MATH 360 Homework 11

Due 23 April 2013

1. For a fixed $n \in \mathbb{N}$, consider the sequence of functions $\psi_{n}:[0,1] \rightarrow \mathbb{R}$, given by: if $x=\frac{p}{q}$ is a rational number in reduced form, with $q \leq n$, then $\psi_{n}(x)=\frac{1}{q^{2}}$; for other x (that is, the irrationals and any rational with reduced denominator $q>n$), let $\psi_{n}(x)$ be given by linear interpolation between the values of ψ_{n} at points with $q \leq n$. See the figure below.

i. Show that each ψ_{n} is continuous.
ii. For a given $x \in[0,1]$, consider the sequence $y_{n}=\psi_{n}(x)$. Show that $\left(y_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence in \mathbb{R}.
iii. What is the pointwise limit of the sequence $\left(\psi_{n}\right)_{n \in \mathbb{N}}$?
iv. Is the convergence uniform?
2. Prove the Weierstraß M-test for sequences of functions:

Theorem. Let $A \subset(M, d)$ be a subset of a metric space, and $f_{n}: A \rightarrow(N, \rho)$ a sequence of maps which converge pointwise on A to $f: A \rightarrow(N, \rho)$. Set

$$
M_{n}=\sup _{x \in A} \rho\left(f_{n}(x), f(x)\right)
$$

Show that $f_{n} \rightrightarrows f$ on A iff $M_{n} \rightarrow 0$.
3. Let $A \subset(M, d)$ be a compact subset of a metric space and $(N,\|\cdot\|)$ be a normed space. Let ρ be the metric on N induced by $\|\cdot\|$. For $f, g \in \mathcal{C}(A ; N)$, define

$$
d_{\infty}(f, g)=\sup _{x \in A}\|f(x)-g(x)\|
$$

Show that $\left(\mathcal{C}(A ; N), d_{\infty}\right)$ is a complete metric space iff (N, ρ) is a complete metric space.
4. Show that the family of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ with positive integrals is open in $\mathcal{C}([0,1] ; \mathbb{R})$.
5. Let $\mathcal{B}=\{f \in \mathcal{C}(\mathbb{R} ; \mathbb{R}) \mid f(x)>0$ for all $x \in \mathbb{R}\}$.
i. Show that $f(x)=e^{-x^{2}}$ is in \mathcal{B}.
ii. Is \mathcal{B} open?
iii. What is $\operatorname{int}(\mathcal{B})$?
6. Suppose $\left(P_{n}\right)_{n \in \mathbb{N}}$ is a sequence of (real) polynomial which converge uniformly on \mathbb{R} to some $f: \mathbb{R} \rightarrow \mathbb{R}$.
i. Show that f is a polynomial. (Hint. Use the Cauchy criterion for uniform convergence.)
ii. Discuss (i) and the Stone-Weierstraß Theorem.

