MATH 360 Homework 4 Due 8 February 2013

Recall that our definition of a *closed subset* differs from Rudin's:

Definition. A subset of a metric space $A \subset (M, d)$ is *closed* if its complement is open.

- 1. i. Show that the union of a finite number of closed sets is closed.
 - ii. Show that the arbitrary intersection of closed sets is closed.
 - iii. Give an example of an infinite family of closed sets whose union is not closed. (*Hint.* It's easier than you think.)
- 2. Let $(V, \|\cdot\|)$ be a normed space, and suppose $A \subset V$ is open with respect to the metric induced by the norm $\|\cdot\|$. Let $B \subset V$ be any subset. Show that $A + B = \{a + b | a \in A, b \in B\}$ is open.
- 3. (Marsden-Hoffman's problem 2.1.5) Let A be an open subset of \mathbb{R} (with the standard metric) and B be any subset of \mathbb{R} .
 - i. Give an example where $AB = \{ab | a \in A, b \in B\}$ is not open.
 - ii. Give conditions on the sets A, B under which AB must be open. (*Hint.* Consider, for each $b \in B$, $Ab = \{ab | a \in A\}$.)
- 4. Given a subset of a metric space $A \subset (M, d)$, consider the collection $\mathcal{G}_A = \{U \subset M | U \subset A, U \text{ is open}\}$ of all open subsets of (M, d) which are subsets of A.
 - i. Show that if $G \in \mathcal{G}_A$, then $G \subset int(A)$.
 - ii. Show that $\operatorname{int}(A) = \bigcup_{G \in \mathcal{G}_A} G$. (*Hint.* Show that for any $x \in \operatorname{int}(A)$, there is some $G \in \mathcal{G}_A$ with $x \in G$.
 - iii. Show int(A) is open.
 - iv. Explain why the preceding allows us to say that the interior of A is the maximal open set that is a subset of A.
- 5. Let (M, d_0) be a set with the discrete metric.
 - i. Show that every subset $A \subset M$ is clopen.
 - ii. Show that the set of limit points of any subset $A \subset M$ is empty.
 - iii. Why is this not a problem for the following theorem?

Theorem. A set A is closed iff the limit points of A all belong to A.

- 6. Let A and B be subsets of a metric space with $A \subset B$, and x a point in the metric space.
 - i. If x is a limit point for B, is x necessarily a limit point for A?
 - ii. If x is a limit point for A, is x necessarily a limit point for B?
- 7. (Rudin's problem 2.8)
 - i. Is every point of every open (with respect to the standard metric) $E \subset \mathbb{R}^2$ a limit point of E?
 - ii. Is every point of every closed (with respect to the standard metric) $E \subset \mathbb{R}^2$ a limit point of E?