NAME (print):

Math 104 / Fall 2011

FINAL EXAM

Rules:
• One sheet of paper (8½ by 11 inch) both sides handwritten notes is permitted.
• No other written or printed materials are allowed.
• No electronic devices (cellular, calculator, iPad, etc.) are allowed.

Grading:
• Each problem is worth 10 points (partial credit possible).
• Do all 15(fifteen) problems, showing your work and circling your answers.
• No credit will be given for just guessing and not showing the work leading to the answer.

Instructions:
• Fill out the information requested below, and at the top of every page of this exam.
• Check that your exam booklet contains cover page + eight pages (15 problems).

Signature:

Class:

Recitation (#, day & time):
1. The value of the integral \[\int_{-1}^{1} \left(\sqrt[3]{x} + \frac{1}{1+x^2} + \frac{1}{2-x} \right) \, dx \] is:

(A) \(1 + \frac{\pi}{2} \) (B) \(\frac{47}{10} \) (C) \(\frac{\pi}{2} + \ln 3 \) (D) \(\ln 3 + 3 \) (E) \(1 + 2\pi \) (F) \(0 \) (G) \(\frac{\pi}{2} - \ln 3 \) (H) \(1 \)

2. Find the length of the arc of the curve defined by \(y = \frac{2}{3} \sqrt{x^3} \) for \(0 \leq x \leq 3 \).

(A) \(\frac{\pi}{2} \) (B) \(\frac{\pi}{4} \) (C) \(4 \) (D) \(5 \ln 3 \) (E) \(\frac{14}{3} \) (F) \(\frac{1}{4} \) (G) \(\frac{e}{8} \) (H) \(\frac{\ln 3}{2} \)
3. Find the volume obtained by rotating the region between the graph of \(y = \frac{1}{2} \sin^2(x^2) \) and the \(x \)-axis for \(0 \leq x \leq \sqrt{\pi} \) about the \(y \)-axis.

(A) \(\frac{\pi}{2} \) (B) \(\frac{\pi^2}{4} \) (C) \(\frac{5}{4} \) (D) \(\frac{3\pi^2}{4} \) (E) \(\frac{1}{2} \) (F) \(\frac{1}{4} \) (G) \(\frac{\pi}{8} \) (H) \(\frac{\pi^2}{8} \)

4. Evaluate \(\int_{1}^{e^3} \frac{\ln x}{\sqrt[3]{x^2}} \, dx \).

(A) \(3e - 9 \) (B) \(3e^2 - 9 \) (C) \(9e^2 - 3 \) (D) \(3e^2 \) (E) \(9e^2 \) (F) \(9 \) (G) \(9e - 3 \) (H) \(3e \)
5. Find the area bounded by the x-axis and the graph of $y = xe^{-2x}$ for $0 \leq x < \infty$.

(A) 1 (B) 2 (C) $e - 2$ (D) $\frac{1}{4}$ (E) $\frac{1}{2}$ (F) $\frac{1}{e}$ (G) $\frac{1}{2e}$ (H) $\frac{1}{4e}$

6. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(5x - 3)^n}{n^2}$.

(A) $(-1, 1)$ (B) $[-1, 1]$ (C) $[1, \frac{4}{5}]$ (D) $[-\frac{4}{5}, \frac{4}{5}]$ (E) $[-\frac{4}{5}, \frac{4}{5}]$ (F) $[\frac{2}{5}, \frac{4}{5}]$ (G) $[0, 1]$ (H) $\{0\}$
7. Let $f(x) = e^{-x^2}$. Then $f^{(10)}(0)$ is

(A) $-\frac{1}{120}$ (B) $\frac{1}{10!}$ (C) $\frac{10}{9!}$ (D) $-\frac{10!}{9!}$ (E) $\frac{3}{10}$ (F) $\frac{1}{100}$ (G) 1 (H) 0

8. The region bounded by $y = \frac{x}{\sqrt{(x^2 + 3)^5}}$, the x-axis, and $0 \leq x \leq 1$, is rotated about the x-axis. The volume of the resulting solid is equal to:

(A) $\frac{\pi}{6}$ (B) $\frac{1}{\sqrt{2}}$ (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{4}$ (E) $\frac{\pi}{2}$ (F) sec 2 (G) $\frac{1}{2}$ (H) $\frac{\pi}{72}$
9. Which of the following is the best approximation of \(\ln\left(\frac{11}{10}\right)\)?

(A) 0 (B) \(\frac{1}{10}\) (C) \(\frac{5}{100}\) (D) \(\frac{9}{100}\) (E) \(\frac{95}{1000}\) (F) \(\frac{99}{1000}\) (G) \(\frac{109}{1000}\) (H) \(\frac{155}{1000}\)

10. Consider the function \(f(x) = \frac{1}{x} e^{-x^2} \sin 2x \) for \(x \neq 0 \) and \(f(0) = 2 \). The order three Taylor polynomial \(a_0 + a_1 x + a_2 x^2 + a_3 x^3 \) of \(f(x) \) about \(x = 0 \) is:

(A) \(2 - \frac{10}{3} x^2\) (B) \(2x - \frac{4}{3} x^3\) (C) \(2 - \frac{4}{3} x^2\) (D) \(2 - x^2\)

(E) \(x - \frac{1}{3} x^3\) (F) \(1 + x - x^3\) (G) \(-2 + x + \frac{10}{3} x^2\) (H) \(2 - x + x^2\)
11. Let \(y(x) \) be the solution to the initial-value problem \(x \frac{dy}{dx} - 2y = x^3 \) and \(y(1) = 0 \). What is \(y(3) \)?

(A) 1 (B) 3 (C) 6 (D) 9 (E) 12 (F) 15 (G) 18 (H) 27

12. A random variable has as probability density function \(p(x) = 2(x + 1)^{-3} \) for \(x \geq 0 \) and \(p(x) = 0 \) else. What is the mean of the random variable?

(A) \(\sqrt{2} \) (B) \(\frac{3}{2} \) (C) 1 (D) \(2\sqrt{2} \) (E) 2 (F) 4 (G) 0 (H) \(\frac{11}{2} \)
13 Evaluate the integral \(\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\tan t}{\ln(\cos t)} dt \).

(A) \(\frac{1}{4e} \) (B) \(\frac{1}{2e} - \frac{1}{e} \) (C) \(\ln 2 \) (D) \(2e + \frac{2}{e} \) (E) \(\frac{2}{e} \) (F) \(-\ln 2 \) (G) \(\ln 3 - 1 \) (H) \(\frac{4}{e} \)

[Hint: \(\tan t = \frac{\sin t}{\cos t} \), etc.]

14 Which of the following series converge?

(I) \(\sum_{n=2}^{\infty} \frac{\ln n}{n^3} \) (II) \(\sum_{n=2}^{\infty} \frac{n^3}{\ln n} \) (III) \(\sum_{n=1}^{\infty} \frac{n}{2^n} \) (IV) \(\sum_{n=1}^{\infty} e^{1/n} \)

(A) I & II (B) I & III (C) I & IV (D) II & III (E) II & IV (F) III & IV (G) all four of them (H) none of them
15. The values of $p \geq 0$ for which the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converges are precisely:

(A) $p > 1$ (B) $p > 0$ (C) $p \geq 1$ (D) $p \leq 1$ (E) $p < 1$ (F) $p > \frac{1}{2}$ (G) $p > 2$ (H) none.