space of@Hn torsors is smooth.
Proof. See |CO22|, especially Chapter 6. O]

Definition 4.4.7. Letl'&an = ((Hij)1§i<j§K7 <, >ijk,n)a lng;.L = ((ng)1Si<jSK7 <, >§jk,n

) be two Tate-linear nilpotent groups of type A of rank K. A homomorphism of general sus-
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tained liear groups
is a family of homomorphisms (fij)1<i<j<k:
fij : Hij — HZ/]
that respect all the Weil pairings, that is for all 1 < i < j < k < K andn € N, we have

commutative diagrams

<, >ijkn
Hij[p"] x Hjp[p"] ——— Hi[p"]

fij x fjkl [fik
<, >/
Hi;[p"] x Hjy [p"] ——— H;; [p"]

Note that such a family (f;;) naturally induces a projective system of group homomorphisms
fn: H, — H),

Since the construction H — Defy_ior 15 functorial, such a homomorphism also induces

f* : DefH—tm“ — DefH/ftor

Definition 4.4.8. Let H be a Tate-linear nilpotent group of type A. The automorphism
group of H, denoted by Autsys(H) or simply Aut(H) is the group of automorphisms over k,
in the sense of 4.4.7, from H to itself.

To see the geometric meaning of this definition, we have the following:

Theorem 4.4.9. Let X = X1 x Xo X X3 with X; isoclinic of slope s; and s1 > s > s3. Let

Hij = Hom®(X; x X;), V1 <i<j<3
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For alln € N, let

(,)n : Hi2[p"] x Haz[p"] — Hiz[p"]

be the natural pairing. Let H = (H;j)1<i<j<3 be the Tate-linear nilpotent group of type A

corresponding to these data.Note that Defsus(X) = Defaurst(x)torsor = Defttorsor- Then
AUtbiext(E) = AUtsus (H)

Proof. See |CO22| Chapter 10. O

4.5. Tate-linear nilpotent groups of type A: Rank — 3 case

Let H = @Hn with components (H;;)1<i<j<3 be a Tate-linear nilpotent group of type A
of rank 3.

We will construct a trivialization of De fi_torsor that is similar to 3.4.3. To do that:

e Let A, = Hia[p"] x Ho3[p?"] x His, the relations in 3.4.3 gives us a descent data, that

is there exists a scheme Fp,, and a faithfully flat morphism
Vn Ay = Egg
let By := thHn
e Consider Hy3[p?"] x Ha3[p®"] x H14 x H,,. The equation in 4.3 gives us a descent data:
Hio[p*™] x Has[p®] x Hiq x Hy — Hpp

where g, is a H), torsor over Ep,,.

e For any fixed ng € N, and all n > ng integers, consider the H,, bundle 7, ,, =

T, | Ejrng OVEr Ex n,, where the restriction is via the natural embedding Fp ,, —
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Ey . The projective limit

7710 = @%,no

is then a H torsor over Fp ,,. Finally, let
Th = %%0
no
then 7y is a H torsor over Ey. Hence we have a natural morphism

f : EH — DefH-torsor

induced by the H torsor over Ep.

Theorem 4.5.1. Notation as above. The morphism f : Eg — Defr_torsor S an isomor-
phism of formal schemes. In particular, theorem 3.4.3 is valid when we substitute De fqs(X)

with DefH-torsor-

Proof. We will prove this result in several steps.

Step 1. We first show that Ep is a smooth formal variety. It is easy to see that the trivial
Hi3 torsor structure descents to a Hjg torsor structure to Ep, with Ep,/Hiz ~
Hiya[p"] x Has[p™], hence by taking inductive limit we obtain a Hjg torsor structure

over Ef with Ep/Hy2 X Has. Hence Ep is smooth.

Step 2. As Defy_torsor 18 also smooth by 4.4.6, it suffices to show that the the morphism

[ Eg = Defrtorsor induces an isomorphism between tangent spaces.

Step 3. Consider the following commutative diagram
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central fiber

His Ey Hyg x Has
f’H13 = idHlS f =
ng central fiber Defhg i, H12 X H23

To show that f induces an isomorphism between tangent spaces, it suffices to show

that f. is an isomorphism. Note that we are not assuming f is Hi3 equivariant.

Step 4. The morphism f; is induced by the following His X Hss bundle over f: for each
n €N, let B, = Hi2[p*] x Ha3[p®"], consider the trivial Hya[p"] x Ha3[p™] torsor over

B,,, together with the gluing data

2n 13n In In 2nt 1.3nl In !t In \/
(h127h12, 125 23) ~ ( 12 7h12 7h127 23)

n n/'/ __ 12n 2n/ n n'__ 12n 2n/
< hiy — hiy = hiy — hiy" and hgy — hgs' = hag — hag

for all (h33, h32, A7y, his) and (33, k35’ R’ his") functorial points of By, x (Hya[p"] x

Hoys[p™]), thus fr|m,, is the natural isomorphism

H12 = Defl'nglz [p™]-torsor

same with fr|m,,. Hence fr is an isomorphism. We have finished the proof.

4.6. Tate-linear nilpotent groups of type A: Rank = 4 Case

In this part, we prove an analogy of 4.5.1 for Tate-linear nilpotent groups of type A of rank

4.
Let H = lngn with components (H;;)i1<i<j<k be a Tate-linear nilpotent groups of type A
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of rank K = 4. We will construct a trivialization of De fr_torsor similar to 4.2.1. To do that:

o Let A, = Hi'y x Hi's x Hy4 X HS% X Hgﬁ X H%f}l, the relations in 4.2.1 actually gives

us a descent data, that is there exists a scheme Fp, and a faithfully flat morphism
Yy Ap — EH,n

We can therefore define

Eg :=lnEq,
w
e Similarly, the result in 4.3.3 gives us another descent data: let
(HE x HE x Hyy x Hyy x H3y x Hap) x Hy,

the trivial H,, torsor over HZ3 x H x Hyy x H3% x H3P x H3p, by 4.3.3, there exists

a H,, torsor over Ep ,, which we denote by 7Tg,,, and a faithfully flat morphism

2 2 4 3 3

e For any fixed ng € N, and all n > ng integers, consider let 7y, », = Tw, | Btng where

the restriction is via the natural embedding Ey ,, < En . The projective limit

then Ty is a H bundle over Eg.
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Theorem 4.6.1. Notations as above. Then Eg is the universal deformation space 0fl'£1 H,
torsors and Ty is the universal H torsor over Ey. In particular, the theorem 4.2.1 is valid

when we substitute De fq,s(X) with De fi_torsor-

Proof. Let E4 be the universal deformation space of @Hn, which is smooth by the 4.4.6.
Notice that H := H/Hj, is also a Tate-linear nilpotent group of type A, and we can similarly
define Fg, Ty, . We will denote B := Ey g, = Ej. Let 7 : E — B the natural morphism
induced by H — H/Hq4.

By construction, Fyg has a Hi4 torsor structure and B has a natural Hjyz X Hgy torsor
structure over Hqis X Hog X Hsy, hence B is smooth and therefore Ep is smooth.

Since E, is the universal deformation space of @Hn torsor, and Ty is a @Hn bundle H
over F, we have a map

f:E—)Ed

Similarly we have

fﬂ— : B — DefH/H14

To prove that f is an isomorphism it suffices to prove that f induces an isomorphism between
the tangent spaces.

Consider the following commutative diagram, where both horizontal arrows are given by the
natural Hy4 torsor structure on F and E,; respectively. Note that we do not assume the

map f preserves the Hyy torsor structure.

Hus central fiber Ex B

id f I

Hia central fiber

Eq= Deflgn H, Defl'gl Hy/Hua

From this diagram, to prove that f induces an isomorphism between tangent spaces it suffices

to prove that f; induces isomorphism between tangent spaces. But f; fits into a similar
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diagram:

central fiber
Hq3 x Hoy B His x Hoz X H3y

id fr g

central fiber

Hyz x Hoy Hig x Hoz X H3y

Defjm )/ His

Let g be the right most vertical morphism in the above diagram. In light of the gluing
data as in 4.2.1 we use to construct £, this morphism ¢ is obtained as follows: for each
H;; € {Hy2, Ho3, H34}, each n € N, we consider the H;;[p"] bundle over H;;[p"], denote it

by 'Hij,nl
Hijn = Hy X Han/((hn, hon) ~ (hl,, hY,,) if hon — b, € H;j[p"] and hy, — hl, = ha, — h,)

then it is easy to see that as we let n — oo we obtain a universal H;; bundle over H;;, which
induces a map

gij + Hij = Hij

as Hi; = Defp,;—tor by Kummer theory, and

9=11]9

By Kummer theory, this map ¢ is an isomorphism. Hence f; in diagram 4.7 induces an

isomorphism on tangent space and we have proved the theorem. O

Definition 4.6.2. Given H = (H;j)1<i<j<a @ Tate-linear nilpotent group of type A of rank
4. We define:

e E = Defy_iorsor- For eachm € N a subscheme E, C E, and ¥,, A, as in 4.6.

e There is naturally a Hi4 action on E, and let B = E/H4.
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4.7.

The system H'3 := (Hij)1<i<j<3 together with the bilinear pairings (,)123,n is naturally

a Tate-linear nilpotent group of type A of rank 3. Similarly we define H>*.

B3 := Defyis_torsor Which is a biextension. Similarly we define Bay. Note that

B = B13 Xg,; Boy
Let w03 : B — Bis and w3y : E — Bay the natural projection.
Let w9 : E — Hio, mo3 : £ — Hoz and w34 : E — Hsy the natural projections.

As Bi3 is a biextension of Hio X Hsz by His, for each n € N, we have a subscheme

Bi3n C B and a faithfully flat morphism
Y13 : Hialp"] x Has[p*™] x Hia — Bign
as given in 3.4.3. Similarly we can define
V13n,homo * (Hi2 X Haz)[p*"] x Hiz — Bis,,

as defined in 3.4.4.

Admissible Subgroups and Tate-Linear Subvarieties

Definition 4.7.1. (Nilpotent Filtration) Let H = (H;j)1<i<j<k be a Tate-linear nilpo-

tent group of type A of rank K. For alln € Z, there is a filtration

0=Fk-1n CFr-2n. C Fon = Lie(Hpy)

where

'Fl,n = {(hij)1§i<j§K7 with hij (S Hlj[pn] s.t. hij = O,Vj -1 < l}

Lemma 4.7.2. Notation as in 4.7.1. Then

(a) Each Fr_1y is an ideal of (Lie(Hy),[,]n) , as well as a normal subgroup of H,,.
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(b) For a firedl € Z>o, Fi—1n/Fin~ @O Hijlp"]|. Let
j—i=l—1

Griy(H) := Um(Fypn/Fri1.n) = lm( € Hylp")
n k

nooj—i=

(c) By taking projective limit we naturally obtain a filtration
0=Fg-1C Fg—9..C Fo= Lie(H)

of Lie(H).

(d) @Gr*,(H) = Lie(H) as sheaves of Z,, modules.
k
Proof. Once formulated, the proof of (a)-(d) are easy to check. O

Definition 4.7.3. (Definition of Admissible Subgroups). Let H be a Tate-linear nilpo-
tent group of type A of rank K with Lie ring Lie(H) associated to the system H;;,V1 < i <
Jj < K and bilinear pairings (,)ijkn. An admissible subgroup of H is a cotorsion free sub-
group G of H. Equivalently, an admissible subgroup of H is a family of subgroups G, of
H,, for alln € N, such that

Tn+1,n

e The natural homomorphism Gpy1 — Hp41 — H, factors through G, and this

morphism Gni1 — Gy is surjective.
e The projective system l'&lGn is cotorsion free as a subgroup of@Hn.

