# University of Pennsylvania Math Video Archive

 Section Title Author Link 2.1 Rates of Change and Tangent Curves  (Video coming) Rimmer 2.4 Evaluating Limits Using Algebra Rimmer http://media.sas.upenn.edu/file/157359 2.4 The Squeeze Theorem Rimmer http://media.sas.upenn.edu/file/157369 2.5 Continuity Rimmer http://media.sas.upenn.edu/file/157354 2.5 / 2.6 Intermediate Value Theorem and Limits Involving Infinity Rimmer http://media.sas.upenn.edu/file/157362 3.1 / 3.2 Tangents and the Derivative at a Point, Rimmer http://media.sas.upenn.edu/file/157355 3.2 / 3.3 The Derivative as a Function and  Derivative Rules Rimmer http://media.sas.upenn.edu/file/157356 3.4 The Derivative as a Rate of Change Rimmer http://media.sas.upenn.edu/file/142069 3.5 Derivatives of Trigonometric Functions Rimmer http://media.sas.upenn.edu/file/157371 3.6 The Chain Rule Rimmer http://media.sas.upenn.edu/file/157353 3.7 Implicit Differentiation Rimmer http://media.sas.upenn.edu/file/141923 3.8 Derivatives of Inverse Functions and Logarithms Rimmer http://media.sas.upenn.edu/file/142209 Exponential Functions Rimmer http://media.sas.upenn.edu/file/157360 Logarithmic Functions Rimmer http://media.sas.upenn.edu/file/157370 Logarithmic Differentiation Rimmer http://media.sas.upenn.edu/file/142263 3.9 Inverse Trigonometric Functions Rimmer http://media.sas.upenn.edu/file/142272 3.10 Related Rates Rimmer http://media.sas.upenn.edu/file/157368 3.11 Differentials Rimmer http://media.sas.upenn.edu/file/142864 4.1 Extreme Value of Functions Rimmer http://media.sas.upenn.edu/file/157335 4.2 The Mean Value Theorem Rimmer http://media.sas.upenn.edu/file/143199 4.4 Curve Sketching Part 1 Rimmer http://media.sas.upenn.edu/file/143389 4.4 / 4.5 Curve Sketching Part 2 and L'Hopital's Rule Part 1  (Video coming) Rimmer https://media.sas.upenn.edu/file/177975 4.5 L'Hopital's Rule Part 2 Rimmer http://media.sas.upenn.edu/file/143505 4.6 Applied Optimization Rimmer http://media.sas.upenn.edu/file/157337 Optimization Example 4 Rimmer http://media.sas.upenn.edu/file/157343 Optimization Example 5  (Video coming) Rimmer Optimization Example 6  (Video coming) Rimmer 4.8 Antiderivatives Rimmer http://media.sas.upenn.edu/file/157339 5.1 / 5.2 Area and Estimating with Finite Sums, Sigma Notation Rimmer http://media.sas.upenn.edu/file/143864 5.3 The Definite Integral Rimmer 5.4 The Fundamental Theorem of Calculus Part 2 Rimmer http://media.sas.upenn.edu/file/157349 The Fundamental Theorem of Calculus Part 1 Rimmer http://media.sas.upenn.edu/file/157348 5.6 Indefinite Integrals and the Substitution Method Rimmer http://media.sas.upenn.edu/file/144008 Substitution Example 3 Rimmer http://media.sas.upenn.edu/file/157345 Substitution Example 4 Rimmer http://media.sas.upenn.edu/file/157351 Substitution Example 5 Rimmer http://media.sas.upenn.edu/file/157352 Substitution Example 6 Rimmer http://media.sas.upenn.edu/file/157346 Substitution Example 7  (Video coming) Rimmer Area Between Curves Rimmer http://media.sas.upenn.edu/file/157414 6.1 Volume by Slicing Concept Rimmer http://media.sas.upenn.edu/file/157426 Area Formulas Rimmer http://media.sas.upenn.edu/file/157427 Volume by Cross Sections