

Math 240 Final Exam

12 - 2 pm, May 2, 2017

No books, paper or any electronic device may be used, other than a hand-written note sheet at most $8.5'' \times 11''$ in size. Please turn off your cell phones.

This examination consists of twelve (12) long-answer questions, each question is worth 10 points. Please show all your work. Merely displaying some formulas is not sufficient ground for receiving partial credits. Please box your answers.

1	2	3	4	5	6	7	8	9	10	11	12	Total

1. A certain 3×3 matrix H has the following property: The matrix equation

$$H\vec{\mathbf{x}} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$$

has exactly one solution. Based on this information, determine whether the matrix equation

$$H\vec{\mathbf{x}} = \begin{pmatrix} 1\\\sqrt{2}\\\sqrt{3} \end{pmatrix}$$

I. has no solution II. has a unique solution III. has infinitely many solutions IV. can't be determined

Justify your answer completely.

Answer: II

2. Can

$$M = \begin{bmatrix} 6 & -8 \\ -1 & -8 \end{bmatrix}$$

be written as a linear combination of the following matrices?

$$A = \begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$, and $C = \begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix}$

If so, find the linear combination. If not, then explain why it can't be written as the linear combination of A, B and C.

$$M = A + 2B - 3C$$

3. In \mathbb{R}^4 , let W be the subset of all vectors

$$\vec{\mathbf{v}} = \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

such that w - z = y - x.

- (a) (5 points) Show that W is a subspace of \mathbb{R}^4 .
- (b) (5 points) Find a basis for W.

Answer:

- (a) Show closed under addition and scalar multiplication
- (b)

$$ec{\mathbf{v}} = egin{bmatrix} y + z - w \ y \ z \ w \end{bmatrix}$$

so a basis would be

$$\left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \right\}.$$

4. Consider a 3×3 matrix B satisfying the following properties:

$$\operatorname{Nullspace}(B - I_3) = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 7 \\ 0 \end{bmatrix} \right\},$$

$$\operatorname{Nullspace}(B + 2I_3) = \operatorname{Span} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\},$$

$$\operatorname{Nullspace}(B - 5I_3) = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\}.$$

Answer the following questions:

- (a) (4 points) Find the characteristic polynomial of B.
- (b) (3 points) Find a diagonal matrix D and an invertible matrix S so that

$$S^{-1}BS = D$$
.

(c) (3 points) Determine the row reduced echelon form of B.

Answer:

(a)
$$p(\lambda) = (1 - \lambda)(-2 - \lambda)(5 - \lambda)$$
.

(b)

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 5 \end{pmatrix}, \qquad S = \begin{pmatrix} 1 & 0 & 1 \\ 7 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

(c)
$$RREF(B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

5. Suppose A is a 3×3 matrix with eigenvalues $\lambda_1=-1,\,\lambda_2=0,\,\lambda_3=1$ and corresponding eigenvectors

$$\vec{\mathbf{v}}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \vec{\mathbf{v}}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \vec{\mathbf{v}}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$

- (a) (4 points) What is the second column of A?
- (b) (2 points) What is the diagonal matrix similar to A?
- (c) (4 points) Choose all the matrices that are equal to A? (Possibly more than one)
 - I. A^{-1} II. A^{2017} III. A^{240} IV. A^2 V. None of the above.

You need to show your work completely.

Answer:

(a)
$$\frac{1}{2} \begin{bmatrix} -1\\0\\3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(c) II

6. Solve the initial value problem below for y(x).

$$y''' - 2y'' + y' = 2 - 24e^{x} + 40e^{5x}$$
$$y(0) = \frac{1}{2}, y'(0) = \frac{5}{2}, y''(0) = -\frac{9}{2}$$

Answer :
$$y = 11 - 11e^x + 9xe^x + 2x - 12x^2 + \frac{1}{2}e^{5x}$$
.

7. Consider the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} - a \frac{\mathrm{d}y}{\mathrm{d}t} - ay = 0.$$

(a) (5 points) For which values of the real parameter a is the system describing oscillations of a vertical spring-mass system (i.e. harmonic oscillator)? Briefly explain why.