Definition 4.7.4. Let H be a Tate-linear nilpotent group of type A and let G C H an
admissible subgroup. Then there is a natural morphism Paosp @ Defatorsor = Defirtorsor
defined as follows: let G be the universal G-torsor over Defa_iorsor and let H be the universal
H-torsor over Defr_iorsor- Let G NG H be the contraction product of G with respect to
G — H, in particular G NG H is a H torsor over Defc_iorsor, therefore induces a morphism

Doy : DefG—torsor — DefH—torsor-
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Definition 4.7.5. Notation as in 4.7.3. Let H be a Tate-linear nilpotent group of type A

and Lie(H) be it’s Lie algebra. Let G C H be an admissible subgroup. Let
0=Fk_1C Fr—9..C Fo= Lie(H)
be the filtration of Lie(H) as defined in 4.7.1. Let
0=0r-1CYk—2..C G
be the induced filtration on G, that is
G=GnF, Vie{o1,. ,K—-1}
Define Lie(G), the Lie ring of G, by

Lie(G) := @ Gi/G141

le{0,1,....K—2}

Clearly
B G/Gnc @ F/Fa = LieH)

1€{0,1,....K—2} 1€{0,1,....K—2}

It is an easy exercise to check that Lie(QG) is indeed a Lie subring of Lie(H ).

Definition 4.7.6. Let H be a Tate-linear nilpotent group of type A and G C H an admissible
subgroup. Let Lie(G) be the Lie ring of G, which is a sheaf of Z, modules over the big fpqc

site over Spec(k). The dimension of G, denoted dim(QG), is the dimension of the p-divisible

group
Lie(G) ® Q/Lie(G)

as a smooth formal group.

Lemma 4.7.7. Notation as in 4.7.4, then
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(a). The schematic image of g g is a smooth connected formal subvariety of De frr_torsor-
(b). ®gm is a finite morphism of smooth formal schemes.
(¢). If moreover G is cotorsion free, then ®g g is a smooth embedding.

(d). Let Eq = Im(®g—p). Then
dimEqg = dim(G)

where dim(G) is as defined in 4.7.6.
Proof. Given in [Cha22|. O

Definition 4.7.8. (Definition of Tate-linear formal subvarieties). Let H be a Tate-
linear nilpotent group of type A and E the universal deformation space of H. A formal
subvariety W C FE is called o Tate-linear formal subvariety if there exists an admissible
subgroup H' C H such that the schematic 1image of ®g,pg is W, see 4.7.4 for the definition

of Pgesn.

Lemma 4.7.9. Let H be a Tate-linear nilpotent group of type A of rank K and let G C H
be an admissible subgroup. Let Eg be the Tate-linear formal subvariety corresponding to G.
Let E = Def_torsors and E' C E a formal subvariety. Let T be the universal H-torsor over
E. If the structure group of T|g can be reduced to G, that is, if there is a G-torsor G over
E' such that

HANG~Tlg

where A\ denotes the contraction product. Then

E’CEG

Proof. The G-torsor G induces a map fg : E' — Defc torsor Such that &g,y o fg = idgs,
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thus

E' C Im(®¢wn) = Ea

and we have proved the lemma.

Definition 4.7.10. Let H,G be Tate-linear nilpotent groups of type A of rank K. Let
f+ H — G be a homomorphism, in the sense of 4.4.7, and let f;; : H;; — Gyj; be the ij
component of f, for all1 <i < j < K. We say that f is an isogeny if all f;;, as morphisms

between p-divisible groups, are isogenies.

Lemma 4.7.11. (Properties of isogeny) Let H,G be Tate-linear nilpotent groups of type
A of rank K. Let f : H — G be an isogeny. Let ®; : Defr_torsor — DefG-torsor be the

morphism induced by f. Then
(a) f is a finite faithfully flat morphism.

Lemma 4.7.12. (Quotient) Let H = (Hyj, (,)ikjn) be a Tate-linear nilpotent group of type
A of rank K as above. Let be ig, jo integers such that 1 < ig < jo < K. Let HZ’O Jo € Hig o

be a p-divisible subgroup. Assume that 1@ WO[ "], as a subgroup of Lie(H), lies in the

kernel of ; In other words, for all h! ojo € L iojo [p"], h € Lie(H) functorial points,

hxh, . =h; . xh=0, Vh, . € H,

10Jo 10J0 10J0 10J0°

h € Lie(H) (4.19)

Condition 4.19 is equivalent to: for all k,l € N such that jo < k and 1 <1 < iy,

<h;0 ]Oahjo,k>iojok,n 0 Vh;o o c HZIO ]0[ n]’ hjo,k c H.707 [ ] (4.20)
<h2,i07 hio»jo)”ojo =0, th,io € Hl,,io [an hioJo € Hlo,yo[ ] (4-21)

By abuse of notation, we use H. . to denote both H! . as a p-divisible group, OTL 10]0[ "],

2070 t0Jo
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as a subspace of Lie(H), then:

(a).

(b)-

(c)-

(d).

(¢)-

(f)-

H! . is an ideal of (Lie(H),*), and an ideal of (Lie(H),[,]), as well as a normal

0J0

subgroup of H.

The exact sequence

1— H

10Jo

—H — H/H] . —1

1070
is a central extension of sheaves of groups on the big fpqc site of Spec(k).

The quotient group H/(H!

10J0

) is a Tate-linear nilpotent group of type A with compo-

nents

Hiq jo/Hi, j, (4.23)

and with bilinear pairings descent from that of <, >ikjn-

If K < 4, then the exact sequence in (b). induces a H|

fojo action on Defir torsor and

we have an isomorphism of smooth formal schemes

l ~
DefH—torsoT/Hiojo - DefH/HZ{OjO -torsor

If HC H/H;,;, an admissible subgroup, @ : H — H/H,y;, the quotient map, then

7~ Y(H) is an admissible subgroup of H.

dim(zm~Y(H)) = dim(H) + dim(H!

lojo)

Proof. Part (a)-(c) are trivial.
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For (d). Let E be the deformation space of H torsors, and let v, A,, E, as in 4.6. That is

Ay = Hia[p"] x Hiz[p"] x Hyg x Hoz[p®"] x Has[p*™] x Hza[p*"],

Up : Ap = E, a faithfully flat morphism

For i, j integers such that 1 <i < j <4,(4,7) # (1,4), let e;; € {1,2,3} such that we can
rewrite
Ap = Hig X 11 Hi;[p“i™]
1<i<j<4,(4,5)#(1,4)

Let E be the deformation space of H / H{O j, torsors and let Jn, ;471, E\; defined similarly but
in terms of the group H/ Hl{ojo' Let II,, : A, — A,, be the quotient out by the H{O io [p©iodo]
component map. As A, is a product, there is a natural H I{ojo [p€iodo] torsor structure on A,
that is II,, invariant. Moreover, given 4.20 and 4.21 and since the gluing data 4.2.1 is in
terms of the bilinear pairings (, )ixjn, this Hj o [p©oio] action induces an H_ o [pioio] torsor
action on F,. Let ﬁn be the morphism F, — E; induced by II,,, we have a commutative

diagram

such that both I1,,, I,, are H . [p€ioio] invariant and vy, is H]

fojo tojo [p©ioio] equivariant, and both

U, 1% are faithfully flat, we conclude that

E,/H} ; [pcon] ~ E,

t0jo
By taking limit we conclude that:

e There is a H!

i0jo torsor structure on E.
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° lf/ﬁ[f{ ~FE

i0jo
which is the statement of (d).

For part (e), we first prove that 7' (H) is torsion free. Consider the following commutative

diagram
0 —— Hl{ojo H . H/Hgojo — 0
T L
Ty |
0 —— Hj; —— 7 '(H) H 0

then ﬂ_l(ﬁ ) is cotorsion free follows from an easy diagram chasing: let h € H an functorial
point such that AV € W*I(I:I) for some N, then 7(h)N € H. As H is an admissible subgroup,
hence cotorsion free, we conclude that m(h) € H, hence h € n~1(H).

Part (f) follows directly from the exact sequence

Tl

0 —— H! W H)—— H —— 0

10Jo

The following two lemmas will be handy when we want to prove some formal subscheme is

Tate-linear.

Lemma 4.7.13. (Functoriality of being Tate-linear I) Let H be a general sustained
linear group with components (H;j;)1<i<j<a. Letig, jo integers such that 1 <ig < jo < 4. Let

H'

10,J0

C Hi, j, a p-divisible subgroup satisfying the conditions of 4.7.12. Let G := H/H;, j,
as giwen in 4.7.12 and m : H — G the natural map. Let E, F be the deformation space of H
and G torsors respectively. Let @ : F' — E be the morphism induced by ™ which is a smooth
embedding of smooth formal schemes. If a formal subvariety W C F is Tate-linear, then

W' := 7Y (W) C E is also Tate-linear.

Proof. Let G’ be the admissible subgroup of G corresponding to W and let H' := 7= 1(G").
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H' is an admissible subgroup by 4.7.12(e). Let W’ be the Tate-linear formal subvariety of
F corresponding to H’'. As for morphisms between deformation spaces of torsors induced

by morphisms between groups are canonical, we have

(W cw

hence

W' cw’

Moreover, let Lie(H') be the Lie algebra of H’, then we have an exact sequence of Lie

algebras
0 — Hiyjo — Lie(H') — Lie(G') — 0
where H;;, has the trivial Lie algebra structure. Hence
dim(H') = dim(G’) + dimH,,j,

By 4.7.4(d),

dim(H') = dim(W’),

dim(G’) = dim(W)
we obtain

dim(W') = dim(W) + dimH;

0J0

By 4.7.12(d)., W’ admits a Hj,j, torsor structure over W, hence W is smooth and connected.
Moreover,

dlm(W’) = dlm(W) + dim(HinO)

hence

dim(W’) = dim(W”)
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As W' ¢ W' and both W’ and W’ are smooth connected and have the same dimension, we
conclude that

W =w'

as W' is a Tate-linear formal subvariety of F', we have proved the lemma. O

Lemma 4.7.14. (Functoriality of being Tate-linear II) Let H,G be Tate-linear nilpo-
tent groups of type A and E, F their universal deformation space respectively. Let f : G — H
an isogeny and f : I — E the induced morphism between deformation spaces. If W' C F

a Tate-linear formal subvariety of F and W := f(W'), then W is a Tate-linear formal

subvariety of E.

Proof. Let G’ C G be the admissible subgroup of G corresponding to W’ as in 4.7.8. Let
H' = f(G') a subgroup of H. Since f is an isogeny, in particular it is surjective, hence H' is
also cotorsion free. Therefore H' is an admissible subgroup of H. Let W be the Tate-linear
formal subvariety corresponding to H’. Since the morphisms between deformation spaces of

torsors induced by morphisms between groups are natural, we have

wcw

By 4.7.11, f is an finite morphism. Hence

dim(W) = dim(W")

and W' is connected, reduced and irreducible.

As f is finite and faithfully flat by 4.7.11,

dim(W) = dim(H’) = dim(G’) = dim(W’)
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Therefore we conclude that

As W is a Tate-linear formal subvariety, so is W. We have proved the lemma. O

4.8. Statement of The Orbital Rigidity Conjecture

Definition 4.8.1. Let H = (H;j) be a Tate-linear nilpotent group of type A and E =
Defr—torsors and let Aut(E) = Autsys(E) as defined in 4.4.8. We say that the action of G
on E is strongly non-trivial if the induced action of G' on each H;j is strongly non-trivial in

the sense of 3.3.1.
WIIl all the relevant concepts defined, we state the main result of this thesis.

Theorem 4.8.2. Let H = (H;j)1<i<j<a be a Tate-linear nilpotent group of type A of rank
4 over an algebraically closed field k of characteristic p with p > 5. Let G C Aut(E) be a
closed compact p-adic Lie subgroup, acting strongly non-trivially on E in the sense of 3.5.1.
Let W C E be a closed formal subscheme which is reduced and irreducible. If W is invariant

under the action of G, then W is a Tate-linear subvariety.

Theorem 4.8.2 will be proved in 7.4.1.
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CHAPTER 5

THE ORBITAL RIGIDITY CONJECTURE: 3-SLOPES CASE

The main result of this chapter is to state the orbital rigidity conjecture when X = H?:1 X,
see 5.2.1 for the precise statement. This result was essentially proved in [CO22| Chapter 10.
We rewrite it in a slightly different way and give a short proof based on the results in [CO22|
in 5.3.