Example 1 Rimmer http://media.sas.upenn.edu/file/157428 Volume by Cross Sections Example 2 Rimmer http://media.sas.upenn.edu/file/157429 Volume by Disk Method Rimmer http://media.sas.upenn.edu/file/157408 Volume by Washer Method Rimmer http://media.sas.upenn.edu/file/157410 6.2 Volumes Using Cylindrical Shells Rimmer http://media.sas.upenn.edu/file/157409 Deciding b/w Disk/Washer and Shells Rimmer http://media.sas.upenn.edu/file/157424 6.3 Arc Length Rimmer http://media.sas.upenn.edu/file/157425 6.4 Areas of Surfaces of Revolution Rimmer http://media.sas.upenn.edu/file/157407 6.6 Moments and Centers of Mass Rimmer http://media.sas.upenn.edu/file/157430 8.1 Integration by Parts Rimmer http://media.sas.upenn.edu/file/157379 8.2 Trigonometric Integrals Part 1 Rimmer http://media.sas.upenn.edu/file/157411 Trigonometric Integrals Part 2 Rimmer http://media.sas.upenn.edu/file/157412 8.3 Trigonometric Substitutions Rimmer http://media.sas.upenn.edu/file/141964 8.4 Integration by Partial Fractions (Video coming) Rimmer 8.6 Numerical Integration (Video coming) Rimmer 8.7 Improper Integrals Rimmer http://media.sas.upenn.edu/file/142132 8.8 Probability Part 1 Rimmer http://media.sas.upenn.edu/file/142139 Probability Part 2 Rimmer http://media.sas.upenn.edu/file/157381 10.1 Sequences Rimmer http://media.sas.upenn.edu/file/143371 10.2 Infinite Series Rimmer http://media.sas.upenn.edu/file/143372 10.3 The Integral Test Rimmer http://media.sas.upenn.edu/file/143391 10.4 Comparison Tests Rimmer http://media.sas.upenn.edu/file/157373 10.5 The Ratio and Root Tests Rimmer http://media.sas.upenn.edu/file/143525 10.6 Alternating Series, Absolute and Conditional Convergence Rimmer http://media.sas.upenn.edu/file/143526 Deciding which test to use Part 1 Rimmer http://media.sas.upenn.edu/file/157375 Deciding which test to use Part 2 Rimmer http://media.sas.upenn.edu/file/143679 10.7 Power Series Introduction Rimmer http://media.sas.upenn.edu/file/143694 Functions as Power Series Part 1 Rimmer http://media.sas.upenn.edu/file/157376 Functions as Power Series Part 2 Rimmer http://media.sas.upenn.edu/file/157377 Functions as Power Series Part 3 Rimmer http://media.sas.upenn.edu/file/157378 10.8 / 10.9 / 10.10 Taylor and Maclaurin Series Rimmer http://media.sas.upenn.edu/file/143985 9.1 Differential Equations Introduction Rimmer http://media.sas.upenn.edu/file/142274 7.2 Exponential Change and Separable Differential Equations Rimmer http://media.sas.upenn.edu/file/142276 9.2 First Order Linear Equations Part 1 Rimmer http://media.sas.upenn.edu/file/142862 First Order Linear Equations Part 2 Rimmer http://media.sas.upenn.edu/file/157380 12.3 / 12.4 The Dot Product and the Cross Product Part 2 Rimmer http://media.sas.upenn.edu/file/157388 The Dot Product and the Cross Product Part 3 Rimmer http://media.sas.upenn.edu/file/157389 12.5 Lines and Planes in Space Part 1 Rimmer http://media.sas.upenn.edu/file/157390 12.5 / 12.6 Lines and Planes in Space Part 2 and Quadric Surfaces Part 1 Rimmer http://media.sas.upenn.edu/file/157392 12.6 / 13.1 Quadric Surfaces Part 2 and Vector Functions Rimmer http://media.sas.upenn.edu/file/157398 13.2 Integrals of Vector Functions; Projectile