MATH 360 Homework 6.5 Not due, but do!

Define

$$\mathbb{R}^{\infty} = \left\{ (x^1, x^2, \dots, x^k, \dots) \middle| x^i \in \mathbb{R}, \text{ all but finitely many } x^i = 0 \right\}$$

Note that under pointwise operations, \mathbb{R}^{∞} is a vector space.

- 1. For $x, y \in \mathbb{R}^{\infty}$, show that $\langle x, y \rangle_2 = \sum_{i=1}^{\infty} x^i y^i$ defines an inner product on \mathbb{R}^{∞} . Write d_2 for the metric induced by $\langle \cdot, \cdot \rangle_2$.
- 2. Show that $||x||_{\infty} = \max\{|x^i| | i \in \mathbb{N}\}\$ defines a norm on \mathbb{R}^{∞} . Write d_{∞} for the metric induced by $|| \cdot ||_{\infty}$.
- 3. Show that $d_{\text{taxi}}(x,y) = \sum_{i=1}^{\infty} |x^i y^i|$ defines a metric on \mathbb{R}^{∞} .
- 4. Consider the sequences $(x_k)_{k\in\mathbb{N}}$ and $(y_k)_{k\in\mathbb{N}}$ in \mathbb{R}^{∞} defined by:

$$\begin{aligned} x_k^i &= \begin{cases} 1 & \text{if } i \le k \\ 0 & \text{if } i > k \end{cases} \\ y_k^i &= \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \ne k \end{cases} \end{aligned}$$

Which of these sequences is bounded with respect to which of the metrics d_2 , d_{∞} , d_{taxi} ?

- 5. Show that $(x_k)_{k\in\mathbb{N}}$ and $(y_k)_{k\in\mathbb{N}}$ as above have no convergent subsequence with respect to any of the three metrics. (Compare to problem 9 of Homework 6.)
- 6. Show that no two of d_2 , d_{∞} , and d_{taxi} are equivalent metrics.
- 7. Explain the role of the requirement "all but finitely many $x^i = 0$ ". (*Hint.* You may want to think about this before, during, and after the other problems.)