You need to show your work, even for multiple choice problems. A correct answer with no work will get 0 points. The only exception are True/False problems, where no work needs to be shown. Each problem is worth 10 points.

You are NOT allowed to use a calculator. The extra double sided sheet of paper needs to be hand written in your own hand writing (no copies allowed).

(Do not fill these in; they are for grading purposes only.)

1) 9)
2) 10)
3) 11)
4) 12)
5) 13)
6) 14)
7) 15)
8)

Total
1. The matrix

\[A = \begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix} \]

has \[\mathbf{v} = \begin{pmatrix} 1 \\ 6 \\ 6 \end{pmatrix} \] as an eigenvector. What is the corresponding eigenvalue?

\[
\begin{pmatrix} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 6 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\]

The eigenvalue is 0.
2. The matrix

\[
A = \begin{pmatrix}
8 & -2 & 2 \\
-2 & 5 & 4 \\
2 & 4 & 5 \\
\end{pmatrix}
\]

has eigenvalues \(\lambda_1 = 0 \) and \(\lambda_2 = 9 \) (with multiplicity 2). An eigenvector corresponding to \(\lambda_1 \) is \(v_1 = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} \) and an eigenvector corresponding to \(\lambda_2 \) is \(v_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \). Find an orthogonal matrix \(P \) such that \(P^{-1}AP \) is diagonal.

First, I'm looking for a vector \(\tilde{w} \) which is \(\perp \) to \(\tilde{v}_1 \) & \(\tilde{v}_2 \) and is an eigenvector with e-value 9.

\[
\begin{pmatrix}
-1 & -2 & 2 \\
-2 & -4 & 4 \\
2 & 4 & -4 \\
\end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix} \Rightarrow w_1 + 2w_2 - 2w_3 = 0 \\
\text{to be an e-vec. for e-value 9.}
\]

Now add the orthogonality conditions to get the system:

\[
\begin{pmatrix} 1 & 2 & -2 \\
1 & 2 & -2 \\
-2 & 1 & 0 \\
\end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\
1 & 1 & 0 \\
0 & 5 & -4 \\
\end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -2 \\
0 & 5 & -4 \\
0 & 1 & -\frac{4}{5} \\
\end{pmatrix}
\]

\[-2 + \frac{\sqrt{5}}{5} \]

\[
\begin{pmatrix} 1 & 0 & -\frac{\sqrt{5}}{5} \\
0 & 1 & -\frac{4}{5} \\
\end{pmatrix} \Rightarrow \tilde{w} = \begin{pmatrix} \frac{2}{5} \\
\frac{4}{5} \\
\end{pmatrix}
\]

Now normalize \(\tilde{v}_1, \tilde{v}_2 \), & \(\tilde{w} \) to have length 1.

\[
P = \begin{pmatrix}
\frac{1}{3} & -\frac{2}{3} & \frac{2}{3}\sqrt{5} \\
\frac{2}{3} & \frac{1}{3} & \frac{4}{3}\sqrt{5} \\
\frac{2}{3} & \frac{2}{3} & \frac{5}{3}
\end{pmatrix}
\]
3. Compute the determinant

\[
\begin{vmatrix}
1 & 2 & 1 & 4 \\
2 & 3 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 2 & 1 & 0 \\
\end{vmatrix}
\]

Answer:
(a) 2 (b) 4 (c) -4 (d) 8 (e) -2 (f) -8

\[
-4 \cdot \begin{vmatrix}
2 & 3 & 1 \\
0 & 1 & 1 \\
0 & 2 & 1 \\
\end{vmatrix} = -4 \cdot (2 \cdot (1 - 2)) = 8.
\]
4. For each of the following statements, determine whether they are true or false. All the matrices below are assumed to have real entries. No work needs to be shown for this problem.

(a) Any orthogonal 3x3 matrix has an eigenvalue equal to 1 or -1. True ☐ False ☐

(b) There is a symmetric matrix having \(i \) and \(-i\) as eigenvalues. True ☐ False ☐

(c) If \(A \) is any 2x2 matrix of rank 1, then the system

\[
AX = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

has infinitely many solutions.

True ☐ False ☐

(d) If \(A \) is any 3x2 matrix of rank 2 and \(B \) a 2x3 matrix such that \(AB = 0 \), then \(B = 0 \).

True ☐ False ☐

(e) If \(A \) is a 2x2 matrix with \(A^2 = I \) (the identity matrix) then \(A = \pm I \).