Notations 5.0.1.

1. Let H = (Hij)1<i<j<3 be a Tate-linear nilpotent group of type A of rank 3 over an
algebraically closed field k of characteristic p > 3, we further assume H to be pure and

perfect.

2. Let

E = Defg_tor which is a biextension.

B = FE/H3 ~ Hyy x Has,
o 7 : F — B, the natural projection,

Py« Hig[p"] x Hog[p?"] x Hi3 — E,, be Mumford’s trivialization. as defined in

3.4.9.
5.1. Admissible Subgroups and Tate-linear Subvarieties in 3-Slopes Case

Lemma 5.1.1 asserts that, under certain conditions on the bilinear pairing (,),, we can
construct a admissible subgroup, and characterize the Tate-linear subvariety associated to

it.

Lemma 5.1.1. Let H = @Hn be a Tate-linear nilpotent group of type A with components

H;j isoclinic p-divisible groups, 1 < i < j < 3. Let (,)n be the Weil pairing(s) (,)n :
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HYy x Hyy — Hiy. Let P C Hyo x Haz be a p-divisible subgroup satisfying

(fiz: f35') = (fi', fas)s V(fia, f35), (f12s f25') € Pp"] (5.1)
Consider the subscheme Hp,, of Hy defined by

1 fly 5 f3)n
HP,n = 0 1 f§3 : (f{l%fé%) € P[pn]

0 0 1
Then
(a). Hpy is a subgroup scheme.

(b). Let Hp = @Hgn C H, then Hp is an admissible subgroup. Let Ep be the schematic

image of the following morphism

Depr—torsor — DefH—torsor

i.e. Ep is the Tate-linear subvariety corresponding to Hp in the sense of 4.7.8. E¥

can be characterized as follows: let ¢n, By as defined in 4.3.2, then
1
B 0 B = onl{ (013 80 5003 35| U 7)€ P ))
(c). If g € Aut(E) s.t. the restriction of the action of g on Hio X Hag keeps P invariant,
then g acts on Ep.

Proof. Part (a) is an easy algebra exercise.
Now we prove part (b). From 4.3.2, let f = (f&, f3%, fi3), f' = (f&, f3%', fls) € H x

HZ x Hys. Let ¢y, : HE x H2% X Hig — B, as in 4.3.2. Assuming ¢,,(f) = ¢n(f), by 4.3.2
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the gluing data of the universal Aut**(X),, bundle is given by

1 fif - 2” i 12?? +(f3 f23  [18)2n
U 35— 13
0 0 1

note that as
/ 2
fls — fis + (f35 — f33 7f12>

this is an element in Auts!(X[p"]). When restrict to E4, we have:

2n 1 < 3n 3n>3

1325 125 J12

together the relations between (, ), and (, ),,, we have

/ ! 1
= 8+ (e — 12§1>2n:§(< o iy an <f127 12 >3n)+<

_ 1< 3n 3n’ £3n 3n’
2

3n p3n

1< 3n _ r3n' r3n 3n’> _ 1< 2n 2n'  r2n
9 12 12 »J12 12 /3n —

that is the above matrix 5.2 simplifies to

2n 1 2n 2n’
1 f12 - §< 12 »J23 T J23 >n
2n 2n’
0 1 23— J23
0 0 1

which means the structural group of Ep can be reduced to Hp, by 4.7.9 we have

EP C Depr-torsor
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By dimension consideration we then have

dim(Defip-torsor) = dim(P) = dim(Ep)

Since both spaces are reduced and irreducible, we conclude that

Depr—torsor = EP-

For (c), since Ep is constructed using P and Weil pairings, and every element g € Aut(E)

preserves (, ), hence if moreover g acts on P, g acts on Ep. O

5.2. The Orbital Rigidity Conjecture Three Slopes Case

The following theorem was essentially proved in [CO22] Chapter 10. We rewrite it in this

form so that it can be used to prove our main result 7.4.1.

Theorem 5.2.1. Notation as in 5.0.1. Let W C E a closed formal subscheme, reduced
and irreducible. Let G C Aut(E) a closed p-adic subgroup whose action on E is strongly
non-trivial in the sense of 3.3.1. Let Y = (W N H13)yeq where Hi3 = 77 1(0g) C E, and let
X =n(W) C B = Hjg x Hy3. Both X,Y are p-divisible subgroups by the orbital rigidity

congecture of p-divisible groups. Then

(a). Let n € N, let x = (27, x83), 2" = (21, 2%") € X[p"], then

n n/ nl'.n n
wowhy’ — x5 Thy € Yp”)

(b). Let (Hxy)n a subscheme of H defined as follows:
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1 w12 3(212,%23)n + Y13
(Hxy)n = 0 1 To3 Vo = (r12,723) € X[p"],y = y13 € Y[p"]

0 0 1

then (Hxy)n is a sub group scheme of Hy. Let

Hyy :=m(Hxy)n

then W = Image(Defuy ytorsor = Defr-torsor = E). That is W is the Tate-linear

subvariety corresponds to Hxy in the sense of 4.7.8.

(c). In fact, W can be constructed from X,Y explicitly: let W N E, be the schematic

intersection of W and E,, then

1
W By = oo { (235,035 5 (035,230)20 + )] V(a3 35) € XDP")ams € ¥ )

where VYn homo 5 defined in 3.4.4.

Theorem 5.2.1 will be proved in 5.3.

We collect some results proved in [CO22] that will be used to prove 5.2.1.

Theorem 5.2.2. Notation as in 5.0.1. Let ¥V :Y x E — E be the morphism
UV:YXE—=E (ye)—yxe

corresponding to the restriction to 'Y of the Hys action on E. Then

(a). W is invariant under the action of Y = (W N H13)peq- That is,

V(Y xW)cW
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(b). Let 7 : E/Y — B the map induced by w: E — B. Then

7_T|W/yW/Yi—>7_T(W/Y)

is purely inseparable.

Theorem 5.2.3. Notation as in 5.0.1. Let W C E a reduced irreducible formal subvariety.

Let G C Autpi—extension(E) a closed subgroup acting strongly non-trivially on E. If we

further assume that
o W is invariant under the action of G.

o |y : W — (W) is an schematic isomorphism.

Then:

(a). If m(W) C Hig X Has is a graph that corresponds to a homomorphism f : Hyg —
Hgg. That is

©(W) = {(h2, f(h12))|h12 € Hi2}

Then the bilinear pairings (—, f(—=))n : Hi2[p"] X Hi2[p"| — Hi3[p"] are symmet-

ric for all n € N. That is, for hia,h}, € Hi2[p"] functorial points,

(h12, f(hhg))n = (hi2, f(h12))n

(b). If ® (W) = Hiy x Hjs for some H{y C Hia, Hyy C Haz both p-divisible subgroups,
then for all n € N and for all 5 € Hio[p™], b € Hbs[p"],

< /127 h,23>n =0

Lemma 5.2.4. Notation as in 5.0.1. Let P C Hio X Hog a p-divisible subgroup. Let G
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a p-adic Lie group acting strongly non-trivially on E, and s : P — E a section which is

invariant under the action of a G. Let Hiy := (P N Hi2)req. Then

(h12, has)n = 0,Vhia € Hiy, hog € mas(P) (5.3)

Moreover, the section s descents to a section s’ : P/H{y — E/H],.

Proof. Recall that E has two relative group law +1,+5. Let —; be the inverse group law of

+1. Define E’ to be the schematic image, as a subscheme of F, of the composition

p,h12) — (s(p),s(p+ h —
Pbe( 12) = (s(p), s( 12))E><E 1 5

Intuitively, given (x1,y), (x2,y) € P where x1,z9 € Hio and y € Ha3, we can consider the

"difference’

s(z1,y) — s(@2,y)

which lies in the fiber E|,, 4, ). As we vary 1, r2,y we obtain E'.
E’ is reduced and irreducible as P x Hi, is. As s is invariant under G, E’ is invariant under

the action of G. Moreover since
!
s|prH, t Hig = His

must be trivial by the orbital rigidity theorem of p-divisible group and slope constrains
slope(H{y)(slope(Hi3),

El‘(O,O) = @((Hi%o) X 0H23)

is also trivial. Note that

m(E') = Hiy x m23(P)

80



Therefore by 5.2.3(b).

(p1,y)n = 0,Yp1 € Hiy[p"],y € moz(P)[p

which is 5.3. E’ being trivial also means that s descents to a section

Corollary 5.2.5. In the 3-slopes case, if W C E a subscheme invariant under the action
of G s.t. m: W — w(W) is an isomorphism, then for n € N and (z1,y1), (x2,y2) €
Hyo[p"] x Has[p"], we have

(1, y2)n = (T2, Y1)n

Proof. By applying 5.2.4 we can reduce it to the case when (W) C Hiyy X Hag is a graph

that corresponds to a homomorphism f : Hio — Hs3. That is

©(W) = {(h2, f(h12))|h12 € Hi2}

then what we need to prove is precisely the statement of 5.2.3(a). O

5.3. Proof of 5.2.1

Let Hi3 = (W N Hi3)peq- By 5.2.2, W is invariant under the action of Hjs, and
Tlwywy, : W/Y = 7(W/Hig)

is purely inseparable where 7 : E/H13 — B is the projection map induced by 7.
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We can take kg big enough such that the morphism

ki
L= [p O]H12><H23

dominates 7 : W/H|5 — 7(W) in the sense that there exists £ : (W) — W/H]4 such that

Tlwyay, © € = Llaw)
Consider

Ey:=E/H|; xps B (5.4)

Note that £}, is also a biextension of Hi3/Hjz by Hiz x Haz, with bilinear pairings (,),, :
His[p"] x Has[p™] — Hi3/H|5 induced by L, that is

(h12, has),, = ([P*]haz, [p™]hos)n

and the natural morphism h : E; — E/H{; induced by the fiber product structure is a
homomorphism in the sense of 4.4.7.

We know that the compact p-adic Lie group G operates on E/H{,; and W/H{; is stable
under the action of G. There exists a compact open subgroup G- C G which operates on
E¢, and the natural map h : E; — E/Hj; is equivariant with respect the the inclusion
G’ — G. The morphism & : (W) — W/H|4 defines a morphism & : (W) — E, such that
ho& = & . It follows that

Lomp, 08 =mp/p;, 08 =L

Therefore
e, © &2 = idr(w)

In other words &3 is a section of the pullback E, over w(W). The following diagram sum-
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marizes the relations:

S| | TE; 1 7’

Moreover & is equivariant with respect to the action of G’ on E/H{4. Let W} denotes the
image of this section &, G the pullback of G by L.

To summarize, we have the following diagram

(E,G,G,W)

/Hiz

D , pullback by £ , ' ,
(Eﬁagga L?WL) (E/Hl?)vg/HM»G?W/Hl?))

By local rigidity theorem of p-divisible groups, (W) C Hia X Has is a p-divisible subgroup.
As £ = [p*], m(W) is preserved by pullback of £, and 7(W) = m(W}). Recall that
X :=n(W).

As & : X — E’, a section that is equivariant under the action of G, by 5.2.5, we have

<h12v h/23>n = <h/127 h,23>n

for all n € N and (hi2, hos), (b2, hhs) € X[p"] functorial points. Given that (hig, his), =

([p*]hia, [pko]h’23>n we conclude that

(P12, higz)n = (Pig, hiyg)n (55)

which is precisely 5.2.1(a).
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Given 5.5, by 5.1.1 there is an admissible subgroup Hx C H}, where H} is the Tate-linear
nilpotent group of type A corresponding to the biextension E.. Let Ex be the Tate-linear

formal subvariety corresponding to Hx. By 5.1.1(b),

m(Ex) =X

and by 5.1.1(c), any element g € Aut(F) that fixes P acts on Ep. In particular, the subgroup
G'; of G acts on Ex.
Let sy : X — EQ: be the section corresponding to Ex, as 7|g, : Ex — X is an isomorphism.
Then the difference

sx —&: X — Hy3/His

is equivariant under the action of G’;. Hence by 5.4.1, it has to be trivial, that is

sx = &2

In particular, the schematic image of &; is a Tate-linear subvariety as Ex is.
As h(&2) € W/H{4 and both h(§2) and W/ H;3 are reduced, irreducible of dimension dim(X),

they must be equal, that is

h(&2) = h(Ex) = W/His (5.6)

Part (c) of 5.2.1 is now an easy consequence of 5.6 and 5.1.1(b).

