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ABSTRACT

MODULI SPACES OF RIEMANNIAN METRICS WITH POSITIVE AND

NONNEGATIVE RICCI AND SECTIONAL CURVATURE

McFeely Jackson Goodman

Wolfgang Ziller

We use invariants related to η invariants of Dirac operators to distinguish path

components of moduli spaces of Riemannian metrics with positive and nonnega-

tive Ricci and sectional curvature. In 7 dimensions, we calculate the Kreck-Stolz

s invariant for metrics on spin total spaces of Sn bundles with nonnegative sec-

tional curvature. We then apply it to show that the moduli spaces of metrics with

nonnegative sectional curvature on certain 7-manifolds have infinitely many path

components. These include certain positively curved Eschenburg and Aloff-Wallach

spaces.

We next use the η invariant of spinc Dirac operators to distinguish connected

components of moduli spaces of Riemannian metrics with positive Ricci curvature.

We find infinitely many non-diffeomorphic five dimensional manifolds for which

these moduli spaces each have infinitely many components. The manifolds are total

spaces of principal S1 bundles over #aCP 2#bCP 2 and the metrics are lifted from

Ricci positive metrics on the base.
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Chapter 1

Introduction

The description of manifolds with positive and nonnegative scalar, Ricci, and sec-

tional curvature is an important topic in Riemannian geometry. We know of few

manifolds admitting metrics of positive sectional curvature, with only spheres and

projective spaces in dimensions larger than 24 and infinite families only in dimen-

sions 7 and 13.

More closed manifolds are known to admit Riemannian metrics of positive Ricci

curvature exist, for example, all compact, simply connected homogeneous spaces,

biquotients, and cohomogeneity one manifolds, see [Ber], [GZ2], [STu]. Systematic

methods for constructing such metrics on certain connected sums and bundles have

been explored in [CG], [GPT], [Na], [SW], [SY1], [W2].

On manifolds Mn which support such metrics, the next question is to describe

the space of all such metrics. The proper space to study is the moduli space, or the
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quotient of the space of positive or nonnegative curvature metrics by the pullback

action of the diffeomorphism group. We denote by M the space of all metrics

modulo the diffeomorphism group, and use a subscript to specify the curvature

condition. The number of connected components of Mscal>0, for instance, serves as

a coarse quantification of positive scalar curvature metrics.

In dimension 2, where all three notions of positive curvature coincide, one sees

using the uniformization theorem that the moduli space is connected. In dimension

3, the Ricci flow has been used to show that Msec>0 ,MRic>0, and Mscal>0 are

connected when they are nonempty, see [H1], [H2], and [M].

The situation is different in higher dimensions. Kreck and Stolz [KS3] defined

the s invariant of the path components of the moduli space of positive scalar cur-

vature metrics Mscal>0(M) on certain spin manifolds. If two metrics on M yield

different values of s, they cannot be connected by a path maintaining positive scalar

curvature. Kreck and Stolz used the invariant to show that for a (4n+3)-manifold

with vanishing rational Pontryagin classes and a unique spin structure the space

of such metrics is either empty or has infinitely many components. Botvinnik and

Gilkey used the relative η invariant to prove the same property for spin manifolds

of odd dimension ≥ 5 with certain nontrivial fundamental groups and space forms

in all dimensions ≥ 5, see [BG1], [BG2].

The s invariant can also be used to distinguish path components of the moduli

spaces of metrics with stronger curvature conditions. Wraith showed that for a
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homotopy sphere σ4k−1 bounding a parallelisable manifold, MRic>0(σ) has infinitely

many components. The procedure known as plumbing with disc bundles over sphere

produces infinitely many parallelisable manifolds with boundaries diffeomorphic to

σ. Wraith constructed metrics of positive Ricci curvature on each boundary in[W1]

and calculated the s invariant of each metric in in [W3].

In [KS3] Kreck and Stolz studied the s invariant for two families of 7-manifolds.

The first are the total spaces N7
k,l of principal S1 bundles over CP 2 × CP 1. These

spaces are also described as the homogeneous spaces S5 × S3/S1
k,l, see [WZ]. Using

the diffeomorphism invariants of [KS1] they show that each N7
k,l, with k even and

gcd(k, l) = 1, is diffeomorphic to infinitely many manifolds in the same family.

Calculating the s invariants for the Einstein metrics described in [WZ] and the

homogeneous metrics induced from the product of two round metrics on S5×S3, it

follows that MRic>0(N7
k,l) and Msec≥0(N7

k,l) have infinitely many path components.

The second family are the Aloff-Wallach spaces W 7
k,l = SU(3)/S1

k,l. Using the

diffeomorphism classification in [KS2] they show that some W 7
k,l are diffeomorphic

to finitely many other manifolds in the family. As these spaces have homogeneous

metrics of positive curvature when kl(k+ l) 6= 0, they exhibit some examples where

Msec>0(W 7
k,l) has more than one component. We note though that for all known

families of manifolds admitting positive sectional curvature metrics, only finite sub-

families have the same cohomology ring, see [CEZ], [EZ].

The same methods are used in [DKT] to calculate the s invariants of homo-
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geneous metrics on the total spaces of S1 bundles N4n+3
k,l over CP 2n × CP 1. As

observed in [WZ], for fixed n and l this family contains only finitely many diffeo-

morphism types. It follows that for any fixed n and l there exists some k0 such that

Msec≥0(N4n+3
k0,l

) has infinitely many path components. We note however that for

n ≥ 2 and |l| > 2 this does not identify any specific manifold having that property.

Dessai [D] used the s invariant to find several infinite families of 7-dimensional

sphere bundles M7 such that MRic>0(M) and Msec≥0(M) have infinitely many path

components. Grove and Ziller [GZ1, GZ3] constructed metrics on nonnegative sec-

tional curvature on the manifolds in those families, and the diffeomorphism clas-

sifications in [CE] and [EZ] show that each manifold is diffeomorphic to infinitely

many other members of the family.

More recently, Dessai and González-Álvaro [DG] showed that if M5 is one

of the five closed manifolds homotopy equivalent to RP 5’s then Msec≥0(M) and

MRic>0(M) have infinitely many path components. López de Medrano [L] showed

that each such M5 admits infinitely many descriptions as a quotient of a Brieskorn

variety, and Grove and Ziller showed the each quotient admits a metric of nonnega-

tive sectional curvature [GZ2]. Dessai and González-Álvaro calculated the relative

η invariant for those metrics to distinguish the path components.

This thesis is organized as follows. Below we summarize the main results, in

dimensions 7 and 5. In Chapter 2 we develop invariants to detect path components

of moduli spaces. In Chapter 3 and Chapter 4 we describe metrics and connections
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on certain 7- and 5-Manifolds respectively used to calculate the moduli space in-

variants, and combine the calculations with diffeomorphism classifications to prove

the main results.

1.1 Main Results

1.1.1 7-Manifolds

We identify new 7-manifolds with Msec≥0 and MRic>0 having infinitely many path

components. As in previous examples, the manifolds are total spaces of n−sphere

bundles. In the case of S1 bundles, however, we develop new techniques to use

metrics for which the orbits are not geodesics.

The first set of examples are total spaces Mm,n of S3 bundles over S4. Such

bundles are classified by pairs of integers (m,n) ∈ π3(SO(4)) ∼= Z⊕Z. The second

set are total spaces Sa,b of S3 bundles over CP 2 which are sphere bundles of non-

spin vector bundles. They are classified by two integers a, b describing the first

Pontryagin class and the Euler class. Grove and Ziller [GZ1, GZ3] showed that

Mm,n and Sa,b admit metrics of nonnegative sectional curvature.

Theorem A. Let m,n, a, b ∈ Z with n 6= 0 and a 6= b. Then for M = Mm,n

or Sa,b the moduli spaces Msec≥0(M) and MRic>0(M) have infinitely many path

components.
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Note that the family Mm,±1 includes S7 and the exotic Milnor spheres. The case

of S3 bundles over S4 was obtained independently by Dessai in [D] using the relative

index invariant of Gromov and Lawson [GL]. Those are the only previous non-

homogeneous examples of this type. By [EZ] Proposition 6.7 the manifold S−1,a(a−1)

is diffeomorphic to the Aloff-Wallach space W 7
a,1−a discussed above. But in general

Mm,n and Sa,b do not have the homotopy type of a 7-dimensional homogeneous

space, e.g. when |H4(Mm,n,Z)| = |n| /∈ {1, 2, 10} or |H4(Sa,b,Z)| = |a− b| = 2 mod

3 respectively.

To describe the final set of manifolds, we start with S2 bundles N̄t and Nt over

CP 2 which are sphere bundles of spin, respectively non-spin, vector bundles and are

classified by an integer t describing the first Pontryagin class. The 7-manifolds M̄ t
a,b

and M t
a,b are the total spaces of S1 bundles over N̄t and Nt respectively, classified

by two additional integers a and b, with gcd(a, b) = 1, describing the Euler class.

Escher and Ziller [EZ] showed that M t
a,b and M̄2t

a,b admit metrics of non-negative

sectional curvature such that S1 acts by isometries.

Theorem B. (a) Let a, b, t ∈ Z with gcd(a, b) = 1 and t(a + b)2 6= ab. Then

Msec≥0(M t
a,b) and MRic>0(M t

a,b) have infinitely many path components.

(b) Let a, b, t ∈ Z with gcd(a, 2b) = 1 . Then Msec≥0(M̄2t
a,2b) and MRic>0(M̄2t

a,2b)

have infinitely many path components.

In [EZ] Corollary 6.4 it was shown that the manifold M−1
a,b is the Eschenburg

biquotient Fa,b = S1
a,b,a+b\SU(3)/S1

0,0,2a+2b. These are the only Eschenburg biquo-
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tients admitting free S1 actions and when ab > 0 they admit metrics of positive

sectional curvature, see [Es]. Furthermore M1
a,b is the Aloff-Walach space Wa,b,

which has positive sectional curvature if ab(a + b) 6= 0. We have thus as an imme-

diate corollary

Corollary. Let a, b ∈ Z with gcd(a, b) = 1. For M = Wa,b or M = Fa,b the

moduli spaces Msec≥0(M) and MRic>0(M) have infinitely many path components,

and if ab(a + b) 6= 0, receptively ab > 0, then at least one of these components

contains a metric of positive sectional curvature.

Along with S7, these are the first examples of this type. We note that in [EZ]

one finds further examples of positively curved Eschenburg spaces which are diffeo-

morphic to some of the manifolds Sa,b or M t
a,b and so the same conclusion holds.

In [KS3] Example 3.10, Kreck and Stolz showed that Msec>0(W−4638661,582656),

along with finitely many other examples, has more than one component. Thus

with Theorem B we have Msec≥0(W−4638661,582656) has infinitely many components,

at least two of which are known to contain metrics of positive sectional curvature.

We remark that so far, the Kreck Stolz examples are the only manifolds for which

Msec>0 is known to have more than one path component.

By Corollary 7.8 of [EZ] M̄0
a,2b is diffeomorphic to the homogeneous space N7

2b,a,

and hence Theorem B part (b) generalizes the Kreck-Stolz examples. But again in

general M̄2t
a,2b and M t

a,b do not have the homotopy type of a 7-dimensional homoge-

neous space, e.g. when |H4(M̄2t
a,2b,Z)| = |a2 − 8tb2| = 2 mod 3 or |H4(M t

a,b,Z)| =
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|t(a+ b)2 − ab| = 2 mod 3.

The strategy of the proof is as follows. We calculate the s invariant with topo-

logical data on the associated disc bundle of the sphere bundle. In Theorem 3.1.1

we extend the metric with sec ≥ 0 on each sphere bundle to a metric of positive

scalar curvature on the associated disc bundle which is a product near the bound-

ary. If the disc bundle is a spin manifold Kreck and Stolz [KS3] obtained a formula

for the s invariant in terms of the index of the Dirac operator, which vanishes since

the scalar curvature is positive, and topological data on a bounding manifold, see

Theorem 2.1.4. Theorem A follows easily: the manifolds Mm,n and Sa,b are classi-

fied up to diffeomorphism in [CE] and [EZ] respectively. In particular each sphere

bundle is diffeomorphic to infinitely many others. Their computations easily yield

the formula for the s invariant as well. Theorem A follows since s is a polynomial

in the integers a, b,m and n, where m,n satisfy ma+ nb = 1.

Theorem B is more involved. For part (b) we observe that M̄ t
a,b is a spin manifold

if and only if b is even, and in this case the associated disc bundle is a spin manifold

as well. The proof then proceeds as before although the proof that the metrics

have positive scalar curvature is more involved. We use the Kreck-Stolz invariants

s1, s2, s3 ∈ Q/Z of [KS2] to obtain infinitely many circle bundles diffeomorphic to

each manifold. For part (a) the manifolds M t
a,b are always spin but the disc bundles

are not. Here we use another formula from [KS3], see Theorem 2.1.6, which does not

require knowledge of a spin bounding manifold, but requires that the bundle be a

8



circle bundle and that the fibers be geodesics. The latter condition does not hold for

the metrics with sec ≥ 0, so we first deform the metrics, preserving positive scalar

curvature, until the fibers are geodesics and such that S1 still acts by isometries.

