MATH 360 Homework 9 Due 29 March 2013

- 1. Show that f is differentiable at x_0 iff $\lim_{h \to 0} \frac{f(x_0 + h) f(x_0)}{h}$ exists. Moreover if this limit exists, it must be $f'(x_0)$.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$.
 - i. Suppose f is differentiable at $x_0 \in (a, b)$. Show that

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}$$

- ii. Show that the limit in part i may exist even if f is not differentiable at x_0 . (*Hint.* Consider a piecewise-linear function.)
- iii. (Rudin's problem 5.11) Use L'Hôpital's Rule to prove that if $f''(x_0)$ exists, then

$$\lim_{h \to 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = f''(x_0)$$

- iv. Show that the limit in part iii may exist even if f is not twice-differentiable at x_0 .
- v. Can the limit in part iii exist if f is not differentiable at x_0 ?
- 3. Let 0 < A < 1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is a differentiable function so that for all $x \in \mathbb{R}$, $|g'(x)| \leq A$.
 - i. Show that for all $x, y \in \mathbb{R}$, $|g(x) g(y)| \le A|x y|$.
 - ii. Pick some $x_0 \in \mathbb{R}$. For each $n \in \mathbb{N}$, define $x_{n+1} = g(x_n)$. Show that the sequence $(x_n)_{n \in \mathbb{N}}$ converges.
 - iii. Let $\overline{x} = \lim x_n$. Show that \overline{x} is a *fixed point* for g, i.e. that $g(\overline{x}) = \overline{x}$.
 - iv. How many distinct fixed points could such a g have?
- 4. Let $g: [0,1] \to [0,1]$ be a continuous function. Show that g has a fixed point.
- 5. Prove the following:

Inverse Function Theorem, ver. 2. Let $g : [a,b] \to \mathbb{R}$ be differentiable on (a,b) and suppose that its derivative g' is continuous on (a,b). Suppose also that some $x \in (a,b)$ has g'(x) > 0. Then there are α, β with $a < \alpha < x < \beta < b$, such that g is invertible on (α, β) .