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ABSTRACT

ON THE TOTAL CURVATURE AND BETTI NUMBERS OF COMPLEX

PROJECTIVE MANIFOLDS

Joseph Ansel Hoisington

Christopher Croke

We prove an inequality between the sum of the Betti numbers of a complex pro-

jective manifold and its total curvature, and we characterize the complex projective

manifolds whose total curvature is minimal. These results extend the classical the-

orems of Chern and Lashof to complex projective space.
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Chapter 1

Introduction

The central results of this paper are an inequality between the total curvature of

a complex projective manifold and its Betti numbers and a characterization of the

complex projective manifolds whose total curvature is minimal. We will prove:

Theorem 1.1. Let M be a compact complex manifold, of complex dimension m,

holomorphically immersed in complex projective space, and let T (M) be its total

absolute curvature, as in Proposition 1.2 and Definition 1.4 below:

A. Let βi be the Betti numbers of M with real coefficients. Then
2m∑
i=0

βi ≤ (m+1
2

)T (M).

In particular, T (M) ≥ 2.

B. If T (M) < 4, then in fact T (M) = 2. This occurs precisely if M is a linearly

embedded complex projective subspace.

The foundation for these results is a classical family of theorems that were
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proved by Chern and Lashof. The definition of total absolute curvature for com-

plex projective manifolds is based on an invariant which they defined, originally for

submanifolds of Euclidean space, in [CL57] and [CL58]. We will define the total ab-

solute curvature of a complex projective manifold in Definition 1.4 below. However,

we will prove that the total absolute curvature of a complex projective manifold

has the following geometric meaning:

Proposition 1.2. Let M be a compact complex manifold holomorphically immersed

in complex projective space. Let ν<
π
2M be its normal disk bundle of radius π

2
, and

let Exp⊥ denote the normal exponential map from ν<
π
2M to CPN . Let T (M) be

its total absolute curvature. Then:

T (M) =
2

V ol(CPN )

∫
ν<

π
2 M

|det(dExp⊥)|dV ol
ν
<π

2 M
=

2

V ol(CPN )

∫
CPN

](Exp⊥)−1(q)dV olCPN .

In the first expression, we integrate over the normal disk bundle of radius π
2

because π
2

is the diameter of CPN . In the latter, ](Exp⊥)−1(q) denotes the pre-

image count via Exp⊥ for a point q in CPN . Proposition 1.2 is equivalent to the

meaning of Chern and Lashof’s invariant, which they defined for a submanifold of

Euclidean space as follows:

T (M) =
1

V ol(SN−1)

∫
ν1M

|det(A~u)|dV olν1M . (1.1)
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In this definition, ν1M is the unit normal bundle of the immersion and A~u is the

second fundamental form of the normal vector ~u. Dividing by V ol(SN−1) ensures

that T (M) is the same whether we regard M as a submanifold of RN , or of a

higher-dimensional space RN+N ′ containing RN as a linear subspace. Chern and

Lashof then proved:

Theorem 1.3 (Chern-Lashof Theorems, [CL57, CL58]). Let M be a closed manifold

of dimension n immersed in Euclidean space:

A. (First Chern-Lashof Theorem) Let βi the Betti numbers of M , with coefficients

in the integers or any field. Then
n∑
i=0

βi ≤ T (M). In particular, T (M) ≥ 2.

B. (Second Chern-Lashof Theorem) If T (M) < 3, then M is homeomorphic to

the n-sphere.

C. (Third Chern-Lashof Theorem) T (M) = 2 precisely if M is a convex hyper-

surface in an (n+ 1)-dimensional linear subspace of RN .

In the introduction to their first paper on total curvature, [CL57], Chern and

Lashof cite the theorems of Fenchel and Fáry-Milnor, in [Fe29] and [Fá49, Mi50],

as motivation for their results. Fenchel’s theorem states that a smooth closed curve

γ in R3 has total curvature at least 2π, with equality precisely for plane convex

curves. The Chern-Lashof theorems can be understood as a far-reaching general-

ization of Fenchel’s theorem, to compact Euclidean submanifolds of any dimension

and codimension. The Fáry-Milnor theorem states that if γ has total curvature at

3



most 4π, twice the minimum in Fenchel’s theorem, then it is unknotted. Part B of

Theorem 1.1 gives a similar statement for complex projective manifolds.

The definition of total absolute curvature for complex projective manifolds is an

adaptation of Chern and Lashof’s invariant:

Definition 1.4 (Total Absolute Curvature of Complex Projective Manifolds). Let

M be a complex manifold, of complex dimension m, holomorphically immersed in

the complex projective space CPN . Its total absolute curvature T (M) is defined to

be:

T (M) =
2

V ol(CPN )

∫
ν<

π
2 M

|det( cos(r)IdTpM −
(

sin r

r

)
A~v)| cos(r)

(
sin r

r

)(2N−2m−1)

dV
ν
<π

2 M
,

where ν<
π
2M is the normal disk bundle of radius π

2
, A~v is the second fundamental

form of the normal vector ~v, r is its norm, and IdTpM : TpM → TpM is the identity

transformation of the tangent space to M at its base point p.

Dividing by the volume of CPN in Definition 1.4 ensures that T (M) is the

same whether we regard M as immersed in CPN , or in a higher-dimensional space

CPN+N ′ containing CPN as a linear subvariety. The extra factor of 2 in Definition

1.4 will be explained in Proposition 3.1 and Remark 4.2. When we need to dis-

tinguish the invariant defined for smooth submanifolds of Euclidean space in (1.1)

from the invariant for complex projective manifolds in Definition 1.4, we will write

the first as TRN (M) and the second as TCPN (M). In Definition 2.2, we will give a
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formula for the total absolute curvature of smooth submanifolds of spheres, which

we denote TSN (M).

Chern and Lashof’s invariant depends on the extrinsic geometry of a submani-

fold of Euclidean space. However, Calabi proved in [Ca53] that if a Kähler manifold

(with a fixed metric) admits a holomorphic isometric immersion into complex pro-

jective space, even locally, then any two holomorphic isometric immersions of this

manifold into complex projective space are congruent by a holomorphic isometry of

the ambient space. It follows that the total absolute curvature of a complex projec-

tive manifold is actually part of its intrinsic geometry. It would thus be interesting

to find a completely intrinsic representation of the total absolute curvature of a

complex projective manifold. We will do so for curves in the complex projective

plane:

Theorem 1.5. Let Σ be a smooth curve in CP 2, with K the sectional curvature of

its projectively induced metric. Then:

T (Σ) =
1

π

∫
Σ

(K − 4)2 + 4

6−K
dAΣ.

Note that if Σ is as above, then its sectional curvature is bounded above by 4,

the holomorphic sectional curvature of the ambient space. This implies that the

integrand in Theorem 1.5 is well-defined. Theorem 1.5 is a corollary of a more
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general result about the total absolute curvature of complex projective hypersur-

faces which we will state and prove in Theorem 5.4. Theorem 1.5 implies several

results about the total absolute curvature of smooth plane curves, which we state

and prove in Proposition 5.8. In particular, the total absolute curvature of such a

curve determines its degree:

Proposition 1.6. Let Σ be a smooth curve in CP 2. Then the degree of Σ is the

unique d ∈ N such that 2d2 − 4d+ 4 ≤ T (Σ) ≤ 2d2.

Theorem 1.5 also provides an example which shows that Part B of Theorem 1.1

is sharp, in Example 5.7.

We can summarize the proof of Theorem 1.1 as follows:

In Proposition 3.1, we will prove that if M is a complex manifold holomorphi-

cally immersed in the complex projective space CPN , and M̃ is the S1 bundle over

M which is induced by the Hopf fibration π : S2N+1 → CPN , and we immerse M̃

in S2N+1 by lifting the immersion of M into CPN , then TS2N+1(M̃) = TCPN (M).

Chern and Lashof’s proof of Theorem 1.3 can be generalized to give similar the-

orems about submanifolds of any symmetric space - this was discovered by Koike

in [Ko03] and [Ko05]. However, in almost all cases, these results are much narrower

than those in Chern and Lashof’s original results. In particular, in complex projec-
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tive space, these theorems only apply to submanifolds of real dimension 1 or less.

In spheres, on the other hand, Chern and Lashof’s proofs can be adapted to give

results that are equivalent to their theorems in full generality. We will state and

prove these results in Chapter 2. Because Chern and Lashof’s proofs work in such

generality for submanifolds of spheres, and break down so completely in complex

projective space, our strategy for proving the main theorems in this paper is to

relate the geometry and topology of a complex projective manifold to those of its

pre-image via the Hopf fibration in the sphere.

We now give an outline of this paper:

In Chapter 2, we will review previous research related to total curvature, espe-

cially in the complex projective setting. In addition to the Chern-Lashof theorems,

this includes the results of Weyl on tube volumes in [We39], of Allendoerfer and

Fenchel on the higher-dimensional Gauss-Bonnet theorem in [Al40] and [Fe40], and

more recent work of several authors. We will also state and prove a formulation of

the Chern-Lashof theorems for submanifolds of spheres. In Chapters 3 and 4, we

prove the main results in this paper: In Chapter 3, we will prove Part A of Theorem

1.1. This result follows from several other inequalities between the total curvature

and Betti numbers of complex projective manifolds, which are generally stronger

than Theorem 1.1.A - we will state and prove these results in Propositions 3.6 and
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3.8. In Chapter 4, we prove Part B of Theorem 1.1 and discuss its relationship to

several other results. We will also prove Proposition 1.2. In Chapter 5, we will

study the total absolute curvature of complex projective hypersurfaces (complex

projective manifolds of complex codimension 1) in greater detail. We will prove

Theorem 1.5 and discuss its implications. Throughout the paper, we will discuss

possible directions for future research based on these results.

Throughout this paper, unless stated otherwise, RN and CPN will carry their

canonical metrics, with the metric on CPN normalized to have holomorphic sec-

tional curvature 4. Spheres will likewise carry their canonical metrics with constant

curvature 1. Standard results and formulas from complex and algebraic geometry

used in this paper can be found in [Huy06] and several other texts. Background

about the local differential geometry of complex and Kähler submanifolds can be

found in [Gr04].
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Chapter 2

The Chern-Lashof Theorems and

Their Spherical Formulations

The proof of the Chern-Lashof theorems in [CL57] and [CL58] combines Morse the-

ory, integral geometry, and a careful analysis of a Euclidean submanifold’s local

extrinsic geometry. For any manifold M immersed in Euclidean space, of any di-

mension and codimension, one can define the Gauss map on the unit normal bundle

ν1M of the immersion. This map sends normal vectors ~u to their parallels in the

unit sphere. A careful analysis of this map implies that for almost all ~w in the unit

sphere, the height function h~w in the direction ~w, when restricted to M , is a Morse

function.

The upper bound for the sum of the Betti numbers in the first Chern-Lashof
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theorem is based on the fact that if f is a Morse function on a compact manifold M ,

counting its critical points gives an upper bound for the sum of the Betti numbers

of M . The total absolute curvature of M is equal to the average number of critical

points of the height functions h~w, which are Morse functions for almost all ~w in the

unit sphere, as described above. This average is greater than or equal to the sum of

the Betti numbers of M . The second Chern-Lashof theorem is based on a theorem

of Reeb, in [Re52]: that a compact manifold which supports a Morse function with

only two critical points is homeomorphic to a sphere.

These observations are related to an extrinsic formulation of the Gauss-Bonnet-

Chern theorem, which was proved by Fenchel and Allendoerfer in [Fe40] and [Al40],

building on earlier work of H. Hopf in [Ho26]. This formulation of the Gauss-

Bonnet-Chern theorem can also be proved from the same observations as the Chern-

Lashof theorems. In this proof, the Euler characteristic of a submanifold M of

Euclidean space arises as the sum of the critical points of the Morse functions h~w,

with each critical point signed by its index:

χ(M) =
n∑
i=0

(−1)iβi(M) =
n∑
i=0

(−1)iCi,

where βi(M) is the ith Betti number of M , with coefficients in the integers or

any field, and Ci is the number of critical points of h~w of index i. The corresponding

fact in the Chern-Lashof theorems is that the sum of the Betti numbers of M can

be bounded above by counting the critical points of a Morse function on M without
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regard to their index:

n∑
i=0

βi(M) ≤
n∑
i=0

Ci.