Then the strategy proceeds in the same way.

We note that M̄2t
a,2b+1 and the S3 bundles over CP 2 which are sphere bundles of

spin vector bundles also admit metrics with sec ≥ 0, but they are not spin manifolds

so the methods do not apply. The conditions a 6= b and n 6= 0 for Sa,b and Mn,m as

well as t(a+ b)2 6= ab for M t
a,b are required to ensure the manifolds have the correct

cohomology ring for the diffeomorphism classifications.

1.1.2 5-Manifolds

We identify an infinite family 5-manifolds M such that MRic>0(M) and Mscal>0(M)

have infinitely many path components.

Theorem C. Let B = #aCP 2#bCP 2 with a−b = 4 mod 8 and let S1 →M → B

be a principal bundle with first Chern class 2d, where d ∈ H2(B,Z) is primitive and

w2(TB) = d mod 2. Then MRic>0(M) and Mscal>0(M) have infinitely many path

components.

The only other five dimensional manifolds known to have this property are the

five homotopy real projective spaces recently discovered by Dessai and González-

Álvaro [DG].

We will see that for a fixed base B the total spaces M satisfying the hypotheses
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of Theorem C are diffeomorphic, i.e. independent of the choice of d. M can be

constructed by taking a+ b copies of RP 5, removing equivariant tubular neighbor-

hoods of Hopf orbits and gluing equivariantly along the boundaries of the tubular

neighborhoods. The total spaces M have fundamental group Z2 and by the classi-

fication of Barden [Ba], the universal cover M̃ is diffeomorphic to #a+b−1S3 × S2.

But we do not know an explicit description of the deck group action by Z2 on M̃ .

Those results (BG) do not apply in the case of Theorem C as the manifolds are

not spin.

In Section 2.2 we show that in dimensions 4k + 1, the η invariant of a certain

spinc Dirac operator constructed for a positive scalar curvature metric g depends

only on the class of g in Mscal>0 or MRic>0. In Section 4.2 we use a diffeomorphism

result of Hambleton and Su [HS] to show that for a fixed base B all the total spaces

M satisfying the hypothesis of Theorem C are diffeomorphic. Each base B admits

a metric of positive Ricci curvature by a result of Sha and Yang [SY2]. The metrics

can be lifted to metrics of positive Ricci curvature on the total spaces M by [GPT].

To complete the proof we calculate η for each metric and show that it obtains

infinitely many values.

The standard method for calculating the η invariant of a spin Dirac operator on

a manifold M with positive scalar curvature is to extend the metric over a manifold

W with ∂W = M such that the extension has positive scalar curvature as well.

When M is not spin but spinc, both the metric and a unitary connection on the
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complex line bundle associated to the spinc structure must be extended. The desired

condition then involves the curvatures of both metric and connection. In their work,

Dessai and González-Álvaro passed to the universal cover to find a suitable W over

which the connection could be extended to a flat connection. They use equivariant

eta invariants on the cover to compute the eta invariant on the quotient. In this

thesis, we work directly on M and use a manifold with boundary W with scal> 0

over which the connection cannot be extended to flat connection, but the curvature

of the extension can be explicitly controlled.

To calculate η we extend the metric and connection on M to a metric h and

connection ∇ on the disc bundle W = M ×S1 D2 associated to the S1 bundle. We

then use the Atiyah-Patodi-Singer index theorem [APS1] to obtain a formula for η

in terms of the index of the spinc Dirac operator on W and topological data on W .

The index will vanish as long as

scal(h) > 2|F∇|h

where F∇ is the curvature form of the connection ∇. We accomplish the extension

for a general class of S1 invariant metrics of positive scalar curvature in Section 4.3.

This is more general than we need but may be of independent interest. In fact we

construct h and ∇ such that

scal(h) > `|F∇|h

where ` is a positive integer such that the first chern class of the S1 bundle is `

times the canonical class of a spinc structure on the quotient.

11



If we alter the hypotheses in Theorem C such that a − b 6= 4 mod 8, the

diffeomorphism result of [HS] determines the diffeomorphism type only up to a two-

fold ambiguity. Thus the total spaces M for a fixed B fall into two diffeomorphism

classes. Our methods imply that for one of those manifolds, MRic>0 has infinitely

many components, but we cannot say which one. See Theorem 4.2.7.

Sha and Yang also constructed metrics of positive Ricci curvature on the four

manifolds #mS2 × S2. One might expect our methods to yield a similar result in

this case. The 5-manifolds, however, would be spin, and the eta invariant of the

spin Dirac operator in dimension 4k+1 vanishes, even when twisted with certain

complex line bundle, see [BG1].
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Chapter 2

Moduli Space Invariants

We use the η invariant and related invariants of the spinc Dirac operator, which

we define in this section, to distinguish components of geometric moduli spaces.

A manifold M is spinc if there exists a complex line bundle λ over M such that

the frame bundle of TM ⊕ λ, a principal SO(n)× U(1) bundle, lifts to a principal

Spinc(n) = Spin(n)×Z2 U(1) bundle. A manifold is Spinc if and only if the second

Stiefel-Whitney class w2(TM) is the image of an integral class c ∈ H2(M,Z) under

the map H2(M,Z)→ H2(M,Z2). In this case c, which we call the canonical class of

the Spinc structure, is the first Chern class of λ, which we call the canonical bundle.

Using complex representations of Spinc(n) we form Spinc spinor bundles and

equip them with actions of the complex Clifford algebra bundle Cl(TM). When

the dimension of M is even there is a unique irreducible such bundle S with a

natural grading S = S+ ⊕ S−. Given a metric g on M and a unitary connection

13



∇ on λ we can construct a spinor connection on ∇s on S, compatible with Clifford

multiplication, and a spinc Dirac operator Dc
g,∇ acting on sections of S. See [LM]

Appendix D for details. The Bochner-Lichnerowicz identity for this operator is

(Dc
g,λ)

2 = (∇s)∗∇s +
1

4
scal(g) +

i

2
F∇. (2.0.1)

Where the complex two-form F∇ is the curvature of ∇. This form acts on

the spinor bundle S by way of the vector bundle isomorphism ΛT ∗M → ΛTM →

Cl(TM) given by g. The operator (∇s)∗∇s is nonnegative definite with respect to

the L2 inner product on a closed manifold or a compact manifold with boundary

on which the Atiyah-Patodi-Singer boundary conditions have been applied. See

[APS1] Theorem 3.9 for details. The remaining term 1
4
scal(g) + i

2
F∇ is positive

definite if

scal(g) > 2|F∇|g, (2.0.2)

where the norm | · |g is the operator norm on Cl(TM) acting on S. In particular,

ker(Dc
g,∇) = 0 if (2.0.2) is satisfied. For a later purpose we note that for ω ∈

Ω2(M,C) and an orthonormal basis {ei} of TM with respect to g, we have

|ω|g ≤
∑
i<j

|ω(ei, ej)|. (2.0.3)

Suppose W is a Spinc manifold with boundary ∂W = M, with λ and c defined

on W as above. W induces a Spinc structure on M with canonical class c|∂W and

canonical bundle λ|∂W . Choose a metric h on W and a connection ∇ on λ which

14



are product-like near ∂W , i.e.

h = h|∂W + dr2

and

∇ = proj∗M(∇|∂W )

on a collar neighborhood U ∼= M × I where I is an interval with coordinate r.

Applying the Atiyah-Patodi-Singer boundary conditions, the Atiyah-Patodi-Singer

index theorem [APS1] states that

ind(Dc
h,∇|S+) =

∫
W

ec1(∇)/2Â(p(h))−
dim(ker(Dc

h|∂W ,∇|∂W )) + η(Dc
h|∂W ,∇|∂W )

2
.

(2.0.4)

Here c1(∇) and p(h) are the Chern-Weil Chern and Pontryagin forms constructed

from the curvature tensors of the connection and metric respectively. Â is Hirze-

bruch’s polynomial in the Pontryagin forms and Dc
h|∂W ,∇|∂W is the spinc Dirac op-

erator on M constructed using the induced metric and connection.

η is an analytic invariant of the spectrum of an elliptic operator defined in

[APS1]. Given an elliptic differential operator D with spectrum {λi} we define a

complex function

η(D, s) =
∑
λ 6=0

sign(λi)|λi|−s.

One shows that the function is analytic when the real part of s is large and

Atiyah, Patodi and Singer showed that it can be analytically continued to a mero-

morphic function which is analytic at 0. Thus we define η(D) = η(D, 0). If a
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diffeomorphism φ preserves the spinc structure, then Dc
φ∗g,φ∗∇ is conjugate to Dc

g,∇

and hence they have the same spectrum and the same values of η. We will use

(2.0.4) to calculate η and related invariants for an operator Dg,∇̃ on a manifold M

by finding a suitable W with ∂W = M and extending g, ∇̃ to product like h and

∇ on W.

2.1 Spin (4k+3)-Manifolds

A Spin manifold is a special case of a Spinc manifold for which w2(TM) and c are

zero. Thus λ is a trivial bundle and∇ can be neglected in all expressions, and we use

Dg to represent the Dirac operator with respect to a metric g in the spin case. Let

(M, g) be a 4k − 1 dimensional Riemannian spin manifold with vanishing rational

Pontryagin classes and scal(g) > 0. In order to define an intrinsic moduli space

invariant on M, Kreck and Stolz consider a spin manifold W such that ∂W = M

and a metric h, product like near ∂W , and such that h|∂W = g.

In this context the Atiyah-Patodi-Singer signature theorem states

sign(W ) =

∫
W

L(p(h))− η(Bh|∂W ) (2.1.1)

where sign(W ) is the signature, L is Hirzebruch’s L polynomial, and B is the

signature operator acting on differential forms.

They multiply (2.1.1) by a factor ak = (22k+1(22k−1− 1))−1 and add it to (2.0.4)
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in the spin case:

ind(Dh) + aksign(W ) =

∫
W

(Â− akL)(p(h))− η(Dg)

2
− akη(Bg). (2.1.2)

Note that as (2.0.2) is satisfied on M (∇ can be neglected), dim(ker(Dg))= 0.

Lemma 2.7 in [KS3] follows from Stokes’ Theorem:

Lemma 2.1.3. [KS3] Let W be a manifold with boundary, and let α, β be closed

forms on W such that α|∂W = dα̂ and β|∂W = dβ̂. Then

∫
W

α ∧ β =

∫
∂W

α̂ ∧ β +
〈
j−1(α) ∪ j−1(β), [W,∂W ]

〉
where j−1 represents any preimage under the long exact sequence map

j : H∗(W,∂W ;Q)→ H∗(W,Q).

The utility of this addition is that each summand of the form (Â + akL)(p(h)) is

decomposable into a wedge product of Pontryagin forms. Since h is product-like,

p(h)|M = p(h|M) = p(g). By the assumption on the Pontryagin classes of M, these

forms will be exact when restricted to M. Thus we can apply Lemma 2.1.3 to the

integral

∫
W

(Â+ akL)(p(h)) =

∫
M

d−1(Â+ akL)(p(g)) +
〈
j−1(Â+ akL)(p(TW )), [W,∂W ]

〉
where d−1 represents replacing one factor of a decomposable form with an exterior

anti-derivative as in Lemma 2.1.3. One checks that the choice of which form to

replace does not affect the integral.

17



The Kreck-Stolz s invariant is defined intrinsically for a positive scalar curvature

metric g on M :

s(M, g) = −η(Dg)

2
− akη(Bg) +

∫
M

d−1(Â+ akL)(p(g)).

Then (2.1.2) becomes

ind(Dh) + aksign(W ) = s(M, g) +
〈
j−1(Â+ akL)(p(TW )), [W,∂W ]

〉
They further showed that when H1(M,Z2) = 0 the absolute value of the invariant

depends only on the connected component of g in Mscal>0. One proof is very similar

to the proof of Theorem 2.2.1 below.

If W and h can be chosen such that scal(h) > 0, then using (2.0.2) we see that

ind(Dh) = 0, proving the following theorem:

Theorem 2.1.4. [KS3] Let W be a spin (4k)-manifold with a metric h of positive

scalar curvature which is a product metric on a collar neighborhood of ∂W . If

∂W = M has vanishing rational Pontryagin classes and g = h|M has positive scalar

curvature then

s(M, g) = −
〈
j−1(Â(TW ) + akL(TW )), [W,∂W ]

〉
+ ak sign(W ) (2.1.5)

where [W,∂W ] is the fundamental class and Â and L are Hirzebruch’s polynomi-

als. Furthermore j−1pi(W ) is any preimage of the ith Pontryagin class of W in

H4i(W,∂W ;Q) and sign(W ) is the signature of W .
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In Theorem A and Theorem B part (b) the associated disc bundle to the sphere

bundle is a spin manifold and hence we can apply Theorem 2.1.4 using the metrics

constructed in Section 3.1. If however the disc bundle is not a spin manifold we use

a different strategy. In the special case of an S1 bundle with geodesic fibers, Kreck

and Stolz use a cobordism argument to reduce to a case where another bounding

manifold can be found and derive a correction term.

