MATH 360 Homework 3 Due 1 February 2013

- 1. Suppose $(a_n)_{n \in \mathbb{N}}$ is a sequence of real numbers with $a_n \to A$ and A > 0. Consider the sequence $b_n = \sqrt{n + a_n} \sqrt{n}$.
 - i. Let $0 < c < \frac{1}{2}$. Show that there is some $N \in \mathbb{N}$, depending on c and the sequence $(a_n)_{n \in \mathbb{N}}$, so that $n \ge N$ guarantees $2cn + c^2 a_n < n$.
 - ii. Show that for large enough n, $n^2 + a_n n > (n + ca_n)^2$.
 - iii. Show that $\lim b_n = 0$.
- 2. Given $A, B \subset \mathbb{R}$, define $A \preceq B$ to mean that for every $x \in A$ there is some $y \in B$ with $x \leq y$. Are the following statements true or false? If a statement is true, provide a proof. If it is false, give a counterexample.
 - i. If $A \leq B$, then $\sup A \leq \sup B$.
 - ii. If $A \leq B$, then $\inf A \leq \inf B$.
 - iii. If $A \leq B$ and $B \leq A$, then A = B.
- 3. (Parallelogram Law) Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space. Let $\|\cdot\|$ be the norm that comes from the inner product, i.e. $\|x\| = \sqrt{\langle x, x \rangle}$. Show that for any $x, y \in V$, we have

$$||x + y||^{2} + ||x - y||^{2} = 2||x||^{2} + 2||y||^{2}$$

- 4. Let $(V, \|\cdot\|)$ be a normed space, and let $d(x, y) = \|x y\|$ be the metric that comes from the norm. Show that for any positive $N \in \mathbb{R}$, there are $x_N, y_N \in V$ with $d(x_N, y_N) > N$. (Bonus. Actually there is exactly one exception, that is, a normed space without arbitrarily-distant points. What is it?)
- 5. Let $V = \{f : [0,1] \to \mathbb{R} | \exists B : \exists B : \exists X \in [0,1], |f(X)| \leq B\}$ be the space of functions from [0,1] to \mathbb{R} which are bounded.
 - i. Define $||f||_{\infty} = \sup \{|f(x)||x \in [0,1]\}.$
 - ii. Verify that $(V, \|\cdot\|_{\infty})$ is a normed space with the standard operations of addition and scalar multiplication of functions. (You must prove that V is a \mathbb{R} -vector space and that $\|\cdot\|_{\infty}$ is a norm.)
 - iii. Let f(x) = x, g(x) = 1. Find $||f||_{\infty}$, $||g||_{\infty}$, $||f + g||_{\infty}$, and $||f g||_{\infty}$.
 - iv. Does $\|\cdot\|_{\infty}$ come from an inner product on V? Justify your answer.
- 6. Sketch an open ball of radius $\frac{1}{2}$, an open ball of radius 1, and an open ball of radius 2 in \mathbb{R}^2 with respect to each of the following metrics:
 - i. the standard metric $d_2(x,y) = \sqrt{(x^1 y^1)^2 + (x^2 y^2)^2}$.
 - ii. the ∞ -metric $d_{\infty}(x, y) = \max\{|x^1 y^1|, |x^2 y^2|\}.$
 - iii. the standard bounded metric $\rho(x, y) = \frac{d_2(x, y)}{1 + d_2(x, y)}$.
 - iv. the discrete metric.