The extrinsic formulation of the Gauss-Bonnet-Chern theorem described above

then says:

χ(M) =
n∑
i=0

(−1)iβi(M) = 1

V ol(SN−1)

∫
ν1M

det(A~u)dV olν1M(~u). (2.1)

The first Chern-Lashof theorem says:

n∑
i=0

βi(M) ≤ 1

V ol(SN−1)

∫
ν1M

|det(A~u)|dV olν1M(~u).

The result described above is genuinely the Gauss-Bonnet-Chern theorem in

that for even-dimensional manifolds M , the integrand in (2.1) can be shown to

coincide with the Pfaffian of the curvature forms, up to a normalization for the

dimension of the ambient space. The proof of the Gauss-Bonnet-Chern theorem

described above can be found in [Ba07]. The book [Wi82] by Willmore gives an

overview of several branches of geometry in which the Chern-Lashof theorems have

had a strong influence.

To our knowledge, the first results about total absolute curvature in the com-

plex projective setting are those of Ishihara in [Is86]. However, Milnor’s work in

[Mi63] and Thom’s work in [Th65] both use Morse theory to establish an inequality
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between the degrees of real algebraic varieties and their Betti numbers. Based on

their comments, both authors seem to have considered the possibility of extending

their results using some of the observations we have used here, and Milnor uses some

of these observations to extend his results to complex projective varieties. Cecil’s

results in [Ce74] also involve the application of Morse theory to complex projective

manifolds and use some of the same observations as the Chern-Lashof theorems.

Ishihara’s work gives a definition of total absolute curvature for a submanifold

M of complex projective space, and then relates this invariant to a family of maps

from M to complex projective lines in the ambient space. In [AN95], Arnau and

Naveira define a family of total curvature invariants for submanifolds of complex

projective space, which are adaptations of invariants defined for submanifolds of Eu-

clidean space by Santaló in [Sa69, Sa70]. One of the invariants defined by Santaló

coincides with the invariant defined by Chern and Lashof, and Arnau and Naveira

show that Ishihara’s invariant coincides with one of their invariants. In [Ko03] and

[Ko05], Koike pursued the adaptation of the proof of the Chern-Lashof theorems to

submanifolds of all symmetric spaces. However, in complex projective space these

results are limited to submanifolds of real dimensions 0 and 1. This is an instance

of a limitation that applies to Chern and Lashof’s proofs in all compact symmet-

ric spaces except spheres - we will discuss this in Chapter 3. (The adaptations of

Chern and Lashof’s proofs to symmetric spaces of negative curvature are subject

12



to a different set of limitations - see [Ko03].)

In addition to the Gauss-Bonnet-Chern theorem and these results about total

absolute curvature, there is another family of results that we believe provide im-

portant background for the results in this paper: In [We39], Hermann Weyl proved

that if M is a compact Riemannian manifold isometrically embedded in Euclidean

space, the volume of a small tubular neighborhood of M depends only on its intrinsic

geometry, not on the embedding. More precisely, he proved:

Theorem 2.1 (Weyl’s Tube Formula, [We39]). Let M be an n-dimensional compact

Riemannian manifold isometrically immersed in RN , and let ν<rM be its normal

disk bundle of radius r. Let Exp⊥ be the normal exponential map from ν<rM to

RN . Then:∫
ν<rM

(Exp⊥)∗(dV olRN ) =
(πr2)

N−n
2

Γ(N−n+2
2

)

bn
2
c∑

i=0

K2i(M)r2i

(N − n+ 2)(N − n+ 4) · · · (N − n+ 2i)
.

(2.2)

In the formula above, the coefficients K2i(M) are calculated from the curvature

tensor of M .

If M is embedded in RN and r is chosen small enough that Exp⊥ : ν<rM → RN

is injective, then the formula above gives the volume of the tube of radius r about M .

This implies that, in this situation, the tube volume depends only on the intrinsic

13



geometry of M , not on the embedding.

Weyl’s proof of Theorem 2.1 generalizes immediately to submanifolds of spheres

and hyperbolic spaces, and in [We39], he states and proves his result for submani-

folds of spheres as well as Euclidean space. There is also a tube formula for complex

submanifolds of complex projective space. To our knowledge, this was first found

independently by Wolf in [Wo71] and Flaherty in [Fl72]. Weyl’s tube formula was

extended to compatible submanifolds of all rank-1 symmetric spaces, including com-

plex submanifolds of CPN , by Gray and Vanhecke in [GV81]. The tube formula for

complex projective manifolds can also be found in Alfred Gray’s book [Gr04].

Weyl’s tube formula, the Gauss-Bonnet-Chern theorem and the Chern-Lashof

theorems are closely related. Total absolute curvature can be understood as a tube

volume: For submanifolds of spheres and complex projective spaces, the total ab-

solute curvature integrand coincides with the integrand in the tube formula for

sufficiently small normal vectors. In general, the total absolute curvature integrand

is the absolute value of the integrand in the tube formula. The highest-degree term

in Weyl’s tube formula is, up to a normalization, the Gauss-Bonnet-Chern integral,

and the top-degree coefficient in (2.2) is therefore given by the Euler characteristic

of M - this fact played an essential part in Allendoerfer’s proof the Gauss-Bonnet-

Chern theorem in [Al40]. The history of this development can be found in [Gr04].
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It is the close relationship between the Chern-Lashof theorems and Weyl’s tube

formula, and the existence of a parallel to Weyl’s tube formula for complex projec-

tive manifolds in the results above, that motivated our search for an extension of the

Chern-Lashof theorems to complex projective space. We believe it would also be in-

teresting to derive Gray and Vanhecke’s tube formulas for compatible submanifolds

of complex and quaternionic projective space in [GV81] from Weyl’s tube formula

for submanifolds of spheres in [We39] using Hopf fibrations, as we have done here.

Because our results for complex projective manifolds depend on a formulation

of the Chern-Lashof theorems for submanifolds of spheres, we will state and prove

these results in the remainder of this chapter. The majority of these results are

not new, but they are used in the proofs of our main theorems, and their proofs

are helpful in many of our proofs in the rest of the paper. We will therefore give

complete proofs of these results. The reader can also go ahead to the beginning of

Chapter 3 and return to these results as needed. The total absolute curvature of a

submanifold of a sphere is defined as follows:

Definition 2.2 (Total Absolute Curvature of Submanifolds of Spheres). Let M

be an n-dimensional differentiable manifold immersed in the sphere SN . The total

absolute curvature of T (M) of M is:

15



T (M) = 1
V ol(SN )

∫
ν<πM

|det( cos(r)IdTpM −
(

sin r

r

)
A~v)|

(
sin r

r

)(N−n−1)

dV olν<πM .

We integrate over ν<πM , the bundle of normal vectors of length less than π,

because π is the diameter of SN . A~v denotes the second fundamental form of the

normal vector ~v, r denotes its norm, and IdTpM : TpM → TpM is the identity

transformation of the tangent space to M at its basepoint p. As in Definition 1.4,

the normalization by V ol(SN) in Definition 2.2 ensures that TSN (M) = TSN+N′ (M)

if SN is embedded as a totally geodesic submanifold of SN+N ′ .

For submanifolds of spheres, the differential of the normal exponential map

can be expressed entirely in terms of the second fundamental form: Let ~u be a

unit normal vector to a manifold M immersed in SN and let A~u be its second

fundamental form. Let e1, ..., en be a set of principal vectors for A~u with principal

curvatures κ1, ..., κn, and let u2, ..., uN−n be an orthonormal basis for the subspace

of νpM orthogonal to ~u. Then the differential of the normal exponential map at a

normal vector ~v = r~u can be represented in this basis using the Jacobi fields of the

sphere, as follows:

• dExp⊥~v (ei) = (cos(r)− κi sin(r))Ei(r), where Ei is the parallel vector field

with initial value ei along the geodesic γ~u of SN through ~u.

• dExp⊥~v (uj) =
(

sin r
r

)
Fj, where Fj is the parallel vector field along γ~u with

initial value uj.

16



• dExp⊥~v (~u) = γ′~u(r).

This gives us:

det(dExp⊥)~v =
n∏
i=1

(cos(r)− κi sin(r))
(

sin r
r

)(N−n−1)

= det
(
cos(r)IdTpM − sin(r)A~u

)(sin r

r

)(N−n−1)

. (2.3)

Integrating |det(dExp⊥)| over a measurable subset of ν<πM defines a positive

measure on ν<πM which is, in a natural sense, the pull-back of the measure on the

ambient space SN via Exp⊥. Equation (2.3) implies that, up to the normalization

by V ol(SN), T (M) is the total mass of ν<πM with this measure. We record this

result in the following proposition:

Proposition 2.3. Let M be a closed manifold immersed in the sphere SN . Then:

T (M) = 1
V ol(SN )

∫
ν<πM

|det(dExp⊥~v )|dV olν<πM(~v).

In Chern and Lashof’s original theorems, the equivalent statement is that for a

submanifold M of RN , up to normalization by V ol(SN−1), T (M) is the total mass

of the unit normal bundle ν1M , with the positive measure pulled back from the

unit sphere SN−1 by the Gauss map.

It will be helpful to note that the total absolute curvature of a spherical sub-
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manifold can also be written as follows:

T (M) =
1

V ol(SN )

∫
ν1M

π∫
0

| n∑
i=0

(−1)i sin(N−n−1+i)(r) cos(n−i)(r)σi(κ)|dr dV olν1M(~u).

(2.4)

Here, σi(κ) represents the ith elementary symmetric function of the principal

curvatures of the normal vector ~u. In particular, σ1(κ) is the mean curvature

κ1 + κ2 + ...+ κn, σ2(κ) = κ1κ2 + κ1κ3 + ...+ κn−1κn and σn(κ) = κ1κ2 . . . κn is the

Gauss curvature in the direction ~u, etc.

The spherical formulations of the Chern-Lashof theorems are as follows. These

results can be found in the work of Koike:

Theorem 2.4 (Spherical Formulation of the Chern-Lashof Theorems - see [Ko05]).

Let M be an n-dimensional closed manifold isometrically immersed in the sphere

SN :

A. Let βi be the ith Betti number of M with coefficients in the integers or any

field. Then
n∑
i=0

βi ≤ T (M). In particular, T (M) ≥ 2.

B. If T (M) < 3, then M is homeomorphic to Sn.

C. T (M) = 2 precisely if M is the boundary of a geodesic ball in an (n + 1)-

dimensional totally geodesic subsphere of SN .
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The spherical Chern-Lashof theorems are based on the observation that if M is

a closed manifold isometrically immersed in a round sphere SN , then for almost all

q ∈ SN , the distance function from q is a Morse function when restricted on M .

The equivalent fact in the classical Chern-Lashof theorems is that almost all height

functions h~w are Morse on M , for ~w in the unit sphere SN−1 in the ambient space

RN . As with submanifolds of Euclidean spaces, the total absolute curvature of a

spherical submanifold is the average number of critical points of a family of Morse

functions on M - in this case, of the distance functions dq. This average gives an

upper bound for the sum of the Betti numbers of M , and if it is less than 3, it

implies M is homeomorphic to a sphere by Reeb’s theorem.

We establish that almost all distance functions are Morse functions on M , and

we derive a formula for their Hessians, in the next result:

Proposition 2.5. Let M be a closed manifold immersed in the sphere SN as in

Theorem 2.4. For almost all q ∈ SN , the distance function from q, when restricted

to M , is a smooth Morse function.

Proof of Proposition 2.5. For the proof of this proposition and Lemma 2.6 below,

we let d̃q denote dist(q, ·) as a function on SN , and we let dq denote its restriction

to M . For q not in the cut locus of any p ∈ M (i.e. for q 6∈ ±M), dq is a smooth

function on M . That it is almost always a Morse function comes from the following:

Lemma 2.6. A point p of M is critical for dq iff q = Exp⊥(~v) for some ~v ∈ ν<πp M .
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In that case, letting r = ||~v|| and ~u = ~v
r
, Hess(dq) is diagonolized at p by a set

of principal directions for the second fundamental form A~u, and the eigenvalue of

Hess(dq) corresponding to the principal curvature κ is cot(r)− κ.

