MATH 600 Homework 1 Due 14 September 2012

- Lee 1-1 Let X be the set of all points $(x,y) \in \mathbb{R}^2$, such that $y=\pm 1$, and let M be the quotient of X by the equivalence relation $(x,-1) \sim (x,1)$ for all $x \neq 0$. Show that M is locally Euclidean and second countable, but not Hausdorff.
- Lee 1-3 Let M be a nonempty topological manifold of dimension $n \ge 1$. If M has a smooth structure, show that it has uncountably many distinct smooth structures. [Hint. Begin by constructing homeomorphisms from \mathbb{B}^n to itself that are smooth on $\mathbb{B}^n \setminus \{0\}$.]
- Lee 1-5 Define $\sigma: S^n \setminus \{N\} \to \mathbb{R}^n$ by

$$\sigma(x^1, \dots, x^{n+1}) = \frac{(x^1, \dots, x^n)}{1 - x^{n+1}}$$

Define $\tilde{\sigma}(x) = -\sigma(-x)$ for $x \in S^n \setminus \{S\}$.

- (a) Show that these σ and $\tilde{\sigma}$ are the stereographic projection maps described in class.
- (b) Show that σ is bijective. (*Hint*. The inverse is given by $\sigma^{-1}(u^1,\ldots,u^n)=\frac{(2u,|u|^2-1)}{|u|^2+1}$.)
- (c) Show that the transition map $\tilde{\sigma} \circ \sigma^{-1}$ is smooth.
- (d) Show that the smooth structure on S^n given this way is the same as the one given by viewing S^n as a collection of graphs.
- Lee 1-7 Complex projective space, \mathbb{CP}^n , is the set of 1-dimensional complex-linear subspaces ("complex lines") of \mathbb{C}^{n+1} , with the quotient topology induced by the natural projection $\pi: \mathbb{C}^{n+1} \setminus \{0\} \to \mathbb{CP}^n$. Show that \mathbb{CP}^n is a compact 2n-manifold, and give it a smooth structure analogous to the smooth structure for \mathbb{RP}^n .
 - 1. Show that \mathbb{RP}^1 is homeomorphic to S^1 . (*Hint*. Both are homeomorphic to the interval $[0, \pi]$ with its endpoints identified.)
 - 2. We will prove that the dimension of a manifold is well-defined: Let M be a topological manifold. We start with the following deep theorem:

Brouwer's Invariance of Domain. Suppose $U \subset \mathbb{R}^k$ is open, and $f: U \to \mathbb{R}^k$ is one-to-one and continuous. Then $f(U) \subset \mathbb{R}^k$ is open.

- (a) Use Invariance of Domain to show that there can be no homeomorphism between Euclidean spaces of different dimensions. (*Hint*. If $\rho : \mathbb{R}^n \to \mathbb{R}^m$ were such a homeomorphism, with m < n, then consider the map $\rho \circ \iota : \mathbb{R}^m \to \mathbb{R}^m$, where $\iota : \mathbb{R}^m \to \mathbb{R}^n$ is the natural inclusion.)
- (b) Let (U, φ) and (V, ψ) be two charts which both contain some $p \in M$. If $\varphi : U \tilde{\to} \mathbb{R}^n$ and $\psi : V \tilde{\to} \mathbb{R}^m$, show that m = n. That is, we can define the dimension of M at the point p to be this common value.
- (c) Suppose M is connected, and $p, q \in M$. Show that the dimension of M at p is equal to the dimension of M at q.
- (d) Give an example of a topological manifold which has different dimensions at different points.
- 3. Prove Lee's Lemma 1.10(b).