MATH 360 Homework 5 Notes and Selected Answers

Note 1. Some easy-to-prove facts you will find useful:

- Any eventually-constant sequence is convergent (hence Cauchy).
- A sequence $(x_n)_{n \in \mathbb{N}}$ is eventually constant iff there is some x and some N so that $n \ge N$ guarantees $x_n = x$.

Note 2. One thing that cannot be emphasised enough is that *not every metric space is complete*. Equivalently, "Cauchy" and "convergent" are not synonyms (unless we happen to know that we are in a complete metric space).

- 1. Let $A \subset B$ be subsets of a metric space (M, d). Show that A is dense in B if and only if for any $b \in B$ and any $\epsilon > 0$, there is $a \in A$ with $d(a, b) < \epsilon$.
- 2. Let (M, d_0) be an set with the discrete metric. Consider a sequence $(x_n)_{n \in \mathbb{N}}$.
 - i. Show that $(x_n)_{n \in \mathbb{N}}$ converges if and only if $(x_n)_{n \in \mathbb{N}}$ is eventually constant.

Solution (\Rightarrow). Suppose that $(x_n)_{n \in \mathbb{N}}$ converges to some $x \in M$. Then for $\epsilon = \frac{1}{2}$, there is N so that $n \geq N$ guarantees $d_0(x_n, x) < \frac{1}{2}$. But then for $n \geq N$, $x_n = x$ since the metric is discrete. So $(x_n)_{n \in \mathbb{N}}$ is eventually constant.

ii. Show that $(x_n)_{n \in \mathbb{N}}$ is Cauchy if and only if $(x_n)_{n \in \mathbb{N}}$ is eventually constant.

Solution (\Rightarrow). Suppose that $(x_n)_{n \in \mathbb{N}}$ is Cauchy. Then for $\epsilon = \frac{1}{2}$, there is N so that $m, n \geq N$ guarantees $d_0(x_n, x_m) < \frac{1}{2}$. But then for $m, n \geq N$, $x_n = x_m$ since the metric is discrete. So $(x_n)_{n \in \mathbb{N}}$ is eventually constant.

- 3. (Marsden-Hoffman's problem 2.21: open set characterisation of the Cauchy property) Prove that a sequence (x_n) in a normed space $(V, \|\cdot\|)$ is Cauchy if and only if for every open set U containing $0 \in V$, there is $N \in \mathbb{N}$ so that $m, n \geq N$ guarantees $x_n x_m \in U$.
- 4. Consider the standard metric on \mathbb{R}^n , given by $d(x,y) = \sqrt{(x^1 y^1)^2 + \dots + (x^n y^n)^2}$. Given a sequence $(x_k)_{k \in \mathbb{N}}$ of points in \mathbb{R}^n , for each $i \in \{1, \dots, n\}$, let x_k^i be the *i*th coordinate of x_k . Then $(x_k^i)_{k \in \mathbb{N}}$ is a sequence of real numbers.
 - i. Show that the distance in \mathbb{R}^n is related to the distances between the coordinates of $x = (x^1, \dots, x^n)$ and $y = (y^1, \dots, y^n)$ as follows:

$$\max\left\{|x^{1} - y^{1}|, \dots, |x^{n} - y^{n}|\right\} \le d(x, y) \le \left(|x^{1} - y^{1}| + \dots + |x^{n} - y^{n}|\right)$$

ii. Show that $x_k \to x$ if and only if for each $i \in \{1, \ldots, n\}, x_k^i \to x^i$.

Solution (\Rightarrow). Consider a particular $i \in \{1, \ldots, n\}$. Given $\epsilon > 0$, since $x_k \to x$, there is some N so that $k \ge N$ guarantees $d(x_k, x) < \epsilon$. But $|x_k^i - x^i| \le d(x_k, x) < \epsilon$, so this N works to show $x_k^i \to x^i$.

Solution (\Leftarrow). Given $\epsilon > 0$, since each $x_k^i \to x^i$, there is some N_i so that $k \ge N_i$ guarantees $|x_k^i - x^i| < \frac{\epsilon}{n}$. Let $N = \max\{N_1, \ldots, N_n\}$. Then for $k \ge N$,

$$d(x_k, x) \le |x_k^1 - x^1| + \dots + |x_k^n - x^n| < \frac{\epsilon}{n} + \dots + \frac{\epsilon}{n} = \epsilon$$

iii. Show that $(x_k)_{k\in\mathbb{N}}$ is Cauchy if and only if for each $i \in \{1, \ldots, n\}, (x_k^i)_{k\in\mathbb{N}}$ is Cauchy.

