Definition. A sequence $(x_n)_{n \in \mathbb{N}}$ in a metric space is called *eventually constant* if there is some N so that $m, n \geq N$ guarantees $x_n = x_m$.

- 1. Let $A \subset B$ be subsets of a metric space (M, d). Show that A is dense in B if and only if for any $b \in B$ and any $\epsilon > 0$, there is $a \in A$ with $d(a, b) < \epsilon$.
- 2. Let (M, d_0) be an set with the discrete metric. Consider a sequence $(x_n)_{n \in \mathbb{N}}$.
 - i. Show that $(x_n)_{n\in\mathbb{N}}$ converges if and only if $(x_n)_{n\in\mathbb{N}}$ is eventually constant.
 - ii. Show that $(x_n)_{n\in\mathbb{N}}$ is Cauchy if and only if $(x_n)_{n\in\mathbb{N}}$ is eventually constant.
- 3. (Marsden-Hoffman's problem 2.21: open set characterisation of the Cauchy property) Prove that a sequence (x_n) in a normed space $(V, \|\cdot\|)$ is Cauchy if and only if for every open set U containing $0 \in V$, there is $N \in \mathbb{N}$ so that $m, n \geq N$ guarantees $x_n x_m \in U$.
- 4. Consider the standard metric on \mathbb{R}^n , given by $d(x,y) = \sqrt{(x^1 y^1)^2 + \cdots + (x^n y^n)^2}$. Given a sequence $(x_k)_{k \in \mathbb{N}}$ of points in \mathbb{R}^n , for each $i \in \{1, \ldots, n\}$, let x_k^i be the *i*th coordinate of x_k . Then $(x_k^i)_{k \in \mathbb{N}}$ is a sequence of real numbers.
 - i. Show that the distance in \mathbb{R}^n is related to the distances between the coordinates of $x = (x^1, \ldots, x^n)$ and $y = (y^1, \ldots, y^n)$ as follows:

$$\max\left\{|x^{1} - y^{1}|, \dots, |x^{n} - y^{n}|\right\} \le d(x, y) \le \left(|x^{1} - y^{1}| + \dots + |x^{n} - y^{n}|\right)$$

- ii. Show that $x_k \to x$ if and only if for each $i \in \{1, \ldots, n\}, x_k^i \to x^i$.
- iii. Show that $(x_k)_{k\in\mathbb{N}}$ is Cauchy if and only if for each $i\in\{1,\ldots,n\}$, $(x_k^i)_{k\in\mathbb{N}}$ is Cauchy.
- iv. Show that $\mathbb{Q}^n = \{(q^1, \ldots, q^n) | q^i \in \mathbb{Q}\} \subset \mathbb{R}^n$ is dense in \mathbb{R}^n .

Bonus Recall that the post office metric on \mathbb{R}^2 is defined by $d_{PO}(x, x) = 0$ and $d_{PO}(x, y) = ||x|| + ||y||$ if $x \neq y$.

- i. Show that a sequence $(x_n)_{n \in \mathbb{N}}$ converges iff it either converges to $(0,0) \in \mathbb{R}^2$ or is eventually constant.
- ii. Show that a sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy iff it either converges to (0,0) or is eventually constant. (*Hint.* If $(x^1, x^2) \neq (0,0)$, then there is a closest point to (x^1, x^2) and it is (0,0).)