Theorem 2.1.6. [KS3] Let π : M → B be a principal S1 bundle such that M

is a spin (4k − 1)-manifold with vanishing rational Pontryagin classes. Suppose B

is a spin manifold and M is given the spin structure induced by the vector bundle

isomorphism TM ∼= π∗(TB)⊕ V , where V is the trivial vector bundle generated by

the action field of the S1 action. Let g be a metric with scal(g) > 0 on M such that

S1 acts by isometries and the S1 orbits are geodesics. Then

s(M, g) = −
〈
j−1(Â(TW ) cosh(e/2) + akL(TW )), [W,∂W ]

〉
+ aksign(W ). (2.1.7)

Here W is the disc bundle associated to M . Furthermore j−1, Â, L, ak, [W,∂W ]

and sign(W ) are as in Theorem 2.1.4 and e ∈ H2(W,Z) is the image of the Euler

class of the S1 bundle under the isomorphism H2(W,Z) ∼= H2(B,Z).

Specializing to dimension 7, the formulas in (2.1.5) and (2.1.7) become

s(M, g) = − 1

27 · 7
p2

1 +
1

25 · 7
sign(W ) (2.1.8)
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and

s(M, g) = − 1

27 · 7
p2

1 +
1

27 · 3
(
2p1e

2 − e4
)

+
1

25 · 7
sign(W ) (2.1.9)

where

p2
1 =

〈
(j−1(p1(TW )2), [W,∂W ]

〉
,

p1e
2 =

〈
(j−1(p1(TW )e2), [W,∂W ]

〉
and e4 =

〈
(j−1(e4), [W,∂W ]

〉
.

In Sections 3 and 4 we find, for each manifold M in Theorems A and B, a

sequence of metrics on manifolds diffeomorphic to M such that no two metrics

yield the same value of |s|. These metrics can be pulled back to M, and by [KS3]

Proposition 2.13, s is preserved under pullbacks. The following lemma of Dessai,

Klaus, and Tuschmann ([DKT], Section 2.1) and Belegradek, Kwasik, and Schultz

([BKS], Proposition 2.7) shows that these sequences complete the proof of Theorems

A and B.

Lemma 2.1.10. [BKS, DKT] Let M be a simply connected spin (4k-1)-manifold

with vanishing rational Pontryagin classes. Let g1, g2 be Riemannian metrics on M

such that sec(gi) ≥ 0, scal(gi) > 0, and |s|(M, g1) 6= |s|(M, g2). Then g1, g2 lie in

different path components of Msec≥0(M). Furthermore, there exist metrics ĝ1 and

ĝ2 on M with Ric(ĝi) > 0 and s(M, ĝi) = s(M, gi). Thus ĝ1 and ĝ2 lie in different

path components of MRic>0(M).

The proof relies on the result of Bohm and Wilking [BW] that metrics with nonneg-

ative Ricci curvature on a simply connected manifold immediately evolve to have
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positive Ricci curvature under the Ricci flow.

2.2 Spinc (4k+1)-Manifolds

In order to extend the tools of Kreck and Stolz to further examples, we prove that

for certain 4n + 1 dimensional Spinc manifolds the η invariant alone provides the

desired invariant to distinguish connected components of Mscal>0.

Theorem 2.2.1. Let M4n+1 be a closed spinc manifold with canonical class c ∈

H2(M,Z) and canonical bundle λ. Suppose c and the Pontryagin classes pi(TM)

are torsion and gt, t ∈ [0, 1] is a smooth path of metrics on M with scal(gt) > 0. If

∇0 and ∇1 are flat unitary connections on λ, then

η(Dc
g0,∇0

) = η(Dc
g1,∇1

).

Proof. Modifying gt if necessary we assume it is a constant path for t near 0 and 1.

Given L ∈ R>0, define a smooth metric g on M × [0, 1] by

g = gt + L2dt2.

Then g is product-like near M × {0, 1}. One sees that scal(g) differs from scal(gt)

by terms depending on the second fundamental form of each slice M ×{t}, but the

second fundamental form tends to 0 as L→∞, so for large L we have scal(g) > 0.

The difference of unitary connections on a complex line bundle is an imaginary

one form. Define α ∈ Ω(M) such that

iα = ∇1 −∇0.
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Since both connections are flat, dα = 0. Let π : M × [0, 1]→ M be the projection

and let f : M × [0, 1]→ [0, 1] be the projection onto [0, 1] followed by be a smooth

function which is 0 in a neighborhood of 0 and 1 in a neighborhood of 1. Define a

connection on π∗λ by

∇ = π∗∇0 + ifπ∗α.

Then, since ∇0 is flat,

F∇ = idf ∧ π∗α.

Let ei be an orthonormal frame for g at a point (p, t), such that e1 = 1
L
∂t. Then

2
∑
i<j

|(df ∧ α)(ei, ej)| =
2∂tf

L

∑
i>1

α(ei).

Since ei, i > 2, is tangent to M × {t}, it does not depend on L. Using (2.0.3), for

large L we have

scal(g) > 2|F∇|g.

The definition of f ensures that ∇ is product-like near ∂(M × I). Then by (2.0.1)

Dc
g,∇ has trivial kernel and ind(Dc

g,∇|S+) = 0.

Since F∇i = 0 for i = 1, 2

scal(gi) > 0 = 2|F∇i|gi

and hence (2.0.1) implies kerDc
gi,∇i = {0}. We now apply the Atiyah-Patodi-Singer

index theorem (2.0.4). The boundary of M × I is two copies of M with opposite

orientations. The spectrum of the Dirac operator on M × {0, 1} is the union of
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the spectra on M × {0} and M × {1}, and the η invariant is the sum of the two

η invariants. When we change the orientation of an odd dimensional manifold, the

Dirac operator changes by a sign. Thus the Atiyah-Patodi-Singer theorem yields

ind(Dc
g,∇|S+) =

∫
M×[0,1]

ec1(∇)/2Â(p(g))

−1

2

(
dim(ker(Dc

g0,∇0
)) + dim(ker(Dc

g1,∇1
)) + η(Dc

g0,∇0
)− η(Dc

g1,∇1
)
)

and hence

η(Dc
g1,∇1

)− η(Dc
g0,∇0

) = 2

∫
M×[0,1]

ec1(∇)Â(p(g)).

Since π∗1c is torsion, c1(∇) is exact. Because ∇ is flat near the boundary

c1(∇)|∂(M×I) = 0. Furthermore g is product-like near the boundary so p(g)|M×{i} =

p(gi). Since the real Pontryagin classes of M vanish pj(gi) is exact for j > 0. By

Stokes’ theorem, and since the dimension of M is 4n+ 1, the integral vanishes.

As a corollary we show how to use the η invariant to detect path components of

moduli spaces of metrics with curvature conditions no weaker than positive scalar

curvature.

Corollary 2.2.2. Let M be as in Theorem 2.2.1. Let (gi,∇i) be a sequence of

Riemannian metrics gi with Ric(gi) > 0, and flat connections ∇i on λ such that

{η(Dc
gi,∇i)}i is infinite. Then MRic>0(M) and Mscal>0(M) have infinitely many path

components.
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Proof. Let Diffc(M) be the set of diffeomorphisms of M which fix the spinc struc-

ture. For g ∈ Rscal>0 let [g] represent the image in Mscal>0 and [g]c the image in

Rscal>0/Diffc(M). It follows from Ebin’s slice theorem ([E], [Bo]), that if [gi], [gj]

are in the same connected component of Rscal>0/Diffc(M) then gi, φ
∗gj are in the

same path component of Rscal>0 for some φ ∈ Diffc(M). Then there is a path be-

tween them maintaining positive scalar curvature, and by Theorem 2.2.1 and the

spinc diffeomorphism invariance of η we have η(Dc
gi,∇i) = η(Dc

φ∗gj ,φ∗∇j) = η(Dc
gj ,∇j).

Since {η(Dc
gi,∇i)} is infinite, Rscal>0/Diffc(M) has infinitely many components.

Any diffeomorphism φ pulls back the spinc structure to another one with canoni-

cal class φ∗c, a torsion class in H2(M,Z). There are finitely many such classes. The

finite group H1(M,Z2) indexes the Spinc structures associated to each class. Thus

the orbit of the spinc structure under Diff(M) and the set Diff(M)/Diffc(M) are fi-

nite. The fibers of Rscal>0/Diffc(M)→Mscal>0 are no larger than Diff(M)/Diffc(M),

implying that Mscal>0 has infinitely many components.

The proof is identical for MRic>0 since Ric > 0 implies scal > 0.

In section Section 4.3 we show how to extend a metric g with scal(g) > 0 and flat

connection ∇̄ on certain S1 principal bundles to h,∇ on the associated D2 bundles

such that

scal(h) > |F∇|h.

Then the index and dim(ker) terms in (2.0.4) vanish, and the η invariant can be

calculated in terms of the integral. The integral is evaluated with Lemma 2.1.3
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as in the previous section. Note that in this case only the cohomological term

remains. Evaluating this term in the case of a disc bundle we prove the following

in Section 4.2

Theorem 2.2.3. Let S1 act freely on a 4n + 1 manifold M by isometries of a

Riemannian metric g with scal(g) > 0. Assume π1(M) is finite and let B = M/S1

be the quotient. Suppose the first Chern class of the principal bundle S1 →M
π−→ B

is `d where ` is a positive even integer and w2(TB) = d mod 2. Finally assume

the real Pontryagin classes of M vanish. Then M admits a spinc structure with

canonical class π∗d. If ∇̄ is a flat connection on the canonical bundle of this spinc

structure and Dc
g,∇̃ is the spinc Dirac operator, then

η(Dc
g,∇̄) =

〈
sinh(d/2)Â(TB)

sinh(`d/2)
, [B]

〉
.

When n = 1,

η(Dc
g,∇̄) =

〈
−(`2 − 1)d2 + p1(TB)

24`
, [B]

〉
. (2.2.4)
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Chapter 3

7-Manifolds

3.1 Metrics on Sphere and Disc Bundles

In [GZ1] and [GZ3] one finds many examples of metrics with nonnegative sectional

curvature on principal SO(n) bundles such that SO(n) acts by isometries. Hence the

associated sphere bundles admit such metrics as well. We will apply Theorem 2.1.4

to appropriate metrics constructed on the associated sphere and disc bundles.

Theorem 3.1.1. Let P be a principal SO(n+ 1) bundle admitting a metric gP ,

invariant under the SO(n+1) action, with sec(gP ) ≥ 0. In the case n = 1 assume in

addition that at each point x ∈ P there exists a 2-plane σx ⊂ TxP with secgP (σx) >

0 which is orthogonal to the orbit of SO(2). Then there exists a metric gM on the

associated sphere bundle M = P ×SO(n+1) S
n with sec(gM) ≥ 0 and scal(gM) > 0

that extends to a metric gW on the associated disc bundle W = P ×SO(n+1) D
n+1
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with scal(gW ) > 0. Furthermore gW is a product near the boundary of W .

Proof. Let gSn be the standard metric on the sphere of radius 1/2. We define the

metric gM such that the product metric gP + gSn and gM make the projection

ρ : P × Sn → P ×SO(n+1) S
n = M

into a Riemannian submersion. By the O’Neill formula gM has nonnegative sectional

curvature.

To show gM has positive scalar curvature we must check that each point of

M has a 2-plane of positive sectional curvature. First assume n > 1. Consider

(p, x) ∈ P ×Sn. Let X, Y ∈ so(n+ 1) be such that the action fields X∗, Y ∗ ∈ TxSn

are linearly independent. The vertical space of the SO(n + 1) action on P × Sn

is the set of vectors (Z∗,−Z∗) for all Z ∈ so(n + 1), where we repeat notation for

the action fields on P and Sn. It follows that the projections of (0, X∗), (0, Y ∗) ∈

T(p,x)P × Sn onto the horizontal space are A = (aX∗, bX∗) and B = (cY ∗, dY ∗) for

some a, b, c, d 6= 0 and hence sec(A ∧ B) > 0 in the product metric gP + gSn .Since

the plane is horizontal the O’Neill formula implies that secgM (ρ∗A∧ρ∗B) > 0. Thus

gM has positive scalar curvature.

In the case of n = 1 we have by assumption a 2-plane σx ⊂ TxP in the horizontal

space of the SO(2) action on P . It follows that (σx, 0) lies in the horizontal space

of the SO(2) action on P × S1, and by the O’Neill formula secgM (ρ∗(σx, 0)) ≥

secgP (σx). So gM has a 2-plane of positive sectional curvature at each point and

hence scal(gM) > 0.
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We next show that gM extends to a metric gW on W with positive scalar curva-

ture. Let f : [0, 1] → R be a concave function with f(0) = 0, f ′(0) = 1, f ′(r) < 1

for r ∈ (0, 1] and f(r) = 1/2 for r ∈ [R, 1] for some R < 1 . Then

gDn+1 = dr2 + f(r)2gSn

is a smooth metric on Dn+1 with sec(gDn+1) ≥ 0. Define the metric gW on W such

that gP + gDn+1 and gW make the projection

π : P ×Dn+1 → P ×SO(n+1) D
n+1 = W

into a Riemannian submersion.

