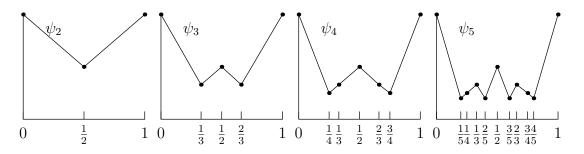
MATH 360 Homework 11 Due 23 April 2013

1. For a fixed $n \in \mathbb{N}$, consider the sequence of functions $\psi_n : [0,1] \to \mathbb{R}$, given by: if $x = \frac{p}{q}$ is a rational number in reduced form, with $q \leq n$, then $\psi_n(x) = \frac{1}{q^2}$; for other x (that is, the irrationals and any rational with reduced denominator q > n), let $\psi_n(x)$ be given by linear interpolation between the values of ψ_n at points with $q \leq n$. See the figure below.



- i. Show that each ψ_n is continuous.
- ii. For a given $x \in [0,1]$, consider the sequence $y_n = \psi_n(x)$. Show that $(y_n)_{n \in \mathbb{N}}$ is a convergent sequence in \mathbb{R} .
- iii. What is the pointwise limit of the sequence $(\psi_n)_{n \in \mathbb{N}}$?
- iv. Is the convergence uniform?
- 2. Prove the Weierstraß M-test for sequences of functions:

Theorem. Let $A \subset (M,d)$ be a subset of a metric space, and $f_n : A \to (N,\rho)$ a sequence of maps which converge pointwise on A to $f : A \to (N,\rho)$. Set

$$M_n = \sup_{x \in A} \rho(f_n(x), f(x))$$

Show that $f_n \rightrightarrows f$ on A iff $M_n \rightarrow 0$.

3. Let $A \subset (M, d)$ be a compact subset of a metric space and $(N, \|\cdot\|)$ be a normed space. Let ρ be the metric on N induced by $\|\cdot\|$. For $f, g \in \mathcal{C}(A; N)$, define

$$d_{\infty}(f,g) = \sup_{x \in A} \|f(x) - g(x)\|$$

Show that $(\mathcal{C}(A; N), d_{\infty})$ is a complete metric space iff (N, ρ) is a complete metric space.

- 4. Show that the family of continuous functions $f:[0,1] \to \mathbb{R}$ with positive integrals is open in $\mathcal{C}([0,1];\mathbb{R})$.
- 5. Let $\mathcal{B} = \{ f \in \mathcal{C}(\mathbb{R}; \mathbb{R}) | f(x) > 0 \text{ for all } x \in \mathbb{R} \}.$
 - i. Show that $f(x) = e^{-x^2}$ is in \mathcal{B} .

ii. Is \mathcal{B} open?

- iii. What is $int(\mathcal{B})$?
- 6. Suppose $(P_n)_{n \in \mathbb{N}}$ is a sequence of (real) polynomial which converge uniformly on \mathbb{R} to some $f : \mathbb{R} \to \mathbb{R}$.
 - i. Show that f is a polynomial. (*Hint*. Use the Cauchy criterion for uniform convergence.)
 - ii. Discuss (i) and the Stone-Weierstraß Theorem.