Proof of Lemma 2.6. The gradient of dq on M is the orthogonal projection of the

gradient of d̃q on SN . The gradient of d̃q at a point q̄ in SN \{q,−q} is tangent to the

minimizing geodesics from q to q̄. grad(dq) is zero precisely where the minimizing

geodesic from q is normal to M , so that q is in the image of the normal exponential

map from p:

q = Exp⊥(− d̃q(p)grad(d̃q)).

Similarly, if Exp⊥(~v) = q, then the minimizing geodesic from q to p is normal

to M at p, and p is critical for dq.

If p ∈ M and ~u ∈ ν1
pM are as above, let e1, ..., en be a set of principal vectors

for A~u. For 0 < r < π, let q = Exp⊥(r~u). We let grad(d̃q) and grad(dq) denote the

vector fields on SN and M respectively, as above. Because grad(dq) = grad(d̃q)
>,

along M we have:

grad(d̃q) = grad(dq) + grad(d̃q)
⊥.

A geodesic sphere of radius r in SN has principal curvature cot(r) in any tan-

gent direction, relative to the outward unit normal, so ∇SN

e grad(d̃q) = cot(r)e for

any e ∈ TpM , which will also be tangent to the geodesic sphere of radius r about
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q = Exp⊥(r~u).

Letting F be− grad(d̃q)⊥

||grad(d̃q)⊥||
, F is a unit normal vector field toM in a neighborhood

of p, which coincides with ~u at p, so for each principal direction ei as above,

(∇SN

ei
F )> = −κiei.

We also have the following:

∇SN

ei
F = ( ei(||grad(d̃q)⊥||)

||grad(d̃q)⊥||2
)grad(d̃q)

⊥ − ( 1

||grad(d̃q)⊥||
)∇SN

ei
grad(d̃q)

⊥.

The tangential part of ∇SN

ei
F is therefore the tangential part of the expression

above:

(∇SNei F )> = (− 1

||grad(d̃q)⊥||
∇SNei (grad(d̃q)

⊥))
>

= (− 1

||grad(d̃q)⊥||
∇SNei (grad(d̃q)− grad(dq)))

>

= ( 1

||grad(d̃q)⊥||
)
(
∇M
ei
grad(dq)− cot(r)ei

)
= ( 1

||grad(d̃q)⊥||
) (Hess(dq)(ei)− cot(r)ei) .

Noting that ||grad(d̃q)
⊥|| = 1 at critical points of dq, we then have −κiei =

Hess(dq)(ei) − cot(r)ei, and therefore that Hess(dq)(ei) = (cot r − κi)ei. This

completes the proof of Lemma 2.6.

The lemma implies that q = Exp⊥(r~u) has a degenerate critical point at p if

and only if r = arccotκ for κ a principal curvature of M in the direction ~u. This

is the same as the condition that the normal exponential map has a critical point

at r~u, by the expression for det(dExp⊥) in (2.3). The q ∈ SN for which dq is not
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Morse are therefore the focal points of M in SN . These are the critical values of

the normal exponential map, which are of measure zero in SN by Sard’s Theorem.

This completes the proof of Proposition 2.5.

Proof of Parts A and B of Theorem 2.4. By Proposition 2.5 and the lemma in its

proof, the regular values of Exp⊥ : ν<πM → SN are precisely the points q ∈ SN for

which dq is a Morse function. Letting SNreg denote this subset of SN , Sard’s Theorem

implies that SNreg is of full measure in SN . In fact, SNreg also contains an open, dense

subset of SN .

This can be seen by extending Exp⊥ to be defined on the bundle ν̂M over M ,

whose fibre at p is the totally geodesic (N − n)-dimensional subsphere of SN or-

thogonal to M at p. We denote this extension Êxp
⊥

: ν̂M → SN . The critical

points of Êxp
⊥

: ν̂M → SN are closed in the compact manifold ν̂M , and thus a

compact subset of ν̂M . Their image, the critical values of Êxp
⊥

: ν̂M → SN , are a

compact, and thus a closed subset of SN , whose complement is of full measure by

Sard’s Theorem. The critical values of Exp⊥ : ν<πM → SN are a subset of those

of Êxp
⊥

: ν̂M → SN . The regular values of Exp⊥ : ν<πM → SN therefore contain

the regular values of Êxp
⊥

: ν̂M → SN , which are open and dense in SN .

As explained in the discussion before Proposition 2.3, integrating |det(dExp⊥)|
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over neighborhoods of ν<πM defines a positive measure on ν<πM which is absolutely

continuous with respect to dV olν<πM and is, in a natural sense, the pull-back of

the measure on SN via Exp⊥. We will denote this measure by dµ. If φ is a

measurable function on ν<πM , the integral of φ with respect to this measure is

given by integrating against |det(dExp⊥)|dV olν<πM :∫
ν<πM

φ dµ =

∫
ν<πM

φ|det(dExp⊥)|dV olν<πM .

For any regular point ~v of Exp⊥ : ν<πM → SN , Exp⊥ is a local diffeomorphism

from a neighborhood V of ~v to a neighborhood Q of Exp⊥(~v) in SNreg. We then

have:∫
V

φdµ =

∫
V

φ|det(dExp⊥)|dV olν<πM =

∫
Q

φ ◦ (Exp⊥)−1dV olSN . (2.5)

This implies that the pre-image of SNreg in ν<πM is of full measure relative to

dµ: If ~v is a regular point of Exp⊥ whose image in SN is a critical value, then let V

and Q be neighborhoods of ~v and Exp⊥(~v) with Exp⊥ : V → Q a diffeomorphism

as in (2.5). Q∩SNreg contains a set which is open, dense and of full measure in Q, so

(Exp⊥)−1(SNreg)∩V likewise contains a set which is open, dense and of full measure

in V . This implies that: ∫
(Exp⊥)−1(SN \ SNreg) ∩ V

|det(dExp⊥)|dV olν<πM = 0.
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We can cover the regular points in the pre-image of SN \ SNreg with open sets V

as above. The integral of |det(dExp⊥)| over the critical points of Exp⊥ is zero, and

this implies that (Exp⊥)−1(SNreg) is of full measure for dµ.

We now apply the standard fact from Morse theory that if f is a Morse function

on a closed manifold M , then βi(M ;F ), the ith Betti number of M with coefficients

in the field F , is bounded above by Ci(f), the number of critical points of f which

have index i. For q in SNreg, the distance function dq is Morse on M , and its critical

points are in 1− 1 correspondence with the pre-images of q via Exp⊥, as explained

in Proposition 2.5 and Lemma 2.6. Letting Ci(dq) denote the number of critical

points of dq of index i, and letting ](Exp⊥)−1(q) denote the pre-image count via

Exp⊥ for a point q of SN , we therefore have:

T (M) =
1

V ol(SN )

∫
ν<πM

|det(dExp⊥~v )|dV olν<πM =
1

V ol(SN )

∫
(Exp⊥)−1(SNreg)

|det(dExp⊥~v )|dV olν<πM

=
1

V ol(SN )

∫
SNreg

](Exp⊥)−1(q)dV olSN =
1

V ol(SN )

∫
SNreg

(
n∑
i=0

Ci(dq)

)
dV olSN ≥

n∑
i=0

βi(M ;F )

The first equality above follows from Proposition 2.3 and the second from the

fact that (Exp⊥)−1(SNreg) is of full measure for dµ. The third follows from the

change-of-variables formula (2.5) (with φ = 1), and the fourth from the correspon-

dence between the pre-images of q via Exp⊥ and the critical points of the distance
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function dq on M , as in Lemma 2.6. We have also used the fact that SNreg is of full

measure in SN .

This establishes Theorem 2.4.A, that
n∑
i=0

βi(M ;F ) ≤ T (M).

If T (M) < 3, there must be a set S within SN of positive measure, which

must therefore intersect SNreg, for which the pre-image count ](Exp⊥)−1(q) is less

than 3. For any q0 ∈ S ∩ SNreg the pre-image count must therefore be equal to 2,

corresponding to the critical points of dq0 at its global minimum and maximum.

Reeb proved in [Re52] that if a closed manifold admits a Morse function with its

global minimum and maximum as its only critical points, it is homeomorphic to a

sphere (although it may not be diffeomorphic to the standard sphere.) For q0 as

above, dq0 provides such a Morse function, and this completes the proof of Theorem

2.4.B.

For odd-dimensional submanifolds of spheres, there is the following stronger

version of Theorem 2.4.B. This will be important in proving Theorem 1.1.B:

Theorem 2.7. Let M2m+1 be an odd-dimensional compact manifold, isometrically

immersed in the sphere SN , with T (M) < 4. Then M is homeomorphic to the

sphere S2m+1.

Proof. By the proofs of Theorem 2.4.A, Proposition 2.5 and Lemma 2.6, if T (M) <
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4, there is a point q0 in S2N+1 such that the distance function dq0 is a Morse function

on M with fewer than 4 critical points. dq0 must have a critical point of index 0

at a point p1 of M where it realizes its global minimum, and a critical point of

index 2m + 1 at another point p2 where it attains its global maximum. If dq0 had

a third critical point p3 of index k, it would have a fourth critical point p4 of index

2m+ 1− k because χ(M) = 0. This is impossible, so p1 and p2 are in fact the only

critical points of dq0 on M , and M is homeomorphic to S2m+1 by Reeb’s Theorem.

A similar statement holds for odd-dimensional manifolds immersed in Euclidean

spaces.

We will prove Part C of Theorem 2.4 as a consequence of the following propo-

sition. Parts A and B of Theorem 2.4 also follow from this proposition, however

many of the observations in the proofs of Theorems 2.4.A and 2.4.B above will be

important in explaining and proving our results for complex projective manifolds.

Proposition 2.8. For M isometrically immersed in SN and SN embedded as the

unit sphere in RN+1,

TSN (M) = TRN+1(M).

Proof. Let ν1M be the unit normal bundle of M in SN , and ν̃1M its unit normal

bundle in RN+1. Let ~ν be the outward unit normal vector to SN in RN+1. Any unit
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normal vector ~z to M in RN+1 is of the form cos(θ)~ν + sin(θ)~u, for ~u a unit normal

vector to M in SN and θ ∈ [0, π]. Let Ã~u,θ be the second fundamental form of M

in RN+1 for a normal vector cos(θ)~ν + sin(θ)~u as above, and let A~u be the second

fundamental form of M in SN for the corresponding ~u. For any principal vector e

of A~u with principal curvature κ, we have the following identity :

Ã~u,θ(e) = −(∇RN+1

e ( cos(θ)~ν + sin(θ)~u))
>

= −( cos(θ)∇RN+1

e ~ν + sin(θ)∇RN+1

e ~u)
>

= − cos(θ)e+ sin(θ)(−∇SN

e ~u)> = (κ sin(θ)− cos(θ)) e.

e is therefore an eigenvector of Ã~u,θ with eigenvalue κ sin(θ)− cos(θ). Then we

have:

TSN (M) = 1
V ol(SN )

∫
ν1M

π∫
0

|
n∏
i=1

(κi sin(θ)− cos(θ)) | sin(N−n−1)(θ) dθ dV olν1M(~u)

= 1
V ol(SN )

∫
ν1M

π∫
0

|det(Ã~u,θ)| sin(N−n−1)(θ) dθ dV olν1M(~u)

= 1
V ol(SN )

∫
ν̃1M

|det(Ã~z)|dV olν̃1M(~z) = TRN+1(M).

This proof has a simple geometric meaning:
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The image of ν<πp M under the normal exponential map, as a subset of SN , is

the same as the image of ν̃1
pM under the Gauss map. In fact, these maps coincide

under the natural identification between ν<πM and ν̃1
pM . Up to the normalization

by V ol(SN), TSN (M) is the mass of ν<πM with the measure pulled back from SN

by the normal exponential map, as in the proof of Proposition 2.3 and Theorems

2.4.A and 2.4.B. Similarly, TRN+1(M) is the total mass of the unit normal bundle

to M in RN+1, with the positive measure pulled back from SN by the Gauss map.

