MATH 600 Homework 4

Due 2 November 2012

1. Let V be a finite-dimensional vector space, $\omega^{1}, \ldots, \omega^{k}, \eta^{1}, \ldots, \eta^{k} \in V^{*}$

Lee 12-3 Let V be a finite dimensional vector space. Show that the $\left.\left\{\omega^{i}\right\}\right|_{i=1, \cdots, k}$ are linearly dependent iff $\omega^{1} \wedge \cdots \wedge \omega^{k}=0$.
Lee 12-4 If the $\left.\left\{\omega^{i}\right\}\right|_{i=1, \cdots, k}$ and the $\left.\left\{\eta^{i}\right\}\right|_{i=1, \cdots, k}$ are linearly independent sets, show that $\operatorname{Span}\left\{\omega^{1}, \ldots, \omega^{k}\right\}=$ Span $\left\{\eta^{1}, \ldots, \eta^{k}\right\}$ iff $\omega^{1} \wedge \cdots \wedge \omega^{k}=c \eta^{1} \wedge \cdots \wedge \eta^{k}$.
2. $\omega \in T^{k}(V)$ is decomposable if $\eta=\omega^{1} \wedge \cdots \wedge \omega^{k}$. Show that every element of $T^{2}\left(\mathbb{R}^{3}\right)$ is decomposable, but that there are indecomposable elements of $T^{2}\left(\mathbb{R}^{n}\right)$ for $n \geq 4$.
3. Let V be a finite-dimensional vector space. A $\omega \in T^{2}(V)$ is nondegenerate if $\omega(X, Y)=0$ for all $Y \in V$ implies $X=0$. Show that the following are equivalent
(a) ω is nondegenerate.
(b) If $\left\{\theta^{1}, \ldots, \theta^{n}\right\}$ are a basis for V^{*}, and $\omega=\omega_{i j} \theta^{i} \otimes \theta^{j}$, then the matrix $\left(\omega_{i j}\right)$ is nonsingular.
(c) The linear map $\bar{\omega}: V \rightarrow V^{*}$ given by $\bar{\omega}(X): Y \mapsto \omega(X, Y)$ is invertible.
4. Let $\omega \in \bigwedge^{k}(V), \eta \in \bigwedge^{l}(V), X, Y \in V$.
(a) Show that $X\lrcorner(Y\lrcorner \omega)=-Y\lrcorner(X\lrcorner \omega)$
(b) If $\left\{e_{1} \ldots, e_{n}\right\}$ are a basis of V and $\left\{\omega^{1}, \ldots, \omega^{n}\right\}$ are the dual cobasis, then

$$
\left.e_{j}\right\lrcorner\left(\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}}\right)= \begin{cases}0 & \text { if } j \text { is not one of the } i_{\alpha} \\ (-1)^{\alpha-1} \omega^{i_{1}} \wedge \cdots \wedge \widehat{\omega^{i_{\alpha}}} \wedge \cdots \wedge \omega^{i_{k}} & \text { if } j=i_{\alpha}\end{cases}
$$

(c) Prove the Leibniz rule for \lrcorner and \wedge :

$$
\left.X\lrcorner(\omega \wedge \eta)=(X\lrcorner \omega) \wedge \eta+(-1)^{k} \omega \wedge(X\lrcorner \eta\right)
$$

5. Given a smooth manifold M, consider the total space of its tangent bundle, i.e. $T M$ as a manifold in its own right. Show that $T M$ is always orientable. Hint. Show that if $\left\{x^{1}, \ldots, x^{n}\right\}$ and $\left\{y^{1}, \ldots, y^{n}\right\}$ are local coordinates on M, then $y_{*} \circ\left(x_{*}\right)^{-1}$ looks like

$$
\left(\begin{array}{cc}
D_{j}\left(y^{i} \circ x^{-1}\right) & 0 \\
\circledast & D_{j}\left(y^{i} \circ x^{-1}\right)
\end{array}\right)
$$

6. Given a vector bundle $E \xrightarrow{\pi} M$, define an orientation of E to be a choice of orientation for each E_{p}, which is continuous in p. If $E \xrightarrow{\pi} M$ admits an orientation, call it orientable.
(a) Show that if $U \subset M$ has the property that the subbundle $\pi^{-1}(U) \xrightarrow{\pi} U$ is not orientable, then $E \xrightarrow{\pi} M$ is not orientable. (Hint. Consider the contrapositive of this statement.)
(b) Construct a rank n vector bundle over S^{1} in the following way: given a vector space isomorphism $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, let

$$
E=\left([0,1] \times \mathbb{R}^{n} / \sim\right.
$$

where \sim is the equivalence relation $(0, v) \sim(1, T v)$.
(c) Show that $E \xrightarrow{\pi} S^{1}$ as constructed above is orientable iff T is orientation preserving.