True ☐ False ☐
5. Consider the vector field
\[\mathbf{F} = \left(\frac{-z^2}{5} - z + \pi ye^{\sin x} \cos x \right) \mathbf{i} + \left(\pi e^{\sin x} - x \right) \mathbf{j} - \frac{2xz}{5} \mathbf{k} \]
and the curve \(C \) given by
\[(2 \cos t, 2 \sin t, 0) \]
for \(-\pi/2 \leq t \leq \pi/2\). Evaluate the line integral
\[\int_C \mathbf{F} \cdot d\mathbf{r} . \]

(a) \(2\pi\sqrt{2} \) (b) 0 (c) \(4\pi \) (d) \(-\pi \) (e) \(-2\pi \) (f) \(2\pi \) (g) none of the above

\[\nabla \times \mathbf{F} = \mathbf{k} \left(\frac{2z}{5} + \frac{3z}{5} + 1 \right) - \mathbf{i} \left(\frac{2z}{5} + \frac{3z}{5} + 1 \right) \]

\[\hat{n} = \mathbf{k}. \]

\[(\nabla \times \mathbf{F}) \cdot \mathbf{k} = -1. \]

\[B(t) = (0,0,-t^2) \]
\((0,-t,0) \) for \(-2 \leq t \leq 2\).

\[\int_C \mathbf{F} \cdot d\mathbf{r} + \int_B \mathbf{F} \cdot d\mathbf{r} = \iint_{\text{disk}} (-1) \cdot dA = \pi \cdot 2^2 \cdot (-1) = -4\pi . \]

\[\int_B \mathbf{F} \cdot d\mathbf{r} = \int \left(2y \hat{i} + \pi \hat{j} \right) \cdot \left(\frac{1}{r^2} \ dt \right) \hat{j} = -\pi \int_2^3 \ dt = -4\pi . \]

\[\Rightarrow \int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi . \]
6. In the following true/false problems, \(\mathbf{F} \) is any vector field in 3-dimensions and \(f \) is any function in 3 variables. (You may assume \(\mathbf{F} \) and \(f \) have continuous derivatives.) You do not need to show any work. For each problem, state whether the given identity is true or false.

(a) \(\text{div}(\nabla f) = 0 \) \hspace{1cm} True \hspace{0.5cm} False

(b) \(\text{curl}(\nabla f) = 0 \) \hspace{1cm} True \hspace{0.5cm} False

(c) \(\text{div}(\text{curl} \mathbf{F}) = 0 \) \hspace{1cm} True \hspace{0.5cm} False

(d) \(\text{curl} \left(\text{curl} \mathbf{F} \right) = 0 \) \hspace{1cm} True \hspace{0.5cm} False

(e) \(\nabla(\text{div}(x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k})) = \nabla(2x \hat{i} + 2y \hat{j} + 2z \hat{k}) = 2(\hat{i} + \hat{j} + \hat{k}) \)
7. Define the function
\[f(x, y, z) = e^{(\sin x \cdot \cos y)} \cdot \left(z + \frac{\pi}{2} \right). \]

Let \(C \) be the curve
\[(t \cos^2(2t), t \sin(t), t) \]
for \(0 \leq t \leq \pi/2 \). Compute the integral
\[\int_C \frac{\partial f}{\partial x} \, dx + \int_C \frac{\partial f}{\partial y} \, dy + \int_C \frac{\partial f}{\partial z} \, dz. \]

\[C(0) = (0, 0, 0) \quad C\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right). \]

So
\[(e^{1.0}, e^{0.1}) - e^{0.1} \cdot \frac{\pi}{2} = \left(\frac{\pi}{2}\right). \]
8. Let \(S \) be the closed surface in 3-space formed by the cone
\[
x^2 + y^2 - z^2 = 0, \quad 1 \leq z \leq 2,
\]
the disk \(x^2 + y^2 \leq 4 \) in the plane \(z = 2 \), and the disk \(x^2 + y^2 \leq 1 \) in the plane \(z = 1 \). Define the vector field
\[
F(x, y, z) = xy^2i + x^2yj + \sin xk
\]
and let \(\mathbf{n} \) be the outward pointing unit normal vector to \(S \). Compute the surface integral
\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, dS.
\]

\[
(\nabla \cdot F) = y^2 + x^2 = r^2 \quad \text{in cylindrical coordinates}
\]

\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, dS = \iiint (\nabla \cdot F) \, dV
\]

\[
= \int_0^2 \int_0^{2\pi} \int_0^1 r^2 \cdot r \, d\theta \, dr \, dz
\]

\[
= 2\pi \int_0^2 \int_0^1 \frac{z^4}{4} \, dz = \frac{\pi}{2} \cdot \left[\frac{z^5}{5} \right]_0^1 = \frac{\pi}{2} \cdot \left[\frac{32}{5} - 1 \right] = \frac{31\pi}{10}
\]
9. Find the solution of the differential equation \(y' - y = y^2 \) with \(y(0) = \frac{1}{3} \).