Motion Rimmer http://media.sas.upenn.edu/file/157397 13.3 / 13.4 Arc Length in Space and Curvature Rimmer http://media.sas.upenn.edu/file/157382 13.5 Tangential and Normal Components of Acceleration Rimmer http://media.sas.upenn.edu/file/141962 14.1 Functions of Several Variables Rimmer http://media.sas.upenn.edu/file/141983 14.2 Limits and Continuity in Higher Dimensions Rimmer http://media.sas.upenn.edu/file/157432 14.3 Partial Derivatives Rimmer http://media.sas.upenn.edu/file/157395 14.4 The Chain Rule Rimmer http://media.sas.upenn.edu/file/157394 14.5 Directional Derivatives and Gradient Vectors Part 1 Rimmer http://media.sas.upenn.edu/file/157385 Directional Derivatives and Gradient Vectors Part 2 Rimmer http://media.sas.upenn.edu/file/157386 14.6 Tangent Planes and Differentials Rimmer http://media.sas.upenn.edu/file/157406 14.7 Extreme Values and Saddle Points Rimmer http://media.sas.upenn.edu/file/142865 14.8 Lagrange Multipliers Rimmer http://media.sas.upenn.edu/file/142918 15.1 Double and Iterated Integrals over Rectangles Rimmer http://media.sas.upenn.edu/file/143234 15.2 / 15.3 Double Integrals over General Regions Rimmer http://media.sas.upenn.edu/file/143312 15.4 Double Integrals in Polar Form Part 1 Rimmer http://media.sas.upenn.edu/file/157396 Double Integrals in Polar Form Part 2 Rimmer http://media.sas.upenn.edu/file/143334 15.5 / 15.7 Triple Integrals in Rectangular Coordinates and Cylindrical Rimmer http://media.sas.upenn.edu/file/143680 Triple Integrals in Spherical Coordinates Rimmer http://media.sas.upenn.edu/file/157400 Triple Integrals in Spherical Coordinates Example 1 Rimmer http://media.sas.upenn.edu/file/157401 Triple Integrals in Spherical Coordinates Example 2 Rimmer http://media.sas.upenn.edu/file/157399 15.6 Moments and Centers of Mass Rimmer http://media.sas.upenn.edu/file/143499 15.8 Substitutions in Multiple Integrals Rimmer http://media.sas.upenn.edu/file/143695 16.1 Line Integrals Rimmer http://media.sas.upenn.edu/file/143826 16.2 Vector Fields and Line Integrals Rimmer http://media.sas.upenn.edu/file/157374 16.3 Path Independence, Conservative Fields, and Potential Functions Rimmer http://media.sas.upenn.edu/file/143913 16.4 Green's Theorem in the Plane Rimmer http://media.sas.upenn.edu/file/143909 16.1-16.4 Loose Ends Rimmer http://media.sas.upenn.edu/file/144000 Divergence and Curl Calculation Rimmer http://media.sas.upenn.edu/file/157383 Divergence Concept Rimmer http://media.sas.upenn.edu/file/157387 Curl Concept Rimmer http://media.sas.upenn.edu/file/157384 16.5 / 16.6 Surfaces Area and Surface Integrals Rimmer http://media.sas.upenn.edu/file/144336 Surface Area : Implicit Function Rimmer http://media.sas.upenn.edu/file/157402 Surface Area : Parametric Surface Rimmer http://media.sas.upenn.edu/file/157403 Surface Integral : Implicit Function Rimmer http://media.sas.upenn.edu/file/157404 Surface Integral : Parametric Surface Rimmer http://media.sas.upenn.edu/file/157405 Flux of a Vector Field through a Surface Rimmer http://media.sas.upenn.edu/file/157391 16.7 Stokes' Theorem Rimmer http://media.sas.upenn.edu/file/144415 16.8 Divergence Theorem Rimmer http://media.sas.upenn.edu/file/144454