Math 103
Final Exam
Fall 2009

1. If \(\int_{0}^{3} f(x) \, dx = 12 \) and \(\int_{0}^{6} f(x) \, dx = 42 \), find the value of \(\int_{3}^{6} \left(2f(x) - 3 \right) \, dx \).

 a) 50 b) 51 c) 52 d) 56
 e) 53 f) 54 g) 55 h) None of these

2. Find the value of the integral \(\int_{0}^{8} \left(x^2 - \frac{1}{\sqrt[4]{x^2}} + 1 \right) \, dx \).

 a) 14 b) 6 c) 12 d) 20
 e) 18 f) 72 g) \frac{5}{2} h) 168

3. Find the value of \(\int_{e}^{e^2} \left(\frac{\ln x}{x} \right)^2 \, dx \).

 a) \ln 2 b) \frac{1}{2} \ln 2 c) \frac{1}{2} d) \frac{3}{2}
 e) 1 f) \frac{1}{\ln 2} g) 0 h) \frac{7}{3}

4. Find the value of \(\int_{0}^{\ln 9} e^{x/2} \, dx \).

 a) 4 b) 2 c) 6 d) 3
 e) 16 f) 9 g) 8 h) 1

5. Find all critical numbers for the function \(f(x) = \sqrt{9 - x^2} \).

 a) 0 b) -3 c) 0, -3 d) No critical numbers
 e) 3 f) 3, -3 g) 0, 3, -3 h) None of these
6. At what value(s) of \(x \) is the function \(f(x) = \begin{cases} x^2 + 4x + 5 & \text{if } x < -2 \\ \frac{1}{2}x & \text{if } -2 \leq x \leq 2 \\ 1 + \sqrt{x-2} & \text{if } x > 2 \end{cases} \) discontinuous?

a) -2 b) 0 c) -2, 0, and 2 d) -2 and 0
 e) 2 f) -2 and 2 g) 0 and 2 h) \(f \) is continuous everywhere

7. Find the interval on which the graph of \(f(x) = \ln(x^2 + 1) \) is concave upward.

a) (-1, 1) b) (-1, 2) c) (-2, 1) d) (-2, 2)
 e) (-1, 3) f) (-3, 2) g) (-3, 3) h) \((-\infty, \infty)\)

8. The curve \(y = x^3 + x^2 - x \) has two horizontal tangents. Find the distance between these two horizontal lines.

a) \(\frac{11}{9} \) b) \(\frac{22}{27} \) c) \(\frac{32}{27} \) d) \(\frac{5}{3} \)
 e) \(\frac{14}{9} \) f) \(\frac{4}{3} \) g) \(\frac{13}{9} \) h) \(\frac{7}{3} \)

9. If \(f(x) = \frac{x}{\tan x} \), find \(f'\left(\frac{\pi}{4}\right) \).

a) \(\frac{2 - \pi}{2} \) b) \(\frac{1 - \pi}{2} \) c) \(1 - \pi \) d) \(\frac{\pi}{2} \)
 e) \(1 - 2\pi \) f) \(2 - \pi \) g) \(2 - 2\pi \) h) \(-\pi \)

10. Evaluate the limit \(\lim_{x \to \infty} \frac{\ln(3 + 2e^{5x})}{6x} \).

a) 5 b) \(\frac{1}{5} \) c) \(\frac{5}{3} \) d) \(\frac{3}{5} \)
 e) \(\frac{1}{6} \) f) \(\frac{1}{10} \) g) 10 h) \(\frac{5}{6} \)
11. Let \(V \) be the volume of a cylinder having height \(h \) and radius \(r \), and assume that \(h \) and \(r \) vary with time. When the height is 5 in. and is increasing at 0.2 in./s., the radius is 3 in. and is decreasing at 0.1 in./s. How fast is the volume changing at that instant?

12. A rectangle with base on the \(x \)-axis has its upper vertices on the curve \(y = 12 - x^2 \). Find the maximum area of such a rectangle. Be sure to prove that you have found the maximum area.

13. The graph of \(f \) below consists of line segments and semicircles. Let \(g(x) = \int_0^x f(t)\,dt \).

Answer the following questions.

(a) \(g(14) \)

(b) \(g(10) \)

(c) \(g'(6) \)

(d) What is the absolute minimum value of \(g \) on the interval \([0,14]\)?
14. Given the graph of $y = f'(x)$, answer the questions that follow.

(a) Find all values of x at which (Explain your answers for full credit)
 (i) f is increasing.
 (ii) f is decreasing.
 (iii) $f''(x) > 0$.
 (iv) f has an inflection point.
 (v) f has a local maximum

(b) Sketch a graph which could represent $y = f(x)$.
Math 103 Fall 2009
Final Exam
Answers

1. B
2. E
3. H
4. A
5. G
6. A
7. A
8. C
9. A
10. H

11. $\frac{-6\pi}{5}$

12. 32 un^2

13. a) $4 + \frac{5\pi}{2}$ b) $12 + \frac{9\pi}{2}$ c) 2 d) 0

14. a) i) (x_1, x_3) ii) $(x_0, x_1) \cup (x_3, x_4)$ iii) (x_0, x_2) iv) x_2 v) x_3

b)