MATH 360 Homework 1

Due 18 January 2012

Properties of the Real Numbers

- 1. Show that the following properties hold in any field.
 - i. (Unique identities) If a + x = a for some a, then x = 0. If ax = a for some a, then x = 1.
 - ii. (Unique inverses) If a + x = 0, then x = -a. If ax = 1, then $x = a^{-1}$.
 - iii. (No divisors of zero) If xy = 0, then x = 0 or y = 0.
 - iv. For all x, -(-x) = x.
 - v. For all x, $-x = (-1) \cdot x$.
 - vi. If $x \neq 0$ then $x^{-1} \neq 0$ and $(x^{-1})^{-1} = x$.
 - vii. If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$ and $(xy)^{-1} = x^{-1}y^{-1}$.
- 2. Show that the following properties hold in any ordered field.
 - i. If $x \le y$ and $0 \le z$, then $xz \le yz$. If $x \le y$ and $z \le 0$, then $yz \le xz$.
 - ii. If $x \le 0$ and $y \le 0$, then $xy \ge 0$. If $x \le 0$ and $y \ge 0$, then $xy \le 0$.
 - iii. For any x, $x^2 > 0$.
 - iv. If $x \leq 0$, then $-x \geq 0$. (Prove this without the fact that $-x = (-1) \cdot x$.)
- 3. In an ordered field, 0 < x < y implies $x^2 < y^2$.
- 4. (Partial converse to the above) If $x^2 < y^2$, then |x| < |y|
- 5. In an ordered field,
 - i. $|x| \ge 0$ for every x.
 - ii. |x| = 0 if and only if x = 0.
 - iii. |xy| = |x||y|
 - iv. $|x + y| \le |x| + |y|$
 - v. $||x| |y|| \le |x y|$
- 6. Consider the set $S = \{0, 1\}$ with the operations \oplus and \otimes given by the following tables:

\oplus	0	1	\otimes	0	1
0	0	1		0	
1	1	0	1	0	1

- i. Show that (S, \oplus, \otimes) is a field.
- ii. Show that (S, \oplus, \otimes) is not an ordered field. (Hint. There are only two possible orderings on S.)
- iii. (Bonus) Show that no ordered field is finite.
- 7. Let (S, \leq) be an ordered field, and $A \subset S$ a subset. A *lower bound* for A is an element $b \in S$ for which $b \leq a$ for all $a \in A$. A lower bound b is *greatest* if, for any other lower bound b', we have $b' \leq b$. We say that S has the *greatest lower bound property* if any $A \subset S$ which has a lower bound has a greatest lower bound.
 - i. Show that if S has the least upper bound property, then S has the greatest lower bound property.
 - ii. Show that if S has the greatest lower bound property, then S has the least upper bound property.
- 8. (Marsden-Hoffman's Problem 1.2.10) Define (x_n) by $x_0 = 0$, $x_{n+1} = \sqrt{2 + x_n}$.
 - i. Show that the sequence (x_n) converges in \mathbb{R} .
 - ii. Let $\lambda = \lim x_n$. Show that $\lambda^2 \lambda 2 = 0$.
 - iii. What is a more familiar name for λ ?