MATH 360 Homework 1

Due 18 January 2012

Properties of the Real Numbers

1. Show that the following properties hold in any field.
i. (Unique identities) If $a+x=a$ for some a, then $x=0$. If $a x=a$ for some a, then $x=1$.
ii. (Unique inverses) If $a+x=0$, then $x=-a$. If $a x=1$, then $x=a^{-1}$.
iii. (No divisors of zero) If $x y=0$, then $x=0$ or $y=0$.
iv. For all $x,-(-x)=x$.
v. For all $x,-x=(-1) \cdot x$.
vi. If $x \neq 0$ then $x^{-1} \neq 0$ and $\left(x^{-1}\right)^{-1}=x$.
vii. If $x \neq 0$ and $y \neq 0$, then $x y \neq 0$ and $(x y)^{-1}=x^{-1} y^{-1}$.
2. Show that the following properties hold in any ordered field.
i. If $x \leq y$ and $0 \leq z$, then $x z \leq y z$. If $x \leq y$ and $z \leq 0$, then $y z \leq x z$.
ii. If $x \leq 0$ and $y \leq 0$, then $x y \geq 0$. If $x \leq 0$ and $y \geq 0$, then $x y \leq 0$.
iii. For any $x, x^{2} \geq 0$.
iv. If $x \leq 0$, then $-x \geq 0$. (Prove this without the fact that $-x=(-1) \cdot x$.)
3. In an ordered field, $0 \leq x<y$ implies $x^{2}<y^{2}$.
4. (Partial converse to the above) If $x^{2}<y^{2}$, then $|x|<|y|$
5. In an ordered field,
i. $|x| \geq 0$ for every x.
ii. $|x|=0$ if and only if $x=0$.
iii. $|x y|=|x||y|$
iv. $|x+y| \leq|x|+|y|$
v. $||x|-|y|| \leq|x-y|$
6. Consider the set $S=\{0,1\}$ with the operations \oplus and \otimes given by the following tables:

\oplus	0	1
0	0	1
1	1	0

\otimes	0	1
0	0	0
1	0	1

i. Show that (S, \oplus, \otimes) is a field.
ii. Show that (S, \oplus, \otimes) is not an ordered field. (Hint. There are only two possible orderings on S.)
iii. (Bonus) Show that no ordered field is finite.
7. Let (S, \leq) be an ordered field, and $A \subset S$ a subset. A lower bound for A is an element $b \in S$ for which $b \leq a$ for all $a \in A$. A lower bound b is greatest if, for any other lower bound b^{\prime}, we have $b^{\prime} \leq b$. We say that S has the greatest lower bound property if any $A \subset S$ which has a lower bound has a greatest lower bound.
i. Show that if S has the least upper bound property, then S has the greatest lower bound property.
ii. Show that if S has the greatest lower bound property, then S has the least upper bound property.
8. (Marsden-Hoffman's Problem 1.2.10) Define $\left(x_{n}\right)$ by $x_{0}=0, x_{n+1}=\sqrt{2+x_{n}}$.
i. Show that the sequence $\left(x_{n}\right)$ converges in \mathbb{R}.
ii. Let $\lambda=\lim x_{n}$. Show that $\lambda^{2}-\lambda-2=0$.
iii. What is a more familiar name for λ ?

