MATH 600 Homework 4 Due 2 November 2012

1. Let V be a finite-dimensional vector space, $\omega^1, \ldots, \omega^k, \eta^1, \ldots, \eta^k \in V^*$

- Lee 12-3 Let V be a finite dimensional vector space. Show that the $\{\omega^i\}|_{i=1,\dots,k}$ are linearly dependent iff $\omega^1 \wedge \dots \wedge \omega^k = 0$.
- Lee 12-4 If the $\{\omega^i\}|_{i=1,\dots,k}$ and the $\{\eta^i\}|_{i=1,\dots,k}$ are linearly independent sets, show that $\operatorname{Span}\left\{\omega^1,\dots,\omega^k\right\} = \operatorname{Span}\left\{\eta^1,\dots,\eta^k\right\}$ iff $\omega^1\wedge\dots\wedge\omega^k = c\eta^1\wedge\dots\wedge\eta^k$.
 - 2. $\omega \in T^k(V)$ is decomposable if $\eta = \omega^1 \wedge \cdots \wedge \omega^k$. Show that every element of $T^2(\mathbb{R}^3)$ is decomposable, but that there are indecomposable elements of $T^2(\mathbb{R}^n)$ for $n \ge 4$.
 - 3. Let V be a finite-dimensional vector space. A $\omega \in T^2(V)$ is nondegenerate if $\omega(X, Y) = 0$ for all $Y \in V$ implies X = 0. Show that the following are equivalent
 - (a) ω is nondegenerate.
 - (b) If $\{\theta^1, \ldots, \theta^n\}$ are a basis for V^* , and $\omega = \omega_{ij}\theta^i \otimes \theta^j$, then the matrix (ω_{ij}) is nonsingular.
 - (c) The linear map $\overline{\omega}: V \to V^*$ given by $\overline{\omega}(X): Y \mapsto \omega(X, Y)$ is invertible.
 - 4. Let $\omega \in \bigwedge^k(V), \eta \in \bigwedge^l(V), X, Y \in V$.
 - (a) Show that $X \lrcorner (Y \lrcorner \omega) = -Y \lrcorner (X \lrcorner \omega)$
 - (b) If $\{e_1, \ldots, e_n\}$ are a basis of V and $\{\omega^1, \ldots, \omega^n\}$ are the dual cobasis, then

$$e_{j \sqcup} \left(\omega^{i_1} \wedge \dots \wedge \omega^{i_k} \right) = \begin{cases} 0 & \text{if } j \text{ is not one of the } i_{\alpha} \\ (-1)^{\alpha - 1} \omega^{i_1} \wedge \dots \wedge \widehat{\omega^{i_\alpha}} \wedge \dots \wedge \omega^{i_k} & \text{if } j = i_{\alpha} \end{cases}$$

(c) Prove the Leibniz rule for \Box and \wedge :

$$X \lrcorner (\omega \land \eta) = (X \lrcorner \omega) \land \eta + (-1)^k \omega \land (X \lrcorner \eta)$$

5. Given a smooth manifold M, consider the total space of its tangent bundle, i.e. TM as a manifold in its own right. Show that TM is always orientable. *Hint*. Show that if $\{x^1, \ldots, x^n\}$ and $\{y^1, \ldots, y^n\}$ are local coordinates on M, then $y_* \circ (x_*)^{-1}$ looks like

$$\left(\begin{array}{cc} D_j(y^i \circ x^{-1}) & 0\\ \circledast & D_j(y^i \circ x^{-1}) \end{array}\right)$$

- 6. Given a vector bundle $E \xrightarrow{\pi} M$, define an *orientation* of E to be a choice of orientation for each E_p , which is continuous in p. If $E \xrightarrow{\pi} M$ admits an orientation, call it *orientable*.
 - (a) Show that if $U \subset M$ has the property that the subbundle $\pi^{-1}(U) \xrightarrow{\pi} U$ is not orientable, then $E \xrightarrow{\pi} M$ is not orientable. (*Hint.* Consider the contrapositive of this statement.)
 - (b) Construct a rank n vector bundle over S^1 in the following way: given a vector space isomorphism $T: \mathbb{R}^n \to \mathbb{R}^n$, let

$$E = ([0,1] \times \mathbb{R}^n / \sim$$

where \sim is the equivalence relation $(0, v) \sim (1, Tv)$.

(c) Show that $E \xrightarrow{\pi} S^1$ as constructed above is orientable iff T is orientation preserving.