Given 5.2.1(c), 5.2.1(b) follows from 5.1.1. We have proved 5.2.1.

Remark 5.3.1. The proof of 7.4.1 follows the same line as the proof of 5.2.1.
5.4. Equivariant Maps

The following results will be used in the proof of 7.4.1. Roughly speaking, given certain
slope constrains, an equivariant homomorphism from a biextension to a p-divisible group

has to be trivial.
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Theorem 5.4.1. Let B be a biextension of X XY by Z, all isoclinic p-divisible groups. Let
P be another isoclinic p-divisible group. Assuming that the slope of P is strictly bigger than
the slopes of X, Y, Z. Let G a p-adic Lie group that acts strongly non-trivially on both B

and P, f: B — P an G-equivariant morphism of schemes. Then f is the trivial morphism.

Proof. Pick a,r,s € Z>q such that

a a
sp=—, s>rand — > maz(sx, Sy, Sz)
r s

Pick hi, ..., hy with u = dim(P) coordinate systems of P. Assuming that [p®|p(h;) = hfr.
Let (Rp,mp),(Rp,mp) be the coordinate rings and maximal ideals of B, P respectively.
Fix v € Lie(G), and let g = exp(p™®v). Let ¢p : G — Autpiext(B) the natural morphism
induced by the action of G on B, and ¢p : G = Auty_qiv(P) the natural morphism induced

by the action of G on P. Let ¢p «, ¢p+ be the induced morphisms on Lie algebras. We have

nr

L. g(zi) = zi + ¢op(v)* (V) + O(zfQW), by the Taylor expansion of g and the fact that

Sp = %.
2. g(f*(2:))) = f*(z1) mod m¥  as g acts trivially on Spf(Rp/mb; ) by ??.
3. Since f is equivariant under the action of G,

nSs

g(f*(z) = f*(9(z)) = f*(z) + o(0)* (f(z)P") mod mly,

Thus

nr

¢p(v)*(f(2)" ) =0 mod m%m

as s > r, by by taking n — oo this implies ¢)B(v)* f*(z;) = 0, hence f*(z;) =0 as we

assume the action of G is strongly non-trivial,
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5.5. An Auxiliary Result

Lemma 5.5.1. Let k D [, the base field, let H = (H;j)1<i<j<3 be a Tate-linear nilpotent
group of type A of rank 3 over k. Let E = Defy_iorsor Which is a bi-extension. Let B =
E/Hi3 = Hia x Has, By, := (Hi2 X Ho3)[p"] and w : E — B the projection map. Let
(Rg.-mg),(Rp,mp), (Ru,5, mm,,) be the coordinate ring and mazimal ideal of E,B, Hi3

respectively. If N is an integer s.t.

S R (PN) H n
pf(Ruys/my, ) C Hizp"]

(M)
Spf(Rp/mp ') C B,

then

Spf(Rg/mE™) € B [p"]

. o . . (N)
Proof. Given the condition it’s obvious that 7(Rg/ mpEN ) C By, Let
U 2 HiYy x H3% x Hiz — B,

be Mumford’s trivialization. Consider the following diagram:

[Froby]
E, d (Frob) By ------===========- Y by € EP)
"vbn 7(LPN)
Frob

N
Hyy x HE x Hyg Hyy x H3 x HE) Hy, x (HZ)P" x Hiz(pY)

where a supscript (p”) denotes base changed by Frobenius to the Nth power.

Note that we used the following identity:

<F7’Ob%12(—),F7“Obg23(—)>n = FTObH13(<_7 _>7(1p )
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The composition of the top arrows is the relative Frobenius of FE,, same with the bottom

arrows. Let by be the based point of E(pN), we want to show that
(Frobg, )~ (bo) C Enlp"] = ¢n(Hiy x H3§ x Hi)

Let
F = w,(fN) o Froby

n 2n
ToxH33 x Hys

Using the commutative diagram, if suffices to show that

FHbo) € vy, (Enlp™])

but this is obvious given that
VTN Ealp"]) = Hiy x H33 x Hi

and

(P () = 0prpy x (H3y) ™) x Opyy,

n

and combining these two we have

— _ N
F 1(b0) :(FTObgﬁngngm) 1(0H12 x (Hzns)(p ) x Ory5)
CHP, x H3Y x Ker(FrobI;L)
CHfy x H3 x Hys

=4~ (Ea[p"])

We also need an analogy of 5.5.1 in the 4 slopes case.

Lemma 5.5.2. Let k D F), the base field. Let H = (H;j)1<i<j<a a Tate-linear nilpotent
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group of type A and B = Defy_sor. Let m: B — B the natural projection. Let F' = Hyy. Let
Rg,Rp, Rp,mx,mp, mp be the formal power series rings and maximal ideals corresponding
to E, B, I respectively. Fiz an integer n and let By, as defined in 6.3.1. If N is an integer

st S ®™) ®") ®™) n
t. Spf(Rp/myp ') C F, and Spf(Rp/my ') C By, then Spf(Rg/my ') C E,)p"].

Equivalently, let n, as defined in 4.2.5, then n, =0 mod mgN).

Proof. The proof is an analogy of the proof of 5.5.1 hence omitted. O

5.6. Inseparable Isogenies That Dominante A Purely Inseparable Mor-
phism

We proof the following results for later use. For this section F is a biextension with compo-

nents Hio, Hos, Hi3 where Hij is the fiber. Recall that we have
U Higlp"] x Has[p™"] x Hiz — Ey,
We define a subscheme of F,,, for each m € N

En[p™] := ¢(Hia[p"] x Has[p™"] x Hys[p™]

Theorem 5.6.1. Let E be a biextension of p-divisible groups over a field k of characteristic
p, m: F'— E a finite purely inseparable cover with F reduced and irreducible. Then we can

find an morphism of bi-extension f : E — E s.t. f factors through w: FF — FE.

Proof. let Rp be the ring of regular functions of F'. By assumption R is a integral domain.
Let Rp = Rglai,..,am] and N > 0 s.t. afN € Rp Vi. Let n be a a big enough integer and

F,, : E — FE be defined as in 5.6.2 s.t.
Fi(Rg) € RE)

then F,, factors through f and we have proven the theorem. O
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Lemma 5.6.2. Let E be a biextension of X XY with fiber Z. For anyn € N, ([p%], [p%], [pZ])
induce an isogeny F,, : E — E. Moreover, let Rg be the ring of reqular functions of E and
EY : Rp — Rpg the induced ring homomorphism of F,,, then for a fited N € N we have
F(Rg) € R v 0.

Proof. The fact that [p%], [p%], [p%"] induces an isogeny follows easily from the identity

<[pn]xm’ [pn]ym>m = [p2Zn] <l‘m, ym>m’vna m,Tm € X[Pm], Ym € Y[Pm]

and the characterization of Endp; ext(E) as a subset of End(X) x End(Y') x End(Z).
For the second part, let by be the base point of E that corresponds to the maximal ideal

mpg C Rg. By the construction we have
Fy H(bo) = Enlp™]
By 5.5.1, when n is big enough, we have

Spf(Ri/m®™)) € E,[p"] C Bu[p™] = Fy ' (bo)

n

which implies that for such n
E;(mg) Cm EN)

O

Corollary 5.6.3. If E C E a Tate linear subvariety, then the above homomorphism ([p%], [p%], p%"])
preserves E. Moreover, for each purely inseparable morphism p : Y — E', we can find a

no € N s.t. the restriction of ([p%], [P%], [p%']) to E' dominates p.

Proof. The first part holds given that ([p%], [py ], [P}]) preserves the Weil pairing and
m(E') C X XY as w(F’) is a p-divisible subgroup of X x Y.

The second part follows from the same argument as 5.6.1 and 5.6.2. O
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CHAPTER 6

THE ORBITAL RIGIDITY 4 SLOPES CASE: FIRST RESULT

The main result of this chapter is 6.3.2 and 6.4.6. Similar results are proved in [CO22|
Chapter 10, and we show that the techniques used in [CO22|, especially the tempered

perfections as discussed in 6.2, can also be used in our cases.
Notations 6.0.1.

1. Let H = (H;j)1<i>j<a be a Tate-linear nilpotent group of type A of rank 4 that is pure
and perfect over an algebraically closed field. For definitions see 4.4.1, 4.4.2 and 4.4.35.

In particular we have
Sij + 8k = Si, V1 <1< j <k <4

where s;; = slope of H;j.

2. Let E = Defr_tor, m: E — B the natural projections. We also use the definitions of
B,,E,, A, asin 4.0.1.

3. Let si; = slope(H;j). Let aij,r € N satisfying

is o
sij:%,V1§z<j§4

This implies

aij + ajp = a;, V1 <1 <j<k<4

4. Let Endgys(H) and Autgs,s(H) be the ring of homomorphisms and group of automor-
phisms of H, respectively. See 4.4.7 and 4.4.8.

5. Let iy, : Ay — E, asin 4.2.1.
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6. Yy 2 Ap — B, induces an projection ny, : [p"]En — Hi4, see 4.2.4.

7. Let v = (Aij) € Lie(Autpieqt(E)) C [[ Lie(Aut(H;;). Moreover we assume that A;j €
End(H;j) C Lie(Aut(H;j) for all1 <i < j <4.

_ naig 2nai4+nazs nai4s+nasq nais nais+na24
8. Anay, = (H{y" x Hyg x Haiy x H{$"™ x Hy) x Hyy).

9. Ena14 = wnam (AWIM)'

10. Enayy [P = $nays (Hyg™ x Hag @2 s Hg st s I s Hn ot Hyy [p)).
6.1. A Closed Form Formula for the Action on F: 4-Slopes Case

The main result of this section is 6.1.1, which states that when we restrict to a small enough
subscheme E,, C E,, C E, then the action of certain g € Aut(F) is a ‘torsor action’, and in

fact this action can be described explicitly.
Lemma 6.1.1. Notations as in 6.0.1.

a). For every n > 2, the infinite series

n(i=1)
p
> Al

1
>

converges to an element of End(H4).

b). Forz € EMM a functorial point and n > 2,
> pl A
eap(p"™10) () = (3 P A () F €hay, (2)) #

where * denotes the torsor structure of H14 on E, and e}, , () is a point of Hia[p"*1*]

that depends only on m(x), naisa and v = (Asj).
¢). For allm < 2n and for x € Enq,,[p™™] a functorial point, we have
exp(p"**v)(x) = (A147nar, () + €ng,, (2)) * (6.1)
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Proof. Part a). follows from the easy estimate that

2
ordy(k!) < 2k <=k
p

Now we prove part b). Fix an Artinian local ring R, let

x € Epgy, (R)

a R point and let
(xij) € Anau(R,)

be a 'preimage’ of x in /Nlmm, for some faithfully flat cover R’ of R, i.e.
Un((25)) = 2R

Since the group Aut(E) also acts on A,,,, and this action on flnal , descents to Epq,,, via

the faithfully flat morphism yq,,, therefore if

g = exp(p"**v)

then

9(T) R = VYnay, (9(Tij)1<icj<a)

where

(9(xij) = (exp(p™™™ - Ayj) - xij) = (x4 +m,; Aijp" ;) mod Apg,,,for(i,5) # (2,3),(1,4),

Ag3p?t i gy
g(x23) = wag + Agzp™ a3 + — mod Ayqy,
0 pna14j .
g(xa) =x1a+ ) ( A VAT 214
P
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Using 4.2.1 we can further show that

Vnars (9(Ti5)1<i<j<a) = Unars (2ij + fij(2))1<i<j<a)

where
o pjnam .
fu@) =0 ;1 Afy)mia + (P A3a234, 13 )nars
j=1
2na14A T
(p" w24 + (T34, p" "M 323 + wbnaw 12)nass

Since (zi5) € Anq,,, we have

2
(€34, P " T23) 2001, = 0

as T34 € Hgf14+na34 and x93 € H22:73w14+na23 and ai4 > ag4 = asq + ao3. Hence fi4 simplifies

to

> pjnam

fia(z) = (Z i A )w1s 4 (P Asaza, T13)n + (D T2a + (T34, D" A23293) 20, T12)
=

Therefore

g(x) =fra(z) x x

0 pna14(j71)

=( (TAJQ)%(@ + (p" Azax34, 13)n + (P 24 + (€34, " A23%23)2m, T12)) * X
Jj=1 '

we will adopt the notation
; oo pjflnaM
€nary (€)= fra(z) — Z(TA14)77“¢114 (z) (6.2)

j=1
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and rewrite the above equation as

[e.e]

P nayy
g(z) = (Z(TAm)nnaM () + €nay, (¥)) * id

Ena14

()

=1

note that as e},  (x) is calculated with (212,213, p"*4xa3, p"*4xay, p"*1234), it depends
only on 7(x),v,na14 where 7 : E — B the natural projection.

