• Name:															
• Your Professor (circle one) : Robert Strain							Mi Young Jang Henry Towsner						Florian Pop Chenglong Yu		
My signature l Academic Integ						~									
Signature	l		***************************************					_							
INSTRUC	CTION	NS:													
1. Check yo	ur exa	m to:	make s	ure all	17 pa	ages ar	e prese	${ m ent.}$							
2. You may additions					,					s at th	e end	of the	exam :	for	
3. Complete	e the ir	nforma	ation re	equest	ed ab	ove.									
4. You may	use w	riting	impler	nents	and a	single	handw	ritten	sheet	of 8.5'	'x11"	paper.			
5. No calcul	lators,	electr	onic de	evices,	books	or oth	er aid	s are a	llowed	•					
6. Show all not be gi at your a	ven cre	edit. '	We res	erve tł	ne rigł	nt to ta	ke off								
7. Good luc	k!	***************************************										antino e o o			
OFFICIA	L USI	E ON	LY:												
Problem Points	1 10	2 10	3 10	4 10	5 10	6 10	7 10	8	9 10	10 10	11 10	12 10	13 10	1	
1 011100	10				10										

1. Let \mathbf{v} and \mathbf{w} be vectors with $|\mathbf{v}| = 3$ and $|\mathbf{w}| = \sqrt{2}$. If the angle between \mathbf{v} and \mathbf{w} is $\pi/4$, what is $|\mathbf{v} + 2\mathbf{w}|^2$?

(a) 0 (e) 36 (b) 23 (f) 41 (c) 29 (g) 49 (d) 33

(h) None of the above

2. Where does the x-axis intersect the line tangent to the curve $\mathbf{r}(t)=\langle e^{t-1},t^2-t+2\rangle$ when t=1?

(a) -2 (b) -1 (c) 0 (d) 1(e) 2 (f) 3 (g) 4 (h) None of the above

3. Find the arc length of the parameterized path $\mathbf{r}(t) = \langle \frac{3t}{2}, 2t^{3/2}, \frac{3\sqrt{3}t}{2} \rangle$ for $0 \le t \le 3$.

(a) 0 (e) 14 (b) 2 (f) 22 (c) 3 (g) 42

(d) 10

(h) None of the above

4. Find the constant k that makes the function

$$f(x,y) = \begin{cases} \cos\left(\frac{xy^5 - x^5y}{x^2 + y^2}\right), & (x,y) \neq (0,0) \\ k, & (x,y) = (0,0) \end{cases}$$

continuous at (0,0).

- (a) -2 (e) 0

- (b) $\frac{2}{3}$ (c) 1 (f) $-\frac{3}{2}$ (g) No such value of k exists
- (d) $-\frac{1}{2}$ (h) None of the above

- 5. Consider the function $f(x,y)=x^3+y^3+x^2+3y^2-5x+2018$. Find all local extrema and saddle points. Then f has
 - (a) 2 local maxima, 1 local minima, and 1 saddle points.
 - (b) 1 local maxima, 2 local minima, and 1 saddle points.
 - (c) 0 local maxima, 2 local minima, and 2 saddle points.
 - (d) 1 local maxima, 1 local minima, and 2 saddle points.
 - (e) 0 local maxima, 0 local minima, and 4 saddle points.
 - (f) 2 local maxima, 2 local minima, and 0 saddle points.
 - (g) 2 local maxima, 0 local minima, and 2 saddle points.
 - (h) None of the above

6. Find the sum of the minimum and the maximum of x+y+z on the ellipsoid $(x-1)^2+y^2+z^2=1$.

(b) 2

(d) $\sqrt{2}$

(a) 1 (e) $2\sqrt{2}$

(f) $\sqrt{3}$

(c) 3 (g) $2\sqrt{3}$

(h) None of the above

7. Find the total mass of the region bounded below by $z=x^2+y^2-4$ and above by the xy-plane with density $f(x,y,z)=x^2+y^2$

