MATH 360 Homework 7

Due 15 March 2013

1. Suppose $(V,\|\cdot\|)$ is a normed space. Show that $\|\cdot\|: V \rightarrow \mathbb{R}$ is continuous with respect to the metric induced by $\|\cdot\|$ and the standard metric on \mathbb{R}. (Hint. Use the reverse triangle inequality.)
2. Suppose $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ are two metric spaces. On the product set $M_{1} \times M_{2}=\left\{(x, y) \mid x \in M_{1}, y \in M_{2}\right\}$, define the product metric $d_{1} \times d_{2}$ by

$$
\left(d_{1} \times d_{2}\right)((x, y),(z, w))=\sqrt{d_{1}(x, z)^{2}+d_{2}(y, w)^{2}}
$$

i. Show that $d_{1} \times d_{2}$ is a metric on $M_{1} \times M_{2}$.
ii. Show that a sequence $\left(\left(x_{k}, y_{k}\right)\right)_{k \in \mathbb{N}}$ in $M_{1} \times M_{2}$ converges to (x, y) iff $x_{k} \rightarrow x$ and $y_{k} \rightarrow y$.
3. If (M, d) is any metric space, show that $d: M \times M \rightarrow \mathbb{R}$ is continuous with respect to the product metric $d \times d$ and the standard metric on \mathbb{R}.
4. Given a metric space (M, d), fix $y \in M$, and define $D_{y}: M \rightarrow \mathbb{R}$ by $D_{y}(x)=d(x, y)$.
i. Show that D_{y} is continuous.
ii. Suppose A is a compact subset of M, and $y \notin A$. Show that $d(y, A)>0$.
5. Let $A \subset M_{1}$ and $B \subset M_{2}$ be nonempty subsets. Show that $A \times B=\{(a, b) \mid a \in A, b \in B\}$ is compact in $\left(M_{1} \times M_{2}, d_{1} \times d_{2}\right)$ if and only if both $A \subset M_{1}$ and $B \subset M_{2}$ are compact. (Hint. Use Bolzano-Weierstrass.)
6. For any two subsets $A, B \subset(M, d)$, define $d(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\}$.
i. Use (4) and (5) to show that if A and B are compact disjoint subsets of (M, d), then $d(A, B)>0$.
ii. Give an example of two closed, disjoint sets A, B in \mathbb{R}^{2} which have $d(A, B)=0$. You need not prove the sets are closed, but you must prove that they are disjoint and that $d(A, B)=0$. (Hint. There is a bit of terminology from calculus (starting with an "a") which describes two subsets of \mathbb{R}^{2} which get arbitrarily close to each other.)
7. If $(V,\|\cdot\|)$ is a normed space, we can consider the vector space operations as maps

$$
\begin{aligned}
\text { plus }: V \times V & \rightarrow V \\
\operatorname{plus}\left(v_{1}, v_{2}\right) & =v_{1}+v_{2} \\
\text { times }: \mathbb{R} \times V & \rightarrow V \\
\text { times }(\lambda, v) & =\lambda v
\end{aligned}
$$

Write $d_{\text {std }}$ for the standard metric on \mathbb{R} and $d_{\|\cdot\|}$ for the metric on V induced by $\|\cdot\|$.
i. Show that times : $\mathbb{R} \times V \rightarrow V$ is continuous with respect to $d_{\text {std }} \times d_{\|\cdot\|}$ and $d_{\|\cdot\|}$.
ii. Show that plus : $V \times V \rightarrow V$ is continuous with respect to $d_{\|\cdot\|} \times d_{\|\cdot\|}$ and $d_{\|\cdot\|}$.
8. Two norms $\|\cdot\|$ and $\{\{\cdot\}\}$ on the same vector space V are called equivalent if there are positive numbers C_{1}, C_{2} so that for all $v \in V, C_{1}\|v\| \leq\left\{\{v\} \leq C_{2}\|v\|\right.$.
i. For any particular $v \in V$, show that there are some positive c_{1}, c_{2} with $c_{1}\|v\| \leq\{\{v\}\} \leq c_{2}\|v\|$.
ii. Given v, for c_{1}, c_{2} as in part i , show that for any $\lambda \in \mathbb{R}$, we have $c_{1}\|\lambda v\| \leq\{\{\lambda v\}\} \leq c_{2}\|\lambda v\|$.
iii. Let $\{\{\cdot\}\}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any norm on \mathbb{R}^{n} which is continuous with respect to the standard metrics on \mathbb{R}^{n} and \mathbb{R}. Show that $\{\{\cdot\}\}$ is equivalent to the standard norm. (Hint. The sphere in the standard norm is compact and we have assumed that $\{\{\cdot\}\}$ is continuous.)
Bonus: Describe the interaction between compactness and order of quantifiers in parts i-iii.

