- 1. (Versions of the Archimedean property) Prove that the following properties are equivalent in an ordered field, i.e. any ordered field \mathbb{F} which possesses one of the properties must possess the other two as well:
 - i. If $x \in \mathbb{F}$, there is an integer n with x < n.
 - ii. If $x, y \in \mathbb{F}$, and 0 < x < y, then there is an integer n with y < nx.
 - iii. If $x \in \mathbb{F}$, and 0 < x, then there is an integer n with $0 < \frac{1}{n} < x$.
- 2. i. Suppose $(x_n)_n \in \mathbb{N}$ is a sequence and α is a number so that for all $n, x_n \leq \alpha$. Suppose $x_n \to L$. Show that $L \leq \alpha$.
 - ii. Give an example where $x_n < \alpha$ for all n, but $L = \alpha$.
- 3. (No least positive real number) Let $0 \le x$ be a real number so that $x \le \epsilon$ for every $\epsilon > 0$. Show that x = 0.
- 4. (Marsden-Hoffman's Problem 1.5.5) Let (x_n) be a bounded sequence of real numbers. Is the following statement true or false?

If $\limsup x_n = b$, then for large enough $n, x_n \leq b$.

If it is true, provide a proof. If not, provide a counterexample.

- 5. State the *converse* of the statement in problem 4. Is it true or false? If it is true, provide a proof. If not, provide a counterexample.
- 6. Formulate and prove the proper sum rule for sup, i.e. given subsets $A, B \subseteq \mathbb{R}$, relate $\sup(A + B)$ to $\sup A$ and $\sup B$. You may assume both sets are nonempty. (Here A+B is the set $\{a+b|a \in A, b \in B\}$.)
- 7. Formulate and prove the proper sum rule for $\limsup x_n$, i.e. given sequences $(x_n), (y_n)$, relate $\limsup x_n + y_n$ to $\limsup x_n$ and $\limsup y_n$. You may assume both sequences are bounded below, but do not assume either is bounded above.
- 8. Is there a way to equip the complex field \mathbb{C} with an ordering which makes it an ordered field?
- 9. i. Suppose $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence with a convergent subsequence, i.e. $(x_{n_k})_{k\in\mathbb{N}}$ such that $\lim_k x_{n_k} = L$. Show that $x_n \to L$.
 - ii. Show that a Cauchy sequence has at most one subsequential limit.
 - iii. Show that Cauchy sequences are bounded.
 - iv. Conclude that Cauchy sequences converge.
- 10. (Rudin's Problem 3.1)
 - i. If $(x_n)_{n \in \mathbb{N}}$ converges, show that $(|x_n|)_{n \in \mathbb{N}}$ converges.
 - ii. Is the converse of the above true?
- 11. For a bounded sequence $(x_n)_{n \in \mathbb{N}}$, show that $\limsup x_n = \lim S_n$, where $S_n = \sup\{x_k | k \ge n\}$. (Note that you must justify why $\lim S_n$ exists.)
- 12. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in [-B, B]. Let $a_0 = -B$ and $b_0 = B$, and call the interval $[-B, B] = [a_0, b_0] = I_0$.
 - i. Show that the following defines a subsequence. Let $n_0 = 0$. For k > 0, let I_k be whichever of the two halves of I_{k-1} (that is, whichever of $[a_{k-1}, \frac{1}{2}(a_{k-1}+b_{k-1})]$ and $[\frac{1}{2}(a_{k-1}+b_{k-1}), b_{k-1}]$) contains x_n for infinitely many n with $n > n_{k-1}$. Set n_k to be the first such n. Label the endpoints of by $I_k = [a_k, b_k]$.
 - ii. Show that the sequence of right endpoints $(b_k)_{k\in\mathbb{N}}$ converges to some b.
 - iii. Show that $\lim_k x_{n_k} = b$.
 - iv. Congratulations! You have given an alternate proof of the Bolzano-Weierstrass Theorem.