FINAL EXAM, MATH 240: CALCULUS III DECEMBER 17, 2015

No books, paper or electronic device may be used, other than a hand-written note card at most $4'' \times 6''$ in size. Please turn off your cell phones.

Nuc (primar).					
NAME (PRINTED):					
Instructor:	Rimm	er '	Towsner	Wibmer	
TA: Thomas Brooks Philip Pham	Jay Haval Tianguang	dar Konstan Zhang	tinos Kara	atapanis	
RECITATION TIME:		T 8:30-9:30 T 9:30-10:30		Th 8:30-9:30 Th 9:30-10:30	F 8-9 F 9-10
My signature by versity of Penns this examination	sylvania's				
	-	ur signature	CARAGE WATER		

	1	2	3	4	5	6	First Half Total
Out of	18	10	10	10	10	10	
	7	8	9	10	11		Second Half Total
Out of	10	10	10	10	10		
						Total:	/118

- 1. Decide whether the following statements are true or false. You do not need to show work.
 - 1. A homogeneous system of 7 linear equations in 5 unknowns always has an infinite number of solutions.

Circle one: True False

2. Every upper triangular matrix is invertible.

Circle one: True False

3. If A and B are $n \times n$ matrices with eigenvalues λ and μ respectively then $\lambda - \mu$ is an eigenvalue of A - B.

Circle one: True False

4. The set of all solutions to the vector differential equation

$$\mathbf{x}'(t) = \begin{bmatrix} t & -t & t^2 \\ 1 & -1 & t \\ 1 & 2 & 3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} t \\ 1 \\ 1 \end{bmatrix}$$

is a vector space of dimension 3.

Circle one: True False

5. Let $P_1(D)$ and $P_2(D)$ be polynomial differential operators. If y_1 is a solution to $P_1(D)y = 0$ and y_2 is a solution to $P_2(D)y = 0$, then $y_1 + y_2$ is a solution to $P_1(D)P_2(D)y = 0$.

Circle one: True False

6. If I_n is the $n \times n$ identity matrix and A is an $n \times n$ matrix such that A^2 is the zero matrix, then $I_n + A$ is invertible with inverse $I_n - A$.

Circle one: True False

7. When using the method of variation of parameters to find the particular solution to a second order differential equation, only one solution to the homogeneous equation is necessary.

Circle one: True False

8. A polynomial differential operator of order n annihilates every polynomial of degree n-1.

Circle one: True False

9. If A is a 3×3 nondefective matrix whose eigenvalues are $-2 \pm 3i$ and -1 then every solution to $\mathbf{x}' = A\mathbf{x}$ approaches 0 as t goes to ∞ .

Circle one: True False

2. Compute the inverse of

$$A = \left[\begin{array}{rrr} -1 & 1 & 3 \\ 0 & -1 & 2 \\ -1 & 1 & 2 \end{array} \right].$$

3. Find a basis for the column space of

$$\left[\begin{array}{cccc} 1 & 0 & -1 & 2 \\ 2 & 1 & 2 & 3 \\ -1 & -4 & 1 & 2 \end{array}\right].$$

Make sure to demonstrate that it is actually a basis.

4. If
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 and $det(A) = -3$, what is
$$\begin{vmatrix} a & g & d \\ b & h & e \\ c & i & f \end{vmatrix}$$
?

$$\left| \begin{array}{ccc} a & g & d \\ b & h & e \\ c & i & f \end{array} \right| = \underline{\hspace{1cm}}$$

- 5. For each of the following, determine whether or not it is a linear transformation.
- (a) $S: P_2 \to \mathbb{R}$ given by S(p) = p(1) (that is, $S(ax^2 + bx + c) = a1^2 + b1 + c$).

(b) $T: M_2(\mathbb{R}) \to \mathbb{R}$ given by $T(A) = \det(A)$.

6. Determine the general solution to $y'' - 5y' + 6y = e^x$.

=

7. Find the general solution of

$$y'' - 6y' + 9y = e^{3x} \ln x$$

using the reduction of order method and the fact that $y_1(x) = e^{3x}$ is a solution to the complementary homogeneous equation. (Hint: remember that $\int \ln x \, dx = x \ln x - x + C$.)

8. Solve the initial value problem

$$\mathbf{x}'(t) = \begin{bmatrix} -3 & 1 \\ -1 & -1 \end{bmatrix} \mathbf{x}(t), \ \mathbf{x}(0) = \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$$

9. Determine a basis for the space of real valued solutions of $(D^6 - 2D^5 + 5D^4)y = 0$.

Basis is ____

10. Characterize the equilibrium point of

$$\mathbf{x}'(t) = \begin{bmatrix} -3 & -6 \\ 1 & -7 \end{bmatrix} \mathbf{x}(t)$$

as:

- stable or unstable, and
- node, saddle point, degenerate node, center, or spiral.

Circle one: stable unstable

Circle one: node saddle point degenerate node center spiral

11. Consider the system of differential equations

$$\left[\begin{array}{c} x'(t) \\ y'(t) \end{array}\right] = \left[\begin{array}{cc} -1/t & 0 \\ t^2 & 1/t \end{array}\right] \left[\begin{array}{c} x(t) \\ y(t) \end{array}\right] + \left[\begin{array}{c} 2 \\ -t^3 \end{array}\right].$$

Knowing that $\begin{bmatrix} t \\ t \end{bmatrix}$, $\begin{bmatrix} t \\ 3t \end{bmatrix}$, and $\begin{bmatrix} 1/t+t \\ t^2+t \end{bmatrix}$ are solutions to this system of equations, find the general solution.

$$\left[egin{array}{c} x(t) \\ y(t) \end{array}
ight] =$$