Finally part c). follows from the fact that

nai4

p Nnays () =0

for & € Fpq,, [p?"4]. O

Lemma 6.1.2. Let e} as defined in 6.1.1, see 6.2. In particular e}, is a function ey, : E, —
Hyy that factors through m : E, — B. Let x € E,. Then e}, (x) = [plm, - ep(x) and

n
eU(OEn) = 0H14'

Proof. We have the following commutative diagram

E, FEni
n Ynt1
A, A C A
where
Al = Hiy x Hy x Hyg x B2 x B x HEH, (6.3)
P = (idaa, idys, idys, [p°]23, [pl2s, [P)sa) (6.4)

For given a preimage (z;;) of x in ;4;, a preimage of z in A1 can be taken as (ng) s.t.
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p(;;) = (xij). Then we have

en () = (" A34234, 13)n + (P"T24+34, p" A23T23) 20, T12)) * idE, (), (6.5)

eni1(2) = (P Azawlyy, @hg)ngn + (P by + (2, 0" Agsmhg)onya, Tha)ni1  (6.6)
using

(@, Y)nt1 = P(T, Y)n, Vo, 9 € [P"], (6.7)

Tho = T12, T3 = T13, T4 = T14, (6.8)

[p*)ahy = wa3, [play = w34, [plahy = 22 (6.9)

it’s easy to see that

(z) = [pha - €41 (2)

Se

6.2. Tempered Perfection

We collect some definitions and results as given in [CO22| Chapter 10. These tempered

perfection rings are used in the proof of 6.3.2 and 6.4.6.

Definition 6.2.1. Let k be a perfect field of characteristic p and let ty, ..., t,, be m variables,
m > 1. Let r,s € Z>q be two positive integers with r < s, and let ng be a natural numbers.

The perfection of the formal power series ring K[[t1, .., tm]] is naturally isomorphic to

neN

Denote by ¢ the Frobenius automorphism of this perfect ring.
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(a) Consider the following subring

(U ot D = D 6T ()

neN

of the perfection of the formal power series ring m[[tfﬁn, v t’,;;n]], where our convention

is that ()@ ) = R if ns — ig < 0.

e Define a decreasing filtration Filjiff«.[io] on (m((t’f_n, ..,t%n>)§¢r,[io])ﬁn by ideals
. J -n —n . n n+j
Fillh = {x € (B "t N pio)inl I ENsg st n+j >0 and 2?” € (1) ’>}

of (n((tzl’in, ..,t’,’,{">>ﬁ¢r;[i0])ﬁn, where (t) is the mazimal ideal of K[[t1, .., tm]].

e Define /<L<<t11)7n, s

567 io] to be the completion of the ring

n —-n

(KUt "N E i) in

with respect to the filtration Filff’e.

Jlio]

(b) Consider the following subring

S L O e A ()

neN

of the perfection of the formal power series ring K,[[tfin, o t’;,;n]], where our convention
is that ()@ ") = R if ns — ig < 0.

e Define a decreasing filtration Fills’f;: lio] O (m((t’l’_n, "’t%n»g;w-[io])ﬁn by ideals

Filgﬁi%[id = {x € ({8 "Lt N o )sin]l 3N €Nsg st n+j >0 and a?” € (t)“’"”)}

n

of (k{(t] ,_.,tlg">>g:¢r;[m])ﬁn, where (t) is the mazimal ideal of K[[t1, .., tm]].
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e Define /<a<<t}1rn, --7t%n>>2:¢r;[i0] to be the completion of the ring

n

(/{<<t€_ PRED) t];,:n>>l;¢r7[m])ﬁn

with respect to the filtration F iliﬁ: lio]

Definition 6.2.2. Let k D Fy, be a perfect field and let t, ..., ., be variables. Let C' > 0,d >

0, E > 0 be real numbers.

1. Define a commutative algebra

whose underlying abelian group is the set of all formal series Y ; brt! with by € k for

all I, here I runs through all elements in N[%]m such that

[, < Maz(C - (|I|~ +d)E,1)

here for any multi-index I = (i1, ...,im) € Z[1/p]%y, |I|, is the p-adic norm of I and

|I|oo,max 18 the archimedean norm of I, defined by

1], == max(p~ %) . p=orde(in)y

1100, maz = max(iy, iz, ..., im)

2. Define a commutative algebra

whose underlying abelian group is the set of all formal series ) ; brt! with by € Kk for
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all I, where I runs through all elements in N[;l)]m such that

]y < Maz(C - (| +d)*,1)

where

(Lo = lia] =+ lia... + lim]

Definition 6.2.3. Let (R,m) be an augmented complete Noetherian local domain over a
perfect field k characteristic p. Let RP"T be the perfection of R, and let ¢ be the Frobenius

automorphism on R. Let A,b,d be real numbers, A,b >0 and d > b.

(a) Define a decreasing filtration (Fily, Yecr 0n RP"S indexed by real numbers u by

perf’deg

P {z € RrerT|3j € sta? e mP'},  ifu>0
il per =
Rrerf deg Rperf7 ifu <0

u

. . or
Rrers deg 15 0T ideal of RP" for evrey u € R.

It is easy to see that F'il

(b) Define a subring ((R’m)ie,ng)fm of RF by

b - bpAn—d
((R7 m)ge,};;fd )fzn = Z(¢ nRﬂ FZleierf’deg)
It is not difficult to see that ((R,m)i‘ig;};b)ﬁn is a subring of RP'S.

(c) Define

b
(R.m)"

to be the completion of ((R, m)i‘eﬂéb)ﬁn with respect to the filtration induced by the
filtration (Filpers g4.,) of Rrers:

b . b . b
(Rt = T ((Rom)s) pin/ (Fillyer g (YR30 i)
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(d) Define a filtration (Fil’ | perfs)e ON (R,m)ﬁiz;{}b by

(Bm) 4 pid

. . . b . b
Fil's ersy = 1m (Fillers g0 0V ((Rom)5 ) i)/ (Fillers gog 0 (Rom)I350) i)

(R,m)Aﬁb;d V—00

To state 6.2.5, we set up some notations.
Notations 6.2.4. (The setup for 6.2.5)

1. Let (R, m) be an augmented complete Noetherian local domain over a perfect field k of

characteristic p. Let (R,m)ffzzj;b be a tempered perfection of R, where A,b,d are real

., er f,b
numbers, A;b > 0,d >b. See 6.2.3 for the definition of (R, m)i’bzfd .

2. The tempered perfection (R,m)iegf;b carries a filtration

Fil® e
( (R,m)z,bff,deg)‘

which is induced by the filtration Fil;%gerf on the perfection RP"T of R.
eg

3. Let m,m’' > 0 be positive integers, and let

be a tempered perfection of k[[u,v]] = K[[u1, ..., Um, V1, .., V]|, where E,C,d are real
numbers, £,C >0 and d > 0.
4. Let g1, ..., Gm, P1, ..., by be elements of the mazximal ideal of (R,m)%gzb.

5. Let A" > 0,0 > 0,d >V be real numbers such that the following conditions hold.

o The continuous ring homomorphism

A b
Ug@1,10h : K[[w1y ey Uy U1, ooy Upr]] — (R@KR,mRé%R)ﬁEZ@
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which sends a typical formal power series
FUty ooy Uy V14 ooy Upt) € K[[UTy ooy Upny U1 ooy Uy ]]

to
fg1®1,.,0m @ 1,1@h1,...; 1 @ hyp) € (ROLR, mRmﬂfZ{”f

extends to a continuous ring homomorphism

—oo

Eb ~ b
evge1,1eh  K{(W 07 ))oly — (R®RR, mR@R)]XiZ:@

The existence of such a triple (A',b',d’) is straight-forward from the definitions.

See [CO22] Chapter 9 for case when (R, m) is a formal power series ring.

The continuous ring homomorphism

b
Vg@1,10h * R[[UL, oy U, V1, o V] — (R, m)pAe’Z:Z

which sends a typical formal power series

FULy ooy Uy V15 ooy U ) € K[[U1y ooey Upny U1, vy Uy ]]
to
b
F(G15 s Gms s ooy b)) € (Rym)IH
extends to a continuous ring homomorphism

—o0

eVg.p : K((uP
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o The diagram

€Ug®1,18h
—oo —o0 E7b g® ? — ~ ,b
r(W? 0P )l (R&wR, mpg, p)lird
= A*
K/<<up_oo UP_OO>>E,I) evg,ﬁ (R m)perfvb
uo,u Csd ) 40 by

commutes, where the vertical arrow A* is induced by the multiplication map A :

R® R — R for the k-algebra R.

6. For every element f € ﬁ((gpfoo,ypfoo»gfg, define elements

flg. f) € Rom)% )0, and f(g©1,1@h) € (R&.R.mpz p)5el

f(gﬂﬁ)f(gh "'7gm7h17 ey hm') = evg@(f)

flg@L1eh)=f(g1®1, .. .gm ® L1® h1,...; 1 ® hy) 1= evg1,10n(f)

Theorem 6.2.5. (Hypocotyl elongation for tempered virtual functions). We use
the notation in 6.2.4. Let (R,m) be an augmented complete Noetherian local domain over a

perfect field k of characteristic p.

)perf,b

o Let g1,..,Gm, h1, ..., hyy be elements of the mazimal ideal of (R, m)} 7"

o Let f(i1, .., Um, V1, ..., Uy ) be an element of

— 00 —_— — 00 — 00 E7b
R ™ 8 )
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which lies in the closure of the image of

R )) e ® (WP TN G — w2 ) E

)

o Let g =p" be a power of p for some positive integer r. Let (dyp)neNn>n, be a sequence

of positive integers such that lim, s 37 =0.

Suppose that

£ty s gy BE hT) =0, mod Fil™ .
m (Rm)P )% deg

in (R, m)’jf,ng’z, for all n > ng. Then

@1 ®1, 0 gmn®@1,1@hy,.; 1@ hyy) =0

in the completed tempered perfection (R®.R, mR®KR)Ze,Tin’Z, of R®.R.

Proof. See |C0O22| Chapter 10. O

6.3. Proof of The First Result

Notations 6.3.1. We set up some notations for 6.3.2. Note that these notations are com-

patible with 6.0.1.
1. We use all the notations as in 6.0.1.

2. Let H = (H;j)1<i>j<4 be a Tate-linear nilpotent group of type A of dimension 4 that
is pure and perfect. For definitions see 4.4.1, 4.4.2 and 4.4.5.

3. Let E = Defy_ior, m: E — B the natural projections. We also use the definitions of
B,,E,, A, asin 4.0.1. Let
Rp = k{{t1,..estm))

where R is the ring of reqular functions of E. Note that E is formally smooth.
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4. Let si; = slope(H;j). Let a;j,r,s € N satisfying
(a) sij="2V1<i<j<4

(b) 7 <s<2r, hence s1q4 = 44 > 44 > 4l

T s 2r

(c) s14 =44 > A > 5 V(k, 1) # (1,4).

S 2
5. Fiz ng,ca € N such that Hi;[p™| D H;j[Froby,” ] foralll <i<j <4 andn > ny.