The assumption that f is concave and f ′(r) < 1 when r > 0 ensure sec(gDn+1) ≥

0. Furthermore, when n > 1, planes tangent to the spheres of constant radius r will

have positive sectional curvature, and we repeat the argument above to conclude

scal(gW ) > 0. For n = 1, the same argument as for gM implies scal(gW ) > 0.

For r ∈ [R, 1] the projection π can be regarded as

π : (P × Sn)× [R, 1]→ (P ×SO(n+1) S
n)× [R, 1] ∼= M × [R, 1].

The image is a collar neighborhood of the boundary of W. Since f = 1/2 in this

region, the metric on the left is gP +gSn+dr2 and the metric induced on the quotient

is gM + dr2. So gW is a product metric near the boundary with gW |∂W = gM .

We note that by replacing gSn by 1
λ
gSn in the proof and considering λ ∈ [0, 1],

one sees that gM lies in the same path component of Msec≥0(M) as the metric
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induced by gP under the submersion P → P/SO(n) ∼= M . This is of particular

interest when n = 1 in which case P = M .

In the case of an S1 bundle with totally geodesic fibers, Theorem 2.1.6 applies

without requiring the disc bundle to be spin. The following theorem shows that

some S1 invariant metrics with nonnegative sectional curvature can be deformed to

metrics with geodesic fibers while maintaining positive scalar curvature.

Theorem 3.1.2. Let M be a manifold admitting a free S1 action and a metric

g of nonnegative sectional curvature, invariant under that action. Suppose that

for each x ∈ M there is a 2-plane σx ⊂ TxM orthogonal to the S1 orbit with

sec(σx) > 0. Then M admits a metric h of positive scalar curvature such that S1

acts by isometries, the S1 orbits are geodesics, and h and g are in the same path

component of Mscal>0(M).

Proof. Since the set of 2-planes orthogonal to the S1 orbits is compact, the maxi-

mum sectional curvature of such a plane at each point is a positive continuous func-

tion, and hence there exists C > 0 such that we can choose σx with sec(σx) > C. Let

X be the action field of the S1 action on M and u = |X|g. We fix 0 < ε < infM(u)

such that

sup
x∈M, |Y |g=1

(
ε2
∣∣∣∣ 3Y (u)2

(u2 − ε2)2
− Hessu(Y, Y )

u(u2 − ε2)

∣∣∣∣) <
C

n− 1
.

For each λ ∈ (0, 1] we define v : M → R>0 by

vλ =
εu

λ
√
u2 − ε2
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and a warped product metric gλ on M × S1:

gλ = g + v2
λdθ

2.

Next define the metric hλ on M such that gλ and hλ make the projection

π : M × S1 →M ×S1 S1 ∼= M

into a Riemannian submersion. The action

z · (x, y)→ (x, yz)

of S1 on M × S1 is by isometries of gλ, commutes with the quotient action, and

induces an action on M ×S1 S1 which makes the diffeomorphism M ×S1 S1 ∼= M

equivariant. Thus S1 acts on M by isometries of hλ.

We now show that scal(hλ) > 0 for all λ ∈ (0, 1]. For a point x ∈ M

let {X1, ..., Xn−1, X} be an orthogonal basis of TxM with |Xi|g = 1 and σx =

span(X1, X2). Then we can find a, b ∈ R and Z = (aX, b∂θ) such that

{(X1, 0), ..., (Xn−1, 0), Z} is an orthonormal basis of the horizontal space of π at

(x, y) ∈M × S1. By the O’Neill formula

scal(hλ) ≥ secgλ((X1, 0) ∧ (X2, 0))

+
∑

(i,j)6=(1,2)

secgλ((Xi, 0) ∧ (Xj, 0)) +
n−1∑
k=1

secgλ((Xk, 0) ∧ Z).

Since (M × {y}, g) is totally geodesic,

secgλ((X1, 0) ∧ (X2, 0)) = secg(σx) > C
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and

secgλ((Xi, 0) ∧ (Xj, 0)) = secg(Xi ∧Xj) ≥ 0.

Furthermore, using the basis {(Xk, 0), 1
b
Z} for the plane (Xk, 0) ∧ Z

secgλ((Xk, 0)∧Z) =

〈
Rg(Xk,

a
b
X)a

b
X,Xk

〉
g

+ 〈Rgλ((Xk, 0), (0, ∂θ))(0, ∂θ), (Xk, 0)〉gλ
a2

b2
u2 + v2

λ

≥ − |secgλ((Xk, 0) ∧ (0, ∂θ))| = −
∣∣∣∣ 1

vλ
Hessvλ(Xk, Xk)

∣∣∣∣ .
For details on the sectional curvatures of a warped product, used in the last

equality, see [Ba] Section 9J. Applying the definition of vλ we have

scal(hλ) ≥ C −
n−1∑
k=1

ε2
∣∣∣∣ 3Xk(u)2

(u2 − ε2)2
− Hessu(Xk, Xk)

u(u2 − ε2)

∣∣∣∣ > 0.

So hλ, λ ∈ (0, 1], is a continuous path of metrics with positive scalar curvature.

Each hλ is identical to g on the orthogonal complement of X, while

|X|2hλ =
u2v2

λ

u2 + v2
λ

=
ε2u2

λ2(u2 − ε2) + ε2
.

Since X is a Killing vector field and |X|h1 = ε is constant, the integral curves of

X, which are the orbits of the S1 action, are geodesics in h1. Furthermore |X|h0 = u,

so h0 = g. Thus h = h1 and g are in the same path component of Mscal>0(M).

3.2 S3 bundles

In this section we prove Theorem A, starting with the simplest case.
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3.2.1 S3 bundles over S4

S3 bundles over S4 are classified by elements of π3(SO(4)) = Z ⊕ Z. We use the

basis for π3(SO(4)) given by the maps µ(q)(v) = qvq−1 and ν(q)(v) = qv. Here

v ∈ R4 viewed as the quaternions and q ∈ S3 viewed as the unit quaternions. Let

Mm,n be the bundle classified by mµ + nν ∈ π3(SO(4)). In [GZ1] it is shown that

the SO(4) principal bundle of every S3 bundle over S4 admits an SO(4) invariant

metric of nonnegative sectional curvature, and hence the sphere bundles do as well.

Assume n 6= 0. From the homotopy long exact sequence one sees that

H4(Mm,n,Z) = Zn, so the rational Pontryagin classes of Mm,n vanish. Let Wm,n be

the associated disc bundle. Then H2(Wm,n,Z2) = H2(S4,Z2) = 0 and hence Wm,n

is a spin manifold. Theorem 3.1.1 and Theorem 2.1.4 imply that Mm,n has a metric

gMm,n of nonnegative sectional and positive scalar curvature with s invariant given

by (2.1.8). Crowley and Escher [CE] computed the invariants

p2
1(Wm,n) =

4(n+ 2m)2

n

and sign(Wm,n) = 1. So

s(Mm,n, gMm,n) =
−(n+ 2m)2 + n

25 · 7 · n
.

Corollary 1.6 of [CE] shows that Mm′,n and Mm,n are diffeomorphic if m′ = m

mod 56n. So the manifolds in the sequence {Mm+56ni,n}i are all diffeomorphic to

Mm,n. Since n is constant in the sequence, the s invariant is a polynomial in i. It

follows that there is an infinite subsequence of metrics with distinct s invariants.
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Lemma 2.1.10 completes the proof of the first part of Theorem A.

Remark 3.2.1. Comparison to the 7-dimensional homogeneous spaces in [Ni]

shows that Mm,n has the cohomology ring of such a space only when |n| = 1, 2 or

10. The homogeneous candidates are S7, T1S
4 and the Berger space SO(5)/SO(3)

with H4 = 0,Z2 and Z10.

3.2.2 S3 bundles over CP 2

In [GZ3] it is shown that every principal SO(4) bundle over CP 2 with w2 6= 0

admits an SO(4) invariant metric of nonnegative sectional curvature. Such bundles

are classified by two integers a, b describing the first Pontryagin and Euler classes

p1 = (2a + 2b + 1)x2 and e = (a − b)x2, where x is the generator of H∗(CP 2,Z).

Let π : Sa,b → CP 2 be the S3 bundle over CP 2 with these characteristic classes.

If a 6= b then the Gysin sequence implies that H4(Sa,b,Z) = Z|a−b|, so the rational

Pontryagin classes vanish.

Let E4 −→ CP 2 be the 4-plane bundle associated to Sa,b and Wa,b ⊂ E4 the

associated disc bundle with projection ρ : Wa,b → CP 2. Then TWa,b
∼= ρ∗(E4 ⊕

TCP 2) and w2(TWa,b) = ρ∗(w2(E4) + w2(TCP 2)) = 0. So Wa,b is a spin manifold.

Theorem 3.1.1 and Theorem 2.1.4 imply that Sa,b has a metric gSa,b of nonnegative

sectional and positive scalar curvature with s invariant given by (2.1.8).

It is shown in [EZ] Proposition 4.3 that
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p2
1(Wa,b) =

1

a− b
(2a+ 2b+ 4)2

and

sign(Wa,b) = sgn(a− b).

So

s(Sa,b, gSa,b) = − (a+ b+ 2)2

25 · 7 · (a− b)
+

sgn(a− b)
25 · 7

.

Corollary 4.5 of [EZ] implies that Sa,b and Sa′,b′ are diffeomorphic if a − b =

a′− b′ > 0 and a = a′ mod λ = 23 · 3 · 7 · |a− b|. Thus the manifolds in the sequence

{Sa+iλ,b+iλ}i are all diffeomorphic to Sa,b. Here we may assume a − b > 0 as Sa,b

is diffeomorphic to Sb,a. Since a− b is constant for the sequence, the s invariant is

a polynomial in i. So there is an infinite subsequence of metrics in this sequence

with distinct s invariants. Lemma 2.1.10 completes the proof of the second part of

Theorem A.

Remark 3.2.2. (a) The only 7-dimensional homogeneous spaces with the same

cohomology ring as any Sa,b are the families N7
k,l and W 7

k,l described in the intro-

duction, see [Ni]. The quantities |H4(N7
k,l,Z)| = l2 and |H4(W 7

k,l,Z)| = k2 + l2 + kl

are always equal to 0 or 1 mod 3, so if |a − b| = 2 mod 3, Sa,b does not have the

homotopy type of a 7-dimensional homogeneous space.

(b) By [EZ] Proposition 6.7, S−1,a(a−1) is diffeomorphic to the homogeneous

Aloff-Wallach space W 7
a,1−a. There also exist infinitely many positively curved Es-
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chenburg spaces and many other Aloff-Wallach spaces which are diffeomorphic to

S3 bundles over CP 2, see [EZ] Theorem 8.1.

3.3 S1 bundles

We will use the diffeomorphism classification of [KS2] for the S1 bundles described

in this section. It applies to spin 7-manifolds with π1(M) = 0, H2(M,Z) =

Z, H3(M,Z) = 0 and H4(M,Z) finite cyclic and generated by the square of a

generator of H2(M,Z). For such manifolds Kreck and Stolz defined three invari-

ants s1(M), s2(M), s3(M) ∈ Q/Z and proved that two such spin manifolds M and

M ′ are diffeomorphic if and only if |H4(M,Z)| = |H4(M ′,Z)| and si(M) = si(M
′)

for i = 1, 2, 3 ([KS2] Theorem 3.1).

Escher and Ziller [EZ] defined two families of 7-manifolds as follows. Let x be the

generator of H∗(CP 2,Z). Define p : Nt → CP 2 as the S2 bundle with Pontryagin

and Stiefel-Whitney classes p1(Nt) = (1 − 4t)x2 and w2(Nt) 6= 0. They showed

that Nt is diffeomorphic to the projectivization P (Et) of the complex line bundle

Et over CP 2 with Chern classes c1(Et) = x and c2(Et) = tx2. Furthermore if Pt is

the principal U(2) bundle corresponding to Et, Nt is diffeomorphic to Pt/T
2, where

T 2 ⊂ U(2).

Let y be the first Chern class of the dual of the tautological line bundle over

P (E). By the Leray-Hirsch theorem
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H∗(Nt) = Z[x, y]/(x3, y2 + xy + tx2).

For simplicity, we denote p∗(x) again by x. Finally define the principal S1 bundle

S1 →M t
a,b −→ Nt with Euler class e = ax+ (a+ b)y and gcd(a, b) = 1.

Proposition 6.1 in [EZ] shows that the bundle S1 → M t
a,b → Nt is equivalent to

T 2/S1
a,b → Pt/S

1
a,b → Pt/T

2 ∼= Nt where S1
a,b = {diag(eiaθ, eibθ)} ⊂ U(2). Since

gcd(a, b) = 1, the total space is simply connected, and from the Gysin sequence it

follows that the cohomology ring of M t
a,b is of the form required by the diffeomor-

phism classification of [KS2] as long as 0 6= |t(a+ b)2 − ab| = |H4(M t
a,b,Z)|.

Next define p̄ : N̄t → CP 2 as the S2 bundle with Pontryagin and Stiefel-Whitney

classes p1(N̄t) = 4tx2 and w2(N̄t) = 0. In this case N̄t is diffeomorphic to the

projectivization P (Ēt) of the complex line bundle Ēt over CP 2 with Chern classes

c1(Ēt) = 2x and c2(Ēt) = (1− t)x2. If P̄t is the principal U(2) bundle associated to

Ēt, N̄t is diffeomorphic to P̄t/T
2. Let y be the first Chern class of the dual of the

tautological line bundle over P (Ēt). Then

H∗(N̄t) = Z[x, y]/(x3, y2 + 2xy + (1− t)x2).

Again we denote p̄∗(x) by x. Finally define the principal S1 bundle

S1 → M̄ t
a,b −→ N̄t with Euler class e = (a+ b)x+ by and gcd(a, b) = 1.
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In this case, one sees that π1(P̄t) = Z2 and P̄t has a two-fold cover P̄ ′t which

is a principal S1 × S3 bundle over CP 2. Furthermore N̄t
∼= P̄ ′t/T

2, with T 2 =

{(eiθ, eiφ)} ⊂ S1 × S3. Proposition 7.5 in [EZ] shows that the bundle defining

M̄ t
a,b is equivalent to T 2/S1

−b,a → P̄ ′t/S
1
−b,a → P̄ ′t/T

2 where S1
−b,a = {(e−ibθ, eiaθ)}.

As before, M̄ t
a,2b is simply connected and has the cohomology necessary for the

diffeomorphism classification of [KS2], since a is odd and so |H4(M t
a,2b)| = |a2 −

4tb2| 6= 0.

Escher and Ziller showed that M t
a,b and M̄2t

a,b admit S1 invariant metrics gta,b

and ḡ2t
a,b respectively with nonnegative sectional curvature. In order to apply The-

orem 3.1.1 and Theorem 3.1.2 we prove the following lemma.

Lemma 3.3.1. At each point x of (M t
a,b, g

t
a,b) and (M̄2t

a,b, ḡ
2t
a,b) there exists a 2-plane

σx orthogonal to the S1 orbit with sec(σx) > 0.

Proof. The metrics are constructed using cohomogeneity one actions, and we first

recall the general description of such manifolds. We consider actions of a compact

Lie group G on a manifold M such that the orbit space is the interval [−1, 1]. Let

π : M → [−1, 1] be the projection onto the orbit space. Let H ⊂ G be the isotropy

subgroup of a point in the principal orbit π−1(0) and K± the isotropy groups of

points in the singular orbits π−1(±1). The slice theorem implies that π−1([−1, 0])

is equivariantly diffeomorphic to the disc bundle D− = G ×K− Dd− where K−

acts linearly on Dd− and K−/H is diffeomorphic to the sphere Sd−−1. Here d− is

the codimension of the singular orbit. Furthermore, the boundary of D− is G/H,
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diffeomorphic to the principal orbit π−1(0). D+ is described equivalently with the

same boundary. Then M is diffeomorphic to the union D− ∪G/H D+. Conversely,

given Lie groups H ⊂ K± ⊂ G with K±/H ∼= Sd±−1, the action of K± on Sd±−1

extends to a linear action on Dd± . We can then define M = D− ∪G/H D+ as above,

and M will admit a cohomogeneity one action by G with isotropy groups H ⊂ K±.

If d± = 2, it is shown in [GZ1] that one can define a metric with sec ≥ 0 on M as

follows. Let g, k, h be the Lie algebras of G,K−, H respectively and Q a bi-invariant

metric on G. Choose g = m⊕ k and k = h⊕ p to be Q-orthogonal decompositions

and Qa the left invariant metric on G defined by

Qa = Q|m⊕h + aQ|p.

Let f(r) be a concave function with f(0) = 0, f ′(0) = 1 and f(r) =
√

al2

a−1
for r

near the boundary of D2, where 2πl is the length of K−/H with respect to Q. In

[GZ1] it is shown that the metric

g = Qa + dr2 + f(r)dθ2

on G×D2 has nonnegative curvature as long as 1 < a ≤ 4/3 and hence induces a G

invariant metric g− of nonnegative curvature on the quotient D−. Furthermore g−

is a product near the boundary G/H, with the induced metric on G/H the same

as that induced by Q. A similar metric can be put on D+, and because of the

boundary condition the two can be glued to form a smooth G invariant metric g of

nonnegative sectional curvature on D− ∪G/H D+
∼= M .
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In order to prove the claim, we need to describe the manifolds and metrics in a

slightly different way than in [GZ3]. For p−, p+, q ∈ Z, p+ odd and p− 6= q mod 2,

let Pp−,p+,q be the cohomogeneity one manifold defined by the following Lie groups:

G = U(2)× S3

H = Z4 =

〈±iq
 0 1

−1 0

 , j

〉

K− = H ·
{(

diag
(
eip−θ, e−ip−θ

)
, eiθ
)}

K+ =
{(
eiqθR(p+θ), e

jθ
)}

where R(φ) represents a 2× 2 rotation matrix and the sign in H is chosen to make

H a subgroup of K+. One easily sees that U(2) acts freely on Pp+,p−,q. Since U(2)

commutes with S3, the quotient Pp+,p−,q/U(2) admits an action by S3 which is

cohomogeneity one with the same isotropy groups as the action of S3 on CP 2 (see

[GZ3] Figure 2.2.) Thus Pp+,p−,q is the total space of a principal U(2) bundle over

CP 2.

Suppose P is a principal U(2) bundle over CP 2. From the spectral sequence of

the fibration U(2)→ P → CP 2, one sees that H2(P,Z) ∼= Z|c1|, where c1 denotes the

coefficient of x in the first Chern class c1(P ) ∈ H2(CP 2,Z). Applying the Seifert-

Van Kampen theorem to Pp−,p+,q = D−∪D+, one shows that π1(Pp−,p+,q) = Zq. By

the universal coefficient theorem we conclude that H2(Pp+,p−,q,Z) = Zq and hence

c1(Pp+,p−,q) = qx.
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Let Z be the center of U(2). Since U(2)/Z ∼= SO(3), P/Z is a principal SO(3)

bundle over CP 2 with first Pontryagin class p1(P/Z) = c1(P )2 − 4c2(P ), see [EZ],

2.5, 2.6. In particular, Pp−,p+,q/Z admits a cohomogeneity one action by SO(3)×S3

and one easily shows that the isotropy groups are

H = Z4 = 〈(R1,3(π), j)〉

K− = H ·
{(
R2,3(2p−θ), e

iθ
)}

K+ =
{(
R1,3(2p+θ), e

jθ
)}
.

Here Rn,m ∈ SO(3) is a rotation in the n,m plane of R3. By [GZ3] Theorem 4.7,

this bundle has first Pontryagin class p1(Pp−,p+,q/Z) = (p2
+ − p2

−)x2. It follows that

c2(P2t) = 1
4
(q2 − p2

+ + p2
−)x2.

The description of the action on Pp−,p+,q has d± = 2, so we can construct a

U(2)-invariant metric g with sec ≥ 0 as above. We check that g has a 2-plane with

sec > 0 orthogonal to the orbit of T 2 ⊂ U(2) at each point. We do this on each half

D± = G ×K± D2 separately. By the O’Neill formula it is necessary to find such a

2-plane orthogonal to the orbit of T 2×K± at each point of G×D2. For D− we have

g = u(2)⊕ su(2), k = p = span{(p−i, i)} and h = {0}. Here {i, j, k} is the standard

basis of su(2) and {l, i, j, k} is the standard basis of u(2) with l the generator of the

center.

Since T 2 and K− act on G on the left and right respectively, the tangent space

to the orbit at each point (y, z) ∈ G×D2 is contained in

dLy(k) + dRy(u(2)⊕ {0}) + TzD
2.
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Here Ly and Ry designate left and right translation on G. Since (0, j) and (0, k)

are orthogonal to k and u(2)⊕ {0} with respect to the left invariant metric Qa and

u(2) ⊕ {0} is Ad-invariant, dLy(0, j) and dLy(0, k) are orthogonal to the orbit of

T 2 × K±. Choose τ[y,z] to be the image of dLy(0, j) ∧ dLy(0, k). By the O’Neill

formula

secg(τ[y,z]) ≥
3

4
|[dLy(0, j), dLy(0, k)]V |2ḡ ≥ 3|dLy(0, i)V |2ḡ > 0

where dLy(0, i)
V is the projection of dLy(0, i) onto dLy(k). The same argument can

be made on D+ using dLy(0, i) ∧ dLy(0, k).

To summarize, Pp−,p+,q is the U(2) principal bundle over CP 2 with Chern classes

c1 = qx and c2 = 1
4
(q2 − p2

+ + p2
−)x2 and it admits a U(2) invariant metric g and a

2-plane τx̄ at each point x̄ ∈ Pp−,p+,q with τx̄ ⊥ T 2 ·x̄ and secg(τx̄) > 0. In particular,

P2t,1−2t,1 = Pt and P2t−1,2t+1,2 = P̄2t. The metric gta,b is defined such that g and gta,b

make Pt → Pt/S
1
a,b into a Riemannian submersion. Let g′ be the locally isometric

lift of g to the universal cover P̄ ′2t of P̄2t. Note that the T 2 ⊂ U(2) action on P̄2t

lifts to the T 2 ⊂ S1 × S3 action on P̄ ′2t. Then ḡ2t
a,b is defined such that g′ and ḡ2t

a,b

make P̄ ′2t → P̄ ′2t/S
1
−b,a into a Riemannian submersion.

On each manifold, the image σx of τx̄ under the S1 quotient will be orthogonal to

the orbits of T 2/S1. Using the O’Neill formula once more it follows that sec(σx) > 0

with respect to gta,b and ḡ2t
a,b. We note that these metrics are invariant under the

centralizer of S1, which is isomorphic to S1 × S3 in each case. The groups acting

effectively by isometries are S1 × SO(3) and U(2) respectively.
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Lemma 3.3.1 yields the metrics required to calculate the s invariant for the two

families of S1 bundles.

3.3.1 S1 bundles over spin S2 bundles over CP 2

Let π : Ē3 → CP 2 be the 3-plane bundle associated to S2 → N̄t
p̄−→ CP 2 and i the

inclusion i : N̄t → Ē3. Then TN̄t and the normal bundle V to N̄t span i∗(TĒ3).

Since TĒ3 ∼= π∗(Ē3 ⊕ TCP 2) and V is trivial we have

w2(TN̄t) = p̄∗(w2(Ē3) + w2(CP 2)) = x.

Next let E2 be the 2-plane bundle associated to M̄ t
a,b and W̄ t

a,b ⊂ E2 the disc

bundle with projection σ : W̄ t
a,b → N̄t. We have the bundle isomorphism TW̄ t

a,b
∼=

σ∗(E2 ⊕ TN̄t) and second Stiefel Whitney class

w2(TW̄ t
a,b) = w2(E2) +w2(TN̄t) = e(M̄ t

a,b) +w2(TN̄t) = (a+ b+ 1)x+ by mod 2.

Here the notation σ∗ is repressed since it is an isomorphism on cohomology. Thus

when b is even, a is odd, and W̄ t
a,b is a spin manifold. From the Gysin sequence one

sees that H4(M̄ t
a,b,Z) is torsion so all the rational Pontryagin classes vanish.

Therefore for t and b even, using Lemma 3.3.1 (M̄ t
a,b, ḡ

t
a,b) satisfies the hypotheses

of Theorem 3.1.1 and Theorem 2.1.4, and s(M̄ t
a,b, ḡ

t
a,b) is given by (2.1.8).

In [EZ] it was shown that for W̄ t
a,b we have

p2
1 = b

(
−(3 + 4t)2

a2 − b2t
+ 6 + 8t+ 3a2 + tb2

)
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and

sign(W̄ t
a,b) =


0 if a2 − tb2 > 0

2 if a2 − tb2 < 0 and b(1 + t) > 0

−2 if a2 − tb2 < 0 and b(1 + t) < 0

.

Thus for t and b even

s(M̄ t
a,b, ḡ

t
a,b) =

b

27 · 7

(
(3 + 4t)2

a2 − b2t
− 6− 8t− 3a2 − tb2

)
+

1

25 · 7
sign(W̄ t

a,b). (3.3.2)

When b is even, M̄ t
a,b has the cohomology appropriate to calculate the Kreck-

Stolz diffeomorphism invariants s1, s2, s3 ∈ Q/Z [KS2]. These invariants are calcu-

lated in [EZ]:

s1(M̄ t
a,b) = s(M̄ t

a,b, g
t
a,b) mod Z

s2(M̄ t
a,b) = − 1

24 · 3
(b(n2 + tm2)− 2anm)

− 1

24 · 3 · (a2 − tb2)
(4nm(an2 + atm2 + 2tbnm)

−(3 + 4t− 2n2 − 2tm2)(bn2 + btm2 + 2anm))

and

s3(M̄ t
a,b) = − 1

22 · 3
(b(n2 + tm2)− 2anm)

− 1

23 · 3 · (a2 − tb2)
(16nm(an2 + atm2 + 2tbnm)

−(3 + 4t− 8n2 − 8tm2)(bn2 + btm2 + 2anm))

where m,n are such that ma+ nb = 1.
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Now set r = a2 − 8tb2, λ = 27 · 3 · 7r and choose m,n such that ma + 2nb = 1.

We then define

ak = a+ 16b2λk, bk = b, tk = t+ 4aλk + 32b2λ2k2, mk = m, nk = n− 8bλmk.

We see that a2
k−8tkb

2
k = r, mkak+2nkbk = 1, and each of ak, bk,mk, nk, tk is equal

to the corresponding a, b,m, n, tmod λ. When r < 0 we have t, tk > 0, so 2bk(1+2tk)

has the same sign as 2b(1 + 2t). It follows that sign(W̄ 2tk
ak,2bk

) =sign(W̄ 2t
a,2b). This

is enough to ensure the numerators of si(M
2t
a,2b) and si(M

2tk
ak,2bk

) are equal modulo

the denominators so si(M
2t
a,2b)− si(M

2tk
ak,2bk

) ∈ Z. Thus the invariants si ∈ Q/Z and

|H4(M,Z)| are equal and M2tk
ak,2bk

is diffeomorphic to M2t
a,2b by [KS2] Theorem 3.1.

Since a2
k − 8tkb

2
k and sign(W̄ 2tk

ak,2bk
) are constant for the sequence {M2tk

ak,2bk
}k, the s

invariant is a polynomial in k, and there is an infinite subsequence of metrics with

distinct s invariants. Lemma 2.1.10 completes the proof of Theorem B part (b).

3.3.2 S1 bundles over non-spin S2 bundles over CP 2

Let π : E3 → CP 2 be the 3-plane bundle associated to p : Nt → CP 2. By the

bundle isomorphism of the previous section we have

w2(TNt) = p∗(w2(E3) + w2(CP 2)) = p∗(2x) = 0 mod 2.

Thus we can give M t
a,b the spin structure induced from the bundle isomorphism

TM t
a,b
∼= ρ∗TNt ⊕ V ′, where V ′ is the bundle generated by the S1 action field and

ρ : M t
a,b → Nt. From the Gysin sequence one sees that H4(M t

a,b,Z) = Z|t(a+b)2−ab|,

so the rational Pontryagin classes vanish when t(a+ b)2 − ab 6= 0.
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By Lemma 3.3.1 gta,b satisfies the conditions of Theorem 3.1.2. It follows that

s(M t
a,b, g

t
a,b) = s(M t

a,b, h) for an S1 invariant metric h with geodesic fibers. Then

the circle bundle M t
a,b → Nt and h satisfy the hypotheses of Theorem 2.1.6 and

s(M t
a,b, g

t
a,b) is given by (2.1.9).

In [EZ] the terms p2
1, p1e

2 and e4 are calculated for W t
a,b and we have

s(M t
a,b, g

t
a,b) =

(a+ b)(1− t)2

23 · 7 · (t(a+ b)2 − ab)

+
1

25 · 3 · 7
(−3ab+ (1− t)(8 + (a+ b)2)) +

1

25 · 7
sign(W t

a,b)

where

sign(W t
a,b) =


0 if ab− t(a+ b)2 < 0

2 if ab− t(a+ b)2 > 0 and a+ b > 0

−2 if ab− t(a+ b)2 > 0 and a+ b < 0

.

When t(a+ b)2 6= ab, M t
a,b also has the cohomology ring necessary to define the

diffeomorphism invariants si. They are calculated in [EZ] Proposition 5.2. Just

as for M̄ t
a,b they are given by rational functions with numerators depending on

a, b,m, n, t and sign(W t
a,b), where m,n are such that ma+nb = 1. The denominators

divide 25 · 3 · 7 · |t(a+ b)2 − ab|. As these are the only relevant details, we omit the

equations for brevity.

Let r = t(a+ b)2−ab 6= 0, λ = 25 ·3 ·7r and choose m,n such that ma+nb = 1.

We set

ak = a+ (a+ b)2λk, bk = b− (a+ b)2λk, tk = t− (a− b)λk − (a+ b)2λ2k2,
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mk = m+ (n−m)(a+ b)λk, nk = n+ (n−m)(a+ b)λk.

One checks that tk(ak + bk)
2 − akbk = r, mkak + nkbk = 1, ak + bk = a + b and

each of ak, bk,mk, nk, tk is equal to the corresponding a, b,m, n, t mod λ. It follows

that M tk
ak,bk

is diffeomorphic to M t
a,b while s(M tk

ak,bk
, gtkak,bk) is a polynomial in k. This

completes the proof of Theorem B.

Remark 3.3.3. (a) One easily sees that W 7
a,b is diffeomorphic to only finitely

many other W 7
k,l, and no other homogeneous spaces. By [STa] Proposition 1.1 the

space of G invariant metrics with nonnegative sectional curvature on a homogeneous

space G/H is connected. Thus Msec≥0(W 7
a,b) has infinitely many components by

the corollary, but only finitely many of them contain homogeneous metrics. Each of

those in turn contains a positively curved metric, except in the case of W1,0. There

are examples due to [KS3] where one has two components containing metrics with

sec > 0.

(b) One sees from the diffeomorphism invariants that no two of the Eschenburg

spaces Fa,b are diffeomorphic, so we cannot use this set of metrics to prove that any

Msec>0(Fa,b) is not path connected.

(c) We saw in the proof Lemma 3.3.1 that S1×SO(3) and U(2) respectively act

by isometries on gta,b and ḡ2t
a,b, and we suspect each is the full identity component of

the isometry group.

(d) The same argument as in Remark 3.2.2 shows that M t
a,b and M̄2t

a,b do not

have the homotopy type of a 7-dimensional homogeneous space if |t(a+ b)2− ab| or
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|a2 − 2tb2| = 2 mod 3.
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Chapter 4

5-Manifolds

4.1 Diffeomorphism Classification of 5 Manifolds

with π1 = Z2

Our proof relies on a diffeomorphism classification of five manifolds with funda-

mental group Z2 carried out by Hambleton and Su [HS]. Given a manifold M with

fundamental group Z2, a characteristic submanifold P ⊂ M is defined as follows.

Let f : M → RPN be a classifying map of the universal cover, for N sufficiently

large. We can choose f to be transverse to RPN−1, and hence P = f−1(RPN−1)

is a smooth manifold. If furthermore w2(TM) 6= 0 and w2(TM̃) = 0, where M̃ is

the universal cover of M , then P is well defined up to Pin+(4) cobordism. Here

Pin±(4) is the extension of O(4) by Z2 such that a preimage of a reflection squares

to ±1. and ΩPin±

n is the cobordism group of n−manifolds with Pin±(n) structures.
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For details, see [HS], [GT].

Theorem 4.1.1. [HS] Let M1,M2 be 5 manifolds such that π1(Mi) = Z2, π1(Mi)

acts trivially on π2(Mi), H2(Mi,Z) is torsion free, w2(Mi) 6= 0, and w2(M̃i) = 0 for

i = 1, 2, where M̃i is the universal cover of Mi. Then M1 is diffeomorphic to M2 if

and only if

rank(H2(M1,Z)) = rank(H2(M2,Z))

and

[P1] = ±[P2] ∈ ΩPin+

4

where Pi is the characteristic submanifold of Mi.

We are intersted in 5-manifolds which arise as the total space of principal circle

bundles. Let B be a simply connected 4-manifold, d a primitive element of H2(B,Z)

such that w2(TB) = d mod 2, and S1 → M
π−→ B the principal S1 bundle with

first chern class 2d. From the long exact sequence of a fibration and the Gysin

sequence one sees that π1(M) = Z2, π1(M) acts trivially on π2(M), and H2(M,Z)

is torsion free with rank(H2(M,Z) = rank(H2(B,Z))− 1. Furthermore, w2(TM) =

π∗(w2(TB)) = π∗d mod 2 6= 0. The universal cover M̃ is the total space of the S1

bundle with first chern class d, and by a similar argument w2(TM̃) = 0. Thus we

can apply Theorem 4.1.1 to M.

ΩPin+

4 is isomorphic to Z16 with generator [RP 4], while Ω
Pin−
2 is isomorphic to
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Z8 with generator [RP 2]. There is a short exact sequence

0→ Z2 → ΩPin+

4

φ−→ ΩPin−

2 → 0

where φ is given by taking the cobordism class of a submanifold dual to w1; see

[HS] and [KT] for details. Hambleton and Su proved the following under this iso-

morphism.

Theorem 4.1.2. [HS] Let B be a closed simply connected four manifold and

S1 → M
π−→ B the principal S1 bundle with first chern class 2d, where d is a

primitive element such that w2(TB) = d mod 2. If P is a characteristic submanifold

of M, then

φ([P ]) = ±
〈
d2, [B]

〉
∈ Z8.

4.2 S1 bundles

In this section we prove Theorem C. We want to use the Atiyah-Patodi-Singer

index theorem to calculate the η invariant of a metric on M . Many authors have

computed η and related invariants on spin manifolds M by extending metrics to

manifolds W with boundary diffeomorphic to M . If the extension has positive

scalar curvature, the index of the Dirac operator will vanish. In the spinc case, we

must also extend an auxiliary connection. A difficulty arises when the extended

connection cannot be flat because the canonical class on the spinc structure on W

is not torsion. Then the metric and connection must satisfy (2.0.2). The following
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theorem, which we prove in Section 4.3, illustrates how to use certain free S1 actions

on M to accomplish this.

Theorem 4.2.1. Let S1 act freely on M by isometries of a Riemannian metric

gM with scal(gM) > 0 and assume π1(M) is finite. Let B = M/S1 the quotient and

ρ : W = M ×S1 D2 → B the associated disc bundle. Suppose the first Chern class

of the principal S1 bundle π : M → B is `d for d ∈ H2(B,Z) and ` ∈ Z. If λ is the

complex line bundle over W with first Chern class ρ∗d, then there exists a metric

gW on W and a connection ∇ on λ such that

scal(gW ) > l|F∇|gW . (4.2.2)

Furthermore there is a collar neighborhood V ∼= M × [0, N ] of ∂W ∼= M such that

for t ∈ [0, N ] near 0, gW is a product metric

gW ∼= gM + dt2 (4.2.3)

and

∇ ∼= proj∗V,M∇̄ (4.2.4)

where ∇̄ is any flat unitary connection on λ|∂W .

Notice that here there are no restrictions on the dimension of M or Pontryagin

classes of M , d need not be primitive, and no spinc structure is required. We next

use Theorem 4.2.1 and (2.0.4) to calculate η for S1 invariant metrics on certain
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spinc manifolds in dimensions 4n+ 1, proving Theorem 2.2.3 from Section 2, which

we restate here.

Theorem. Let S1 act freely on a 4n+1 manifold M by isometries of a Rieman-

nian metric g with scal(g) > 0. Assume π1(M) is finite and let B = M/S1 be the

quotient. Suppose the first Chern class of the principal bundle S1 → M
π−→ B is `d

where ` is a positive even integer and w2(TB) = d mod 2. Finally assume the real

Pontryagin classes of M vanish. Then M admits a spinc structure with canonical

class π∗d. If ∇̄ is a flat connection on the canonical bundle of this spinc structure

and Dc
g,∇̃ is the spinc Dirac operator, then

η(Dc
g,∇̃) =

〈
sinh(d/2)Â(TB)

sinh(`d/2)
, [B]

〉
.

When n = 1,

η(Dc
g,∇̃) =

〈
−(`2 − 1)d2 + p1(TB)

24`
, [B]

〉
.

Proof. Since TM is the direct sum of π∗TB and a trivial bundle generated by the

action field of the S1 action,

w2(TM) = π∗w2(TB) = π∗d mod 2

Let µ be the complex line bundle over B associated to π : M → B. Let W =

M ×S1 D2 and let ρ : W → B be the disc bundle associated to π : M → B. Then

TW = ρ∗(TB ⊕ µ) and since ` is even

w2(TW ) = ρ∗(d+ `d) mod 2 = ρ∗d mod 2.
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It follows that W admits a spinc structure with canonical class ρ∗d. We call the

canonical bundle λ. The spinc structure on W induces one on M with canonical

class π∗d.

Then M,W, and λ satisfy the hypotheses of Theorem 4.2.1. We construct the

metric gW on W and connection∇ on λ as in the theorem such that gW |M = gM and

∇|M = ∇̄. Define the spinc Dirac operator Dc
gW ,∇ on W and Dc

gM ,∇̄
as in Section 2.

Given that gW and ∇ are product-like near ∂W , we can apply (2.0.4). Since ∇̄ is

flat

scal(gM) > 2|F ∇̄|gM = 0

and by (4.2.2)

scal(gW ) > `|F∇|gW ≥ 2|F∇|gW

Then (2.0.1) implies that ind(Dc
gW ,∇) = 0 and ker(Dc

gM ,∇̄
) = {0}. It follows from

(2.0.4) that

η(Dc
gM ,∇̄) = 2

∫
W

ec1(∇)/2Â(p(gW )). (4.2.5)

To evaluate that integral, we use Lemma 2.1.3. Let α = ec1(∇)/2 and β =

Â(p(gW )). Since gW is product like near the boundary, pi(gW )|∂W = pi(gM). For

i > 0 pi(gM) is exact by the assumption on the Pontryagin classes of M . Since

c1(∇)|∂W = c1(∇̄) and ∇̄ is flat, we can choose α̂ = 0. The form c1(∇) represents

the cohomology class c1(λ) = ρ∗d. Thus

η(Dc
g,∇̄) = 2

〈
j−1
[
eρ
∗d/2
]
∪ j−1

[
Â(TW )

]
, [W,∂W ]

〉
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The following cup product diagram commutes:

Hs(W,∂W )⊕H t(W,∂W ) Hs+t(W,∂W )

Hs(W,∂W )⊕H t(W ) Hs+t(W,∂W )

∪

(Id,j)

∪

Thus

η(Dc
g,∇̄) = 2

〈
j−1
[
eρ
∗d/2
]
∪
[
Â(TW )

]
, [W,∂W ]

〉
. (4.2.6)

Since the terms of Â(TW ) have degree 4k, k ∈ Z, and the dimension of W

is 4n + 2, only terms of degree 4k + 2 in eρ
∗d/2 will contribute. In those degrees,

eρ
∗d/2 = sinh(ρ∗d/2) as power series.

Since TW = ρ∗(TB ⊕ µ), Â(TW ) = ρ∗(Â(TB)Â(µ)). For the complex line

bundle µ, we have

Â(µ) =
c1(µ)/2

sinh(c1(µ)/2)
=

`d

2 sinh(`d/2)

as a formal power series. The series sinh(d/2) is divisible by d, so

ρ∗
(

sinh(d/2)

`d

)
∈ H∗(W,Q).

Let Φ ∈ H2(W,∂W,Z) be the Thom class of ρ : W → B. Then j(Φ) = ρ∗c1(µ) =

ρ∗(`d). By means of another commutative diagram

H∗(W,∂W )⊕H∗(W ) H∗(W,∂W )

H∗(W )⊕H∗(W ) H∗(W )

∪

(j,Id) j

∪

we see

j

(
Φ ∪ ρ∗

(
sinh(d/2)

`d

))
= ρ∗

(
`d ∪ sinh(d/2)

`d

)
= ρ∗ sinh(d/2).
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Substituting into (4.2.6)

η(Dc
g,∇̄) = 2

〈
Φ ∪ ρ∗

(
sinh(d/2)

`d

)
∪ ρ∗

(
Â(TB) · `d
2 sinh(`d/2)

)
, [W,∂W ]

〉
.

=

〈
Φ ∪ ρ∗

(
sinh(d/2)Â(TB)

sinh(`d/2)

)
, [W,∂W ]

〉
.

The Thom isomorphism yields

η(Dc
g,∇̄) =

〈
sinh(d/2)Â(TB)

sinh(ld/2)
, [B]

〉
.

When n = 1 the dimension of B is four and we have, as series in H∗(B,Z)

Â(TB) = 1− p1(TB)

24

sinh(d/2)

sinh(ld/2)
=

1

`

(
1− (`2 − 1)d2

24

)
.

Multiplying and isolating terms of degree 4 yields (2.2.4).

To prove Theorem C, let Let

{z1, ..., za, w1, ..., wb} ⊂ H2(B,Z) ∼= Za+b

be a basis such that {zi}, and {yi} each correspond to the standard basis of a factor

H2(CP 2,Z) or H2(CP 2,Z) respectively. Then

w2(TB) =
a∑
i=1

zi +
b∑

j=1

wj mod 2

and so

d =
a∑
i=1

uizi +
b∑

j=1

vjwj
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for some odd integers ui, vj. For each q ∈ Z let dq = d + 4qz1 (if a = 0, replace z1

with w1 and adjust the proof accordingly). Note that w2(TB) = dq mod 2 for all q.

Let S1 →Mq
πq−→ B be the principal bundle with first Chern class 2dq, so M0 = M.

The discussion after Theorem 4.1.1 indicates that Theorem 4.1.1 applies to each

Mq. Using the Gysin sequence and Universal Coefficient Theorem, we see that

rank(H2(Mq,Z)) = a+ b− 1.

If Pq is a characteristic submanifold of Mq, Theorem 4.1.2 implies that

φ([Pq]) = ±
〈
d2
q, [B]

〉
mod 8 = ±

(
a∑
i=1

u2
i + 8u1q + 16q2 −

b∑
j=1

v2
j

)
mod 8

= ±(a− b) mod 8 = 4 mod 8,

since each z2
i , w

2
k generates H4(B,Z), z2

i = −w2
j , zizj = wiwj = 0 for i 6= j, and

ziwj = 0. Thus, since φ : Z16 → Z8 is the quotient map, [Pq] = ±4 ∈ Z16. It follows

from Theorem 4.1.1 that the manifolds Mq are all diffeomorphic. Let φq : M →Mq

be such a diffeomorphism.

The tangent bundle TM is isomorphic to the direct sum of π∗TB and a trivial

bundle generated by the S1 action, so

w2(TM) = π∗w2(TB) = π∗d mod 2.

Thus M admits a spinc structure with canonical class π∗d. Using φq we give each Mq

a spinc structure such that φq is a spinc diffeomorphism. One sees from the Gysin

sequence that π∗d and π∗qdq are the unique nontrivial torsion elements of H2(M,Z)
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and H2(Mq,Z) respectively. Then φ∗qπ
∗
qdq = π∗d and π∗qdq is the canonical class of

the spinc structure on Mq.

Sha and Yang [SY2] constructed a metric with Ric> 0 on B. Gilkey, Park, and

Tuschmann [GPT] showed that if Bn admits Ric> 0 and M is the total space of

a principal bundle with compact connected structure group G and π1(M) is finite,

then M admits a G invariant metric with Ric> 0. Thus each Mq admits an S1

invariant metric gq such that Ric(gq) > 0 and hence scal(gq) > 0.

Using the Gysin sequence again it follows that H4(Mq,R) = 0 and Mq, gq, and

B satisfy the hypotheses of Theorem 2.2.3 with M = Mq, gM = gq, d = dq, ` = 2,

and ∇̄ = ∇q where ∇q is any flat connection on the canonical bundle of the spinc

structure. Then, using the spinc diffeomorphism invariance and (2.2.4) we have

η(Dc
φ∗qgq ,φ

∗
q∇q) = η(Dc

gq ,∇q) = − 1

16

(
a∑
i=1

u2
i + 8qu1 + 16q2 −

b∑
j=1

v2
i + a− b

)

using the fact that 〈p1(TB)/3, [B]〉 = 〈L(TB), [B]〉 is equal to the signature of B.

Thus η(Dc
φ∗qgq ,φ

∗
q∇q) is a nontrivial polynomial in q and takes on infinitely many

values. Theorem 2.2.2 implies that MRic>0(M) and Mscal>0(M) have infinitely many

components, completing the proof of Theorem C.

If a−b 6= 4 mod 8, the diffeomorphism result of [HS]does not uniquely determine

the diffeomorphism type, but a manifold with the same properties nonetheless exists.

Theorem 4.2.7. Let B = #aCP 2#bCP 2 with a + b > 1. Then there exists a
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principal bundle S1 →M → B such that MRic>0(M) and Mscal>0(M) have infinitely

many path components.

Proof. We proceed as in the proof of Theorem C. Hence φ([Pq]) = ±(a − b) mod

8. Since a − b 6= 4 mod 8, however, this does not uniquely identify ±[Pq], which

is ±(a − b) or ±(a − b) + 8 in Z16. It follows that the manifolds Mq fall into two

diffeomorphism classes. Thus some Mq0 is diffeomorphic to infinitely many other

Mq, and the remainder of the proof of Theorem C implies that MRic>0(Mq0) and

Mscal>0(Mq0) have infinitely many components.

4.3 Metric and Connection on Disc Bundles

In this section we prove Theorem 4.2.1. We first set up notation for the tangent

space to W . We consider D2 to be the unit disc in C. Let σ : M ×D2 → W be the

quotient map so σ(p, x) = [p, x]. Then ρ([p, x]) = π(p). The metric gM and the S1

action induce an orthogonal splitting TpM = H̄p ⊕ V̄p into horizontal space H̄p and

vertical space V̄p of π. Define horizontal and vertical spaces of ρ to be

H[p,x] = σ∗(H̄p ⊕ {0})

and

V[p,x] = σ∗({0} ⊕ TxD2)

for p ∈M and x ∈ D2.
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These is well defined since for z ∈ S1, H̄zp = z∗H̄p and TzxD
2 = z∗TxD

2. One

can use a local section of σ to see that H[p,x] and V[p,x] are smooth distributions on

W . Note that V[p,x] is the tangent space to the fiber ρ−1(π(p)) = σ({p} ×D2) and

T[p,x]W = H[p,x] ⊕ V[p,x]. Away from the zero section of ρ, V[p,x] is spanned by

Wr = σ∗(0, ∂r) and Wθ = σ∗(0, ∂θ).

These are well defined smooth vector fields since ∂θ, ∂r are S1 invariant vector fields

on D2.

Fix 0 < L < 1 and define a diffeomorphism

τ : M × [L, 1] ↪→M ×D2 σ−→ W

of M × [L, 1] to a collar neighborhood U of ∂W . Let t be the coordinate on [L, 1]

and, in a slight abuse of notation, let projU,M : M × [L, 1]→ M be the projection.

Thus

ρ ◦ τ = π ◦ projU,M

τ∗(H̄p ⊕ {0}) = H[p,x]

τ∗(0, ∂t) = Wr

Let X∗(p) = d
dt

∣∣
t=0

eit · p be the action field of the S1 action on M , which spams

V̄p. Then, since σ∗(X
∗, ∂θ) = 0,

τ∗(X
∗, 0) = −Wθ.
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Furthermore τ |M×{1} identifies M and ∂W , sending H̄p to H[p,1] and X∗ to −Wθ.

We keep track of the maps in the following diagram.

M ×D2

M × I W

M B

σ

τ

projU,M ρ

π

To construct gW and ∇ we will use two smooth functions on the interval [0, 1].

Let f1 : [0, 1]→ [0, 1] be a smooth monotone function which is 0 in a neighborhood

of 0 and 1 in a neighborhood of [L, 1].

For a constant ε > 0, let

f2(r) = −1

2

∫ r

0

f1(t)dt− εr3 + r.

One easily sees that f2 > 0 on (0, 1] for small ε.

4.3.1 Metric

We define a Riemannian metric at a point (p, (r, θ)) ∈M ×D2, where r, θ are polar

coordinates on D2, by

gM×D2(p, (r, θ)) = gM(p) + ε2|X∗(p)|2gM

(
dr2 +

f2(r)2

1− ε2f2(r)2
dθ2

)
.

By converting to Cartesian coordinates on D2 , one sees that gM×D2 is smooth as

long as

1

r4

(
f 2

2

1− ε2f 2
2

− r2

)
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is a smooth function of r ∈ [0, 1]. This is easily seen to hold since for r near 0,

f2(r) = r−εr3. Since gM×D2 is invariant under the diagonal action of S1 on M×D2,

it induces a metric gW on W such that gM×D2 and gW make σ into a Riemannian

submersion. Similarly, let gB be the metric on B such that gM and gB make π into

a Riemannian submersion.

Lemma 4.3.1. gW and gB make ρ into a Riemannian submersion.

Proof. With respect to gM×D2 , H̄p⊕{0} is orthogonal to X∗ and TD2. Thus H̄p⊕{0}

is orthogonal to the vertical space of σ, which is spanned by (X∗, ∂θ), and to the

horizontal projection of TD2 as well. It follows that with respect to gW , H[p,x] is

orthogonal to V[p,x] and is the horizontal space of ρ. Finally, we have

gW |H[p,x]
∼= gM×D2|H̄p⊕{0} ∼= gM |H̄p ∼= gB|Tπ(p)B.

We first describe the induced metric on the D2 fibers of ρ.

Lemma 4.3.2.

gW |ρ−1(π(p))
∼= ε2|X∗(p)|gM

(
dr2 + f2(r)2dθ2

)
Proof. σ|{p}×D2 : D2 → ρ−1(π(p)) is a diffeomorphism such that ∂r, ∂θ are mapped

to Wr,Wθ. Since σ is a Riemannian submersion with vertical space generated by

(X∗, ∂θ), we calculate
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|Wr|2gW = |(0, ∂r)|2gM×D2
= ε2|X∗|2gM

|Wθ|2gW = |(0, ∂θ)|2gM×D2
−
〈(0, ∂θ), (X∗, ∂θ)〉2gM×D2

〈(X∗, ∂θ), (X∗, ∂θ)〉gM×D2

= ε2|X∗|2gM

(
f2(r)2

1− ε2f2(r)2

)

−ε4|X∗|4gM

(
f2(r)2

1− ε2f2(r)2

)2
 1

|X∗|2gM + ε2|X∗|2gM
(

f2(r)2

1−ε2f2(r)2

)


= ε2|X∗|2gMf2(r)2

〈Wr,Wθ〉gW = 〈(0, ∂r), (0, ∂θ)〉gM×D2
= 0.

We next modify gW to have the desired product structure near ∂W. We use

a technique of Wraith, which allows deformations of metrics with positive mean

curvature at the boundary.

Lemma 4.3.3. ∂W has positive mean curvature with respect to an inward normal

vector.

