CHAPTER 13 - Multiple Integrals

Section 13.1, page 1010

Problem 33

The problem is

>   Int(Int(x^2*exp(x*y),x=y..1),y=0..1);

Int(Int(x^2*exp(x*y),x = y .. 1),y = 0 .. 1)

Maple can do this:

>   value(%);

1/2*exp(1)-1

But let's sketch the region of integration ("for every y between 0 and 1, x goes from the line x=y to the line x=1").

>   plot({[y,y,y=0..1],[1,y,y=0..1]},color=blue,thickness=2);

[Maple Plot]

Another way to describe this triangle is "for every x from 0 to 1, y goes from the line y=0 to the line y=x", and so our integral is equivalent to:

>   Int(Int(x^2*exp(x*y),y=0..x),x=0..1);

Int(Int(x^2*exp(x*y),y = 0 .. x),x = 0 .. 1)

>   value(%);

1/2*exp(1)-1

Problem 68

To get Maple to evaluate integrals numerically:

>   evalf(Int(Int(exp(-x^2-y^2),x=0..1),y=0..1));

.5577462854

Section 13.3, page 1024

Problem 35

First let's plot the base - inside the cardioid and outside the circle:

>   r1:=1; r2:=1+cos(t);

r1 := 1

r2 := 1+cos(t)

>   plot({[r1*cos(t),r1*sin(t),t=0..2*Pi],[r2*cos(t),r2*sin(t),t=0..2*Pi]},color=blue,thickness=2,scaling=constrained);

[Maple Plot]

We can see that t goes from -Pi/2 to Pi/2. The height over any point is equal to x=r cos(t). So we can calculate the volume:

>   vol:=int(int(r*cos(t)*r,r=r1..r2),t=-Pi/2..Pi/2);

vol := 4/3+5/8*Pi

Problem 44

The curves are y=0 (that's just theta = 0), y=x/2 (that's theta = arctan(1/2)), and x=1 (that's r = 1/cos(theta)). The domain is a triangle, we don't really need to plot it, right?

To do the integral in polar, set:

>   x:=r*cos(theta); y:=r*sin(theta);

x := r*cos(theta)

y := r*sin(theta)

>   Int(Int(simplify(x/(x^2+y^2)*r),r=0..1/cos(theta)),theta=0..arctan(1/2));

Int(Int(cos(theta),r = 0 .. 1/cos(theta)),theta = 0 .. arctan(1/2))

>   value(%);

arctan(1/2)

Not so bad.

Section 13.6, page 1044

Problem 40

The region looks like an ice-cream cone:

>   restart;

>   with(plots,display3d):

>   A:=plot3d([rho*sin(Pi/4)*cos(theta),rho*sin(Pi/4)*sin(theta),rho*cos(Pi/4)],rho=0..3,theta=0..2*Pi):

>   B:=plot3d([3*sin(phi)*cos(theta),3*sin(phi)*sin(theta),3*cos(phi)],phi=0..Pi/4,theta=0..2*Pi):

>   display3d({A,B},scaling=constrained);

[Maple Plot]

Now we can find the volume easily in spherical coordinates:

>   vol1:=int(int(int(rho^2*sin(phi),rho=0..3),phi=0..Pi/4),theta=0..2*Pi);

vol1 := -9*2^(1/2)*Pi+18*Pi

Or in cylindrical coordinates, the cone is r=z and the sphere is r^2+z^2 = 9. So the volume is

>   int(int(int(r,z=r..sqrt(9-r^2)),r=0..3*sqrt(2)/2),theta=0..2*Pi);

-9*2^(1/2)*Pi+18*Pi

How about that!