Because these maps coincide, the pulled-back measures coincide.

Proof of Part C of Theorem 2.4. Let Mn be a submanifold of SN with TSN (M) =

2. By isometrically embedding SN in RN+1 as above, M is also a submanifold of

RN+1 with TRN+1(M) = 2, and by Part C of Theorem 1.3, M is the boundary of a

convex set in an affine subspace A of RN+1 of dimension (n+ 1). M is therefore a

closed, embedded n-dimensional submanifold of A∩SN , which is homeomorphic to

Sn. M must therefore be equal to A∩SN . Let V be the unique (n+2)-dimensional

linear subspace of RN+1 containing the affine subspace A. V ∩ SN is an (n + 1)-

dimensional totally geodesic subsphere of SN , and M is embedded in V ∩SN as the

boundary of a geodesic ball.

To see the converse, if Sn is the boundary of a geodesic ball in a totally geodesic

(n + 1)-dimensional subsphere Sn+1 in SN , we isometrically embed Sn+1 as the

unit sphere in Rn+2. This isometric embedding takes Sn to the boundary of a
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geodesic ball about a point q in the unit sphere in Rn+2 - the boundary of such a

geodesic ball is given by the intersection of the unit sphere Sn+1 with an (n + 1)-

dimensional affine subspace A of Rn+2. Therefore, by Proposition 2.8 and Theorem

1.3.C, TSn+1(Sn) = 2, and because the total absolute curvature of submanifolds

of spheres is preserved under totally geodesic embeddings into higher-dimensional

spheres, TSN (Sn) = TSn+1(Sn).

We end this chapter by noting that any compact Riemannian manifold can

be isometrically embedded in a sphere of constant curvature 1 of sufficiently high

dimension: The Nash embedding theorems, in [Na54] and [Na56], imply that every

compact Riemannian manifold M can be isometrically embedded in a Euclidean

space Rk of sufficiently high dimension. We can take such an embedding to have its

image in a cell [0, D]k. Letting d be an integer greater than D2, the long diagonal

of the unit cube in Rd has length greater than D, so [0, D]k, and M itself, can be

isometrically embedded in the unit cube in Rdk. Finally, the unit cube in Rdk can

be isometrically embedded in a fundamental domain for a flat torus in S2dk−1, so

M also admits such an embedding.

29



Chapter 3

Total Curvature and the Betti

Numbers of Complex Projective

Manifolds

We recall the definition of the total absolute curvature of a complex projective man-

ifold as an integral in terms of its second fundamental form:

Definition 1.4 (Total Absolute Curvature of Complex Projective Manifolds)

Let M be a complex manifold, of complex dimension m, holomorphically immersed

in the complex projective space CPN . Then its total absolute curvature is:
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T (M) = 2
V ol(CPN )

∫
ν<

π
2 M

|det(cos(r)IdTpM −
(

sin r

r

)
A~v

)| cos(r)

(
sin r

r

)(2N−2m−1)

dV ol
ν
<π

2 M
.

It will be helpful to note that this can also be written as:

T (M) = 2
V ol(CPN )

∫
ν1M

π
2∫

0

|det (cos(r)IdTpM − sin(r)A~u
)| cos(r) sin(2N−n−1)(r) dr dV olν1M .

One of the facts we will need to prove Theorem 1.1 is:

Proposition 3.1. Let M be a compact complex manifold holomorphically immersed

in CPN , and let M̃ be the circle bundle over M which is induced by the Hopf fibration

π : S2N+1 → CPN . With the immersion of M̃ in S2N+1 induced by the immersion

of M in CPN , we have:

TS2N+1(M̃) = TCPN (M).

Proposition 1.2 implies that the total absolute curvature of a complex projective

manifold has the same meaning as the total absolute curvature defined by Chern

and Lashof in (1.1). However, the adaptation of Chern and Lashof’s proofs which

we applied to submanifolds of spheres in Chapter 2 breaks down for submanifolds

of complex projective space. This is because the cut locus of a point in complex

projective space is a complex projective hyperplane, of real codimension 2.
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If M is a submanifold of complex projective space which meets the cut locus

of a point q ∈ CPN , the distance function from q may not be smooth on M - in

particular, it may not be a Morse function. If M has real dimension 2 or greater,

the union over the points of M of their cut loci in CPN has positive measure in

CPN . Because of this, total absolute curvature no longer gives an average for the

number of critical points of a family of Morse functions on M . For compact complex

submanifolds of CPN , we can be more precise about the scope of this limitation:

such a manifold M necessarily meets the cut locus of every point q in CPN , because

M intersects every linear subspace of CPN of dimension N − dimC(M) or greater.

Because the Chern-Lashof theorems hold for submanifolds of spheres in full gen-

erality, as shown in Chapter 2, we will prove Theorem 1.1 by relating the geometry

and topology of complex projective manifolds to those of their pre-images in spheres

via the Hopf fibration. Proposition 3.1 is the first observation that we will need to

do this - its proof is based on the following result, which gives a complete description

of the second fundamental form of M̃ in S2N+1.

Proposition 3.2. Let M be a complex manifold holomorphically immersed in CPN

and M̃ its pre-image in S2N+1 via the Hopf fibration. Let ~u be a unit normal vec-

tor to M at p, e1, ..., en a set of principal vectors for the second fundamental form

A~u, and let κ1, ..., κn be the principal curvatures of e1, ..., en. Let ũ, ẽ1, ..., ẽn be the

horizontal lifts of ~u, e1, ..., en at any point p̃ in M̃ above p.
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Then ũ is normal to M̃ , ẽ1, ..., ẽn are principal vectors for the second fundamental

form Aũ, and each principal direction ẽi has the same principal curvature κi as its

image ei. The tangent to the Hopf fibre through p̃ is also a principal direction for

Aũ with principal curvature 0.

Proof. We let ν̃ denote the outward unit normal to S2N+1 in R2N+2 = CN+1. We

let J denote the complex structure of CPN and of M , and also of CN+1. We let

hFS denote the canonical metric on CPN , and h the induced metric on M , and

we let h̃ denote the canonical metric on CN+1 and on the unit sphere S2N+1 in

CN+1. We let Ẽ0 denote the vector field J(ν̃) on S2N+1. Ẽ0 is unit-length vector

field on S2N+1 tangent to the Hopf fibres. Its orthogonal complement in the tangent

bundle of S2N+1 is invariant under the action of the complex structure of CN+1. The

action of the complex structure of CN+1 on this subbundle of TS2N+1 induces the

complex structure on CPN : Letting dπ denote the differential of the Hopf fibration

π : S2N+1 → CPN , for any tangent vector ~v to CPN , with ṽ any horizontal lift of

~v, we have:

J(~v) = dπ(J(ṽ))

For ei a principal vector for ~u with principal curvature κi as above, let Ei and

U be unit-length vector fields on a neighborhood of CPN which extend ei and ~u

respectively, with Ei tangent and U normal to M . For any vector or vector field
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defined on a neighborhood of CPN , let a tilde denote its horizontal lift to any neigh-

borhood in S2N+1 via the Hopf fibration.

By O’Neill’s formula,

∇S2N+1

Ẽi
Ũ = ∇̃CPN

Ei
U +

1

2
[Ẽi, Ũ ]v. (3.1)

Because∇CPN
Ei

U = −A~u(ei)+(∇CPN
Ei

U)⊥ = −κiei+(∇CPN
Ei

U)⊥, where (∇CPN
Ei

U)⊥

is the component of ∇CPN
Ei

U normal to M , and because the horizontal lift of

−κiei + (∇CPN
Ei

U)⊥ is given by −κiẽi + ˜(∇CPN
Ei

U)⊥, where ˜(∇CPN
Ei

U)⊥ denotes the

horizontal lift of (∇CPN
Ei

U)⊥, we have:

∇S2N+1

Ẽi
Ũ = −κiẽi + ˜(∇CPN

Ei
U)⊥ +

1

2
[Ẽi, Ũ ]v. (3.2)

We note that ˜(∇CPN
Ei

U)⊥ is normal to M̃ : For 1 ≤ l ≤ n, h̃( ˜(∇CPN
Ei

U)⊥, ẽl) =

hFS((∇CPN
Ei

U)⊥, el) = 0. We also have h̃( ˜(∇CPN
Ei

U)⊥, Ẽ0) = 0 because ˜(∇CPN
Ei

U)⊥ is

horizontal and Ẽ0 is vertical for the submersion π : S2N+1 → CPN .

Noting that vertical directions for the Hopf fibration π : S2N+1 → CPN are

tangent to M̃ , we can rewrite (3.1) and (3.2) as follows:

∇S2N+1

Ẽi
Ũ = −κiẽi + (1

2
)[Ẽi, Ũ ]v + (∇S2N+1

Ẽi
Ũ)⊥.

(∇S2N+1

Ẽi
Ũ)⊥ denotes the component of ∇S2N+1

Ẽi
Ũ normal to M̃ , which is equal to

˜(∇CPN
Ei

U)⊥. Noting also that ∇S2N+1

Ẽi
Ũ = −Aũ(ẽi) + (∇S2N+1

Ẽi
Ũ)⊥, where Aũ is the
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second fundamental form of M̃ in the normal direction ũ, we infer that:

Aũ(ẽi) = κiẽi − 1
2
[Ẽi, Ũ ]v.

The proof that ẽi is a principal vector for ũ, with principal curvature κi, will be

complete once we show that [Ẽi, Ũ ]v is zero.

Because the vertical distribution for the Hopf fibration is spanned by Ẽ0, [Ẽi, Ũ ]v

is equal to h̃([Ẽi, Ũ ], Ẽ0)Ẽ0. We write this in terms of the connection in S2N+1 as

follows:

h̃([Ẽi, Ũ ], Ẽ0)Ẽ0 = h̃(∇S2N+1

Ẽi
Ũ −∇S2N+1

Ũ
Ẽi, Ẽ0)Ẽ0

= (h̃(∇S2N+1

Ẽi
Ũ , Ẽ0)− h̃(,∇S2N+1

Ũ
Ẽi, Ẽ0))Ẽ0. (3.3)

Because the Euclidean metric on CN+1 is Hermitian and Ẽ0 = J(ν̃), we have:

h̃(∇S2N+1

Ẽi
Ũ , Ẽ0) = h̃(∇CN+1

Ẽi
Ũ , Ẽ0) = h̃(J(∇CN+1

Ẽi
Ũ), J(Ẽ0)) = −h̃(J(∇CN+1

Ẽi
Ũ), ν̃).

Because the metric on CN+1 is Kähler, its connection ∇CN+1
commutes with

the complex structure J , so letting J(Ũ) denote the vector field which results from

applying the complex structure of CN+1 to Ũ , we have:

h̃(J(∇CN+1

Ẽi
Ũ), ν̃) = h̃(∇CN+1

Ẽi
J(Ũ), ν̃) = Ẽi(h̃(J(Ũ), ν̃))− h̃(J(Ũ),∇CN+1

Ẽi
ν̃).

Because ν̃ is the outward unit normal to S2N+1, ∇CN+1

Ẽi
ν̃ = Ẽi, so the above is

equal to:

Ẽi(h̃(J(Ũ), ν̃))− h̃(J(Ũ), Ẽi).
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Because M is a complex submanifold of CPN , its tangent and normal spaces

are preserved by the complex structure of CPN . Letting J(U) denote the vector

field which results from applying the complex structure of CPN to U , we therefore

have that J(U) is normal to M . Because the complex structure on CN+1 preserves

the subbundle of TS2N+1 orthogonal to Ẽ0, J(Ũ) is a horizontal vector field for

the Hopf fibration. And because the complex structure on CPN is induced by the

action of the complex structure of CN+1 as described above, J(Ũ) is the horizontal

lift of J(U).

Applying this to the formula above, we have that h̃(J(Ũ), Ẽi) = hFS(J(U), Ei) =

0 because J(U) is normal to M and Ei is tangent to M in CPN . We have

h̃(J(Ũ), ν̃) ≡ 0 because J(Ũ) is tangent and ν̃ normal to S2N+1. This then implies

that Ẽi(h̃(J(Ũ), ν̃)) is zero. And this implies that the expression h̃(∇S2N+1

Ẽi
Ũ , Ẽ0)

in (3.3) is zero.

