MATH 360 Homework 3

Due 1 February 2013

1. Suppose $\left(a_{n}\right)_{n \in \mathbb{N}}$ is a sequence of real numbers with $a_{n} \rightarrow A$ and $A>0$. Consider the sequence $b_{n}=\sqrt{n+a_{n}}-\sqrt{n}$.
i. Let $0<c<\frac{1}{2}$. Show that there is some $N \in \mathbb{N}$, depending on c and the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$, so that $n \geq N$ guarantees $2 c n+c^{2} a_{n}<n$.
ii. Show that for large enough $n, n^{2}+a_{n} n>\left(n+c a_{n}\right)^{2}$.
iii. Show that $\lim b_{n}=0$.
2. Given $A, B \subset \mathbb{R}$, define $A \preceq B$ to mean that for every $x \in A$ there is some $y \in B$ with $x \leq y$. Are the following statements true or false? If a statement is true, provide a proof. If it is false, give a counterexample.
i. If $A \preceq B$, then $\sup A \leq \sup B$.
ii. If $A \preceq B$, then $\inf A \leq \inf B$.
iii. If $A \preceq B$ and $B \preceq A$, then $A=B$.
3. (Parallelogram Law) Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space. Let $\|\cdot\|$ be the norm that comes from the inner product, i.e. $\|x\|=\sqrt{\langle x, x\rangle}$. Show that for any $x, y \in V$, we have

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}
$$

4. Let $(V,\|\cdot\|)$ be a normed space, and let $d(x, y)=\|x-y\|$ be the metric that comes from the norm. Show that for any positive $N \in \mathbb{R}$, there are $x_{N}, y_{N} \in V$ with $d\left(x_{N}, y_{N}\right)>N$. (Bonus. Actually there is exactly one exception, that is, a normed space without arbitrarily-distant points. What is it?)
5. Let $V=\{f:[0,1] \rightarrow \mathbb{R}|\exists B . \ni . \forall x \in[0,1],|f(x)| \leq B\}$ be the space of functions from $[0,1]$ to \mathbb{R} which are bounded.
i. Define $\|f\|_{\infty}=\sup \{\mid f(x) \| x \in[0,1]\}$.
ii. Verify that $\left(V,\|\cdot\|_{\infty}\right)$ is a normed space with the standard operations of addition and scalar multiplication of functions. (You must prove that V is a \mathbb{R}-vector space and that $\|\cdot\|_{\infty}$ is a norm.)
iii. Let $f(x)=x, g(x)=1$. Find $\|f\|_{\infty},\|g\|_{\infty},\|f+g\|_{\infty}$, and $\|f-g\|_{\infty}$.
iv. Does $\|\cdot\|_{\infty}$ come from an inner product on V ? Justify your answer.
6. Sketch an open ball of radius $\frac{1}{2}$, an open ball of radius 1 , and an open ball of radius 2 in \mathbb{R}^{2} with respect to each of the following metrics:
i. the standard metric $d_{2}(x, y)=\sqrt{\left(x^{1}-y^{1}\right)^{2}+\left(x^{2}-y^{2}\right)^{2}}$.
ii. the ∞-metric $d_{\infty}(x, y)=\max \left\{\left|x^{1}-y^{1}\right|,\left|x^{2}-y^{2}\right|\right\}$.
iii. the standard bounded metric $\rho(x, y)=\frac{d_{2}(x, y)}{1+d_{2}(x, y)}$.
iv. the discrete metric.