\[
\frac{y'}{y+y^2} = 1 \quad \int \frac{dy}{y+y^2} = \int dx
\]

\[
\int \left(\frac{1}{y} \right) \frac{1}{1+y} \ dy = \int dx
\]

\[
\log \frac{y}{1+y} = x + C_1
\]

\[
\frac{y}{1+y} = C_2 e^x
\]

\[
y = C_2 e^x + y e^x
\]

\[
y = \frac{c_2 e^x}{1 - c_2 e^x}
\]

\[
y(0) = \frac{c_2}{1 - c_2} = \frac{1}{3}
\]

\[
3c_2 = 1 - c_2 \Rightarrow c_2 = \frac{1}{4}
\]

\[
y(x) = \frac{e^x}{4 - e^x}
\]

\[
(4 - e^x)^2 + e^{2x} = \frac{4e^x}{(4 - e^x)^2} \checkmark
\]
9. Find the solution of the differential equation \(y' - y = y^2 \) with \(y(0) = \frac{1}{3} \).

This solution is using the equation of Bernoulli.

Substitute \(y = u^{-1} \).

\[
\frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx} = -\frac{1}{y^2} \frac{dy}{dx} \quad \Rightarrow \quad \frac{dy}{dx} = -y^2 \frac{du}{dx}
\]

So the equation \(y' - y - y^2 = 0 \) becomes

\[
-y^2 \frac{du}{dx} - y - y^2 = 0 \quad \Rightarrow \quad \frac{du}{dx} + u + 1 = 0.
\]

Integrating factor is \(e^{\int dx} = e^x \quad \Rightarrow \quad e^x u'(x) + e^x u(x) = -e^x
\]

\[
\Rightarrow \quad \frac{d}{dx} (e^x u(x)) = -e^x
\]

\[
\Rightarrow \quad e^x u(x) = -e^x + C \quad \Rightarrow \quad u(x) = \frac{-e^x + C}{e^x}.
\]

\[
y(x) = \frac{1}{u(x)} = \frac{e^x}{C-e^x} \quad \Rightarrow \quad y(0) = \frac{1}{3} = \frac{1}{C-1}.
\]

\[\Rightarrow \quad C = 4 \quad \Rightarrow \quad y(x) = \frac{e^x}{4-e^x}.
\]
10. Let \(y \) be the solution of \(y'' = e^{-3t} - y' \) that passes through the origin and has a horizontal tangent line there. Then \(\lim_{t \to \infty} y(t) \) is equal to:

Answer:
(a) 0 (b) \(\frac{1}{2} \) (c) \(\frac{1}{3} \) (d) -2 (e) \(-\frac{1}{4} \)

\[y''(x) + y'(x) = e^{-3t}. \]

\[y_h(x) = C_1 e^{-x} \quad \Rightarrow \quad y_h(x) = C_1 e^{-x} + C_2. \]

\[q_1 e^{-3t} - 3q_2 e^{-3t} \quad \Rightarrow \quad C_1 = 1 \]

\[y(x) = C_2 e^{-x} + C_2 + \frac{1}{3} e^{-3t}. \]

\[y(0) = C_1 + C_2 + \frac{1}{6} = 0 \quad \Rightarrow \quad C_1 + C_2 = -\frac{1}{6}. \]

\[y'(0) = -C_1 - \frac{1}{3} = 0 \quad \Rightarrow \quad C_1 = -\frac{1}{3}, \quad C_2 = \frac{1}{3}. \]

\[y(x) = -\frac{1}{2} e^{-x} + \frac{1}{3} + \frac{1}{6} e^{-3t}. \]

\[\lim_{x \to \infty} y(x) = \frac{1}{3}. \]
11. Let \(y(t) = (y_1(t), y_2(t)) \) be any non-zero solution of the system of differential equations
\[
\begin{align*}
y_1' &= y_1 + 2y_2 \\
y_2' &= 3y_1 + 2y_2
\end{align*}
\]
such that \(\lim_{t \to \infty} y(t) = 0 \). Then \(\frac{y_1(t)}{y_2(t)} \) is equal to

\[\text{Answer: } (\theta \ a \ -1)\]

\[\begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \to \begin{pmatrix} 1 & -1 \\ 3 & 2-x \end{pmatrix} \to \begin{pmatrix} x-1 & 2 \\ 3 & 2-x \end{pmatrix} \]
\[
(x-1)(k-2)-6=x^2-3x-4.
\]
\[
\frac{3+\sqrt{9+16}}{2} = 4, -1.
\]

The soln corresponding to e-value 4 will go to \(\infty \) as \(t \to \infty \), so we can ignore it.