We can apply the same observations to show that the term h̃(∇S2N+1

Ũ
Ẽi, Ẽ0) in

(3.3) is also zero:

h̃(∇S2N+1

Ũ
Ẽi, Ẽ0) = h̃(∇CN+1

Ũ
Ẽi, Ẽ0) = h̃(J(∇CN+1

Ũ
Ẽi), J(Ẽ0)).

This is because the Euclidean metric is Hermitian. Applying the identity Ẽ0 =

J(ν̃), the fact that the connection and complex structure of the Euclidean metric

commute and the fact that ∇CN+1

Ũ
ν̃ = Ũ , we have that this is equal to:
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−h̃(J(∇CN+1

Ũ
Ẽi), ν̃) = h̃(J(Ẽi),∇CN+1

Ũ
ν̃)− Ũ(h̃(J(Ẽi), ν̃)) = h̃(J(Ẽi), Ũ)− Ũ(h̃(J(Ẽi), ν̃)) = 0.

This completes the proof that ẽi is a principal vector for Aũ, with principal cur-

vature κi, just as ei is a principal vector for A~u with prinicipal curvature κi.

To see that the tangent to the Hopf fibre is also a principal vector, with principal

curvature zero, we note that:

h̃(∇S2N+1

Ẽ0
Ũ , Ẽ0) = Ẽ0(h̃(Ũ , Ẽ0))− h̃(Ũ ,∇S2N+1

Ẽ0
Ẽ0).

Because the Hopf fibres are geodesics of S2N+1, we have ∇S2N+1

Ẽ0
Ẽ0 = 0. We also

have h̃(Ũ , Ẽ0) ≡ 0 because Ũ is normal and Ẽ0 tangent to M̃ . This implies that

Ẽ0(h̃(Ũ , Ẽ0)) = 0, and as a consequence, h̃(∇S2N+1

Ẽ0
Ũ , Ẽ0) = 0.

Letting Ẽi be a horizontal lift of a vector field Ei as above for i = 1, 2, · · · , n, we

have that h̃(∇S2N+1

Ẽ0
Ũ , Ẽi) = Ẽ0(h̃(Ũ , Ẽi)) − h̃(Ũ ,∇S2N+1

Ẽ0
Ẽi). Ẽ0(h̃(Ũ , Ẽi)) is zero

because h̃(Ũ , Ẽi) is zero, so we are left with:

−h̃(Ũ ,∇S2N+1

Ẽ0
Ẽi) = h̃(Ũ , [Ẽi, Ẽ0]−∇S2N+1

Ẽi
Ẽ0).

h̃(Ũ , [Ẽi, Ẽ0]) is zero because Ũ is normal and [Ẽi, Ẽ0] is tangent to M̃ , so this

leaves us with h̃(Ũ ,∇S2N+1

Ẽi
Ẽ0). This is equal to h̃(Aũ(ẽi), Ẽ0). Because ẽi is a princi-

pal vector for Aũ, as we showed above, this is equal to h̃(κiẽi, Ẽ0) = κih̃(ẽi, Ẽ0) = 0.

This establishes that h̃(∇S2N+1

Ẽ0
Ũ , Ẽi) = 0 and completes the proof that the Hopf

fibres are principal directions for M̃ in S2N+1, with principal curvature zero.
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The proof of Proposition 3.1 also uses the following result, which gives a simpler

expression for TCPN (M) and is important in some of our later results.

Proposition 3.3. Let M be a complex submanifold of a Kähler manifold P . Sup-

pose ~u is a unit normal vector to M at p and e is an principal vector for the second

fundamental form A~u, with principal curvature κ. Let J denote the complex struc-

ture. Then J(e) is also a principal vector for A~u, with principal curvature −κ.

Proof. Let h denote the metric on P and the induced metric on M , and let e1, ..., en

be an orthonormal basis for TpM with e1 = e and e2 = J(e). We are trying to show

that h(∇P
e2
~u, ej) = κ if j = 2, and is zero otherwise.

Writing the symmetric bilinear form associated to A~u as B~u, we have:

h(∇P
e2
~u, ej) = −B~u(e2, ej) = −B~u(ej, e2) = h(∇P

ej
~u, e2).

Because the metric is Hermitian and e2 = J(e1), we have:

h(∇P
ej
~u, e2) = h(∇P

ej
~u, J(e1)) = −h(J(∇P

ej
~u), e1).

Because the metric is Kähler, we have:

−h(J(∇P
ej
~u), e1) = −h(∇P

ej
J(~u), e1).
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J(~u) is a normal vector to M because M is a complex submanifold of P . Written

in terms of the bilinear second fundamental form, the expression above is then equal

to:

BJ(~u)(ej, e1) = BJ(~u)(e1, ej) = −h(∇P
e1
J(~u), ej).

Using again the fact that the metric is Kähler, we have:

−h(∇P
e1
J(~u), ej) = −h(J(∇P

e1
~u), ej).

Because e1 is a principal vector for ~u with principal curvature κ, we have:

−h(J(∇P
e1
~u), ej) = h(J(κe1), ej) = κh(J(e1), ej) = κh(e2, ej).

This will be κ if j = 2, and zero otherwise.

For a complex projective manifold M of complex dimension m, we can thus write

its principal curvatures for a normal vector ~u as κ1,−κ1, κ2,−κ2, · · · , κm,−κm. We

then have:

det( cos(r)IdTpM − sin(r)A~u) =
m∏
i=1

( cos2(r)− κ2
i sin2(r)). (3.4)

And we have the following two formulae for TCPN (M):

TCPN (M) =
2

V ol(CPN )

∫
ν1M

π
2∫

0

| m∏
i=1

( cos2(r)− κ2
i sin2(r))| cos(r) sin(2N−2m−1)(r)dr dV olν1M

(3.5)
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TCPN (M) =
2

V ol(CPN )

∫
ν1M

π
2∫

0

| m∑
i=0

(−1)i sin(2N−2m−1+2i)(r) cos(2m−2i+1)(r)σi(κ
2)|dr dV olν1M .

(3.6)

Here, as in (2.4), σi(κ
2) represents the ith elementary symmetric function of the

squares of the principal curvatures of the normal vector ~u. In this case, σm(κ2) =

κ2
1κ

2
2 . . . κ

2
m is (−1)m times the Gauss curvature.

Remark 3.4. Proposition 3.3 implies that Kähler submanifolds are minimal. In fact,

closed Kähler submanifolds are minimal in the very strong sense that they have the

minimal volume of any submanifold in their homology class. This is known as

Wirtinger’s inequality (not to be confused with the more famous inequality for

periodic functions) and a proof can be found in [Fr65].

Proof of Proposition 3.1. Let ũ be a unit normal vector to M̃ in S2N+1, with ~u its

image via the differential of the Hopf fibration. ~u is normal to M in CPN . We

let κ̃0, κ̃1, κ̃2, · · · κ̃n be the principal curvatures of ũ, with κ̃0 = 0 corresponding to

the principal direction along the Hopf fibre. We let κ1,−κ1, κ2,−κ2, · · · , κm,−κm

denote the principal curvatures of ~u, so that we have:

κ̃0 = 0, κ̃1 = κ1, κ̃2 = −κ1, κ̃3 = κ2, κ̃4 = −κ2, · · · , κ̃n−1 = κm, κ̃n = −κm.

Let p̃ denote the basepoint of ũ in M̃ and p its image in M . For r ∈ [0, π], we

have:
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det( cos(r)IdTp̃M̃ − sin(r)Aũ) =
n∏
j=0

( cos(r)− κ̃j sin(r))

= cos(r)
m∏
i=1

( cos2(r)− κ2
i sin2(r)) = cos(r)det( cos(r)IdTpM − sin(r)A~u). (3.7)

Because cos2(r)−κ2
i sin2(r) = cos2(π−r)−κ2

i sin2(π−r) and | cos(r)| = | cos(π−

r)|, we have:

π∫
0

|det( cos(r)IdTp̃M̃ − sin(r)Aũ)| sin(2N−n−1)(r)dr

= 2

π
2∫

0

|det( cos(r)IdTp̃M̃ − sin(r)Aũ)| sin(2N−n−1)(r)dr.

Equation (3.7) implies this is equal to the corresponding integral for ~u:

2

π
2∫

0

|det( cos(r)IdTp̃M̃ − sin(r)Aũ)| sin(2N−n−1)(r)dr

= 2

π
2∫

0

|det( cos(r)IdTpM − sin(r)A~u)| cos(r) sin(2N−n−1)(r)dr.

(The additional term cos(r) in the integrand for TCPN (M), which appears in the

second term above, is because of the Jacobi field with initial value J(~u) along the
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geodesic γ~u in CPN . This is explained in the proof of Proposition 1.2, in Chapter 4.)

The Hopf fibres are geodesics of S2N+1 of length 2π. For p ∈ M , we therefore

have:

2π

∫
ν1pM

π
2∫

0

|det( cos(r)IdTpM − sin(r)A~u)| cos(r) sin(2N−n−1)(r)dr d~u

=

∫
π−1(p)

∫
ν1p̃M̃

π
2∫

0

|det( cos(r)IdTp̃M̃ − sin(r)Aũ)| sin(2N−n−1)(r)dr dũ dp̃.

Together with the fact that V ol(S2N+1) = 2πV ol(CPN), this implies that:

TCPN (M) = 2
V ol(CPN )

∫
ν1M

π
2∫

0

|det( cos(r)IdTpM − sin(r)A~u)| cos(r) sin(2N−n−1)(r)dr dV olν1M .

= 1
V ol(S2N+1)

∫
ν1M̃

π∫
0

|det( cos(r)Id
Tp̃M̃

− sin(r)Aũ)| sin(2N−n−1)(r)dr dV ol
ν1M̃

= TS2N+1(M̃).

In light of Proposition 3.1, we can establish an inequality between the total

absolute curvature of a complex projective manifold and its Betti numbers with the

following result:

42



Proposition 3.5. Let M be a compact complex manifold, holomorphically immersed

in the complex projective space CPN . Let M̃ be the S1-bundle over M which is

induced by the immersion of M into CPN from the Hopf fibration S2N+1 → CPN .

For 0 ≤ k ≤ m = dimC(M), we have:

βk(M ;R) = βk(M̃ ;R) + βk−2(M̃ ;R) + βk−4(M̃ ;R) + · · · =
b k
2
c∑

i=0

βk−2i(M̃ ;R).

For m ≤ k ≤ n = dimR(M), we have:

βk(M ;R) = βk+1(M̃ ;R)+βk+3(M̃ ;R)+βk+5(M̃ ;R)+· · · =
bn−k

2
c∑

i=0

βk+2i+1(M̃ ;R).

Proof. Let π̃ : M̃ → M denote the S1-bundle as above. The fibres of M̃ are

oriented by the 1-form dθ dual to the Hopf vector field, and M̃ is oriented by

dθ ∧ π̃∗(dV olM). The cohomology of M̃ is therefore related to the cohomology of

M by a Gysin sequence, as follows:

· · · → H i(M ;R)
•^χ−−−→ H i+2(M ;R)

π̃∗−→ H i+2(M̃ ;R)
σ∗−→ H i+1(M ;R)

•^χ−−−→ H i+3(M ;R)→ · · ·

In the homomorphism H i(M ;R)
•^χ−−→ H i+2(M ;R), one takes the cup prod-

uct with χ, the Euler class of the 2-disk bundle associated to the S1-fibration

π̃ : M̃ → M . This bundle is topologically equivalent to the complex line bun-

dle associated to π̃ : M̃ →M . We will denote this bundle by π̃ : L̃→M .

L̃ is also induced by the immersion of M into CPN , from the complex line bun-

dle associated to the Hopf fibration, which is O(−1) ∈ Pic(CPN). The Euler class

of O(−1) is its first Chern class, which is [−1
π
ωFS], where ωFS is the Kähler class of

the metric on CPN . Because the Euler class of L̃ is the pull-back of that of O(−1)
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and the metric on M is the pull-back of that on CPN , we have χ = [−1
π
ω], where ω

is the Kähler form of M .