6. Let ng € N such that Hj[p"*J| D H;;[Froby®] for all n > ng, (i,5) # (1,4), and that

Hya[p"4] C Hi4[Frobl®] C Hia[p***4] for all n > ns.

Theorem 6.3.2. Notations as in 6.3.1. Further, Let G a p-adic Lie group acting strongly
non-trivially on E and W C E a reduced irreducible formal subscheme of E that is invariant
under the action of G. Let Hiy = (W N Hj 4)req e the intersection of W with Hy 4 endowed
with reduced structure. By orbital rigidity theorem of p-divisible group 1.1.1 we know H1, is

a p-divisible subgroup of Hy 4. Let

V:H,xE—E

(h/147 6) — h/14 *e

corresponding to the restriction to Hi, of the action of His on E. Let v = (A;;) € Lie(Q)
be an element of the Lie algebra of G such that A;; € End(H;j).

a) Then
(Yo (Aulgy, xidw))(Hiy x W) CW

b) Assume in addition that the action of G on Hy, is strongly non-trivial. Then
Y(H, xW)CW

Proof. We first show that 6.3.2.a) = 6.3.2.b).
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By 3.3.2, the assumption that the action of G on Hj, is strongly non-trivial implied that

there exists elements h* = (hf}l ) € Lie(G), indexed by a finite subset
{(k,) eN*: ke {1,...m},l € {1,....n1}}
where nj, € N> for each £ =1, .., m, such that

> wfio k3. o bt € End(Hi,)
1<k<m

Hence the statement 6.3.2.b) follows from statement 6.3.2.a) and the above linear algebra
consequence of the assumption that G operates strongly non-trivially on Hy,. Now we prove

statement 6.3.2.a).
Step 1. Preliminary reduction steps

(a) It suffices to prove the statement after extending the base field to an algebraic

closure of k. So we may and do assume that k is algebraically closed.

(b) If E — E’ is an isogeny of triple-extensions, the statement holds for E if and
only if it holds for E’. Modify E by suitable isogeny, we may and do assume that

H;j; are p-divisible groups such that Hi4 with slope(H14) = “X*, we have

Hyy[p™*] = Hyy4[Froby, ]

(c) Choose a suitable regular system of parameters (uy, .., up) for Hy4 such that Hyq =

Spf(k[[u1, .., up)] and

r

[P (ui) = uy

Step 2. Recall the definition of Exy and Ex[p™] as in 6.1.1 for N, M € N.
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By 6.1.1, especially 6.1,
Y (eap(p" 1)) = (A1g 0 Nnayy + €4™) *idp  mod Eng[p*" ]
By 5.5.2 and the definition of ng in 6.3.1, we have
Hu[p") € Ri/(mB™") C Bray, [p4], Y1 > ng
Hence
P(exp(p™v)) = (A14 © Mnay, + en®) xidp  mod m%LS?Vn > ng (6.10)

For each j =1, ..., b define

» (ns)
ajp = (A11 0 g + €5")" (ug) € Rp/mi

for all n > n3. Then by 4.12 and 6.1.2 it is easy to see that {a;, }n>n, are ¢ compati-

ble sequences for all j = 1,2,...,m. Let i1 := maz(s—r, %2) Then by [CO22] especially

— 00

6.8.3.3 and 6.8.3.4, each {a; » }n>n, gives rise to an element a; € /<;(<t11’_00, s thy >>Z:¢r;[i1].

Step 3. Elements ay, ..., a,, € (Rg, mE)g:¢T~[i1] defines a ring homomorphism

ﬁ[v] : RH14 = k[[ulv >um]] - (RE’mE)IS)eﬁ;{’[ZZI]

Let

b o
wi (RE,mE)fzi[m - (RHM’mHM)ng;M

be the ring homomorphism induced by the inclusion H14 < FE. Because the restriction

to His of the morphism n,|m,, — Hia equal to [p"|m,, for every n € N, and that
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62 Hy4 as a subscheme of £ — 0, we see that

wionv] = Aty 0 jry,,

per f,b
s:97;3[i1]

tempered perfection and Aj, is the ring homomorphism induced by A4 on Hyy.

where jRy,, : Rz, — (R, mm,,) is the natural injection from Rp,, to its

Step 4. We also have the following ring homomorphisms

(a) The canonical homomorphism Rgp — Rp/Iw gives rise to a homomorphism

7b ,b
™+ (R m) (g ) = (R man S5

(b) Continuous ring homomorphisms

Ai: Rg — Ry ®Rp,

Az : Rg — Ry @Ry

(¢) The ring endomorphism
per f,b per f,b

w2 ! (RW7mW)S:¢r;[i1] — (RH{4)mHi4)S;¢r;[i1]

induced by
Hi4 > Hiyy — W

(d) The ring endomorphism
14 = Allmy, - Ry, — Ruy,

corresponding to the endomorphism Hi4 of the p-divisible group Hi4.
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It follows that the following diagram commutes

felw CRg Rg

iAl AQ

Ry &R LoT R i@ R
Hi, E A* 1 Hi, w *
Vil @Rl el
E
(R, ma)g b (R, me )l Ry, © R Ry, © Row
T& Ti 1 /RH/L; X jRW
er S er w2 ® er S er
(Rw, mw)?ei b &(Rw, mw )P T (Rarg, o g ) 2ig i @ (Rwmw )2GTE

Step 5.

Step 6.

s:¢7;3[i1] s:975[i1]

Recall that Iy is the prime ideal of the coordinate ring of E. We want to show that
for all f € Iy,

(A1y X 1gg) 0 Ao(f) =0

Because jRpy; and jRy are both injective, it suffices to show that for all f € Iy,

(JRm;, ® jRw) o (Aly X 1rg) 0 Aa(f) =0

From the commutative diagram we see that it suffices to show (a stronger statement)
that

(r®7)0 (] @jry) o Ai(f) =0,Yf € Iw (6.11)

Let f € Iy. Define an element

erfb 2 er f,b
IS (REvmE)zqy}f,[“}@(REamE)g(b}f’[“} (612)

f=((0v] @ jrg) 0 A1)(f)

where (7[v] ® jr,) o A1 is the composition

A A A lv]®jr bhooa b
Ruy,@Rg =% Re@Rp ~ —" (Rp,mp)lull (&(Re,me)’ol |
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Step 7.

We want to show that the image of f under the map

rh e rh Thert 1o 1
(Bgy me) g i @R mu) gy — (B mw) g s © (B mw Vg,

1S zero.

Let¢ be the Frobenius endomorphism 2 — x? on (Ryy, my ). Let

vw : (Rw, mw)’®(Rw, mw)® — (Rw, mw)°

perf,b
$:07;[41]
perf,b

s:¢7;[t1

Because the formal subvariety W C E is assumed to be stable under GG, therefore stable

be map which defines multiplication for the ring (R, my) . Geometrically vy,

corresponds to the diagonal morphism from Spec(( Ry, my) }) to its self-product.

under 1 (exp(p"**v). Hence 6.10 implies that

v (" @ 1)((TP @ 7)(f)) =0 mod FilP"’

where ¢ ® 1 is the ring homomorphism

b2 b b2 b
@ & 1 (Buy s mw Y50 & Ry man G2 = (B YL @ (R, mw )0

Applying theorem 6.2.5, also note that r < s which implies lim g =0, we conclude

that
(" @ 7)(f) =0

in (Ry,mw)"” e(;f ’[I;ﬂ@)(Rw,mW)’; quf ’[lzﬂ, for every element f € Iy, which is precisely

6.11. As we have seen, this implies that

(Auslg, ® D)(Ao(f) = 0

in Ry, ® Rw for every element f € Iyy. We have proved the result.
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6.4. Further Consequences
The following result 6.4.1 is proved in [CO22| Chapter 10. The main purpose of this section

is to prove 6.4.6, which is an analogy of 6.4.1.

Lemma 6.4.1. Let m: E — X XY be a biextension of X XY by Z over k. Assume that
X,Y,Z all isoclinic with the slope(Z) strictly bigger than slope(Y), slope(Z). Let G be a
closed subgroup of Autpiest(E) such that the action of G on Z is strongly non-trivial. Let
W be a reduce irreducible subscheme of E stable under G. The closed formal subscheme
7' = (WNZ)peq is a p-divisible subgroup of Z, and W is stable under the translation action

by Z'. Let W =W/Z', a reduced irreducible closed formal subscheme of the biextension
E/7 = (Z — Z)Z').E
of X XY by Z/Z'. Then the natural map
qw W' = E/Z

is finite purely inseparable formal morphism. In other words the affine coordinate ring Ryy

of W' is finite over the subring Rim( the affine coordinate ring of the schematic image

Qwr)?

of qw, and there exists a natural number m such that xP" € Rim(gy) for every x € Ry,
Proof. See [C0O22|, Chapter 10. O

The rest of this section will be devoted into proving an analogy of 6.4.1. We first setup

notations.
Notations 6.4.2. (Notations and assumptions for the rest of this subsection)

1. We continue with the notations as in 6.3.2: let H = (H;;) be a general sustained linear
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group, pure and perfect. Let G C Aut(H). Let W C Defr—torsor Teduced irreducible
closed formal subscheme of E stable under the action of G. Letv = (A;j) be an element

of the Lie algebra of G with components A;; € End(H;j).
2. There exists positive integers ai4,7,S,n3 such that

(a) 0 <ay<r<s

(b) slope(Hy4) = 44, Hyy[p™4] = Hyy[F"].

aiq
(c) the congruence condition 6.10 holds.

3. Recall that in Step 3 of 6.3.2 we pick a regqular system of parameters ui,us, ..., up of

the complete local ring Rp,, with [p*|,, = ufr for alli =1,....b, and constructed a

continuous ring homomorphism

n(v) : Rpg,, — (RBmE)ieg;’[I;l]

Define the schematic image Im(n[v]|w) of the restriction to W of njv] by

Im(ij[v]lw) := Spf (R, /Ker(r” o ijlv]))

] er 0 er
= Spf (Rupsfker(Ris, ™% (R, me)™5 8 s (Ryr, mw 2550 )

Lemma 6.4.3. We continue with the notations of 6.3.2. For every element v = (Ajij)1<i<j<4,
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the diagram

Ay ~ jRH14 oA’l‘4®ﬁ b & b
Ry, R, QRH,, H 14)§?¢:f;’{i1] ®<RE)§:6¢;{’[1'1]
7 J
b
fb A - £b

(RE) g i (Ri14®Rp) 4

jRE jH14®RE
A .

REg Ru14®RE

commutes. The arrows Ap,,, A s IR, JBy IRy, &R I 0TC G5 follows:
o Ay, corresponds to the group law on Hyg.

o A: Rp — Rp,, ® Rg corresponds to the Hi4 torsor structure Z x E — E on E, which

induces a ring homomorphism AP : (RE)if;,f’[zl] — (RH14®RE)7;?;TJC,’£1]

° jRH14’jE’jRH14®RE are the inclusions maps from Ry,,, Rg, Ry, ,®RE to their tem-

pered perfections

o The downward vertical arrow j on the right is the natural ring homomorphism, from
the tensor product (RHM)ie;Tf,’[Z;]®(RE)§ZJJ[€1} of tempered perfections to tempered per-

fection (RH14®RE)§:6£7{’§1] of Ry, ®RE.

Proof. Left as exercise. O

Proposition 6.4.4. We use the notations and assumptions in 6.4.2. Then

(a) The formal subvariety W of E is stable under the translation by the smallest p-divisible
subgroup of Hia which contains the schematic image Im((n[v])|W) of the restriction
to W of the morphism qj[v] : E — Hua, for every element v € Lie(G) N (][ End(H;j)).
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(b) Let Hisz be the smallest p-divisible subgroup of Hys which contains the schematic
image Im((7[v])|w) for every v € Lie(G) N [[(End(H;;)). Then W is stable under

the translation action by Hiagz.

Proof. We will show that W is stable under the translation action of Im(7[v]|w). The
statement (a) follows easily from this apparently weaker statement.