We need only the e-vector for \(-1\):
\[
\begin{pmatrix} 0 & 2 \\ 3 & 3 \end{pmatrix} \to \begin{pmatrix} 1 \\ -1 \end{pmatrix} \to e^{-t/1}
\]

\(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \)
12. Find the solution of \(xy'' + y' = -\frac{y}{x} \) with \(y(1) = 0 \), \(y'(1) = 2 \). Do not use a power series approach.

Cauchy-Euler eqn.:
\[x^2 y'' + x y' + y = 0. \]

Guess the solution
\[x^m. \]

\[m(m - 1) + m + 1 = m^2 + 1 = 0 \]

\[x = e^{\pm i \log x} = \cos (\log x) \pm i \sin (\log x) \]

\[y(x) = c_1 \cos (\log x) + c_2 \sin (\log x) \]

\[y(1) = c_1 = 0 \]
\[y'(1) = c_2 \cos (\log 1) \cdot \frac{1}{1} = c_2 = 2. \]
\[y(x) = 2 \sin (\log x). \]
13. A spring satisfies the differential equation $x'' + 16x = 0$. It is released one meter above its equilibrium position with a downward velocity of 3 meters per second. What is its highest position above the equilibrium position?

\[x(0) = 1 \]
\[x'(0) = -3. \]

\[x(t) = c_1 \cos(4t) + c_2 \sin(4t) \]

\[x(0) = c_1 = 1 \]
\[x'(0) = 4c_2 = -3 \]

\[x(t) = \cos(4t) - \frac{3}{4} \sin(4t) . \]

Amplitude \[\sqrt{1 + \left(\frac{9}{16}\right)} = \sqrt{\frac{16 + 9}{16}} = \frac{5}{4} \]

5/4 meters
14. Find an inhomogenous linear second order differential equation with constant coefficients having \(y_p = \frac{1}{2}x^2 - x \) as a particular solution, and \(y_1 = 3 \) and \(y_2 = e^{2x} \) as solutions of the associated homogeneous differential equation.

\[\begin{align*}
\lambda - 0)(\lambda - 2) &= \lambda^2 - 2\lambda \\
\Rightarrow \text{the homogeneous eqn. is } y''(x) - 2y'(x) &= 0,
\end{align*} \]

Then \(\frac{d^2}{dx^2} \left(\frac{1}{2}x^2 - x \right) - 2 \frac{d}{dx} \left(\frac{1}{2}x^2 - x \right) = 1 - 2(x-1) = 3 - 2x. \)

So the answer is

\[y''(x) - 2y'(x) = 3 - 2x \]
15. Consider the differential equation $2xy'' + y' + y = 0$.

a) Show that the equation has two linearly independent series solutions. You do not have to compute the coefficients of the series.

There is a soln of the form $\sum_{n=0}^{\infty} a_n x^n$. The eqn. becomes

$$\sum_{n=0}^{\infty} (n+1)(n+2) a_{n+2} x^{n+2} + \sum_{n=0}^{\infty} (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^{\infty} a_n x^n = 0.$$ (*)

The lowest order term is x^{-2}. Its coefficients are

$r \cdot (r-1) \cdot 2 \cdot a_0 + r \cdot a_0 = 0$

$\Rightarrow 2(r^2 - r) + r = 2r^2 - r = 0 \Rightarrow r = 0, \pm \frac{1}{2}$.

Therefore there is a soln of the form $\sum_{n=0}^{\infty} a_n x^n$ (for $r=0$)

and a soln of the form $\sum_{n=0}^{\infty} a_n x^{n+\frac{1}{2}}$. They are linearly independent.

b) Looking for the a_2 coefficient of the soln $\sum_{n=0}^{\infty} a_n x^n$.

$y(0) = a_0 = 1, \quad y'(0) = a_1 = -1$.

Plugging $r = 0$ into the above eqn (*) yields

$$\sum_{n=0}^{\infty} \frac{n(n-1)}{2} a_n x^n + \sum_{n=0}^{\infty} n a_n x^{n+1} + \sum_{n=0}^{\infty} a_n x^n = 0$$

$\Rightarrow \sum_{n=0}^{\infty} (n+2) a_{n+2} x^n + \sum_{n=0}^{\infty} (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^{\infty} a_n x^n = 0$.

For $n > -1$ the coeff. is $(n+1) \cdot 2 + (n+1) a_{n+1} + a_n = 0$.

For $n = 1$ this is $(4 + 2) a_2 + -1 = 0$.

$\Rightarrow a_2 = \frac{1}{2}$.