We let L : H i(M ;R) → H i+2(M ;R) denote the Lefschetz operator, i.e. [α] 7→

[ω] ^ [α] = [ω ∧ α]. The hard Lefschetz theorem states that for 0 ≤ k ≤

m − 1, L m−k : Hk(M ;R) → H2m−k(M ;R) is an isomorphism. In particular,

L : H i(M ;R) → H i+2(M ;R) is injective for 0 ≤ i ≤ m − 1 and surjective for

m− 1 ≤ i ≤ n− 2. It is trivially surjective (zero) for i = n− 1 and i = n.

Up to the factor − 1
π
, the homomorphism H i(M ;R)

•^χ−−→ H i+2(M ;R) in the

Gysin sequence is the Lefschetz operator. By the hard Lefschetz theorem, it is there-

fore injective for 0 ≤ i ≤ m − 1. This injectivity implies that σ∗ : H i+1(M̃ ;R) →

H i(M ;R) has trivial image, and this implies that π̃∗ : H i+1(M ;R)→ H i+1(M̃ ;R) is

surjective. For 0 ≤ i ≤ m− 1, using again the injectivity of the Lefschetz operator

in the homomorphism H i−1(M ;R)
•^χ−−→ H i+1(M ;R), we then have the following

short exact sequence:

0→ H i−1(M ;R)
•^χ−−→ H i+1(M ;R)

π̃∗−→ H i+1(M̃ ;R)→ 0. (3.8)

This implies that βi+1(M ;R) = βi−1(M ;R) + βi+1(M̃ ;R). The same is true of

βi−1(M ;R), i.e. it is equal to βi−3(M ;R)+βi−1(M̃ ;R). For 0 ≤ k ≤ m, we therefore

have:

βk(M ;R) = βk(M̃ ;R) + βk−2(M̃ ;R) + · · ·+ βk−2l(M̃ ;R) + · · · (3.9)
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Similarly, because L : H i(M ;R) → H i+2(M ;R) is surjective for m − 1 ≤ i ≤

n−2, π̃∗ : H i+2(M ;R)→ H i+2(M̃ ;R) is zero. This implies that σ∗ : H i+2(M̃ ;R)→

H i+1(M ;R) is injective, and we have the following short exact sequence:

0→ H i+2(M̃ ;R)
σ∗−→ H i+1(M ;R)

•^χ−−→ H i+3(M ;R)→ 0. (3.10)

For m ≤ k ≤ n this gives us βk(M ;R) = βk+1(M̃ ;R) + βk+2(M ;R), and like

(3.9), for m ≤ k ≤ n we then have:

βk(M ;R) = βk+1(M̃ ;R) + βk+3(M̃ ;R) + · · ·+ βk+2l+1(M̃ ;R) + · · · (3.11)

This leads to the following proposition, which is the basic inequality between

the total curvature of a complex projective manifold M and its Betti numbers. Part

A of Theorem 1.1 and the other inequalities in this chapter are based on this result:

Proposition 3.6. Let M be a compact complex manifold, of complex dimension m

(real dimension n = 2m) holomorphically immersed in the complex projective space

CPN , and let βi(M ;R) be the Betti numbers of M with real coefficients.

Then βm−1(M ;R) + 2βm(M ;R) + βm+1(M ;R) ≤ T (M).

Proof. Let π̃ : M̃ →M be the S1-bundle over M induced the the Hopf fibration as

above. By Theorem 2.4.A and Propositions 3.1 and 3.5, we have:
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βm−1(M ;R) + 2βm(M ;R) + βm+1(M ;R) =
n+1∑
j=0

βj(M̃ ;R) ≤ T (M̃) = T (M).

(3.12)

Remark 3.7. The calculations for (3.12) are slightly different, depending on whether

M has even or odd complex dimension:

If m is even, then βm(M ;R) =

m
2∑

j=0

β2j(M̃ ;R) =

m
2∑

j=0

β(n + 1− 2j)(M̃ ;R). Because

β0(M̃ ;R) and βn+1(M̃ ;R) are 1, this implies that βm(M ;R) ≥ 1. If m is odd,

then βm−1(M ;R) =

m−1
2∑

j=0

β2j(M̃ ;R) and βm+1(M ;R) =

m−1
2∑

j=0

β(n + 1− 2j)(M̃ ;R). Be-

cause β0(M̃ ;R) = 1, we have βm−1(M ;R) ≥ 1, and because βn+1(M̃ ;R) = 1 we

have βm+1(M ;R) ≥ 1. The powers of the Kähler form give M a non-trivial coho-

mology class in each of its even-dimensional cohomology groups and imply that its

even-dimensional Betti numbers are non-zero - these observations can be seen as a

reflection of this fact.

By the hard Lefschetz theorem, βm−1(M ;R) = βm+1(M ;R), so we can also state

the conclusion of Proposition 3.6 as:

βm(M ;R) + βm±1(M ;R) ≤ T (M)

2
. (3.13)
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The middle-dimensional Betti number of M , and the Betti numbers in the di-

mensions m ± 1, are the largest in dimensions with their respective parities. This

gives us the following family of results:

Proposition 3.8. Let M be as in Proposition 3.6. Then the sum of any even and

any odd-dimensional real Betti number of M is bounded above by T (M)
2

.

If β2k(M ;R) + β2l+1(M ;R) = T (M)
2

, then all even-dimensional real Betti num-

bers of M in dimensions 2k through n − 2k are equal to β2k(M ;R), and all odd-

dimensional real Betti numbers of M in dimesions 2l + 1 through n − 2l − 1 are

equal to β2l+1(M ;R).

In particular, all of the even-dimensional real Betti numbers of M are bounded

above by T (M)
2

, and all of the odd-dimensional real Betti numbers of M are bounded

above by T (M)
2
−1. If equality holds for an even-dimensional Betti number β2k(M ;R),

then all odd-dimensional real Betti numbers of M are equal to 0, and if equality

holds for an odd-dimensional Betti number β2l+1(M ;R), then all even-dimensional

real Betti numbers of M are equal to 1.

Proof. The observations above immediately imply that the sum of an even and an

odd Betti number of M is bounded above by T (M)
2

. The statement that β2k(M ;R)+

β2l+1(M ;R) = T (M)
2

is equivalent to the statement that β2k(M ;R) + β2l+1(M ;R) +

βn−2k(M ;R)+βn−2l−1(M ;R) = T (M). Letting M̃ be the S1-bundle over M as above,

Proposition 3.5 gives us the following relationship between the total curvature and
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Betti numbers of M̃ :

k∑
j=0

β2j(M̃ ;R)+
l∑

j=0

β2j+1(M̃ ;R)+
k∑
j=0

βn+1−2j(M̃ ;R)+
l∑

j=0

βn−2j(M̃ ;R) = TS2N+1(M̃).

(3.14)

Part A of Theorem 2.4 implies that the Betti numbers of M̃ other than those in

(3.14) are zero. Proposition 3.5 then implies that Betti numbers of M in the ranges

described above are constant.

As a corollary of these results, we have the following statement, which gives a

parallel to the first Chern-Lashof theorem for complex projective manifolds:

Theorem 1.1.A Let M be a compact complex manifold, of complex dimension

m, holomorphically immersed in complex projective space. Let T (M) be its total

absolute curvature and βi its Betti numbers with real coefficients.

Then
2m∑
i=0

βi ≤ (m+1
2

)T (M). In particular, T (M) ≥ 2.

Proof. Each of the terms β2i−1 +β2i, for i = 1, 2, · · · ,m, is bounded above by T (M)
2

.

β0 = 1 is likewise, and this implies the result.

The statement that
2m∑
i=0

βi≤(m+1
2

)T (M) in Theorem 1.1.A is sharp, in that equality

holds for linearly embedded complex projective subspaces, but these are the only

complex projective manifolds for which this equality holds. This follows from Part B

of Theorem 1.1. It would be more interesting to characterize equality in Proposition
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3.6. In their second paper, Chern and Lashof gave the following characterization of

equality in their first theorem:

Theorem 3.9 (Chern-Lashof, [CL58]). Let Mn be a compact manifold immersed

in Euclidean space with
n∑
i=0

βi(M ;R) = T (M). Then the integral homology groups of

M are torsion-free.

By Proposition 2.8, the equivalent theorem holds for submanifolds of spheres.

Equality in Proposition 3.6 therefore implies that the integral homology groups of

the spherical pre-image M̃ are torsion-free.

We note that if M is a complex projective manifold which is a complete inter-

section, Proposition 3.6 implies an inequality between the total curvature of M and

its degree, because one can compute the Betti numbers of M in terms of the degrees

of equations defining its ideal.

We also note that the proofs of the first Chern-Lashof theorem and the corre-

sponding result for submanifolds of spheres in Theorem 2.4.A actually imply the

following stronger result: Letting c(M) denote the minimum number of cells in a

cell complex homotopy equivalent to M , c(M) ≤ T (M). Chern and Lashof discuss

this in their second paper [CL58]. Spheres and complex projective spaces can be

immersed with the minimum possible total absolute curvature, equal to 2, in The-

orems 2.4 and 1.1 - we will discuss this in Chapter 4. c(Sn) = 2 for all n, however
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c(CPm) = m+ 1. This implies that the stronger conclusion above does not extend

directly to complex projective manifolds.
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Chapter 4

Complex Projective Manifolds

with Minimal Total Curvature

The complex projective manifolds with minimal total absolute curvature are char-

acterized as follows:

Theorem 1.1.B Let M be a compact complex manifold, holomorphically im-

mersed in complex projective space. If T (M) < 4, then in fact T (M) = 2. This

occurs precisely if M is a linearly embedded complex projective subspace.

In Example 5.7, we will see that this result is sharp.

Proof of Part B of Theorem 1.1. Let π̃ : M̃ → M be the S1-bundle over M which

is induced from the Hopf fibration, as in Chapter 3. By Proposition 3.1, M̃ is

immersed in S2N+1 with TS2N+1(M̃) < 4. M̃ has odd dimension 2m + 1, so by

Theorem 2.7, M̃ is homeomorphic to S2m+1. The Gysin sequence for the fibration
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π̃ : S2m+1 →M with integral cohomology is therefore as follows:

· · · → H i+1(S2m+1;Z)
σ∗−→ H i(M ;Z)

•^χ−−→ H i+2(M ;Z)
π̃∗−→ H i+2(S2m+1;Z)→ · · ·

As in the proof of Proposition 3.5, χ is the Euler class of the 2-disk bundle as-

sociated to the S1-fibration M̃ →M . Because H i(S2m+1;Z) = 0 for i 6= 0, 2m+ 1,

we have that • ^ χ : H i(M ;Z) → H i+2(M ;Z) is an isomorphism for i = 0, 1, 2,

· · · , 2m− 2. This implies that for k = 0, 1, 2, · · · , m, H2k(M ;Z) is infinite cyclic,

generated by χk.

In the proof of Proposition 3.5, we observed that χ is equal to [− 1
π
ω], where ω

is the Kähler form of M . This implies that [− 1
π
ω]m generates the top-dimensional

cohomology H2m(M ;Z) of M . If M is a degree d subvariety of CPN , then [− 1
π
ω]m

is d times a generator in H2m(M ;Z), because [ 1
π
ωFS]m generates H2m(CPN ;Z). We

have seen that [− 1
π
ω]m generates H2m(M ;Z), so d = 1 and M is a linearly embed-

ded subspace of CPN .

If CPm is a linearly embedded subspace of CPN , its pre-image via the Hopf

fibration is a totally geodesic S2m+1 in S2N+1. By Proposition 3.1, TCPN (CPm) =

TS2N+1(S2m+1), and by Part C of Theorem 2.4, TS2N+1(S2m+1) = 2.

Remark 4.1. The proof of Theorem 1.1.B implies that linear subspaces are the only
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complex projective manifolds M whose pre-images M̃ via the Hopf fibration are

integer homology spheres.