Solution (\Rightarrow). Consider a particular $i \in \{1, \ldots, n\}$. Given $\epsilon > 0$, since $(x_k)_{k \in \mathbb{N}}$ is Cauchy, there is some N so that $k, l \ge N$ guarantees $d(x_k, x_l) < \epsilon$. But $|x_k^i - x_l^i| \le d(x_k, x_l) < \epsilon$, so this N works to show $(x_k^i)_{k \in \mathbb{N}}$ is Cauchy.

Solution (\Leftarrow). Given $\epsilon > 0$, since each $(x_k^i)_{k \in \mathbb{N}}$ is Cauchy, there is some N_i so that $k, l \ge N_i$ guarantees $|x_k^i - x_l^i| < \frac{\epsilon}{n}$. Let $N = \max\{N_1, \ldots, N_n\}$. Then for $k, l \ge N$,

$$d(x_k, x_l) \le |x_k^1 - x_l^1| + \dots + |x_k^n - x_l^n| < \frac{\epsilon}{n} + \dots + \frac{\epsilon}{n} = \epsilon$$

iv. Show that $\mathbb{Q}^n = \{(q^1, \ldots, q^n) | q^i \in \mathbb{Q}\} \subset \mathbb{R}^n$ is dense in \mathbb{R}^n .

Solution. Let $x = (x^1, \ldots, x^n)$ be a point of \mathbb{R}^n . We'll use problem 1. Given $\epsilon > 0$, since \mathbb{Q} is dense in \mathbb{R} , for each *i* there is $q^i \in \mathbb{Q}$ with $|q^i - x^i| < \frac{\epsilon}{n}$. Set $q = (q^1, \ldots, q^n)$ and note that $q \in \mathbb{Q}^n$. Then

$$d(q,x) \le |q^1 - x^1| + \dots + |q^n - x^n| < \frac{\epsilon}{n} + \dots + \frac{\epsilon}{n} = \epsilon$$

Bonus Recall that the post office metric on \mathbb{R}^2 is defined by $d_{PO}(x, x) = 0$ and $d_{PO}(x, y) = ||x|| + ||y||$ if $x \neq y$.

i. Show that a sequence $(x_n)_{n \in \mathbb{N}}$ converges iff it either converges to $(0,0) \in \mathbb{R}^2$ or is eventually constant.

Solution (\Rightarrow). Suppose that $(x_n)_{n\in\mathbb{N}}$ converges to some x. If x = (0,0), then we are done. So suppose $x \neq (0,0)$. Then for $\epsilon = \frac{1}{2}||x||$, there is N so that $n \geq N$ guarantees $d_{\text{PO}}(x_n, x) < \frac{1}{2}||x||$. But then for $n \geq N$, $x_n = x$ by the definition of the post office metric. So $(x_n)_{n\in\mathbb{N}}$ is eventually constant.

ii. Show that a sequence $(x_n)_{n \in \mathbb{N}}$ is Cauchy iff it either converges to (0,0) or is eventually constant. (*Hint.* If $(x^1, x^2) \neq (0, 0)$, then there is a closest point to (x^1, x^2) and it is (0, 0).)

Solution (\Rightarrow) . Suppose that $(x_n)_{n \in \mathbb{N}}$ is Cauchy.

Case 1: There is some $\eta > 0$ so that for infinitely many indices n, $||x_n|| \ge \eta$. (Note that since $d_{\text{PO}}((0,0), x_n) = ||x_n||$, this means that the sequence $(x_n)_{n \in \mathbb{N}}$ is not converging to (0,0).)

Since $(x_n)_{n \in \mathbb{N}}$ is Cauchy, there is N so that $m, n \ge N$ guarantees $d_{PO}(x_n, x_m) < \frac{\eta}{2} < ||x_n||$. By definition of the post office metric, this implies $x_n = x_m$. So $(x_n)_{n \in \mathbb{N}}$ is eventually constant.

Case 2: For all η , only finitely many n have $||x_n|| \ge \eta$. Then for n larger than the largest such, $d_{\text{PO}}((0,0), x_n) = ||x_n|| < \eta$. That is, $(x_n)_{n \in \mathbb{N}}$ converges to (0,0).