## MATH 360 Homework 9

Due 29 March 2013

1. Show that $f$ is differentiable at $x_{0}$ iff $\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ exists. Moreover if this limit exists, it must be $f^{\prime}\left(x_{0}\right)$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
i. Suppose $f$ is differentiable at $x_{0} \in(a, b)$. Show that

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}
$$

ii. Show that the limit in part i may exist even if $f$ is not differentiable at $x_{0}$. (Hint. Consider a piecewise-linear function.)
iii. (Rudin's problem 5.11) Use L'Hôpital's Rule to prove that if $f^{\prime \prime}\left(x_{0}\right)$ exists, then

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-2 f\left(x_{0}\right)}{h^{2}}=f^{\prime \prime}\left(x_{0}\right)
$$

iv. Show that the limit in part iii may exist even if $f$ is not twice-differentiable at $x_{0}$.
v. Can the limit in part iii exist if $f$ is not differentiable at $x_{0}$ ?
3. Let $0<A<1$. Suppose $g: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable function so that for all $x \in \mathbb{R},\left|g^{\prime}(x)\right| \leq A$.
i. Show that for all $x, y \in \mathbb{R},|g(x)-g(y)| \leq A|x-y|$.
ii. Pick some $x_{0} \in \mathbb{R}$. For each $n \in \mathbb{N}$, define $x_{n+1}=g\left(x_{n}\right)$. Show that the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges.
iii. Let $\bar{x}=\lim x_{n}$. Show that $\bar{x}$ is a fixed point for $g$, i.e. that $g(\bar{x})=\bar{x}$.
iv. How many distinct fixed points could such a $g$ have?
4. Let $g:[0,1] \rightarrow[0,1]$ be a continuous function. Show that $g$ has a fixed point.

5 . Prove the following:
Inverse Function Theorem, ver. 2. Let $g:[a, b] \rightarrow \mathbb{R}$ be differentiable on ( $a, b$ ) and suppose that its derivative $g^{\prime}$ is continuous on $(a, b)$. Suppose also that some $x \in(a, b)$ has $g^{\prime}(x)>0$. Then there are $\alpha, \beta$ with $a<\alpha<x<\beta<b$, such that $g$ is invertible on $(\alpha, \beta)$.