I.
$$a > 0$$
 II. $a < 0$ III. $-4 < a < 0$ IV. $a \leqslant -4$ V. $a > 4$

(b) (5 points) Rewrite the differential equation as an equivalent first-order differential system.

- (a) II
- (b)

$$u = y, v = y'$$

$$u' = v$$
$$v' = au + av$$

8. Solve the following initial value problem

$$\frac{\mathrm{d}\,\vec{\mathbf{x}}(t)}{\mathrm{d}\,t} = \left[\begin{array}{cc} 1 & 3 \\ -3 & 1 \end{array} \right] \vec{\mathbf{x}}(t), \qquad \vec{\mathbf{x}}(0) = \left[\begin{array}{c} 1 \\ -1 \end{array} \right].$$

Answer:
$$e^t \begin{pmatrix} \cos(3t) + \sin(3t) \\ -\sin(3t) + \cos(3t) \end{pmatrix}$$
.

- 9. (a) (4 points) Find the eigenvalues of the matrices $\begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$ and $\begin{bmatrix} -1 & 3 \\ -3 & -1 \end{bmatrix}$.
 - (b) (3 points) Classify the type of equilibrium point for the differential equation

$$\frac{\mathrm{d}\,\vec{\mathbf{x}}}{\mathrm{d}\,t} = \left[\begin{array}{cc} 1 & 3 \\ -3 & 1 \end{array} \right] \vec{\mathbf{x}}.$$

- I. Stable node II. Unstable node III. Saddle IV. Stable spiral V. Unstable spiral
- (c) (3 points) Classify the type of equilibrium point for the differential equation

$$\frac{\mathrm{d}\,\vec{\mathbf{x}}}{\mathrm{d}\,t} = \left[\begin{array}{cc} -1 & 3 \\ -3 & -1 \end{array} \right] \vec{\mathbf{x}}.$$

I. Stable node II. Unstable node III. Saddle IV. Stable spiral V. Unstable spiral

- (a) $1 \pm 3i$ and $-1 \pm 3i$ respectively.
- (b) V
- (c) IV

10. Given that the characteristic polynomial of

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

is $p(\lambda) = (1 - \lambda)^3$. Find a fundamental solution set (only one) of $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$. You need to give complete solutions. Otherwise no credit even if you choose the right answer.

$$\begin{split} & \text{I.} \left\{ e^{t} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, e^{t} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e^{t} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e^{t} \left(t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right), e^{t} \left(\frac{t^{2}}{2} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right) \right\} \\ & \text{III.} \left\{ e^{t} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, e^{t} \left(t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right), e^{t} \left(\frac{t^{2}}{2} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right) \right\} \\ & \text{IV.} \left\{ e^{t} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, e^{t} \left(t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right), e^{t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\} \\ & \text{V.} \left\{ e^{t} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, e^{t} \left(t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right), e^{t} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\} \end{split}$$

Answer: II

11. Given $y_1(x) = x^{-1}$ is a solution for the homogenous equation

$$xy'' + (2+2x)y' + 2y = 0.$$

Find the general solution to

$$xy'' + (2+2x)y' + 2y = 8e^{2x}.$$

(Hint: Use reduction of order. Substitute $y = uy_1$ into the non-homogeneous equation. To get the general solution, don't forget the constants of integration while you are computing integrals.)

$$y = x^{-1}(e^{2x} + C_1 + C_2e^{-2x})$$

12. (a) (4 points) Determine all equilibria of the system

$$x' = x - 2y + 5xy$$
$$y' = 2x + y$$

- (b) (6 points) For each equilibrium, choose the type from below. You need to justify your choice.
 - I. Stable node II. Unstable node III. Saddle IV. Stable spiral V. Unstable spiral

- (a) (0,0) and $(\frac{1}{2},-1)$.
- (b) (0,0) V. $(\frac{1}{2},-1)$ III.