Proof. Let X̄i be local S1-invariant vector fields extending an orthonormal frame of

H̄p and define Xi = σ∗(X̄i, 0). At a point [p, 1], {Xi,
1

ε|X∗|gM f2
Wθ} is an orthonormal

basis of T∂W and − 1
ε|X∗|gM

Wr is an inward pointing unit normal vector. Since

[Xi,Wr] = [σ∗(X̄i, 0), σ∗(0, ∂r)] = σ∗[(X̄i, 0), (0, ∂r)] = 0
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and |Xi| = 1,

1

ε|X∗|gM
〈∇XiXi,−Wr〉 =

1

ε|X∗|gM
〈Xi,∇XiWr〉 =

1

ε|X∗|gM
〈Xi,∇WrXi〉 = 0.

Thus

1

ε3|X∗|3gMf2(1)2
〈∇Wθ

Wθ,−Wr〉 =
1

2ε3|X∗|3gMf2(1)2
Wr(|Wθ|2) =

f ′2(1)

ε|X∗|gMf2(1)
.

Evaluating that quantity at r = 1 we see the the mean curvature is

1/2− 3ε

ε|X∗|gMf2(1)
> 0

for sufficiently small ε.

We see that gW |∂W is obtained from gM by shrinking the S1 fibers of π, a process

which preserves positive scalar curvature.

Lemma 4.3.4. There exists a smooth path of metrics gM(s) on M ,

s ∈ [ε2f2(1)2, 1], such that gM(ε2f2(1)2) = gW |∂W , gM(1) = gM , and scal(gM(s)) > 0

for all s.

Proof. We recall that τ |M×{1} : M → ∂W is a diffeomorphism. We see that

(
(
τ |M×{1}

)∗
gW )|H̄p = gW |H[p,1]

= gM |H̄p

and

|X∗(p)|2
(τ |M×{1})

∗
gW

= |Wθ([p, 1])|2gW = ε2f2(1)2|X∗(p)|2gM .

Thus defining

gM(s) = gM |H̄p + sgM |V̄p
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we have, for ε small enough, that ε2f2(1)2 < 1, gM(ε2f2(1)2) =
(
τ |M×{1}

)∗
gW , and

gM(1) = gM . Since the metric is not changing on the horizontal space of π, each

gM(s) makes π into a Riemannian submersion with gB. The O’Neil formula [Bes]

then implies

scal(gM(s)) = scal(gB)− s|Aπ|2 − |Tπ|2 − |Nπ|2 − 2δNπ ≥ scal(gM) > 0

where Aπ, Tπ, Nπ are the tensors defined for the Riemannian submersion π with

respect to gM .

Use the normal exponential map from ∂W to define a collar neighborhood V ∼=

M × [0, N ], where t ∈ [0, N ] is the distance to ∂W . We choose N small such that

V ⊂ U . Using this identification, gW has the form

gW = g(t) + dt2

where g(t) = gW |M×t is a smooth path of metrics on M . Since g(0) = gW |∂W has

positive scalar curvature, we can choose N small such that scal(g(t)) > 0 for all

t ∈ [0, N ].

Lemma 4.3.5. We can alter gW inside of V such that it is product like near ∂W

with gW |∂W = gM and scal(gW |V ) > 0

Proof. We use the paths gM(s) and g(s) and the following lemma from [W3] to re-

place gW near the boundary with a product metric restricting to gM at the boundary.

Lemma 4.3.6. [W3] Let g(t) + dt2 be a metric of positive scalar curvature on
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M × [0, N ] such that scal(g(t)) > 0 and M × {0} has positive mean curvature with

respect to the inward normal vector ∂t. Let ḡ(t) be a smooth path of metrics on M

such that scal(ḡ(t)) > 0 for t ∈ [0, N ] and ḡ(t) = g(t) for t in a neighborhood of N .

Then there exists a function β : [0, N ]→ R+ such that β = 1 for t in a neighborhood

of N, β = β(0) is constant for t in a neighborhood of 0, and ḡ(t)+β(t)dt2 has positive

scalar curvature.

To define our replacement path ḡ, we define two smooth functions.

χ1 : [0, N/2]→ [ε2f2(1)2, 1]

such that χ1(t) = 1 for t near 0 and χ1(t) = ε2f2(1)2 for t near N/2, and

χ2 : [N/2, N ]→ [0, 1]

such that χ2(t) = 0 fort near N/2 and χ2(t) = t for t near N . We then define a

smooth path of metrics

ḡ(t) =


gM ◦ χ1(t) t ∈ [0, N/2]

g ◦ χ2(t) t ∈ [N/2, N ]

.

By Lemma 4.3.4 and the definition of g, scal(ḡ(t)) > 0 for all t. Then Lemma 4.3.3

and Lemma 4.3.6 imply that ḡ(t) + β(t)dt2 has positive scalar curvature for the

function β(t) given by Lemma 4.3.6. For t near N , ḡ(t) = g(t) and β(t) = 1 , so

ḡ(t) + β(t)dt2 = gW . Thus replacing gW |V with this metric results in a new smooth

metric, for which we reuse the notation gW . Since ḡ(t) = g and β(t) is constant
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for t near 0, ḡ(t) + β(t)dt2 has the desired product structure (4.2.3). This proves

Lemma 4.3.5.

4.3.2 Connection

Let β ∈ Ω2(B) represent the image of `d in H2(B,R). The Gysin sequence for an

S1 bundle shows that π∗ld = 0, so we can choose α ∈ Ω1(M) such that π∗β = dα.

Since π∗β is S1 invariant, we can choose α to be S1 invariant by averaging.

Lemma 4.3.7. α(X∗) = − 1
2π

Proof. Let Φ ∈ Ω2(W ) be a Thom form of the disc bundle ρ : W → B. Since

[Φ] 7→ ρ∗ld

under the long exact sequence map H2(W,∂W )→ H2(W ), We have

ρ∗β − Φ = dᾱ

for some ᾱ ∈ Ω1(W ). Since Φ vanishes near ∂W,

dᾱ|M = ρ∗β|M = π∗β = dα.

Since π1(M) is finite, ᾱ|M − α is exact. By the defining property of the Thom

form, for any point q ∈ B,
∫
ρ−1(q)

Φ = 1. We use Stokes’ theorem to compute

−1 =

∫
ρ−1(q)

ρ∗β − Φ =

∫
ρ−1(q)

dᾱ =

∫
π−1(q)

ᾱ =

∫
π−1(q)

α = 2πα(X∗).
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We next construct a form γ ∈ Ω1(W ) extending 2πα/`. We first define a form

γ̄ ∈ Ω(M ×D2).

At (p, x) ∈M ×D2, x 6= 0, set

γ̄|H̄p×{0} =
2π

`
αH̄p γ̄(X∗, 0) = −f1(r)

`

γ̄(0, ∂r) = 0 γ̄(0, ∂θ) =
f1(r)

`
.

where r is the radial coordinate on D2. This form extends smoothly to the origin

of D2 since f1 is zero in a neighborhood of r = 0. Since r, H̄p ⊕ {0}, α, ∂r, ∂θ,

X∗ are all preserved by the S1 action, γ̄ is S1 invariant. The vertical space of σ is

generated by (X∗, ∂θ), and so γ̄ vanishes on the vertical space. It follows that there

is a unique form γ ∈ Ω(W ) such that σ∗γ = γ̄.

Lemma 4.3.8. τ ∗γ = 2π
`

proj∗U,Mα

Proof. Recall that f1(r) = 1 for r in the image of τ and note that

τ ∗γ = (σ∗γ)|M×[L,1] = γ̄|M×[L,1]. Thus:

τ ∗γ|H̄p⊕{0} = γ̄|H̄p⊕{0} =
2π

`
αH̄p , τ ∗γ(X∗, 0) = γ̄(X∗, 0) = −f1(r)

`
=

2π

`
α(X∗)

and τ ∗γ(0, ∂t) = γ̄(0, ∂r) = 0 =
2π

`
α(projM∗(0, ∂t)).

Let λB be the complex line bundle with c1(λB) = d. Given a differential form in

the de Rahm cohomology class of 2πi times the first Chern class of a complex line

bundle, there is a unitary connection on the line bundle whose curvature is that
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differential form. Thus, since β represents `d, let ∇B be a unitary connection on

λB with curvature

F∇B =
2πi

`
β.

We now define a connection on λ

∇ = ρ∗∇B − iγ.

Lemma 4.3.9. ∇ is flat on U.

Proof. We need to show that F τ∗∇ = 0. Using Lemma 4.3.8 it follows that

τ ∗∇ = τ ∗ρ∗∇B − iτ ∗γ

= proj∗U,M

(
π∗∇B −

2πi

`
α

)
and hence the curvature of the term in the parentheses is

2πi

`
π∗β − 2πi

`
dα = 0.

We finish the construction of ∇ by modifying it so that it is product like near

∂W and restricts to ∇̄ at ∂W . Let proj∗V,M : V → M be the projection defined

by the identification V ∼= M × [0, N ] from Section 4.3.1. Note that while V ⊂ U,

projV,M and projU,M will not in general agree (the later was defined independently

of h and the former using h.) Since V ⊂ U, ∇ is flat on V. Since projV,M and the
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inclusion of ∂W ∼= M ×{0} are homotopy inverses, proj∗M,V (λ|M) = λ|V . Thus ∇|V

and proj∗V,M∇̄ are both flat unitary connections on λ|V and

proj∗V,M(∇̄)−∇|V = iδ

for some closed form δ ∈ Ω1(V ). Since π1(V ) = π1(M) is finite, δ = df for a

smooth function f on V . We modify f to a function f̄ which is equal to f near

∂W ∼= M ×{0} and equal to 0 near M ×{N}. We then replace ∇ with ∇+ idf̄ on

V. We see that ∇ is still smooth, flat on V , and near ∂W , ∇ = proj∗V,M∇̄, satisfying

(4.2.4)

4.3.3 Curvature

We complete the proof of Theorem 4.2.1 by showing that (4.2.2) holds. On V, ∇

is flat and by Lemma 4.3.5 scal(gW ) > 0, so the inequality is satisfied. For the

remainder of the proof we consider W\V . Then scal(gW ) is given by Lemma 4.3.1

and the O’Neil formula for the scalar curvature of Riemannian submersion.

scal(gW ) = scal
(
gW |ρ−1(π(p))

)
+ scal(gB)− |Aρ|2 − |Tρ|2 − |Nρ|2 − 2δNρ.

As ε→ 0, |Aρ| → 0, while the final three terms remain constant. By Lemma 4.3.2,

scal
(
gW |ρ−1(π(p))

)
= − 2

ε2|X∗|2gM

(
f ′′2
f2

)
.

Therefore, as ε→ 0,

scal(gW ) = − 2

ε2|X∗|2gM

(
f ′′2
f2

)
+O(1).
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Let X̄i be an orthonormal basis of H̄p with respect to gM . Let Xi = σ∗(X̄i, 0).

Then {Xi} is an orthonormal basis of H[p,x] with respect to gW outside of V . Away

from the zero section { 1
ε|X∗|gM

Wr,
1

ε|X∗|gM f2
Wθ} is an orthonormal basis of V[p,x].

Neither the X̄i nor ∇ depend on ε. Then as ε→ 0, using (2.0.3)

∣∣F∇∣∣
gM
≤ 1

ε2|X∗|2gMf2

|F∇(Wr,Wθ)|+
∑
i

1

ε|X∗|gM
|F∇(Wr, Xi)|

+
1

ε|X∗|gMf2

|F∇(Wθ, Xi)|+O(1).

Lemma 4.3.10. F∇(Wr,Wθ) = −if ′1(r)/` , F∇(Wr, Xi) = F∇(Wθ, Xi) = 0.

Proof. Since ρ∗Wr = ρ∗Wθ = 0,

F∇(Wr,Wθ) = −idγ(Wr,Wθ) = −idγ(σ∗(0, ∂r), σ∗(0, ∂θ))

= −iσ∗dγ((0, ∂r), (0, ∂θ)) = −idγ̄((0, ∂r), (0, ∂θ)) = −i∂rγ̄(0, ∂θ) = −if
′
1(r)

`

similarly

F∇(Wr, Xi) = −idγ̄((0, ∂r), (X̄i, 0)) = −i
(
∂r

(
2π

`
α(X̄i)

)
− X̄i

(
f1(r)

`

))
= 0

and

F∇(Wθ, Xi) = −idγ̄((0, ∂θ), (X̄i, 0)) = −i
(
∂θ

(
2π

`
α(X̄i)

))
= 0.

Lemma 4.3.10 implies that as ε→ 0,

scal(gW )− `|F∇|gM =
1

ε2|X∗|2gM

(
−2f ′′2 − f ′1

f2

)
+O(1)
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=
12

ε|X∗|2gM

(
r

f2

)
+O(1)

From the definition of f2 one sees that r/f2 → 1 as r → 0. It follows that we can

choose ε small enough that (4.2.2) holds, completing the proof of Theorem 4.2.1.

In [KS3] Lemma 4.2, Kreck and Stolz constructed positive scalar curvature met-

rics on associated disc bundles in order to calculate their invariant for spin manifolds

with free S1 actions. In their proof, they needed to assume that the S1 orbits were

geodesics. The metric gW constructed in Theorem 4.2.1 generalizes their method

to a free isometric S1 action without the geodesic condition.
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