Math 104 Make-up Final Exam — Spring 2010

1. Compute the total area bounded by the curves \(y = x \) and \(y = x^3 \).
 (a) 3/4 (b) 2/3 (c) 1/2 (d) 1/3 (e) 1/5 (f) 0

2. Consider the the region bounded by the curve \(y = \sqrt{x} \) and the lines \(x = 1 \) and \(y = 0 \). Find the volume of the solid obtained by rotating this region about the \(y \)-axis.
 (a) 3\(\pi/4\) (b) \(\pi/4\) (c) \(\pi/3\) (d) \(\pi/5\) (e) 3\(\pi/5\) (f) 4\(\pi/5\)

3. Find the volume obtained by rotating the solid bounded by the curves \(y = x^2 \) and \(y = x^3 \) about the \(x \)-axis.
 (a) \(\pi/7\) (b) 2\(\pi/7\) (c) \(\pi/5\) (d) 4\(\pi/5\) (e) 2\(\pi/35\) (f) 4\(\pi/35\)

4. Evaluate \(\int_0^1 (\pi \sin \pi x - \frac{1}{x^2 + 1}) \, dx \).
 (a) 2 - \(\pi/4\) (b) 13\(\frac{1}{4}\) + ln 4 (c) \(e^3 - 2\frac{1}{4}\) (d) \(\cos \frac{4}{3} - \ln 2\) (e) 172\(\frac{1}{2}\) - \(\sqrt{3}\) (f) 1.2146

5. Evaluate \(\int_1^e \ln x \, \frac{dx}{x^2} \).
 (a) \(e - e^{-2}\) (b) 1 - \(\frac{2}{e}\) (c) \(\ln \frac{e^2}{x^2}\) (d) 1 - \(\frac{3}{e}\) (e) \(\sqrt{\ln 2} - 1\) (f) \(2^e\)

6. Evaluate \(\int_0^1 \frac{dx}{\sqrt{4-x^2}} \).
 (a) 0 (b) 1 (c) 1 + \(\pi\) (d) \(\pi/6\) (e) \(\pi/2\) (f) \(\pi^2\)

7. Evaluate \(\int_0^2 \frac{4-2x}{(x+2)(x^2+4)} \, dx \).
 (a) \(\pi/4 - 1/2\) (b) \(\frac{1}{2} \ln 2\) (c) 32/51 (d) \(\pi/8\) (e) \(e/9\) (f) \(\cos 2\)

8. Evaluate the improper integral \(\int_0^2 \frac{1}{(x-1)^{\frac{3}{2}}} \, dx \).
 (a) \(\frac{2}{3} - \pi/2\) (b) 1/ln 2 (c) 1.442 (d) 1 - \(e\) (e) \(\pi - 2\) (f) The integral is divergent.

9. Find the arclength of the part of the curve \(x = \frac{1}{3}(y^2 + 2)^{\frac{3}{2}} \) between the points \((\sqrt{3}, 1)\) and \((2\sqrt{6}, 2)\).
 (a) 10/3 (b) 7/3 (c) 2 (d) 14/3 (e) 1 (f) 5/3

10. Which of the following integrals corresponds to the surface area of revolution obtained by rotating the graph of \(y = e^x \), from \(x = 0 \) to \(x = 1 \), about the \(x \)-axis?
 (a) \(\int_0^1 \pi e^{2x} \sqrt{1 + e^{2x}} \, dx\) (b) \(\int_0^1 \pi xe^x \sqrt{e^x + e^{2x}} \, dx\) (c) \(\int_0^1 2\pi e^x \sqrt{1 + e^x} \, dx\)
 (d) \(\int_0^1 2\pi e^x \sqrt{1 + e^{2x}} \, dx\) (e) \(\int_0^1 \pi e^{2x} \sqrt{e^x - 1} \, dx\) (f) \(\int_0^1 \pi e^{x+1} \sqrt{e^x - e^{-x}} \, dx\)
11. What is the average value of the function \(f(x) = \sin x \) between \(x = 0 \) and \(x = \pi \)?
(a) 0 (b) 1 (c) 1/2 (d) \(\pi/6 \) (e) 2/\(\pi \) (f) 1/\(\sqrt{2} \)

12. Consider the initial value problem \(\frac{dy}{dt} = \frac{t}{y} \), with \(y(0) = -3 \). Find \(y(4) \).
(a) -3 (b) 3 (c) -5 (d) 5 (e) -7 (f) 7

13. A population is observed to obey the logistic equation \(\frac{dP}{dt} = 2P \left(1 - \frac{P}{1000} \right) \). If \(P(0) = 500 \), when does the population reach 2000?
(a) \(t = 1 \) (b) \(t = 2 \) (c) \(t = 10 \) (d) \(t = 500 \) (e) \(t = 1000 \) (f) never.

14. Determine if the sequence \(a_n = \left(n + e^n \right)^{1/n} \) converges or diverges. If it converges, find the limit.
(a) 1 (b) 2 (c) \(e \) (d) 1 + \(e \) (e) 3 (f) The sequence is divergent.

15. Determine if the series \(\sum_{n=0}^{\infty} \frac{3 \cdot 2^{n+1}}{5^n} \) converges or diverges. If it converges, find the sum.
(a) 2 (b) 3 (c) 5 (d) 10 (e) 15 (f) The series is divergent.

16. Determine all real numbers \(r \) for which the series \(\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^r + \ln n} \) converges.
(a) \(r > -1 \) (b) \(r > 0 \) (c) \(r > 1/2 \) (d) \(r > 1 \) (e) \(r > 3/2 \) (f) \(r > 2 \)

17. Examine the two series below for absolute convergence (A), conditional convergence that is not absolute (C), or divergence (D).
(1) \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+1)} \) (2) \(\sum_{n=1}^{\infty} (-1)^{n-1}2^{-n} \)
(a) 1C, 2A (b) 1A, 2C (c) 1A, 2D (d) 1A, 2A (e) 1C, 2C (f) 1C, 2D

18. Find the interval of convergence of \(\sum_{n=0}^{\infty} \frac{x^n}{2n+1} \).
(a) [-1, 1] (b) [-1, 1) (c) (-1, 1) (d) (-1, 1] (e) (-2, 2) (f) (-2, 2]

19. The Maclaurin series for the function \(\frac{x^2}{1-x^3} \) is
(a) \(1 - x + x^2 - x^3 + \cdots \) (b) \(1 + \frac{3x^2}{2!} + \frac{4x^3}{3!} - \frac{5x^4}{4!} + \cdots \)
(c) \(x^2 - x^3 + x^4 - x^5 + \cdots \) (d) \(x^2 + x^5 + x^8 + x^{11} + \cdots \)
(e) \(x^{2n} + x^{4n} + x^{6n} + \cdots \) (f) \(x^3 + x^5 + x^7 + x^9 + \cdots \)

20. The coefficient of \((x - 1)^{10} \) in the Taylor series for the function \(e^x \) at \(x = 1 \) is
(a) 1 (b) \(\frac{1}{10!} \) (c) \(\frac{e^{10}}{10!} \) (d) \(\frac{e^{10}}{10} \) (e) \(\frac{e}{10!} \) (f) \(e^{10} \).