Preliminary Examination, Part I

Monday, August 29, 2016 9:30-12:00

This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete. Be sure to write your name both on the exam and on any extra sheets you may submit.

All problems have equal weight.

<table>
<thead>
<tr>
<th>Score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Total 1–6

Total 7–12

Total
1. Let V be the real vector space of continuous real-valued functions on the closed interval $[0, 1]$, and let $w \in V$. For $p, q \in V$, define $\langle p, q \rangle = \int_{0}^{1} p(x)q(x)w(x) \, dx$.

a) Suppose that $w(a) > 0$ for all $a \in [0, 1]$. Does it follow that the above defines an inner product on V? Justify your assertion.

b) Does there exist a choice of w such that $w(1/2) < 0$ and such that the above defines an inner product on V? Justify your assertion.
2. Let \(\{x_n\} \) be a sequence of real numbers (indexed by \(n \geq 0 \)), and let \(0 < c < 1 \) be a real number. Suppose that

\[
|x_{n+1} - x_n| \leq c|x_n - x_{n-1}|
\]

for all \(n = 1, 2, 3, \ldots \).

a) If \(n \geq k \) are positive integers, show that

\[
|x_{n+1} - x_k| < c^k |x_1 - x_0|.
\]

(Hint: First bound \(|x_{n+1} - x_n| \) in terms of \(|x_1 - x_0| \).

b) Prove that the sequence \(\{x_n\} \) converges to a real number.
3. a) In the polynomial ring $\mathbb{Q}[x]$, consider the ideal I generated by $x^4 - 1$ and $x^3 - x$. Does I have a generator $f(x) \in \mathbb{Q}[x]$? Either find one or explain why none exists.

b) In the polynomial ring $\mathbb{Q}[x, y]$, do the same for the ideal generated by the polynomials x and y.
4. For each of the following, give either a proof or a counterexample.

a) Let f be a continuous real-valued function on the open interval $0 < x < 3$. Must f be uniformly continuous on the open interval $1 < x < 2$?

b) Suppose instead that f is only assumed to be continuous on the open interval $0 < x < 2$. Must f be uniformly continuous on the open interval $1 < x < 2$?
5. Let V, W be two-dimensional real vector spaces, and let f_1, \ldots, f_5 be linear transformations from V to W. Show that there exist real numbers a_1, \ldots, a_5, not all zero, such that $a_1 f_1 + \cdots + a_5 f_5$ is the zero transformation.
6. Evaluate $\int_C \left(e^{x^2} + \sin(y^2) \right)dx + \left(2xy \cos(y^2) + xy^3 \right)dy$, where C is the triangle with vertices (0, 0), (1, −1), (1, 1), oriented counterclockwise.
This part of the examination consists of six problems. You should work all of the problems. Show all of your work. Try to keep computations well-organized and proofs clear and complete. Please write your name on both the exam and any extra sheets you may submit.

All problems have equal weight.

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>Total 7–12</td>
</tr>
</tbody>
</table>
7. Let \(f : X \to Y \) be a continuous map between metric spaces. For each of the following, give either a proof or a counterexample, using just the definition of compactness.

a) If \(A \subseteq X \) is compact, then so is \(f(A) \subseteq Y \).

b) If \(B \subseteq Y \) is compact, then so is \(f^{-1}(B) \subseteq X \).
8. Find a continuous function $f : \mathbb{R} \to \mathbb{R}$ and a constant A such that

$$\int_0^x f(t)(1 + t^2)dt = \cos(x^2) + A.$$
9. For every integer \(n > 1 \), let \(U_n \) be the group of invertible elements of \(\mathbb{Z}/n\mathbb{Z} \) under multiplication.

a) Find the orders of \(U_8 \) and \(U_9 \). Explain.

b) Determine whether the groups \(U_8 \) and \(U_9 \) are cyclic.
10. Let \(f(x, y) = x^2 - xy + y^2 - y \).
 a) Does the function \(f \) achieve an absolute maximum on \(\mathbb{R}^2 \)? an absolute minimum on \(\mathbb{R}^2 \)? If so, find all points where this occurs.

b) Do the same with \(\mathbb{R}^2 \) replaced by the square \(0 \leq x, y \leq 1 \).
11. Let a, b, c be real numbers, and consider the matrix $A = \begin{pmatrix} a & b & c \\ b & c & b \\ c & b & a \end{pmatrix}$.

a) Explain why all the eigenvalues of A must be real.

b) Show that some eigenvalue λ of A has the property that for every vector $v \in \mathbb{R}^3$, $v \cdot Av \leq \lambda \|v\|^2$. (Note: You are not being asked to compute the eigenvalues of A.)
12. Consider the differential equation \(y^{(4)} - y = ce^{2x} \) where \(c \) is a real constant.

a) Let \(S_c \) be the set of solutions of this equation. For which \(c \) is this set a vector space? Why?

b) For each such \(c \), find this solution space explicitly, and find a basis for it.