Let Iyw = ker(7 : Rg — Ry ) be the ideal of Ry corresponds to W. Let
J[v] :== Ker(Tb ofv] : Rgon]: Ryy, — (RW7mW)§;e£f;’[21])
We need to show that the kernel of the composition
R 2 Ry, © Rp "5 (Ru,,/J[v)) ® Rw
contains Iy, where g, : Ry, — Rp,,/J[v] is the quotient map. Let
Ju) : Rera/ T 0] = (R, mw Pl
be the injective ring homomorphism such that

0 fiv]* = Jy 0 qp)

We have a commutative diagram

A Qo) O 7
Rp Ry, ® Rp (R, /J[v]) @ Rw
77[11] ® JRg J[v] ® JRw
perf,b Tb 02y Tb perf,b perf,b

(R mp) i/ 1@ (Re.me) iy i
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In step 4 of 6.3.2 we showed that Iy C Ker((7° ® 7°) o (ii[v] ® Jr,) ® A. Therefore
Iw C KGT((QM & T) o Al)

because J,) ® Jpy, is an injective ring homomorphism. We have prove the statement (a).

The statement (b) follows from (a). O

Corollary 6.4.5. In 6.4.4, assume in addition that G operates strongly non-trivially on
Hyy. Then the intersection w N Hyy with reduced structure is equal to Hya g, the smallest
p-divisible subgroup which contains all schematic images Im((f[v]|w)), where v runs through

all elements of Lie(G) N (I[1<;<j<q End(Hij)).
Now we prove the main result of this section.

Theorem 6.4.6. Let H be a Tate-linear nilpotent group of type A of dimension 4 that
is pure and perfect, let E = Defp.ior, m : E — B the natural projection. Recall that E
admits a Hy4 torsor structure over B. Assuming that s14 > s;5,Y(i,7) # (1,4). Let G be a
closed subgroup of Aut(H) = Aut(E), in the sense of 4.4.8. Let W be a reduced irreducible
closed formal subscheme of E stable under the action of G. Suppose that the action of G
on Hyy is strongly non-trivial. By 6.3.2 the reduced formal subscheme Hi, = (W N Hi4)red
is a p-divisible subgroup of His, and W is stable under the translation action by Hi,. Let
W' = W/H]{,, a reduced irreducible closed formal subscheme of the biextension E/H}|, =

(Hy4 — Hy4/H},)+«E. Then the natural map
qw W' — E/Hyy
s a finite purely inseparable formal morphism.

Proof. Extend the perfect base field k if neccessary, we may and do assume that the base
field k is algebraically closed. Recall B = E/Hy4. As the closed fiber of the formal morphism

Tlwywy, + W/Hly — B is finite over k, therefore 7|y, p is finite. Denote by W the schematic
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image of 7|y, a reduced irreducible formal subscheme of B stable under the action of G.
We need to show that W is purely inseparable over W.

Now W.L.O.G. assume Hj, is trivial, hence W = W’. Let Ry, Ry be the coordinate rings
of W, W respectively, and let j : Ry, — Ry be the continuous injective ring homomorphism
induced by 7|y. We know that Ryy is finite over Ry, and must show that there exists N € N
such that 27" € Ry for all x € Ryj,. Suppose no such natural number N exists. Then there
exist continuous ring homomorphisms h1, ha : Ry — k[[u]] from Ry to the power series ring
in one variable u, such that hyjoj = hgoj but hy # hs. Since the projection E — B = E/H14
is a Hy4 torsor, there exists a continuous k-linear ring homomorphism ¢ : Ry, — k[[u]] such
that

[l © (6 ® h1) o A = hy
where
e A: Rp — RH14®RE corresponds to the action of Hy4 on E,
o pup) © k[[u]]®k[[u]] = E[[u]] is the multiplication map on k[[u]],

e Ker(d) C mp,,, or equivalently k[[u]] is a finite module over the subring Im(d),

because h1 # ho.

We know from that for every v = (A;;)1<i<j<a € Lie(G) with components A;; € End(H;;),

the kernel of the composition 7° o 7j[v] of the continuous ring homomorphism

b

il b b
Ry, A (RE7mE)Is):e¢7>ﬂ”{[iﬂ — (RW7mW)I;:€(L{[i1]

contains the maximal ideal my,, of Ry, In other words 7°07j[v] is equal to the composition

perf,b

Ry, — k — (Rw, mW)SicﬁT;[iﬂ’ the trivial k-linear ring homomorphism.
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Consider the following diagram,

Ag . (JRuya 0 Ara) ® (V] ot - o
RH14 - RH14®RH14 1 (RH14 )§5¢7{7§1]®(RE)§1¢£751]
n[v] j

er Ab A er
(Re)glt, (R @ Rp)0
(hy o) (1&r)

b

er 'uk[[u“ A er (5 ® h‘l)b A er

(kllul))2 e (Rl @R[l (Re, ©Rw)I 10

The Commutativity of the top half of the diagram follows from 6.4.3, while the bottom half

commutes because f ) © (6 ® h1) o A = hy. The homomorphism

(hooT)boR[v] 5 er
Ry, 2o (k[[u]]‘@k[[u]])?:qﬁ’{ﬁﬂ

is the trivial k-linear ring homomorphism because 7° o 7j[v] is. On the other hand, we have
(ha o 7)" o ife] = iy 0 G@ )" o (LT 0 0 (i © Afy) @) © A,
The right hand side of the above equality is equal to the following composition

A 5 Jk[[u er
Riy 2% Ry, 2 Kl[u]) ™ (k{ful) 272

Therefore the non-trivial k[[u]]-point 6* of Hi4 lies in the kernel of the endomorphism Ajy
for every element v = (A;;))i<i<j<a € Lie(G) N ([[ End(H;;). Since the action of G on Hi4
is strongly non-trivial, the point 6* € Hy4(k[[u]]) is 0. This is a contradiction. We have

proved that W is purely inseparable over W. O
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CHAPTER 7

THE MAIN THEOREM

Notations 7.0.1. Setup of This Section

i) Let H be a Tate-linear nilpotent group of type A of rank 4 over an algebraically closed

field k of characteristic p with p > 5. We further assume H to be perfect and pure.
it) E' = DefH torsor
iii) Let B = E/Hy4, 7 : E — B the projection map.
i) Let G C Aut(E) a closed p-adic Lie subgroup acting strongly non-trivially on E.

v) Let W C E a reduced irreducible formal subscheme. Assume that W is invariant under

the action of G.

vi) LetY := w(W)N(Hy3 x Hay) where Hi3 X Hay C B as a subscheme. X = (w19 X mag X
m34)(W) C Hia X Hag x Hsy. Since W is invariant under the action of G, hence both

X, Y are p-divisible subgroups by 5.2.1.

vii) For n € N,let B3, Bos, B13 n, Boan, B, En, 123, T34 as defined in 4.6.2. Note that
both Bi3, Bay are bi-extensions and that B = B3 X H,, Baa.
viii) Let Ay, E, and i : A, — E, as in 4.2.1.
7.1. Compatibility of Trivialization
The following result will serve as the ’induction hypothesis’ in the proof of orbital rigidity

of 4 slopes case.

Theorem 7.1.1. Notation as in 7.0.1, and let W C E a reduced irreducible invariant under

the action of G C Aut(FE). The action of G induces action on both Bys and Bay. Let

1 2,4 S .
wniiommwn,homo be (homogeneous) Mumford’s trivialization of Bis and Bayg respectively, see
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8.4.4. Then

(a). the following diagram

()

(Hi2 x Hag x Hsy)[p*"] x (His x Hay)[p*"] x Hiy . E,

11, 7|E,

n

(Hig x Hag x Hsq)[p*"] x (Hig x Haa)[p*"] - By,

[pn]H12><H23><H34><H13><H24 —
1,3 2,4
TJZ)n,homo ®H23 djn,homo

(Hy2 x Haz X H3q)[p?"] x (Hiz X Hay)

commutes, where

© U omo @Hay Vihomo © (H12[p?"] X Has[p?™] x Hig X g,y (Has X Haa)[p*"] x Hay —

B}L73 @ Has B72L74 — B

e ), is the morphism from Hya x Hag x Hz4)[p3"] x (H13 x Hay)[p*™] to B, induced
by ¢n.

e II,, is the natural projection from (Hyg x Hag x Hzy)[3"] x (Hyz x Hay)[p?™] x Hy4
to (Hig x Hyz x Hza)[p*"] x (Hiz x Haa)[p*"].

(b). Let Wy, :== m(W) N B,,. Let X,Y as defined in 7.0.1(vi). Let S, be the morphism
Sn: X[p?"] x Y[p"] — B that sends (x,y)

to

1 1
1,3 24/,2n .2n _2n 2n,.2n n 2n,.2n n
w” @Hys Uy (213, 133, 157, 512723 + Y13, 5723734 + y34)

where

T = (x%’f,x%ﬁ,x%ff) € va = (y??nygzl)

Then S,, factors through W,,.
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Proof. Part (a) follows from the construction of 1, as in 4.2.1 an easy diagram chasing.
Part (b) is a direct consequence of 5.2.1 which says that w(W) is a Tate-linear formal
subvariety of B, given that 7(W) is a reduced irreducible subscheme of B invariant under

the induced action of G on B.

7.2. Existence of Admissible Subgroups

Lemma 7.2.1. Let H = (H;j)1<i<j<a be a Tate-linear nilpotent group of type A. Let X C

His x Hoz X Hsy, Y C His X Hoy p-divisible subgroups. If we further assume that

(2gxhy’ — 2ty why, abhsaly — aby'ahy) € Y, Ve = (a7, ahs, 2%y), 2" = (a1, 253, 28,") € X[p"]
(7.1)
ToYsy = 3/171391”?@VCC = (7o, 5'333’ $7§4) € X[p",y= (y??n ysy) € Y[p"| (7.2)

then there is an admissible subgroup H = Hxy C H such that Lie(H) = X ®Y & ep14.
For the definition of Lie(H) see 4.7.5.

Proof. Consider the subschemes

1 1
1 212 5T12%23 + Y13 GT12223%34 + T12Y24

0 1 x93 Laoswas + Y24 n n
H, = 2 Vo = (z12, @23, 34) € X[P"],y = (y13,924) € Y[p"]

0 0 1 T34

0 0 0 1

It is a simple algebra exercise to check that H,, is indeed a group scheme and that the

natural morphism H,+1 — H, is faithfully flat. O

7.3. The Case When 7|y is Isomorphic

The main result of this section is 7.3.4, which is a special case of the main result of this

thesis 4.8.2.
Lemma 7.3.1. Let A, Ey, By, Yn.homo © An — Ey as in 4.2.6. Note that B, = w(E,).
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Then 1y homo induces a faithfully flat morphism

%2 (H12 X H23 X H34)[p3n] X (ng X H24)[p2n] — Bn

Moreover, let W, X,Y as in 7.0.1. Forn € N, let W,, := ©#(W) N B,, a finite subscheme of

W. Let J, be morphism from

X[p?m] % Y[p2n]
to
(Hiz x Hoz x Hzy)[p®"] x (Hiz x Haq)[p*"]

that sends

(z,y) = (235, 235, 231), (435, v3L)
to

1

(=33, 235, 234, 5 (235, 235 ) 123,30 + Y15, 3 (235, 234 234,30 + Y54

Then

Tn 0P = X[p*"] x Y[p*"] — B,

factors through W,, and as a morphism from X [p>"] x Y [p*] to W, it is faithfully flat.
Proof. This is a reformulation of the result in 5.2.1 and 7.1.1. O

Remark 7.3.2. The significance of 7.3.1 is that this coordinate system, that is trivializing

m(W) using X and Y, is more natural and easier to handle.

Corollary 7.3.3. Notation as 7.0.1. Let J, be the morphism defined in 7.5.1. We further
assume that wly : W — w(W) is an isomorphism. Then for each n € N, there exists a

morphism

frn s X[p*"] x Y[p*] — Hyy
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s.t. for all v € X[p*"],y € Y[p*],

Q;Z)n,homo(u7n(xa y)> fn($a y)) €Wy

where (Tn(x, ), falx,y)) is an element in (Hig X Haz x Hzy)[p®™] x (Hyz x Hay)[p?™] x Hi4.
Moreover, we have the following compatibility between different n’s: for ' € X[p*n*2], 4y €
Y[p2n+1}’

fnJrl(x/v y/) = fn([pz] ’ x/, [p] ’ y/)

as elements in Hyy.

