MATH 600 Exam 2

Name:

Instructions

- For the following questions, you may use all and only the following resources:

1. your class notes
2. John M. Lee, "Introduction to Smooth Manifolds"
3. John W. Milnor, "Topology from the Differentiable Viewpoint"
4. your returned graded homework assignments and exam 1

In particular, you are NOT to consult other students, tutors, internet sources, or books other than the ones listed above.

- You should also be suspicious of using any result from the book which makes a problem seem trivial. If you have a question about whether a particular theorem can be used for a particular problem, please send me an email-the earlier the better!
- Please start each problem on a new page and write legibly.
- The exam is due at 6 pm on Tuesday, 18 December 2012. You are to turn it in to my mailbox in the Mathematics Department office, 4W1 DRL. Email submission is also acceptable, provided it arrives before the deadline.
- Feel free to ask me questions, but I reserve the right of coyness.
- When you turn in your exam, include this page. Sign the statement that appears below these instructions.

I have read and understood the above instructions. In completing this exam, I have consulted only the allowed sources. I understand that the penalty for consulting other sources, including other students, is that I will receive a zero grade for this exam.

1. A symplectic structure on a smooth manifold $M^{2 n}$ is a 2-form $\omega \in \mathcal{A}^{2}(M)$ which is closed and nondegenerate, that is, for all $p \in M$, if $X_{p} \in T_{p} M$ has $\left.X_{p}\right\lrcorner \omega_{p}=0$, then $X_{p}=0$.
(a) Show that $\omega^{n}=\omega \wedge \cdots \wedge \omega$ (n times) is a nowhere-vanishing $2 n$-form. Conclude M is orientable.
(b) Assume M is compact. Show that ω^{n} is not exact.
(c) Assume M is compact. Show that $H^{2 k}(M) \neq 0$ for $k=0, \ldots, n$.
(d) Show that $S^{n}, n \geq 3$, does not admit a symplectic structure.
(e) Show that S^{2} admits a symplectic structure.
(f) Bonus. Give an example of a form which is closed and has the property that if $X \in \mathfrak{X}(M)$ has $X\lrcorner \omega=0 \in \mathcal{A}^{1}(M)$, then $X=0 \in \mathfrak{X}(M)$, but which is not nondegerate.
2. Compute the de Rham cohomology groups of $\mathbb{R P}^{n}$ as follows.
(a) If $\alpha: S^{n} \rightarrow S^{n}$ is the antipodal map $\alpha(p)=-p$, and $\pi: S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is the quotient map, then we have a short exact sequence

$$
0 \rightarrow \mathcal{A}^{k}\left(\mathbb{R} \mathbb{P}^{n}\right) \xrightarrow{\pi^{*}} \mathcal{A}^{k}\left(S^{n}\right) \xrightarrow{\text { id }} \xrightarrow{\alpha^{*}} E^{k} \rightarrow 0
$$

where $E^{k}=\operatorname{im}\left(\mathrm{id}-\alpha^{*}\right) \subset \mathcal{A}^{k}\left(S^{n}\right)$.
(b) Show that the E^{k} form a cochain complex, with the differential d as the map $E^{k} \rightarrow E^{k+1}$.
(c) We call a form ω on S^{n} "invariant" if $\alpha^{*} \omega=\omega$ and "antiinvariant" if $\alpha^{*} \omega=-\omega$. Show that any form can be decomposed into the sum of invariant and antiinvariant forms, $\omega=\omega_{\text {inv }}+\omega_{\text {anti }}$. $\left(\right.$ Hint. $\left.\omega_{\mathrm{inv}}=\frac{1}{2}\left(\omega+\alpha^{*} \omega\right).\right)$
(d) If $k<n$, then

$$
H^{k}(E)=\frac{\operatorname{ker} d}{\operatorname{imd} d}=\frac{\left\{\omega-\alpha^{*} \omega \mid \omega \in \mathcal{A}^{k}\left(S^{n}\right), d\left(\omega-\alpha^{*} \omega\right)=0\right\}}{\left\{d\left(\sigma-\alpha^{*} \sigma\right) \mid \sigma \in \mathcal{A}^{k-1}\left(S^{n}\right)\right\}}
$$

is trivial. (Hint. Since $H^{k}\left(S^{n}\right)=0$, there is $\eta \in \mathcal{A}^{k-1}\left(S^{n}\right)$ with $d \eta=\omega-\alpha^{*} \omega$. Consider $\eta_{\text {anti. }}$.)
(e) There is a long exact sequence which relates $H^{k}\left(S^{n}\right)$ and $H^{k}\left(\mathbb{R} \mathbb{P}^{n}\right)$ if $k<n$. Write it out and use it to compute $H^{k}\left(\mathbb{R} \mathbb{P}^{n}\right)$ for $k<n$.
(f) The antipodal map $\alpha: S^{n} \rightarrow S^{n}$ is orientation-preserving if n is odd and orientation-reversing if n is even. Prove this fact, and use it to compute $H^{n}\left(\mathbb{R P}^{n}\right)$.
3. A Riemannian metric g is a symmetric, positive definite covariant 2-tensor, that is, for any vectors $X, Y \in T_{p} M, g(X, Y)=g(Y, X)$ and $g(X, X) \geq 0$, with equality only if $X=0$.
(a) If we write a Riemannian metric g in local coordnates as $g_{i j} d x^{i} \otimes d x^{j}$, explain the properties of symmetry and positive definiteness in terms of the coefficients $g_{i j}$.
(b) If we express a Riemannian metric in two different coordinate systems as $g=g_{i j} d x^{i} \otimes d x^{j}=$ $\tilde{g}_{p q} d y^{p} \otimes d y^{q}$, give a formula for $\tilde{g}_{p q}$ in terms of $g_{i j}$.
(c) Can you describe your formula from part (b) in terms of linear algebra?
(d) For any vector field $X \in \mathfrak{X}(M),(X\lrcorner g) \in \mathcal{A}^{1}(M)$. Show that this assignment gives isomorphisms $T_{p} M \cong T_{p}^{*} M$ and $\mathfrak{X}(M) \cong \mathcal{A}^{1}(M)$.
4. If $\gamma:[a, b] \rightarrow M^{n}$ is a smooth curve and X is a smooth vector field on M, define

$$
\int_{\gamma} X=\sum_{i=1}^{n} \int_{a}^{b} \frac{d \gamma^{i}}{d t}(t) X^{i}(\gamma(t)) d t
$$

where in coordinates $\left\{x^{1}, \ldots, x^{n}\right\}$, we express $\frac{d \gamma}{d t}=\frac{d \gamma^{i}}{d t} \frac{\partial}{\partial x^{i}}$ and $X=X^{j} \frac{\partial}{\partial x^{j}}$.
(a) Is $\int_{\gamma} X$ well defined? (Hint. No.)
(b) Explain what additional structure on the manifold M you might use to define something like $\int_{\gamma} X$. (Hint. Start by thinking linear-algebraically.)

