1. Let \(F(x, y) = (2x \cos(2y), -2x^2 \sin(2y)) \). Compute \(\int_C F \cdot dr \) between the points \(P = (0, 0) \) and \(Q = (1, \pi/2) \) in two different ways:

1. By parametrizing a curve \(C \) (of your choice) between \(P \) and \(Q \).
2. Using the fundamental theorem of calculus for line integrals.

2. Let \(S \) be the surface parametrized by: \(\Phi : [1, 2] \times [0, \pi] \to \mathbb{R}^3 \)
\[
\Phi(u, v) = (u \cos(v), u \sin(v), \frac{1}{2} u^2 \sin(2v))
\]
Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be defined by \(f(x, y, z) = xyz \).
Set up the complete iterated integral (using Fubini’s theorem): \(\int_S xyz \).
Do not carry out the integration.

3. Find the volume of the region in the first octant cut out by the cylinder \(x^2 + y^2 = a^2 \) and the planes \(x = y, y = 0, z = 0 \).
Set up the complete iterated integral (using Fubini’s theorem).
Do not carry out the integration.

4. Using Green’s theorem evaluate the integral \(\oint_D F \cdot dr \) where:
\(F(x, y) = (x \cos y, x^2 \sin y) \) and \(D = \{ (x, y) \text{ s. t. } x \geq 0, 1 + x^2 \leq y \leq 2 \} \).
Set up the complete iterated integral (using Fubini’s theorem).
Do not carry out the integration.

5. Prove or disprove the following statement: Stokes’ theorem can be applied to any surface \(S \subset \mathbb{R}^3 \) with smooth boundary \(\partial S \).

6. Using Stokes’ theorem compute \(\int_S F \cdot n \) where:
\(F(x, y) = (7x, 0, -z) \), \(S \) is the boundary of the solid sphere of radius 2 centered at the origin and \(n \) the outward pointing normal vector.

7. 1. Prove that the function \(f(x, y) = \sqrt{x^2 + y^2} \) is not differentiable at the point \((0, 0) \).
2. Prove that the function \(f(x, y) = \sqrt{x^2 + y^2} \) is differentiable at the point \((1, 1) \).

8. Let \(f : \mathbb{R}^2 \to \mathbb{R} \) be defined by \(f(x, y) = x^2 + 2xy + 2y^2 + x + 2y + 2 \).
Find all critical points of \(f \) and explain their behavior. Are there any global min/max?
9. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x, y) = \frac{1}{(x^3 + y)^2 + (y^3 + 1)^2}.$$

Compute the total derivative by using the function the chain rule.

10. Which of the following functions can be defined continuously at $P = (0, 0)$, for some suitable $b \in \mathbb{R}$? Prove your answers. Find the value of b.

1. $f(x, y) = \begin{cases} \frac{x - y}{x + y} & \text{if } (x, y) \neq (0, 0) \\ b & \text{if } (x, y) = (0, 0) \end{cases}$

2. $f(x, y) = \begin{cases} \frac{x^3 - y^3}{x^3 + y^2} & \text{if } (x, y) \neq (0, 0) \\ b & \text{if } (x, y) = (0, 0) \end{cases}$

3. $f(x, y) = \begin{cases} \frac{x^4 - y^2}{\sqrt{(x^2 + y^2)}} & \text{if } (x, y) \neq (0, 0) \\ b & \text{if } (x, y) = (0, 0) \end{cases}$