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1. A certain 3 x 3 matrix H has the following property: The matrix equation

HX=1{ 2
3

has exactly one solution. Based on this information, determine whether the matrix
equation
1
Hz=| 2
V3

I. has no solution  II. has a unique solution  III. has infinitely many solutions
IV. can’t be determined

Justify your answer completely.

Answer: 11



2. Can
6 -8
u={"

be written as a linear combination of the following matrices?

4 0 1 -1 0 2
ie[fy el 3o
If so, find the linear combination. If not, then explain why it can’t be written as the
linear combination of A, B and C.

Answer:
M=A+2B-3C



3. In R?, let W be the subset of all vectors

<)
I
g nwe 5y

such that w— z =y — z.

(a) (5 points) Show that W is a subspace of R*.
(b) (5 points) Find a basis for W.

Answer:

(a) Show closed under addition and scalar multiplication
(b)

Ytz w
V= 4
Z
w
50 a bagis would be
1 1 -1
1 0 0
0]7t11°'1 0
0 0 1



4. Consider a 3 x 3 matrix B satisfying the following properties:

Nullspace(B — I3) = Span { } ;

1

7

0

0
Nullspace(B + 213) = Span 1 ,

0

17
Nullspace(B — 513) = Span { -1 } :

Answer the following questions:

(a) (4 points) Find the characteristic polynomial of B.

(b) (3 points) Find a diagonal matrix D and an invertible matrix S so that
S1BS =D,

(¢) {3 points) Determine the row reduced echelon form of B.

Answer:
(a) p(A) = (1 —A)(~2=A)(B-A).
{b)
0 0 1 0 1
D = -2 01, S=|7 1 -1
0 b5 00 1

_ OO e

O o= D

1
0
0

1
(¢) RREF(B) = (o
0






5. Suppose A is a 3 x 3 matrix with eigenvalues A; = —1, Ay = 0, A3 = 1 and corresponding
eigenvectors
1 -1 0
\"?1 = 0 ,‘72 - 2 ,\}‘3 = 0 3
-2 1 1

(a) (4 points) What is the second column of A?
(b) (2 points) What is the diagonal matrix similar to A7

(¢) (4 points) Choose all the matrices that are equal to A? (Possibly more than one)

I A™Y 1 A2007 1[I AMC TV, A2 V. None of the above,

You need to show your work completely.

Answer:

(a)

1"51

213
(b)

10 0

0 0 0

0 0 1



6. Solve the initial value problem below for y{z).
ym . 29‘” +yr = 9 _ 24e% - 4085:c

y(0) = %,y’(O) = g«,y”({]) _ _g

Answer : y = 11 — 11€® + 9z€” + 2z — 122% 4 3.






7. Consider the differential equation

d?y dy
e Yq w=l

(a} (5 points) For which values of the real parameter a is the system describing
oscillations of a vertical spring-mass system (i.e. harmonic oscillator)? Briefly
explain why.

L.La>0 Il.a<0 Il ~4<a<0 IV.ags-4 V.a>1

(b) {5 points) Rewrite the differential equation as an equivalent first-order differential

systemn.
Answer:
(a) II
(b) |
U=7Y,v =y
u =

v = aqu -+ av



8. Solve the following initial value problem

0] 1, s

. cos(3t) + sin(3t)
Answer: e ( —sin(3¢t) + cos(3t)

10



11

(a) {4 points) Find the eigenvalues of the matrices [ __13 ? } and { i; _‘:))1 ]

(b) (3 points) Classify the type of equilibrium point for the differential equation

a2 [ 1 3].
a -3 1

1. Stable node II. Unstable node III. Saddle IV. Stable spiral V. Unstable
spiral

(¢) (3 points) Classify the type of equilibrium point for the differential equation

dg (-1 37,
it | -3 1 |

I. Stable node II. Unstable node III. Saddle IV. Stable spiral V. Unstable
spiral

Answer:
{(a) 1 3i and —1 + 3¢ respectively.
(b) V
(c) IV



12

10. Given that the characteristic polynomial of

1 1 0
A=11 1 1
0 -11

is p(A) = (1 — A)%. Find a fundamental solution set (only one) of ¥’ = AX. You need
to give complete solutions. Otherwise no credit even if you choose the right
answer.

Angswer: 11
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11. Given y1{z) = z7! is a solution for the homogenous equation

zy” + (2 + 2z)y + 2y = 0.

Find the general solution to
zy” + (2 + 22)y + 2y = 8™,

(Hint: Use reduction of order. Substitute y = uy, into the non-homogeneous eguation.
To get the general solution, don’t forget the constants of integration while you are
computing integrals.)

Answer:

Y = :13_1(82:1: -+ Ol + C’ge_z“")
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12. (a) (4 points) Determine all equilibria of the system

z' = x — 2y + Bzy
Y =2z+y

(b) (6 points) For each equilibrium, choose the type from below. You need to
justify your choice.

1. Stable node II. Unstable node III. Saddle 1V. Stable spiral V. Unstable
spiral

Answer :
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