We note that the spherical pre-images M̃ in the proofs of Parts A and B of

Theorem 1.1 are minimal submanifolds of S2N+1. In light of the results above and

in Theorem 2.4.C, M̃ is a totally geodesic submanifold of S2N+1 precisely if M is a

linear subspace of CPN , in which case T (M̃) = 2. Otherwise, M̃ has total absolute

curvature at least 4. In [Si68], Simons proved that all n-dimensional closed minimal

subvarieties of the round sphere SN have index at least N − n, and nullity at least

(n+ 1)(N − n), with equality only for totally geodesic round subspheres. It would

be interesting to know if the apparent similarity between these statements is an

indication that there are other results in this direction.

We also note that for many m ≥ 2, it is known that complex projective space is

not the only m-dimensional compact complex manifold whose real cohomology ring

is isomorphic to R[α]/[α]m+1, with [α] a cohomology class in H2(M ;R). Compact

complex manifolds which have the same real Betti numbers as CPm are known as

fake projective spaces. In complex dimension 2, there are known to be fifty fake

projective planes, up to homeomorphism, and one hundred up to biholomorphism.

These were classified by work of Prasad and Yeung and Cartwright and Steger in

[PY07] and [CS10], and all of them can be realized as smooth algebraic surfaces.

Part B of Theorem 1.1 implies that the total absolute curvature of these spaces,
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when realized as complex projective manifolds, is at least twice that of complex

projective space.

We end this chapter by proving Proposition 1.2, which shows that the total

absolute curvature has the same meaning for a complex projective manifold as

Chern and Lashof’s invariant for submanifolds of Euclidean space:

Proposition 1.2 Let M be a compact complex manifold holomorphically im-

mersed in CPN , and let Exp⊥ : ν<
π
2M → CPN denote the normal exponential

map. Then:

T (M) =
2

V ol(CPN )

∫
ν<

π
2 M

|det(dExp⊥)|dV ol
ν
<π

2 M
=

2

V ol(CPN )

∫
CPN

](Exp⊥)−1(q)dV olCPN .

Proof of Proposition 1.2. We begin by verifying the first equation, that:

T (M) =
2

V ol(CPN )

∫
ν<

π
2 M

|det(dExp⊥)|dV ol
ν
<π

2 M
.

Let ~u be a unit normal vector to M at p, and let e1, ..., en be an orthonormal

basis of principal vectors of the second fundamental form A~u with principal cur-

vatures κ1, ..., κn. Let u2 = J(~u), u3, ..., u2N − n be an orthonormal basis for the

orthogonal subspace to ~u in νpM , with J the complex structure of CPN .

Letting γ~u be the geodesic of CPN through ~u, and E1, ..., En the parallel vector

fields along γ~u with initial conditions e1, ..., en, and F2, ..., F2N−n the parallel vector
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fields along γ~u with initial conditions u2, u3, ..., u2N−n, we have:

• (dExp⊥)r~u(ei) = ( cos(r)− κi sin(r))Ei(r) for i = 1, ..., n.

• (dExp⊥)r~u(u2) = ( sin(2r)
2r

)F2(r) = ( sin(r) cos(r)
r

)F2(r).

• (dExp⊥)r~u(uj) = ( sin r
r

)Fj(r) for j = 3, ..., 2N − n.

• (dExp⊥)r~u(~u) = γ′~u(r).

We therefore have:

det(dExp⊥)r~u =
n∏
i=1

(cos(r)− κi sin(r))( cos(r) sin(2N−n−1)(r)
r2N−n−1 )

= det
(
cos(r)IdTpM − sin(r)A~u

)
( cos(r) sin(2N−n−1)(r)

r2N−n−1 ).

For r less than π
2
, this implies that:

|det(dExp⊥)| = |det
(
cos(r)IdTpM − sin(r)A~u

)
|( sin(2N−n−1)(r) cos(r)

r2N−n−1 ).

This implies the first equation in Proposition 1.2:

T (M) =
2

V ol(CPN )

∫
ν<

π
2 M

|det(dExp⊥)|dV ol
ν
<π

2 M
.

The verification of the second equation is similar to the verification of the corre-

sponding fact for submanifolds of spheres, in the proof of Parts A and B of Theorem

2.4:
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We let ν̃M → M be the bundle over M whose fibre at p is the linear sub-

space CPN−m of CPN orthogonal to M at p. (We can also view ν̃M as the bun-

dle whose fibres are the cones over the projectivized normal spaces to M .) As

in the proof of Theorem 2.4.A and B, Exp⊥ : ν<
π
2M → CPN extends to a map

Ẽxp
⊥

: ν̃M → CPN , and because the regular values of Exp⊥ contain those of

Ẽxp
⊥

, in addition to being of full measure, they contain an open, dense subset of

CPN . We let CPN
reg denote the regular values of Exp⊥ : ν<

π
2M → CPN .

As in the proof of Theorem 2.4.A and B, if ~v is a regular point of Exp⊥, there

are neighborhoods V of ~v and Q of Exp⊥(~v) such that Exp⊥ : V → Q is a dif-

feomorphism. As in the proof of Theorem 2.4.A and B, this allows us to define

a positive measure dµ on ν<
π
2M which is absolutely continuous with respect to

dV ol
ν<

π
2 M

and is the pull-back of the measure on CPN via Exp⊥, by integrating a

measurable function φ against |det(dExp⊥)|dV ol
ν<

π
2 M

. For neighborhoods V and

Q with Exp⊥ : V → Q a diffeomorphism as above, we have:

∫
V

φdµ =

∫
V

φ|det(dExp⊥)|dV ol
ν<

π
2 M

=

∫
Q

φ ◦ (Exp⊥)−1dV olCPN .

This implies that (Exp⊥)−1(CPN
reg) is of full measure with respect to dµ, and

this implies that:
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2

V ol(CPN )

∫
ν<

π
2 M

|det(dExp⊥)|dV ol
ν
<π

2 M
=

2

V ol(CPN )

∫
(Exp⊥)−1(CPNreg)

|det(dExp⊥)|dV ol
ν
<π

2 M

=
2

V ol(CPN )

∫
CPNreg

](Exp⊥)−1(q)dV olCPN

Because CPN
reg is of full measure in CPN , this implies the result:

2

V ol(CPN )

∫
ν<

π
2 M

|det(dExp⊥)|dV ol
ν
<π

2 M
=

2

V ol(CPN )

∫
CPN

](Exp⊥)−1(q)dV olCPN

Remark 4.2. Proposition 1.2 illustrates one of the differences between the character-

ization of minimal total absolute curvature for complex projective manifolds, in Part

B of Theorem 1.1, and the corresponding result for submanifolds of spheres in Part

C of Theorem 2.4: If Sn is a totally geodesic subsphere of SN , then almost all points

q̃ in the ambient space SN have precisely two pre-images via Exp⊥ : ν<πSn → SN .

On the other hand, if CPm is a linear subspace of CPN , then almost all q in the

ambient CPN have precisely one pre-image via Exp⊥ : ν<
π
2CPm → CPN . Thus,

Exp⊥ : ν<πSn → SN covers SN twice and Exp⊥ : ν<
π
2CPm → CPN covers CPN

once.
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Chapter 5

Total Curvature and the

Geometry of Complex Projective

Hypersurfaces

We can give a more detailed explanation of the relationship between the total ab-

solute curvature of a complex projective hypersurface and other aspects of its ge-

ometry. The key to these results is the following observation:

Proposition 5.1. Let M be a complex submanifold of a Kähler manifold P , and

let J denote its complex structure. Let ~u be a normal vector to M at a point p, and

let e and e∗ = J(e) be principal vectors for the second fundamental form A~u, with

principal curvatures κ and −κ, as in Proposition 3.3.

58



Then e+e∗√
2

and −e+e
∗

√
2

are principal vectors for J(~u), with principal curvatures κ

and −κ respectively. In general, letting ~uθ = cos(θ)~u+sin(θ)J(~u), (cos( θ2)e+sin( θ2)e∗)

and (− sin( θ2)e∗ + cos( θ2)e) are principal vectors for ~uθ with principal curvatures κ

and −κ respectively.

Proof. Let U be a normal vector field on a neighborhood of p which extends ~u. Be-

cause P is Kähler, so that its connection ∇P commutes with the complex structure

J , we have:

AJ(~u)(e) = −
(
∇P
e J(U)

)>
= −J(∇P

e U)> = −J( −A~u(e) ) = J(κe) = κe∗.

Similarly, AJ(~u)(e
∗) = −κ(−e) = κe. This implies that e+e∗√

2
and −e+e∗√

2
are

principal vectors for AJ(~u):

AJ(~u)(
e+e∗√

2
) = κ( e+e

∗
√

2
), AJ(~u)(

−e+e∗√
2

) = −κ(−e+e
∗

√
2

).

More generally, we have:

A~uθ(cos( θ2)e+ sin( θ2)e∗) = cos( θ
2
)κ(cos(θ)e+ sin(θ)e∗)+ sin( θ

2
)κ(sin(θ)e− cos(θ)e∗)

= κ(cos(θ) cos( θ
2
) + sin(θ) sin( θ

2
))e+ κ(sin(θ) cos( θ

2
)− sin( θ

2
) cos(θ))e∗

= κ(cos(θ − θ
2
)e+ sin(θ − θ

2
)e∗) = κ(cos( θ

2
)e+ sin( θ

2
)e∗).

This implies that cos( θ2)e + sin( θ2)e∗ is a principal vector for A~uθ with principal

curvature κ. By a similar calculation, or by Proposition 3.3, − sin( θ2)e∗ + cos( θ2)e is

a principal vector with principal curvature −κ.
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For each complex line in the normal space of a Kähler submanifold, this gives

us a set of tangent complex lines:

Definition 5.2 (Holomorphic Principal Directions). Let M be a complex submani-

fold of a Kähler manifold P . Let ~u be a normal vector to M at p, and let e1, J(e1),

e2, J(e2), · · · , em, J(em) be an orthonormal basis of principal vectors for A~u, with

principal curvatures κ1, −κ1, κ2, −κ2, · · · , κm, −κm as in Proposition 3.3.

We will refer to the complex lines SpanC(ei) in the tangent space TpMas a set of

holomorphic principal directions for the complex line SpanC(~u) in the normal space

νpM .

We let νProjM denote the projectivized normal bundle of M in CPN , as in the

proof of Proposition 1.2. Proposition 5.1 allows us to express the total absolute

curvature of a complex projective manifold as an integral over νProjM :

Proposition 5.3. Let M be a compact complex manifold of complex dimension m

holomorphically immersed in CPN , and let νProjM be its projectivized normal bun-

dle. For each complex line in the normal space to M at a point p, as in Definition

5.2, let κ2
1, κ2

2, · · · , κ2
m be the squares of the principal curvatures for a set of holo-

morphic principal directions, and let σi(κ
2) be the ith symmetric function of the κ2

i ,

as in (3.6). Then:
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T (M) = 4π
V ol(CPN )

∫
νProjM

π
2∫

0

| m∏
i=1

( cos2(r)− κ2
i sin2(r))| cos(r) sin(2N−2m−1)(r) dr dV olνProjM

= 4π
V ol(CPN )

∫
νProjM

π
2∫

0

| m∑
i=0

(−1)i sin(2N−2m−1+2i)(r) cos(2m−2i+1)(r)σi(κ
2)| dr dV olνProjM .

The factor 4π in Proposition 5.3, instead of 2 as in Definition 1.4, is because the

fibres of ν1
pM over νProjp M have length 2π.

For a complex projective hypersurface M , this allows us to express the total

absolute curvature as an integral over M itself:

Theorem 5.4. Let M be a compact complex manifold, of complex dimension m,

holomorphically immersed in CPm+1. For each p in M , let K1, K2, · · · , Km be the

holomorphic sectional curvatures of a family of holomorphic principal directions at

p. Let σi(K) represent the ith elementary symmetric function of the Ki.

