1. Evaluate the integral
\[\int_{-3}^{0} (1 + \sqrt{9 - x^2}) \, dx \]
by interpreting it as the area of a region involving basic geometric figures.
(a) \(\frac{9\pi}{4} \)
(b) \(3 + 9\pi \)
(c) \(3 + \frac{9\pi}{4} \)
(d) \(9 + 3\pi \)
(e) \(\frac{3\pi}{4} \)
(f) \(9 + \frac{3\pi}{4} \)

2. Evaluate the integral
\[\int_{0}^{3} \frac{x + 4}{x^2 + 8x + 1} \, dx \]
(a) 0
(b) \(\frac{1}{2} \ln 34 \)
(c) \(\ln 49 \)
(d) \(\frac{1}{34} \)
(e) \(\frac{1}{49} \)
(f) \(\ln 34 - \frac{1}{2} \)

3. What is the equation of the line tangent to the graph of \(y^3 + 3x^2y^2 + 2x^3 = 4 \) at the point \((1, -1)\)?
(a) \(y = -1 \)
(b) \(y = x - 2 \)
(c) \(y = 2x - 3 \)
(d) \(y = 3x - 4 \)
(e) \(y = 4x - 5 \)
(f) \(y = 5x - 6 \)

4. A particle moves in such a way that its distance from the origin at time \(t \) is given by \(x(t) = 2\sqrt{t^2 + 4} \). If \(v(t) \) is the velocity of the particle at time \(t \), what is \(\lim_{t \to \infty} v(t) \)?
(a) 2
(b) \(\frac{1}{2} \)
(c) \(\frac{1}{4} \)
(d) \(\frac{1}{\sqrt{2}} \)
(e) 0
(f) \(\infty \)

5. What are the global maximum and minimum values of the function \(f(x) = \frac{x}{1 + x^2} \)?
(a) 2 and \(-2\)
(b) 1 and \(-1\)
(c) \(\frac{1}{2} \) and \(-\frac{1}{2}\)
(d) 2 and 0
(e) 4 and \(-4\)
(f) \(\infty \) and \(-\infty \)
6. The region bounded by the curve \(y = 2\sqrt{x} \), the \(x \)-axis, and the line \(x = 4 \) is revolved about the \(x \)-axis, creating a solid. What is the volume of the solid?
(a) \(32\pi \)
(b) \(\frac{32\pi}{3} \)
(c) \(64\pi \)
(d) \(\frac{64\pi}{3} \)
(e) \(72\pi \)
(f) \(\frac{72\pi}{3} \)

7. A stock market analyst sold a monthly newsletter to 320 subscribers at a price of $10 each. She discovered that for each $0.25 increase in the monthly price of the newsletter, she would lose 2 subscriptions. If she sets the price of the newsletters to bring in the greatest total monthly income, what will that income be?
(a) $3200
(b) $4400
(c) $5000
(d) $5800
(e) $6500
(f) $7200

8. What is \(\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} \)?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
(f) does not exist.

9. Water is draining from a conical tank at the rate of 18 cubic feet per minute. The tank has a height of 10 feet and the radius at the top is 5 feet. How fast (in feet per minute) is the water level changing when the depth is 6 feet? (Note: The volume of a cone of radius \(r \) and height \(h \) is \(\pi r^2 h/3 \).)
(a) \(\frac{1}{\pi} \)
(b) \(\frac{2}{\pi} \)
(c) \(\frac{3}{\pi} \)
(d) \(-\frac{1}{\pi} \)
(e) \(-\frac{2}{\pi} \)
(f) \(-\frac{3}{\pi} \)
10. Suppose
\[\int_0^x f(x) \, dx + 2 \sin x = 4x. \]
What is the value of \(f(\pi) \)?
(a) 2 (b) 4 (c) 6 (d) \(2\pi \) (e) \(4\pi \) (f) \(6\pi \)

11. Compute \(\int_1^2 3^x \, dx \).
(a) \(\frac{7}{2} \) (b) \(e^3 \) (c) \(3 \ln 6 \) (d) \(\frac{6}{\ln 3} \) (e) 6 (f) \(\frac{\ln 3}{6} \)

12. What is the total area enclosed between the graphs of \(y = 4x^3 + 3x^2 - 1 \) and \(y = 3x^2 + 4x - 1 \) ?
(a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6

Answers

1. C
2. B
3. E
4. A
5. C
6. A
7. C
8. E
9. E
10. C
11. D
12. B