Proof. This is a direct consequence of 7.3.1 and the fact that |y : W — =(W) is an

isomorphism. O

Theorem 7.3.4. Notation as in 7.0.1. Assume that 7|y : W — 7w(W) is an isomorphism.

Let X,Y and f, : X[p*"] x Y[p*"] — Hiy as in 7.3.3. Let

fn(xvyvA) = fn(:r,y) - fn(‘r?y—i_ A)

where
_ 3n _.3n _.3n 3n 3n
r = (715, w53, x3y) € X[p"] C (Hiz2 X Haz x Hzq)[p™],
y = (yi5,y51) € Y[p™] C (His x Haa)[p™"],
A = (AR, A3)) € Y[p*™] C (Hiz x Hay)[p™"]
Then

(a) fn(xuya A+ A,) - fn(xaya A) - fn(x,y,A') = 0.
(b) falz,y,A) is independent of y.
(C) fn(xl + T2,Y, A) - fn<m17y7A) - fn(x%ya A) = O7V$17x2 € X[P3n]73/7A € Y[p2n]
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(d) Forx = (aly, w3, a%y), ¢" = (21y, 253, a%)') € X[p"], y = (v13,954) € Y[p"], we have

n n/ n'l_n n n/ nl'_n
(33125323 — X102 L93, La3L34 — L3 3334) ey

(719, Y34)n = <y?3, 95§4>n

(e) There exists an admissible subgroup Hxy of H such that
Lie(HXA/) =XoY depy,
and that
n(Exy) = m(W) as subschemes of B

where Exy is the Tate-linear subvariety of E that corresponds to Hxy. For the
definition of Lie algebra of an admissible subgroup see 4.7.5. For the definition of

Tate-linear subvariety that corresponds to an admissible subgroup, see 4.7.8.

(f) W is a Tate-linear subvariety.

Proof. Let F(z,y, A, A') = f(x,y, A+ A") = fu(x,y, A) = fu(x,y, A’). We prove the result

in several steps:

Step 1. We show that for all V(x,y), (z',y) such that i, (z,y) = ¥,(2',y'), and all A, A’ €
Y{p*,
F(x,y, A, A" = F(2',y/, A, A")

First notice that 1, (x,y) = ¥n(2',y) <= ¥n(z,y+A) = (2, y'+A), VA € Y[p*].
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By 4.2.6 we have

f(ﬂ?,y,A) - f(x,7y,a A) = [fn(xvy) - fn(xlay/)] - [fn(xvy + A) - fn(xl,y' + A)]
2n/

= [yis (23} — 234") + 25 (y37 — 3] — [(wi% + A) (257 — 237) + 235 (34 — vai")]

= A13(3734 95%2,)_0

here terms involving only x’s cancel out in two brackets hence omitted, and all the

'multiplication’ refers to bilinear pairings at level 3n, for example y3% (23} — 23}) =

(35, 23} — 237")134,3n. Hence

F(‘T7 Y, Av A/) - F(I/7 ylv A? A/)
= (fN(‘T7y7 A =+ A,) - .f(‘r/aylv A + A/)) - (f(xvy’ A) - fN(I/a y/a A)) - (.}E(xayv A/) - fN(I/v y/v A,))
= (AT — AL + AT + AT (23] — 231")

=0

Step 2. Let x € X[p*"], Y, A € Y[p**], § = (074,6%,) € Y[p"]. Again by 4.2.6, we have

Un(2,y) = Yn(z,y +0), Yn(z,y + A) = Pn(z,y + +A +9)

Moreover,

f(x,y,A—i—é)—f(:x,y,A)
=[f(z,y) = flz,y+0)] = [f(z,y + A) — f(z,y + A+ )]

:[—3??1)3'534] [1’12 524} 0
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Hence it’s also easy to see that

F(z,y, A+0,A") = F(z,y, A, A'),

F(x,y, A, A" +6) = F(z,y,A,A)

Step 3. Combining results in Step 1 and Step 2, we know F}, descent to a morphism
Fo:B,xY[p" xY[p"] = Hu
together with compatibility condition in 7.3.3 we obtain a morphism of schemes
F::hgfn:BxYxYﬁHM (7.3)

As W is invariant under the action of G, F' is equivariant under GG, hence by 5.4.1 we

have F' = 0. This proves (a).

Step 4. By (a) we have
fn(a},y,A—i—A/) :fn(x,y,A)+fn(x,y,A’) (7.4)

On the other hand

falz,y, A+ A)
flzy
f(ac,y)—f(x,y—i—A)—i—f(a:,y—i—A)—f(x,y,A—i—A’)

fn(xvya A) + fn(xmy + Av A/)

)= flz,y+ A+ A)

Hence

fa(z,y, A) = fulw,y + A, A) (7.5)
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Step 5.

that is fn(z,y, A) is independent of y. This proves (b).

The prove of (c) is similar to the prove of (a). Consider the function
K, : X[p*"] x X[p*"] x Y[p*"] x Y[p*"] = Hy4
defined as
Kn(z,2',y,A) = faleta',y, A)=fulz,y, )= fula',y, A),Va,2" € X[p*],y, A € Y[p™"]
We first show that for all §, € X[p?"],

Kn(x + 6z7x/)y7 A) - Kn($7x/)y7 A) =0

Pick any y' € Y[p*"] such that 1, (2 + 0z, y) = ¥n(z,y'), By 4.2.1 and (b),

Fol@ + 00,9, ) = fulm, 9, )
= fu(2 + 00,9, A) = fulz,y/, A)
= [fu(@ + 62, 9) = fa(@,9)] = [fulz + 0,y + A) = fulz, v + A)]
= (Y303 + 25 (u31 — yai )] — [(u7% + AT3) 025 + 235 (31 — v51")]

_ 2n 2n
= — A7j 5m,34
Hence

Ky(z+ 62"y, A) — Ky (z, 2/, y, A)
= [fn(l' =+ ZL‘/ + 5:E7y7 A) - fn(w + :L'layv A)] - [fn(x + 5:1?7y7 A) - fn(xa Y, A)]
= AR, - (AN

=0
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Step 6.

Similarly we can show that for 6, € Y[p"],
Kp(z, o'y, A+ 0y) — Ky(z,2',y,A) =0
hence K,, descents to a morphism
K, : X[p"] x X[p"] x Y[p"] x Y[p"] = Hua
and together with the compatibility conditions as in 7.3.3 we obtain a function
K:zligKn:XxXxYxY—)HM

which has to be trivial by the orbital rigidity of p-divisible groups 1.1.1. This proves

(c)-

The first equation of (d) follows from 5.2.1 and that x(W) is invariant under the
induced action of G' on B.

Let € X[p*"], A € Y[p*"], on one hand, by (b) we have

[p")ful,0,8)
= fn(l‘, 0,[p"]A)
ORI (s 7] A

= — <x12,n7 [pn]A>n
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On the other hand, by (c) and the fact that f,(0,0,A) = 0,YA € Y[p*"] we have

("] fa(,0,A)
=fu([p"]2,0,8) = (0,0, A)
=(fa([p"]2,0) = £(0,0)) = (fu([p"]z, A) = fa(0,A))
= — (Auz, [p"]T34)30

= - <[pn]A137 x34,n>n

That is for all 6 € Y[p"],x,, = (12,0, T23,n, T34.n) € X[p"], we have

<513,n7 x347n>n = <$12,n7 524,n>n

This proves the second equation in (d).
Step 7. Part (e) is a direct consequence of 7.2.1.

Step 8. Let Exy as defined in Step 7. Then there exists a morphism 7" : 7(W) — Hi4 s.t.

&W(w) = T(w) * éEX,Y (w)

where
o Ly i m(W) — E is the section from w(WW) to E that corresponds to W.

® {pyy T(Exy) =n(W) — E is the section from m(W) to E that corresponds

to Wy
e w e W(R) any R point of W for any Artinian local algebra R over k.

By 5.4.1, T is a trivial morphism. That is {§w = gy ,, which is equivalent to W =
Exy. As Exy is a Tate-linear subvariety by definition, W is also a Tate-linear

subvariety. This proves (f).
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Lemma 7.3.5. (Functoriality of Tate-linear Subvarieties) Let H = (H;j)1<i<j<4 be
a sustained nilpotent linear group of rank 4. Let HY = (Hij)i<icj<z and let mio3 : H —
HY3 the natural group scheme hommorphism. Let Bis = Defyis_ jorsor- Let H C H
an admissible subgroup, and let Eg be the Tate-linear subvariety of E corresponds to H'.

Let 71'1’3(H’) C HY3 and Eﬂ.l,S(H/) C Bis. Then the group homomorphism mio3 induces a

morphism
I3 : K — Blg
s.1.
H123(EH/) == Eﬂ.l,3(H/)
Proof. Left as exercise. O

7.4. Proof of Main Theorem

Theorem 7.4.1. (Orbital Rigidity Conjecture 4 Slopes Case). Notation as in 7.0.1.
Let W C E a closed formal subvariety, reduced and irreducible, let G be a compact p-adic
Lie subgroup of Autg,s(E) that acts strongly non-trivially on E. If W is invariant under G,

then W is a Tate-linear formal subvariety of E.

Proof. Let H{, = (W N Hui4)red, which is a p-divisible groups by the orbital rigidity theorem
of p-divisible groups. Let 7’ : E/H{, — B induced by the natural projection = : E — B.
Let W' = W/Hj,, where the H/, action on W is guaranteed by 6.3.2. By 6.4.6 the map

W' — 7(W) C B is a finite purely inseparable morphism.

Recall B = Bj3 Xp,, B2a. By the orbital rigidity theorem in three slopes case 5.2.1, both
m13(W) C Eq3,m4(W) C Ea4 are Tate-linear subvarieties. Then by 5.6.3 we can find an
homomorphism

L:B— B
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that preserves w(W) and L|;w) dominates 7’|y : W' — 7(W). That is, there exists
&1 : m(W) — W/Hy, such that m|y o & = Ll w)

Consider

Ei: = E/H{4 XBJ:B

Hp := (H/Hyy)c

where Hj. = ((H})ij)1<i<j<4 is the Tate-linear nilpotent group of type A with the same

components as H/H/,, that is

Hi; (4,7) # (1,4)
Hyy/Hyy  (i,7) = (1.4)

(Hp)ij =

but with bilinear pairings induced by £. Then Hj. corresponds to E/., that is

/
DefHZ—torsor - EE

As the compact p-adic Lie group G operates on E/H/, and that W/H], is stable under the

action of G, there exists a compact open subgroup
G, CG

which operates on EJ,, and the natural map h : Ex — E/H], is equivariant with respect
the the inclusion G’ — G. The morphism & : 7(W) — W/H{, defines a morphism

& : (W) — Er such that ho & =& . It follows that
Lomp, o0& =r'o& =L

Therefore

Ty, © &2 = idr(w)
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In other words &3 is a section of the pullback E. over w(W).

The following graph demonstrates the relations between various maps:

B E/Hi,

S| | TEL

Moreover & is equivariant with respect to the action of G’ on E/H{,. Let
WZ = W/H14 XB,C B

the pullback of W/H{, by L, and let VVg’2 be the subscheme of EJ. that corresponds to the
section &. Apparently W/, C Wp. As dim(Wg,) = dim(W}) and both are reduced and

irreducible, we know that I/Vg’2 = W;.

The following diagram illustrates above constructions.
(E,H = (H;j),G, W)
/Hiy

pull back by £
(E/gaHZ‘a /L,WZ) (E/H£47H/H£47G7 W/Hizl)

Applying 7.3.4.1). to (B, Hp, W{, = W;,G}), we conclude that W(, C E} is Tate-linear

subvariety. Hence by 4.7.14 and 4.7.13 we conclude that W C FE is also Tate-linear.
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