Then Ki = 4− 2κ2
i , and the total absolute curvature of M is:

T (M) = 4π
V ol(CPN )

∫
M

π
2∫

0

| m∑
i=0

(
1− 3 sin2(r)

)(m−i)( sin2i(r)

2i

)
σi(K)| cos(r) sin(2N−2m−1)(r) dr dV olM .
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Proof. By the Gauss formula, the holomorphic sectional curvature Ki of a holomor-

phic principal direction SpanC(ei) is equal to 4−2κ2
i , where κi,−κi are the principal

curvatures of the principal vectors ei, J(ei). Substituting this in the expression for

T (M) in Proposition 5.3, we have:

T (M) = 4π
V ol(CPN )

∫
M

π
2∫

0

| m∏
i=1

(
cos2(r)−

(
4−Ki

2

)
sin2(r)

)| cos(r) sin(2N−2m−1)(r)dr dV olM

= 4π
V ol(CPN )

∫
M

π
2∫

0

| m∏
i=1

(
1− 3 sin2(r) +Ki

(
sin2(r)

2

))| cos(r) sin(2N−2m−1)(r)dr dV olM

= 4π
V ol(CPN )

∫
M

π
2∫

0

| m∑
i=0

(
1− 3 sin2(r)

)(m−i)( sin2i(r)

2i

)
σi(K)| cos(r) sin(2N−2m−1)(r)dr dV olM .

Calabi proved in [Ca53] that if a Kähler manifold admits a holomorphic isometric

immersion into a complex space form, even locally, then this immersion is essentially

unique:

Theorem 5.5 (Calabi, [Ca53]). Let (M,h) be a Kähler manifold of complex dimen-

sion m, and let U be a neighborhood in M which admits a holomorphic isometric

immersion into a complex space form F (N, λ), of complex dimension N and holo-

morphic sectional curvature λ. Suppose that the image of this immersion does not
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lie in any proper linear subspace of F (N, λ).

Then the dimension N of the ambient space is uniquely determined by the holo-

morphic sectional curvature λ and the metric h on U , and the immersion is uniquely

determined up to a holomorphic isometry of F (N, λ).

Corollary 5.6. All holomorphic isometric immersions of a compact Kähler mani-

fold (with a fixed metric) into complex projective space have the same total absolute

curvature.

In general, Proposition 5.4 does not give a completely intrinsic representation

of T (M) because it does not characterize the holomorphic principal directions of

M in CPN intrinsically. However it follows from Calabi’s theorem that the total

absolute curvature of a complex projective manifold is actually part of its intrinsic

geometry, and for curves Σ in CP 2, Proposition 5.4 does give a completely intrinsic

representation of T (Σ):

Theorem 1.5 Let Σ be a smooth curve in CP 2, with K the sectional curvature

of its projectively induced metric. Then:

T (Σ) =
1

π

∫
Σ

(K − 4)2 + 4

6−K
dAΣ.
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Recall that the sectional curvature of Σ is bounded above by 4, away from the

value 6 at which the integrand would be undefined.

Proof of Theorem 1.5. By Proposition 5.4, the pointwise contribution to T (Σ) from

a point of Σ with curvature K is:

π
2∫

0

|1 +

(
K

2
− 3

)
sin2(r) | cos(r) sin(r)dr. (5.1)

When r = 0, 1 + (K
2
− 3) sin2(r) = 1. When r = π

2
, 1 + (K

2
− 3) sin2(r) = K

2
− 2,

which is less than or equal to zero for K ≤ 4, with equality precisely when K = 4.

In general, 1 + (K
2
− 3) sin2(r) = 0 precisely when sin2(r) = 2

6−K , so when r =

arcsin(
√

2
6−K ). For K ∈ (−∞, 4],

√
2

6−K takes values in (0, 1], so arcsin(
√

2
6−K ) has

a well-defined value in (0, π
2
]. Let αK denote this value of arcsin(

√
2

6−K ). We then

evaluate the integral in (5.1) over the intervals [0, αK ] and [αK ,
π
2
]. The resulting

pointwise value for the total absolute curvature is:

αK∫
0

(
1 +

(
K

2
− 3

)
sin2(r)

)
cos(r) sin(r)dr −

π
2∫

αK

(
1 +

(
K

2
− 3

)
sin2(r)

)
cos(r) sin(r)dr

= (
1

2
)

(
K2 − 8K + 20

24− 4K

)
= (

1

8
)

(
(K − 4)2 + 4

6−K

)
.

Substituting this in the expression for T (Σ) in Theorem 5.4, together with the

fact that V ol(CP 2) = π2

2
, gives the result.
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Example 5.7. The conic F described by z2
0+z2

1+z2
2 = 0 in CP 2 is isometric to a round

2-sphere with curvature 2. As a degree 2 curve, Area(F) = 2 × Area(CP 1) = 2π.

(More generally, as explained in Remark 3.4, Wirtinger’s inequality implies that a

degree d curve in CP 2 has area d × Area(CP 1) = dπ.) By Theorem 1.5, we then

have:

T (F) =
1

π

∫
F

(2− 4)2 + 4

6− 2
dAΣ =

1

π
× 2π × 2 = 4.

This shows that Part B of Theorem 1.1 is sharp.

More generally, for smooth degree d curves in CP 2, the following holds:

Proposition 5.8. Let Σd be a smooth curve of degree d in CP 2. Then:

2d2 − 4d+ 4 ≤ T (Σd) ≤ 2d2. (5.2)

Proof. Σd is a compact Riemann surface of genus (d−1)(d−2)
2

. As explained in Ex-

ample 5.7, its area is dπ. Let Kd be the average sectional curvature of Σd. By the

Gauss-Bonnet formula,

dπKd = 2πχ(Σd) = 2π(2− (d− 1)(d− 2)) = 2πd(3− d).

Therefore, Kd = 2(3− d).

65



By applying Jensen’s inequality to the function (K−4)2+4
6−K in Theorem 1.5, which

is convex on (−∞, 4], we then have:

Area(Σd)

(
(Kd − 4)2 + 4

6−Kd

)
≤

∫
Σd

(K − 4)2 + 4

6−K
dAΣd = π × T (Σd).

This implies that 2d2 − 4d+ 4 ≤ T (Σd).

On the other hand, (K−4)2+4
6−K is asymptotic, as K → −∞, to a line with slope

−1. It is straight-forward to check that the linear function f(K) = 6−K gives an

upper bound for (K−4)2+4
6−K for all K ≤ 4, with equality when K = 4, and that this

is the best linear upper bound possible, in that a line with greater slope or smaller

intercept will no longer give an upper bound for (K−4)2+4
6−K for all K ∈ (−∞, 4]. We

then have:

T (Σd) =
1

π

∫
Σd

(K − 4)2 + 4

6−K
dAΣ ≤

1

π

∫
Σd

(6−K)dAΣ =
1

π
(6Area(Σd)− 2πχ(Σd)) = 2d2.

Hulin proved in [Hu00] that if a Kähler-Einstein metric on a compact complex

manifold is induced by a holomorphic embedding into complex projective space,

then the metric has positive scalar curvature. In particular, the only constant-

curvature metrics on plane algebraic curves, with K ≡ Kd, occur on curves of

degree 1, and on curves of degree 2 which are isometric (and thus congruent, by

Calabi’s theorem) to the curve in Example 5.7. Other than for these curves, the
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first inequality in Proposition 5.8 is strict. The second inequality in Proposition 5.8

is strict except for degree 1 curves.

A smooth degree d curve in CP 2 whose curvature is nearly constant will have to-

tal absolute curvature close to the lower bound 2d2−4d+4 in Proposition 5.8. The

equivalent statement for the upper bound 2d2 seems harder to formulate. For exam-

ple, it is shown by Vitter in [Vi74] that the degree d Fermat curve zd0 + zd1 + zd2 = 0,

for d ≥ 3, has 3d points at which its sectional curvature is maximal, equal to 4.

This shows that for curves of arbitrarily high degree, one cannot replace the linear

upper bound 6−K in the proof of Proposition 5.8 by a stronger upper bound, even

though for any ε > 0, a better linear upper bound is available for K confined to the

interval (−∞, 4− ε].

We now have two results which give a lower bound for the total absolute curva-

ture of a smooth curve in CP 2 in terms of its degree - Proposition 3.6 and Propo-

sition 5.8:

Let Σd be a smooth degree d curve in CP 2.

• By Proposition 3.6, 2d2 − 6d+ 6 ≤ T (Σd).

• By Proposition 5.8, 2d2 − 4d+ 4 ≤ T (Σd) ≤ 2d2.

When d = 1, both results give the same estimate, that T (CP 1) ≥ 2. We know
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that in fact T (CP 1) = 2. When d = 2, Proposition 5.8 implies that T (Σ2) ≥ 4,

which also follows from Part B of Theorem 1.1. Proposition 3.6 gives a weaker result,

that T (Σ2) ≥ 2. Proposition 5.8 also implies that T (Σ2) < 8. When d = 3, Proposi-

tion 3.6 implies that that T (Σ3) ≥ 6. Proposition 5.8 implies that 10 < T (Σ3) < 18.

For all d ≥ 3, the lower bound in Proposition 5.8 is stronger than the result in

Proposition 3.6. However, the upper and lower bounds in Proposition 5.8 together

show that Proposition 3.6, based ultimately on the original Chern-Lashof theorems,

gives the right order of growth in the degree d for the optimal lower bound for T (Σd).

Proposition 5.8 also shows that for all d ≥ 3, the total absolute curvatures of degree

d curves are contained in an interval of length 4(d−1), between 2d2−4d+4 and 2d2.

We note that the lower bound for degree d+ 1 curves, 2(d+ 1)2 − 4(d+ 1) + 4,

exceeds the upper bound for degree d curves, 2d2, by 2. This implies that the total

absolute curvature of a smooth curve in CP 2 determines its degree. We record this

in the following:

Proposition 1.6 Let Σ be a smooth curve in CP 2. Then the degree of Σ is the

unique d ∈ N such that 2d2 − 4d+ 4 ≤ T (Σ) ≤ 2d2.

By the Gauss-Bonnet formula, the (non-absolute) total curvature of a smooth

plane curve determines its topology, and hence its degree for curves of degrees 3

and greater. However, the Gauss-Bonnet integral is the same for curves of degrees
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1 and 2. Moreover, the Gauss-Bonnet integral is the same for all smooth curves

of a fixed topological type - it cannot distinguish between non-isomorphic curves

with the same topology, or between geometrically distinct embeddings of isomorphic

curves. Total absolute curvature can distinguish these things in some cases - for

example, smooth conics which are not congruent to the curve in Example 5.7 will

have total absolute curvature greater than 4. In this sense, total absolute curvature

is a somewhat stronger invariant than total curvature.

Proposition 1.6 implies that the total absolute curvatures of complex subman-

ifolds of CP 2 belong to disjoint intervals in R≥2, with each interval associated to

curves of a fixed degree. Smooth plane curves of degree d, together with their em-

beddings, belong to a continuous and connected family (parametrized by an open,

dense and connected subset of CP
(d+2

2

)
−1) so the total absolute curvatures of smooth

degree d curves in CP 2 form a connected interval in R≥2. By Theorem 5.8 and Ex-

ample 5.7, this interval is a point for d = 1, is a sub-interval of [4, 8) which includes

the endpoint 4 for d = 2, and is a sub-interval of (2d2 − 4d+ 4, 2d2) for d ≥ 3. De-

termining these intervals precisely, describing total absolute curvature as a function

on the parameter space of smooth degree d curves and studying the total absolute

curvature of singular curves would strengthen these results.

One can fix a higher-dimensional complex projective space and seek a charac-
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terization of the total absolute curvatures of its closed complex submanifolds, along

the lines of the results we have sketched above for complex submanifolds of CP 2.

However, one can also approach this question from a different point of view: one can

fix a compact complex manifold M , of projective type, and ask for the total absolute

curvatures of all metrics on M which can be induced by holomorphic immersions

into complex projective space.
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[Fe29] W. Fenchel Über Krümmung und Windung Geschlossener Raumkurven,

Mathematische Annalen 101.1 (1929): 238-252

[Fe40] W. Fenchel On Total Curvatures of Riemannian Manifolds: I, Journal of the

London Mathematical Society 1.1 (1940): p.15-22

[Fl72] F. Flaherty The Volume of a Tube in Complex Projective Space, Illinois Jour-

nal of Mathematics 16.4 (1972): 627-638

[Gr04] A. Gray Tubes, Birkhauser, 2004

[GV81] A. Gray and L. Vanhecke The Volumes of Tubes in a Riemannian Manifold,

Rend. Sem. Mat. Univ. e Politec. Torino. 39.3 (1981): p.1-50
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