(a) $\frac{32\pi}{3}$ (e) $\frac{64}{15}$

(b) $\frac{16\pi}{3}$ (f) $\frac{32}{15\pi}$

(c) $\frac{8\pi}{3}$ (g) $\frac{24\pi}{3}$

(d) $\frac{16}{3}$ (h) None of the above

8. Find the volume of the part of the ball $x^2 + y^2 + z^2 \le 4$ below the plane z = 1.

- (a) 9π (e) 4π

(b) $\frac{5\pi}{3}$ (f) 2π

- (c) $\frac{32\pi}{3}$ (g) 8π

- (d) $\frac{16\pi}{3}$ (h) None of the Above

Answer: _

9. Find the iterated integral

$$\int_0^1 \int_{\sqrt{y}}^1 y e^{x^5} \ dx \ dy$$

- (a) $\frac{1}{10}$ (e) $\frac{1}{4}$
- (b) $\frac{1}{10}(e-1)$ (f) $\frac{1}{4}(e-1)$
- (c) e -
- (a)
- (d) 1 (h) None of the Above

10. Compute the circulation of $\vec{V} = \left(\sin(e^{\sqrt{1+x}}) - x^2y\right)\vec{\imath} + \left(\sin^5(\sqrt{1-y}) + xy^2\right)\vec{\jmath}$ along the unit circle centered at the origin, traveled anti-clockwise.

(a) 0

(b) $\pi/4$

(d) $2\pi/3$

(e) π

(f) $4\pi/3$

(c) $\pi/2$ (g) $3\pi/2$

(h) None of the Above

11. Evaluate the work (equivalently, the flow) of the vector field $\vec{V} = \ln(yz)\vec{i} + (x/y)\vec{j} + (x/z)\vec{\kappa}$ along the curve C defined by $\vec{r}(t) = (t^2, e^t, e^{2t})$, where $1 \le t \le 3$.

(a) -1 (e) 50

(b) 0 (f) 54 (c) 1 (g) 78 (d) 24

(h) None of the Above

12. Evaluate the surface integral

$$\iint_{S} (x^2z + y^2z) \, d\sigma$$

where S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$.

(a) 11π (e) 15π

(b) 12π (f) 16π

(c) 13π (g) 17π

(d) 14π

(h) None of the Above

13. Evaluate the line integral

$$\int_C \mathbf{F} \cdot d\mathbf{r}$$

where

$$\mathbf{F}(x, y, z) = (e^{x^2} + y^2)\mathbf{i} + (y + z^2)\mathbf{j} + (\sin(z^2) + x^2)\mathbf{k}$$

and C is the triangle with vertices (1,0,0), (0,1,0), (0,0,1). Here C is oriented counterclockwise when viewed from above.

- (a) 2 (e) -2

- (b) 1 (f) -3

- (c) 0 (g) -4

- (d) -1
- (h) None of the Above

14. Use the divergence theorem to calculate the flux of ${\bf F}$ out across the surface S where

$$\mathbf{F}(x, y, z) = (3x^3 + 3xy^2)\mathbf{i} + (2y^3 + 8e^y \sin z)\mathbf{j} + (3z^3 + 8e^y \cos z)\mathbf{k}$$

and S is the surface of the solid between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 2$.

(a) $\frac{36}{5}\pi \left(4\sqrt{2} - 1\right)$ (b) $\frac{36}{5}\pi \left(4\sqrt{2} - 2\right)$ (c) $\frac{72}{5}\pi \left(4\sqrt{2} - 1\right)$ (d) $\frac{72}{5}\pi \left(4\sqrt{2} - 2\right)$ (e) $\frac{88}{5}\pi \left(4\sqrt{2} - 1\right)$ (f) $\frac{88}{5}\pi \left(4\sqrt{2} - 2\right)$ (g) $\frac{88}{5}\pi$ (h) None of the Above

Answer: __

Extra space for work 1:

Extra space for work 2: