Definition. Given two metrics d and ρ on the same set M, we say d is *equivalent to* ρ if there are positive real numbers C_1 and C_2 so that for any $x, y \in M$, we have

$$C_1\rho(x,y) \le d(x,y) \le C_2\rho(x,y)$$

- 1. Show that metric equivalence is an equivalence relation on the set of all metrics on a given set. That is, show for any metrics d, ρ, ℓ on the set M, we have:
 - i. d is equivalent to d.
 - ii. If d is equivalent to ρ , then ρ is equivalent to d. (So we may say "d and ρ are equivalent".)
 - iii. If d is equivalent to ρ and ρ is equivalent to ℓ , then d is equivalent to ℓ .
- 2. Show that d is equivalent to ρ iff there is some positive C so that $\frac{1}{C}\rho(x,y) \leq d(x,y) \leq C\rho(x,y)$.
- 3. Show that on \mathbb{R}^n , the taxicab metric and the standard metric are equivalent. (*Hint.* The optimal C as in problem 2 is \sqrt{n} .)
- 4. Suppose d and ρ are equivalent metrics. Show that $A \subset M$ is open in (M, d) iff it is open in (M, ρ) .
- 5. Suppose d and ρ are equivalent metrics. Show that (M, d) is complete iff (M, ρ) is complete.
- 6. Are the following metric spaces complete? Give proofs. (Hint. Think about previous homework sets.)
 - i. \mathbb{R}^n with the standard metric.
 - ii. $(\mathbb{R}^2, d_{\rm PO})$
 - iii. \mathbb{R}^n with the ∞ -metric $d_{\infty}(x, y) = \max\{|x^1 y^1|, \dots, |x^n y^n|\}$
 - iv. Any set with the discrete metric.
- 7. Read Rudin's Theorem 4.8, its proof, and its corollary. Let $f: (M, d) \to (N, \rho)$ be a continuous map. For each of the following, either give a proof or a counterexample.
 - i. If $U \subset M$ is open, need f(U) be open?
 - ii. If $U \subset M$ is closed, need f(U) be closed?
- 8. Let (M, d), (N, ρ) , and (P, ℓ) be metric spaces. Let $X \subset (M, d)$ and $Y \subset (N, \rho)$, and suppose $f : X \to N$ has $f(X) \subset Y$ and is continuous, and $g : Y \to P$ is continuous. Show that $g \circ f : X \to P$ is continuous as a map from (X, d) to (P, ℓ) . Read and understand, but do not use or mimic, the proof of this fact that Rudin gives on page 86.
- 9. i. Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in \mathbb{R}^n and $B \in \mathbb{R}$ be so that for all $k \in \mathbb{N}$, $||x_k|| \leq B$. Define a subsequence $(x_{k_p})_{p\in\mathbb{N}}$ as follows. $k_0 = 0$. Let C_0 be the cube $C_0 = [-B, B] \times \cdots \times [-B, B] \subset \mathbb{R}^n$. There are 2^n subcubes of C_0 given by choosing one half of each factor interval, such as:

$$[-B,0] \times [-B,0] \times \dots \times [-B,0], \quad [0,B] \times [-B,0] \times \dots \times [-B,0], [-B,0] \times [0,B] \times \dots \times [-B,0], \quad [0,B] \times [0,B] \times \dots \times [0,B], \text{ etc.}$$

Let C_1 be one of the subcubes for which there are infinitely many k with $x_k \in C_1$. (You must justify why there are any such subcubes.) Let k_1 be the first index k for which $x_k \in C_1$. Repeat this process: C_p is one of the 2^n subcubes of C_{p-1} for which there are infinitely many k with $x_k \in C_p$; k_p is the first index greater than k_{p-1} with $x_k \in C_p$. Show that $(x_{k_p})_{p \in \mathbb{N}}$ is Cauchy.

- ii. Conclude that any bounded sequence in \mathbb{R}^n has a convergent subsequence.
- 10. If a set $A \subset \mathbb{R}^n$ is closed and bounded, any sequence $(x_k)_{k \in \mathbb{N}}$ of points of A has a convergent subsequence whose limit is in A.