MATH 360 Homework 8

Due 22 March 2013

1. i. Give a precise meaning to the statement, "Disconnections pull back." Is the statement true?
ii. Show that the image of a connected set under a continuous map is connected.
2. Define $S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\}$.
i. Show that S^{0} is disconnected.
ii. Show that S^{n} for $n>0$ is connected. (Hint. S^{n} is the image under a continuous map of a connected set in \mathbb{R}^{n+1}.)
3. (Marsden-Hoffman's 3.28) Suppose $A \subset(M, d)$ is connected, and A is not a singleton. Show that every point of A is a limit point for A.
4. i. What are the connected subsets of a discrete metric space?
ii. What are the compact subsets of a discrete metric space?
5. (path components) Let $A \subset(M, d)$ be a subset of a metric space. For $x, y \in A$, write $x \sim y$ if there is a continuous path $\varphi:[0,1] \rightarrow A$ with $\varphi(0)=x, \varphi(1)=y$.
i. Show that \sim is an equivalence relation, i.e. that
a. (\sim is reflexive) $x \sim x$ for all $x \in A$.
b. (\sim is symmetric) $x \sim y$ implies $y \sim x$.
c. $(\sim$ is transitive) $x \sim y$ and $y \sim z$ implies $x \sim z$.
ii. For each $x \in A$, let $[x]=\{y \in A \mid x \sim y\} \subset A$. Show that $[x]$ is path-connected. (Hint. This is more subtle than at first it seems.)
iii. Show that $[x]$ is the maximal path-connected subset of A which contains x, i.e., that if $B \subset A$ is path-connected and has $x \in B$, then $B \subset[x]$.
6. Prove the product rule for derivatives of functions $f, g:[a, b] \rightarrow \mathbb{R}$. (Hint. Let $\phi_{x}(t)$ be the difference quotient for f and $\psi_{x}(t)$ be the difference quotient for g. Prove a product rule involving ϕ_{x} and ψ_{x}.)
7. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a differentiable function so that $f^{\prime}(x)=\frac{1}{x} f(x)$.
i. Suppose $f(1)=1$. Show that $f(x)=x$.
ii. Suppose $f(1)=c$. What is $f(x)$?
