Final Exam - Math 114 - Fall 2011

Each problem is worth 10 points. Circle your answers. In order to get full credit, you must both show your work and get the right answer.

Name: (please print)				
Circle the name of your lecturer: Cooper Haglund Pantev Powers				
TA's Name: (please pr	rint)			
Day of week and time	of recitation:			
My signature below co Code of Academic Integr		_		rsity of Pennsylvania's
Signature				
The table below is for	grading purpose	es - do not wri	te below this l	ine
	1	8		
	2	9		
	3	10		
	4	11		
	5	12		
	6	13		
	7	14		

1. Find the area of the parallelogram three of whose vertices are (0,0,0), (1,2,3), and (-1,1,-1).

(A) $\sqrt{29}$

(B) $\sqrt{38}$

(C) $\sqrt{30}$

(D) 8

(E) $\sqrt{5}$

(F) $2\sqrt{5}$

(G) 6

2. Find $\mathbf{r}(t)$ if

$$\frac{d^2\mathbf{r}}{dt^2} = \langle -t^2, 1, -t \rangle$$
$$\frac{d\mathbf{r}}{dt}(1) = \langle 2/3, 0, -1/2 \rangle$$
$$\mathbf{r}(0) = \langle 1, -1, 0 \rangle$$

What is the value of $\mathbf{r}(1)$?

(A)
$$\langle 23/12, -3/2, -1/6 \rangle$$

(B)
$$\langle 2, -1, 0 \rangle$$

(C)
$$(2, 1, 0)$$

(D)
$$\langle 2 - 1, 1 \rangle$$

(G) $\langle 3, -1, -1 \rangle$

(E)
$$\langle 2, 0, -1 \rangle$$

(F)
$$(3,0,0)$$

3. A spring gun at ground level fires a golf ball at an angle of 45 degrees. The ball lands ten meters away. Assuming the acceleration due to gravity is 9.8 m/s^2 , what is the balls initial speed?

(A) 4 m/s

(B) 5.2 m/s

(C) 5 m/s

(D) $5\sqrt{2} \text{ m/s}$

(E) 10 m/s

(F) 7.2 m/s

(G) $\sqrt{98}$ m/s

4. Let L be the line through the origin that is perpendicular to the plane 2x + y + z = 7. Find the distance between the point (-4, 3, 5) and L.

(A) $\sqrt{2}$

(B) 0

(C) 1/5

(D) $5\sqrt{2}$

(E) 10

(F) $\sqrt{7}$

(G) $2\sqrt{15}$

5. Which of the following statements are true?

(i) The curvature of the curve $\overrightarrow{r}(t) = \langle 3\cos(t), -5 + 3\sin(t), 1 \rangle$ is constant and equal to 1/2.

(ii) If the acceleration of a motion $\overrightarrow{r}(t) = \langle x(t), y(t), z(t) \rangle$ is everywhere zero, then the trajectory of the motion is a circle.

(A) (i) only

(B) (ii) only

(C) (i) and (ii)

(D) none

6. Which of the following limits exist?

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - y^4}{x^2 - y^2}$$

(ii)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x^2+y^2}$$

(iii)
$$\lim_{(x,y)\to(0,0)} \frac{x+y}{\sqrt{x^2+y^2}}$$

(A) (i) only

(B) (ii) only

(C) (iii) only

- (D) (i) and (ii) only
- (E) (i) and (iii) only
- (F) (ii) and (iii) only

(G) none

7. Find the equation of the plane that is tangent to the surface

$$\cos(y+x) - \sin(y+z) = \sin(z) - \cos(x)$$

at the point $(\pi, \pi, 0)$. What is the y-coordinate of the point where this tangent plane intersects the y-axis?

(A) 3

(B) π

(C) 0

(D) $\sqrt{\pi}$

(E) $\sqrt{3}$

(F) 1

(G) $\pi/\sqrt{2}$

8. Find the product of the maximal and the minimal values of the function

$$f(x,y) = x - 2y + 2xy$$

in the region

$$(x-1)^2 + (y+1/2)^2 \le 2.$$

(A) -1

(B) $-\sqrt{2}$

(C) 1

(D) -3

(E) $2\sqrt{2}$

(**F**) 0

(G) -1/15

9. Compute the double integral

$$\int_{0}^{1} \int_{e^{y}}^{e} \frac{e - x}{\ln(x)} dx dy$$

(A) 1

(B) π

(C) $\frac{(e-1)^2}{2}$ (F) $\frac{\pi}{2}$

(D) 1 - e

(G) $\sqrt{2}$

(E) πe

10. Compute the line integral

$$\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r}$$

of the vector field

$$\overrightarrow{F} = \langle 2xy^2 + 3xz^2, 2x^2y + 2y, 3x^2z - 2z \rangle$$

on the curve C given by

$$\overrightarrow{r}(t) = \langle \cos(2t) + 5\sin(5t), 6\sin(t) + 4\sin(5t), \cos(2t) + \cos(5t) \rangle$$

for $0 \le t \le \pi$.

(A) $\pi - 2$

(B) -2

(C) 3π

(D) 4

(E) $5 - \pi$

(F) 6

(G) $\cos(5)$

11. Find the volume of the solid R bounded by the surface given in spherical coordinates by the equation $\rho=(\sin\phi)^{1/3}$.

(A) 4π

(B) $\pi - 1$

(C) $\frac{\pi}{3}$

- (D) $\frac{4\pi}{3}$ (G) $\sqrt{2}\pi$
- (E) $\frac{\pi^2}{3}$

(F) $\frac{\pi}{2}$

12. Find the value of the integral

$$\iint_{R} \cos\left(\frac{x-y}{x+y}\right) dA,$$

where R is the triangle in the xy-plane with vertices $(0,0),\,(2,2),\,$ and $(2+\pi,2-\pi).$

(A) 2π

(B) π

(C) 4

(D) $3\pi/2$

(E) 3

(F) 5/2

(G) -1

13. Find the y-coordinate of the center of mass of a thin plate in the shape of the upper half of the unit circle:

$$x^2 + y^2 = 1; \qquad y \ge 0$$

if the density δ at the point (x,y) is $\delta(x,y)=x^2+y^2$.

(A) 3/4

(B) $\pi^2/12$

(C) 1/2

(D) $\pi/4$

(E) $8/(5\pi)$

(F) $1 - \pi/8$

(G) $2/\pi$

14. Evaluate the integral

$$\int_{C} \left(y + \sin\left(e^{x^2}\right) \right) dx - 2x dy,$$

where C is the circle $x^2 + y^2 = 1$ traversed counterclockwise.

(A) $\sin(e)$

(B) -3π

(C) 2e

(D) $-\pi$

(E) -1

(F) 0

(G) $\cos(e^{2\pi}-1)$

Solution Key

- 1. (B) 2. (A) 3. (G)
- 4. **(D)**
- 5. (\mathbf{D})
- 6. (\mathbf{A})
- 7. **(B)**
- 8. **(D)**
- 9. **(C)**
- 10. **(B)**
- 11. (\mathbf{E})
- 12. **(C**)
- 13. (E) 14. (B)